WO2019137119A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019137119A1
WO2019137119A1 PCT/CN2018/119420 CN2018119420W WO2019137119A1 WO 2019137119 A1 WO2019137119 A1 WO 2019137119A1 CN 2018119420 W CN2018119420 W CN 2018119420W WO 2019137119 A1 WO2019137119 A1 WO 2019137119A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access preamble
preamble format
offset value
power
Prior art date
Application number
PCT/CN2018/119420
Other languages
English (en)
French (fr)
Inventor
颜矛
黄煌
高宽栋
邵华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019019742-7A priority Critical patent/BR112019019742A2/pt
Priority to RU2019129498A priority patent/RU2771171C2/ru
Priority to AU2018401905A priority patent/AU2018401905B9/en
Priority to EP18900463.3A priority patent/EP3573381B1/en
Priority to JP2019548586A priority patent/JP7030832B2/ja
Publication of WO2019137119A1 publication Critical patent/WO2019137119A1/zh
Priority to US16/523,668 priority patent/US11160116B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • next generation mobile communication system for example, new radio (NR)
  • NR new radio
  • the offset value based on the random access preamble format has not been defined and how the transmission power of the random access preamble is determined. Therefore, it is urgent to define an offset value based on a random access preamble format in the next generation mobile communication system and determine a transmission power of the random access preamble.
  • the present application provides a communication method and apparatus for defining an offset value based on a random access preamble format in a next generation mobile communication system and reasonably determining a transmission power of a random access preamble.
  • a communication method including: determining, by a terminal device, a transmit power for transmitting a random access preamble, wherein the transmit power and a format of the random access preamble and an offset value based on a random access preamble format Correlating; and the terminal device transmits the random access preamble with the determined transmit power.
  • the offset values corresponding to the multiple random access preamble formats in the next generation mobile communication system are given, so that the transmission power of the random access preamble can be reasonably determined.
  • the determining, by the terminal device, the sending power of the random access preamble specifically: determining that the sending power is a smaller value of the following: a maximum transmit power allowed by the terminal device, randomly Accessing a sum of a preamble receiving target power and a path loss PL c estimated by the terminal device; or determining that the transmitting power is a smaller of: a maximum transmit power allowed by the terminal device, a random access preamble receiving target power, a subcarrier spacing power offset value and a sum of PL c and a value of at least one of the following parameters; wherein the at least one parameter comprises: a subcarrier spacing power offset value, a random access preamble sequence offset value, and a beam-related offset value of the network device and/or the terminal device; wherein the random access preamble receiving target power is a sum of three: a random access preamble initial receiving target power, and a bias based on a random access preamble format
  • the offset value based on the random access preamble format 2 is -6 dBB; or, when the random access preamble format is 3, based on The offset value of the random access preamble format 3 is 0 dB.
  • offset values based on random access formats 2, 3, which are different from those in LTE, are respectively given.
  • the offset value based on the random access preamble format A1 is X-3dB; or when the random access preamble format is A2, based on random connection
  • the offset value of the incoming preamble format A2 is X-6dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is X-8dB; or when the random access preamble format is B1
  • the offset value based on the random access preamble format B1 is X-3dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is X-6dB; or when the random access preamble
  • the format is B3, the offset value based on the random access preamble format B3 is X-8dB; or when the random access preamble format is B4, the B4 offset value based on the random access preamble format is X-11dB; or when random When the access preamble format
  • the value of X is related to a carrier frequency or a subcarrier spacing.
  • the values of X include 0, 3, 8, 11, 14, 17, 18, 19, and 20.
  • the value of X is received from a network device.
  • the offset value based on the random access preamble format A1 is 8 dB; or when random access When the preamble format is A2, the offset value based on the random access preamble format A2 is 5 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 3 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format B1 is 8 dB; or when the random access preamble format is B2, the B2 offset value based on the random access preamble format is 5 dB; or when the random access preamble is used When the format is B3, the offset value based on the random access preamble format B3 is 3 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 0 dB
  • the offset value is related to the subcarrier spacing, and the offset values corresponding to the specific multiple access preamble formats are given.
  • the network device and the terminal device may pre-store the correspondence table, and the terminal device sends the corresponding relationship table.
  • the random access preamble format and the correspondence table determine the corresponding offset value.
  • the offset value based on the random access preamble format A1 is 11 dB; or when random access When the preamble format is A2, the offset value based on the random access preamble format A2 is 8 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 6 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format B1 is 11 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 8 dB; or when random access When the preamble format is B3, the offset value based on the random access preamble format B3 is 6 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 3 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format A2 is 8 d
  • the offset value is related to the subcarrier spacing, and the offset values corresponding to the specific multiple access preamble formats are given.
  • the network device and the terminal device may pre-store the correspondence table, and the terminal device sends the corresponding relationship table.
  • the random access preamble format and the correspondence table determine the corresponding offset value.
  • the offset value based on the random access preamble format A1 is 14 dB; or when random access When the preamble format is A2, the offset value based on the random access preamble format A2 is 11 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 9 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format B1 is 14 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 11 dB; or when random access When the preamble format is B3, the offset value based on the random access preamble format B3 is 9 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 6 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format A1 is 14 d
  • the offset value is related to the subcarrier spacing, and the offset values corresponding to the specific multiple access preamble formats are given.
  • the network device and the terminal device may pre-store the correspondence table, and the terminal device sends the corresponding relationship table.
  • the random access preamble format and the correspondence table determine the corresponding offset value.
  • the offset value based on the random access preamble format A1 is 17 dB; or when random access When the preamble format is A2, the offset value based on the random access preamble format A2 is 14 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 12 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format B1 is 17 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 14 dB; or when random access When the preamble format is B3, the offset value based on the random access preamble format B3 is 12 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 9 dB; or when random access When the preamble format is B1, the offset value based on the random access preamble format A1 is 17 d
  • the offset value is related to the subcarrier spacing, and the offset values corresponding to the specific multiple access preamble formats are given.
  • the network device and the terminal device may pre-store the correspondence table, and the terminal device sends the corresponding relationship table.
  • the random access preamble format and the correspondence table determine the corresponding offset value.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a terminal device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a processing unit and a sending unit.
  • the processing unit is configured to implement a determining function in the foregoing method
  • the sending unit is configured to implement a sending function in the foregoing method.
  • the processing unit is configured to determine a transmit power for transmitting a random access preamble, where the transmit power is related to a format of the random access preamble and an offset value based on a random access preamble format; And transmitting, by the sending power determined by the processing unit, the random access preamble.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • a communication method comprising: receiving, by a terminal device, information indicating a random access preamble format from a network device; the terminal device receiving an offset from the network device for indicating a random access preamble format based Information of the value; the terminal device determines a transmit power for transmitting a random access preamble, wherein the transmit power and the information indicating a format of the random access preamble and the offset value of the indication based on a random access preamble format Information related; and the terminal device transmits the random access preamble with the determined transmit power.
  • the determining, by the terminal device, the sending power of the random access preamble specifically: determining that the sending power is a smaller value of the following: a maximum transmit power allowed by the terminal device, randomly Accessing a sum of a preamble receiving target power and a path loss PL c estimated by the terminal device; or determining that the transmitting power is a smaller of: a maximum transmit power allowed by the terminal device, a random access preamble receiving target power, a sum of a subcarrier spacing power offset value and a value of at least one of the following parameters: wherein the at least one parameter comprises: a subcarrier spacing power offset value, a random access preamble sequence offset value, and a network device And/or a beam-related offset value of the terminal device; wherein the random access preamble receiving target power is a sum of three: a random access preamble initial receiving target power, and an offset value based on a random access preamble format And the product of the power uplift count minus 1 and
  • the information used to indicate an offset value based on a random access preamble format includes an index number of the offset value based on a random access preamble format, or the random connection based The value of the offset value into the preamble format.
  • the value of the offset value based on the random access preamble format includes N elements, and the values of the N elements are in an equal difference distribution, and N is a positive integer.
  • the value of the offset value based on the random access preamble format includes: ⁇ 0dB, -2dB, -4dB, -6dB, -8dB, -10dB, -12dB, -14dB ⁇ , ⁇ 8dB, 6dB, 4dB, 2dB, 0dB, -2dB, -4dB, -6dB ⁇ or ⁇ 19dB, 17dB, 15dB, 13dB, 11dB, 9dB, 7dB, 5dB ⁇ .
  • the value of the offset value based on the random access preamble format includes M elements, and the values of the M elements are in increasing or decreasing distribution, and M is a positive integer.
  • the value of the offset value based on the random access preamble format includes: ⁇ 0dB, -3dB, -4.5dB, -6dB, -8dB, -11dB, -14dB ⁇ , ⁇ 8dB, 5dB, 3.5dB, 2dB, 0dB, -3dB, -6dB ⁇ or ⁇ 19dB, 16dB, 14.5dB, 13dB, 11dB, 8dB, 5dB ⁇ .
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a terminal device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the programs (instructions) and data necessary for the device.
  • the communication device can further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a receiving unit, a processing unit, and a sending unit.
  • the processing unit is configured to implement the determining function in the foregoing method
  • the receiving unit and the sending unit are respectively configured to implement the receiving and transmitting functions in the foregoing method.
  • the receiving unit is configured to receive information indicating a random access preamble format from the network device
  • the receiving unit is further configured to receive, by the network device, an offset value that is used to indicate a random access preamble format.
  • the processing unit is configured to determine a transmit power for transmitting a random access preamble, where the transmit power and the information indicating a format of a random access preamble and the indication are offset based on a random access preamble format Information about the value; and the sending unit, configured to send the random access preamble with the determined transmit power.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • a communication method comprising: a network device transmitting information indicating a random access preamble format to a terminal device; and the network device receiving the random transmission of the determined transmission power of the terminal device An access preamble, wherein the transmit power is related to a format of the random access preamble and an offset value based on a random access preamble format.
  • the method further includes: the network device sending, to the terminal device, information indicating an offset value based on a random access preamble format.
  • the information used to indicate an offset value based on a random access preamble format includes an index number of the offset value based on a random access preamble format, or the random connection based The value of the offset value into the preamble format.
  • the present application also provides a communication device that can implement the above communication method.
  • the communication device can be a chip (such as a baseband chip, or a communication chip, etc.) or a network device.
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the necessary programs (instructions) and/or data for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a sending unit and a receiving unit.
  • the sending unit is configured to send information indicating a random access preamble format to the terminal device
  • the receiving unit is configured to receive a random access preamble sent by the terminal device to determine a transmit power, where The transmit power is related to the format of the random access preamble and the offset value based on the random access preamble format.
  • the transmitting unit may be an output unit such as an output circuit or a communication interface; the receiving unit may be an input unit such as an input circuit or a communication interface.
  • the transmitting unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • a computer program product comprising instructions for causing a computer to perform the methods described in the above aspects when executed on a computer is provided.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an interaction process of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an interaction process of another communication method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a simplified network device according to an embodiment of the present disclosure.
  • the power of the terminal to transmit the random access preamble is related to at least one of the following parameters: preamble initial received target power, based on the access preamble format.
  • the preamble format based offset also referred to as DELTA_PREAMBLE
  • the preamble transmission counter preamble transmission counter
  • PL c Path loss
  • P CMAX,c (i) the maximum transmit power allowed by the terminal
  • the offset value DELTA_PREAMBLE based on the access preamble format is related to a random access preamble format.
  • LTE Long Term Evolution
  • the parameters corresponding to each random access preamble format are shown in Table 1 below:
  • Table 1 Parameters of five random access preamble formats defined in LTE
  • the DELTA_PREAMBLE corresponding to each random access preamble format is as shown in Table 2 below:
  • Random access preamble format DELTA_PREAMBLE 0 0dB 1 0dB 2 -3dB 3 -3dB 4 8dB
  • a type of random access preamble format defined in NR as shown in Table 3-1 includes four random access preamble formats: format 0 to 3.
  • Table 3-1 A class of random access preamble formats defined in NR
  • the time length N u of the format 0 to 3 implicitly includes the guard time, and u is the subcarrier spacing index of the current uplink/downlink data. It is fixed to 0 in Table 3-1.
  • the length of the preamble format includes three parts: a cyclic prefix, a preamble sequence, a guard time (implicitly including the time period), and a format length of format 0 and format 3 is about 1 ms (same as the length of the LTE preamble format 1).
  • the subcarrier spacing differs by a factor of four (correspondingly, the frequency domain bandwidth is 1.25*864 kHz and 5*864 kHz, respectively, a difference of 4 times); the length of the format 1 is about 3 ms (the same as the length of the LTE preamble format 3); The length of time 2 is approximately 3.5 ms.
  • Random access preamble format defined in NR as shown in Table 3-2 includes 10 random access preamble formats, respectively, with different numbers of preamble orthogonal frequency division multiplexing (OFDM). The symbol is repeated (ie the second column in Table 3-2).
  • OFDM orthogonal frequency division multiplexing
  • Table 3-2 Another Type of Random Access Preamble Format Defined in NR
  • There are four subcarrier spacings ⁇ f RA of the random access preamble format of this length, namely 15 kHz, 30 kHz, 60 kHz, 120 kHz ( ⁇ 0, 1, 2, 3, which is the preamble format subcarrier spacing index).
  • 15 kHz and 30 kHz are used in scenarios where the carrier frequency is lower than 6 GHz
  • 60 kHz and 120 kHz are used in scenarios where the carrier frequency is greater than 6 GHz.
  • each of the 10 random access preamble formats for each subcarrier spacing there are a total of 7 different numbers of preamble OFDM symbol repetition values for different scenarios.
  • the protection time is implicitly included. That is, the lengths of the CPs in the three random access preamble formats B1, B2, and B3 are shorter than the CPs of A1, A2, and A3, respectively, implying that the format is reduced. CP length to achieve protection time.
  • the coverage or coverage of B1, B2, and B3 is not much different from that of A1, A2, and A3.
  • Table 3-2 shows the 10 random access formats included in the 3rd generation partnership project (3GPP) Release 15 (release 15, R15).
  • 3GPP 3rd generation partnership project
  • Table 3-3 includes the preamble access format of 9.
  • Table 3-3 Another Type of Random Access Preamble Format Defined in NR
  • Transmit power also known as output power. It can be defined as the measured output power over all or part of the supported frequencies, bands or bandwidths at a given time and/or period.
  • the measured time is at least 1 ms, and for example, the measured time is at least one time slot corresponding to a certain subcarrier interval. In one example, the measured time is used for at least 1 ms of acquired power.
  • Figure 1 shows a schematic diagram of a communication system.
  • the communication system may include at least one network device 100 (only one shown) and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 can be any device having a wireless transceiving function. These include, but are not limited to, a base station (e.g., a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or a network device in a future communication system), and the like.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a wearable device or an in-vehicle device or the like.
  • the network device 100 may also be a small station, a transmission reference point (TRP) or the like. Of course, no application is not limited to this.
  • the terminal device 200 is a device with wireless transceiving function that can be deployed on land, including indoor or outdoor, handheld, wearable or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example, an airplane, Balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a terminal device may also be referred to as a user equipment (UE), a terminal, an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, and a terminal.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the SCS may be any of the following: 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, 960 kHz, 1920 kHz, 3840 kHz, ...; accordingly, u may be any real number or integer, such as 0, 1, 2, 3,4,5,6,7,8,9,10,11,12,13,14,15,16,...
  • the solution in this application can also be applied to other subcarrier spacing values, which is not limited herein.
  • the offset value based on the random access preamble format may also be referred to as a power offset value based on a random access preamble format, or a power offset value, or an offset value.
  • the random access resource may refer to a random access time and a frequency resource, or may be a random access time, a random access preamble set on a frequency resource, or may be a random access opportunity (RACH occasion, RO). ), RO refers to the time and frequency resources needed to send a random access preamble.
  • P PRACH is the transmission power of the random access preamble, and may be the transmission power corresponding to the carrier of the serving cell determined by the terminal (ie, transmission power for a physical random access channel (PRACH) for carrier f of serving cell c In the transmission period i);
  • P CMAX,c (i) is the maximum transmission power allowed by the terminal or the configured maximum transmission power, or may be the configured terminal transmission power corresponding to the carrier of the serving cell (ie, configured UE transmission power for The carrier f of the serving cell is within the transmission period i);
  • the PREAMBLE_RECEIVED_TARGET_POWER is the received power of the random access preamble, indicating the received power that can be acquired by the network device side when the terminal device estimates the path loss is correct;
  • PL c is the estimated path of the terminal device loss, according to the power terminal apparatus and the terminal apparatus transmits a received signal quality of the network device a reference signal (e.g.
  • RSRP reference signal received power
  • a reference signal e.g., a synchronization signal SS / PBCH block
  • network device sends a transmission power, higher layer filtered RSRP received signal quality for the terminal device.
  • the preambleInitialReceivedTargetPower is the initial receiving target power of the preamble, indicating the power of the random access preamble that the network device is expected to receive when the initial preamble transmission or the initial power lifting number of the terminal device;
  • the DELTA_PREAMBLE is the offset value based on the random access preamble format, if different When the DELTA_PREAMBLE corresponding to the random access preamble format is different, the parameter can compensate for the difference in the received power of the preamble target due to the random access preamble format, or the DELTA_PREAMBLE is indicated by the network device configuration information, thereby achieving greater flexibility;
  • PREAMBLE_POWER_RAMPING_COUNTER For the number of power boosts, the powerRampingStep is the power boost step.
  • the number of different preamble transmissions or the number of power boosts can be controlled, and different base stations can be used to detect the performance of the random access preamble.
  • the network device can configure a relatively large power up step, thereby improving the correct probability of preamble retransmission and reducing the random access delay.
  • the network device can configure a relatively small power boost compensation, thereby reducing mutual interference between the terminal devices.
  • FIG. 2 is a schematic diagram of an interaction process of a communication method according to an embodiment of the present disclosure, where the method may include the following steps:
  • the network device sends information indicating a random access preamble format to the terminal device.
  • the terminal device receives the information indicating the random access preamble format.
  • the terminal device determines, to send, a transmit power of a random access preamble, where the transmit power is related to a format of the random access preamble and an offset value DELTA_PREAMBLE based on a random access preamble format.
  • the terminal device sends the random access preamble by using the determined transmit power.
  • the network device receives a random access preamble sent by the terminal device.
  • the network device in a random access procedure, sends a random access configuration parameter by using a message.
  • the message may be a radio resource control (RRC) message, system information (SI), remaining minimum system information (RMSI), NR system information block type 0 (new radio system information block type 0) , NR SIB0), NR system information block 1 (NR SIB1), medium access control-control element (MAC CE) message, downlink control information , DCI), physical broadcast channel (PBCH), or physical downlink control channel order (PDCCH order).
  • RRC radio resource control
  • SI system information
  • RMSI remaining minimum system information
  • NR system information block type 0 new radio system information block type 0
  • NR SIB0 NR system information block 1
  • MAC CE medium access control-control element
  • DCI downlink control information
  • PBCH physical broadcast channel
  • PDCCH order physical downlink control channel order
  • the random access configuration parameter may include information indicating a random access preamble format.
  • the base station configures a random access configuration index (PRACH configuration index) in an RRC message or system information (SI); the terminal device may perform random access according to a preset/preconfigured random access configuration table and a base station configuration. Configure an index to obtain information such as the random access preamble format, the time and/or frequency of random access resources.
  • the network access device can configure more parameters for random access by acquiring the random access preamble format.
  • the random access preamble format includes 0 to 3, A0 to A3, B1 to B4, C0, and C2. It should be noted that, according to requirements, the random access preamble format may be added or deleted, that is, the terminal device sends the random access preamble corresponding to the random access preamble format after the addition and deletion, for example, deleting the preamble format A0, or adding a new preamble. Format, this application is not limited.
  • the terminal device determines the sending power of the random access preamble, which specifically includes:
  • the transmission power is a smaller one of: a maximum transmit power P CMAX,c (i) allowed by the terminal device, a sum of a random access preamble reception target power and a path loss PL c estimated by the terminal device; or
  • the transmit power is a smaller one of: a maximum transmit power allowed by the terminal device, a random access preamble receive target power, a subcarrier interval power offset value, and a PL c and at least one of the following parameters a sum of values; wherein the at least one parameter comprises: a subcarrier spacing power offset value f (SCS), a random access preamble sequence offset value h(L), and a beam correlation of the network device and/or the terminal device Offset value G;
  • SCS subcarrier spacing power offset value
  • h(L) random access preamble sequence offset value
  • the random access preamble receiving target power is the sum of the following three: a random access preamble initial receiving target power, an offset value based on a random access preamble format, and a power boosting number (PREAMBLE_POWER_RAMPING_COUNTER) minus 1 and power The product of the step size.
  • the terminal device may determine the transmit power of the random access preamble according to formula (1).
  • Formula (1) is as follows:
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+PL c ⁇ _[dBm],
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER—1)*powerRampingStep.
  • the following at least one parameter is a preset/default/initial setting value: P CMAX,c (i), preamble initial receiving target power, DELTA_PREAMBLE, preamble transmission number, power lifting number, power lifting step.
  • P CMAX,c (i) default/default is 23dBm; for example, the preamble initial receiving target power default/preset is -90dBm; for another example, the power up step is default/preset to 2dB; for example, DELTA_PREAMBLE
  • the default/preset is 2dB; for example, the number of preamble transmissions is initialized to 1; for example, the number of powerlifts is initialized to 1.
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device determines the acquired power of the random access preamble received signal according to formula (1). Specifically, on the premise that the path loss estimation is accurate, the power of the random access preamble received signal that the network device can acquire is the random access preamble receiving target power.
  • the transmit power may also be related to a subcarrier spacing based power offset value f(SCS).
  • SCS subcarrier spacing based power offset value
  • the larger the subcarrier spacing the shorter the time length of the random access preamble corresponding to the same random access preamble format.
  • the corresponding transmit power offset value should be larger.
  • the terminal device may determine the transmission power of the random access preamble according to formula (2). Equation (2) is as follows:
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • the SCS is a subcarrier spacing
  • f(SCS) is a power offset value based on a subcarrier spacing.
  • f(SCS) round(10*log10(SCS/SCS0))
  • SCS0 is the reference subcarrier spacing.
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the power of the obtained random access preamble received signal according to formula (2).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and f(SCS).
  • the transmit power may also be related to the offset value h(L) based on the random access preamble sequence.
  • the offset value h(L) based on the random access preamble sequence refers to the offset value corresponding to the length of the random access preamble sequence.
  • the terminal device may determine the transmission power of the random access preamble according to formula (3). Equation (3) is as follows:
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+h(L)+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • L is the length of the random access preamble sequence
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the power of the obtained random access preamble received signal according to formula (3).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and h(L).
  • the transmit power is also related to the offset value G associated with the beam of the network device and/or the terminal device.
  • the terminal device may determine the transmission power of the random access preamble according to formula (4).
  • Formula (4) is as follows:
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+G+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • G is a downlink signal receiving beam gain of the terminal device and a beam gain difference of the terminal device random access preamble signal
  • G includes at least two of the following parameters: network device downlink signal transmission beam gain and network device random access preamble signal reception beam gain difference, terminal device downlink signal reception beam gain, and terminal device random access preamble signal transmission beam. Gain difference, the number of receive beams of the network equipment in the random access preamble.
  • the downlink signal sending beam gain of the network device and the network device random access preamble receiving beam gain difference may be configured by the network device, or obtained according to preset rules and/or parameters configured by the network device.
  • the beam directivity is better / or the gain is higher, and the better the signal strength that can be acquired, the lower the transmit power of the random access preamble.
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the acquired power of the random access preamble received signal according to formula (4).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and G.
  • the transmit power can also be related to f(SCS), h(L) at the same time, and the transmit power can be determined according to formula (5):
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+h(L)+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the power of the obtained random access preamble received signal according to formula (5).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and f(SCS) and h(L).
  • the transmit power can also be related to f(SCS) and G at the same time, and the transmit power can be determined according to formula (6):
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+G+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the acquired power of the random access preamble received signal according to formula (6).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and f(SCS) and G.
  • the transmit power can also be related to G and h(L) at the same time, and the transmit power can be determined according to formula (7):
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+G+h(L)+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the power of the obtained random access preamble received signal according to formula (7).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and G, h(L).
  • the transmit power can also be related to f(SCS), G, h(L) at the same time, and the transmit power can be determined according to formula (8):
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+h(L)+G+PL c ⁇ _[dBm]
  • PREAMBLE_RECEIVED_TARGET_POWER is the same as PREAMBLE_RECEIVED_TARGET_POWER in formula (1).
  • the terminal device After determining the transmission power, the terminal device sends a random access preamble according to the transmission power.
  • the specific implementation process can refer to the prior art.
  • the network device After the network device receives the random access preamble sent by the terminal device to determine the transmit power, the network device determines the power of the obtained random access preamble received signal according to formula (8).
  • the power of the random access preamble received signal that the network device can acquire is the sum of the random access preamble receiving target power and f(SCS), G, h(L) .
  • PREAMBLE_RECEIVED_TARGET_POWER in the above formulas 1 to 8 may also be determined as follows:
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower+(PREAMBLE_POWER_RAMPING_COUNTER–1)*powerRampingStep.
  • the random access preamble receiving target power is the sum of the following: the random access preamble initial receiving target power, and the power lifting number (PREAMBLE_POWER_RAMPING_COUNTER, for example, initialized to 1) minus 1 and the product of the power up step.
  • PREAMBLE_POWER_RAMPING_COUNTER for example, initialized to 1
  • the flexibility of network device implementation can be achieved by comparing the selection range of the large preambleInitialReceivedTargetPower; the preamble detection performance (such as the preamble receiving signal to noise ratio or the received power) that the network device can obtain in different preamble formats may be inconsistent.
  • each preamble format provides a sufficient/larger choice.
  • At least one of the following parameters in Equations 1 to 8 is configured by a network device or acquired according to network device configuration information: P CMAX,c (i), preamble initial receiving target power, DELTA_PREAMBLE, power up step long.
  • each of the random access preamble formats has a corresponding DELTA_PREAMBLE, and the offset values corresponding to different preamble formats may be the same or different.
  • the terminal device may store the following table 4a, acquire DELTA_PREAMBLE according to Table 4a, and then calculate the transmission power according to any one of the above formulas 1-8.
  • the DELTA_PREAMBLE corresponding to all or part of the random access preamble format may be related to the preset value X.
  • X is an integer or a decimal.
  • the value of X may be received from a network device.
  • the value of X can range from -100 to 100.
  • random access preamble format in Table 4a may be deleted or added. For example, delete A0, or add a new preamble format C3, which is not limited here.
  • the values of X may be 0, 3, 8, 11, 14, 17, 18, 19, and 20.
  • X is configured by the network device as follows:
  • X2 is configured by the network as follows:
  • the terminal device pre-stores the following table 4b, acquires DELTA_PREAMBLE according to Table 4b, and then calculates the transmission power according to any one of the above formulas 1-8.
  • W(0), W(1), ..., and W(9) are preset or configured constants, and the value is [-100, 100], which means any number between -100 and 100.
  • the value interval of F(1) is [-3, 0], and / or the value interval of F(2) is [-6, 0], and/or F(3)
  • the value interval is [-8, 0], and / or F (4) is [-3, 0], and / or F (5) is [-6, 0], and / or F (6) has a value range of [-8, 0], and / or F (7) has a value range of [-11, 0], and / or F (9) has a value range of [ -6,0].
  • all the preamble formats take the same W value, which can ensure that the same performance is obtained in some implementation manners (for example, only one preamble sequence OFDM symbol is received in one base station beam), that is, the network device obtains each preamble format.
  • the reception performance eg, the received signal to noise ratio, eg, the probability of correct preamble detection within the receive beam
  • W 0 dB.
  • the embodiment supports multiple manners for the base station to receive the random access preamble, for example, performing receive beam scanning in the random access preamble, and the terminal does not need to acquire the base station receiving mode.
  • the value of at least one of W(0), W(1), ..., Y(9), W, F(1), ..., F(9) is separated from the subcarrier spacing and/or Or related to the carrier frequency.
  • the subcarrier spacing may be at least one of the following: a subcarrier spacing of the random access preamble, a subcarrier spacing of the uplink partial bandwidth, a subcarrier spacing of the random access message 3, a subcarrier spacing of the downlink signal, and a bandwidth of the downlink access part. Subcarrier spacing.
  • W(1), ..., Y(9), W, F(1), ..., F(9) may have similar values, and will not be described again here.
  • the terminal device pre-stores the following Table 5, acquires DELTA_PREAMBLE according to Table 5, and then calculates the transmission power according to any of the above formulas 1-8. Then the DELTA_PREAMBLE corresponding to the random access preamble format is:
  • the terminal device stores the following Table 6, obtains DELTA_PREAMBLE according to Table 6, and then calculates the transmission power according to any of the above formulas 1-8. Then the DELTA_PREAMBLE corresponding to the random access preamble format is:
  • the terminal device stores the following Table 7, acquires DELTA_PREAMBLE according to Table 7, and then calculates the transmission power according to any of the above formulas 1-8. Then the DELTA_PREAMBLE corresponding to the random access preamble format is:
  • preamble formats 0 to 3 can also be a value related to X, and are not limited to those shown in the previous examples.
  • offset values reflect differences between random access preamble formats, such as time length, sequence length, subcarrier spacing, and number of repetitions of preamble symbols in the random access preamble format.
  • different offset values reflect differences in methods for the terminal to transmit or the base station to receive the random access preamble format: for example, when the base station receives the random access preamble format, the beam parameters for receiving the random access preamble; for example, a beam parameter when the base station transmits the downlink signal; for example, a beam parameter when the terminal receives the downlink signal; and, for example, a beam parameter when the terminal transmits the random access preamble; wherein the beam parameter is related to at least one of the following: the number of beams, the beam gain , beam width, beam direction.
  • the correspondence between the random access preamble format and the DELTA_PREAMBLE in any one of the tables 5 to 7 may also be a correspondence between the random access preamble format and the specific value of the DELTA_PREAMBLE.
  • the correspondence may be stored in advance in the network device and the terminal device.
  • a specific DELTA_PREAMBLE value may be found. That is, the preset value X may not be defined here.
  • the above is configured in the form of a table.
  • the random access preamble DELTA_PREAMBLE occupied (or repeats) the OFDM symbol number N OS related, in particular round (-10 ⁇ log 10 N OS ).
  • DELTA_PREAMBLE is related to the subcarrier spacing SCS of the random access preamble (or the index u corresponding to the subcarrier spacing), specifically round (-10 ⁇ log 10 (SCS Ref /SCS)), where SCS Ref is the reference subcarrier.
  • SCS Ref 10 ⁇ log 10
  • SCS Ref the reference subcarrier.
  • the offset value DELTA_PREAMBLE is related to a specific parameter, it may be other functions, such as rounding down, for example rounding, for example rounding up, and for example, (not limited to) the above implementation does not include the approximate operation. . There is no limit in practice.
  • DELTA_PREAMBLE is related to the subcarrier spacing.
  • the subcarrier spacing may be at least one of the following: a subcarrier spacing of the random access preamble, a subcarrier spacing of the uplink partial bandwidth, a subcarrier spacing of the random access message 3, a subcarrier spacing of the downlink signal, and a bandwidth of the downlink access part. Subcarrier spacing.
  • the DELTA_PREAMBLE corresponding to the random access formats A0 to C2 is related to the subcarrier spacing, and the DELTA_PREAMBLE corresponding to the random access formats 0 to 3 may be independent of the subcarrier spacing.
  • the terminal device determines the transmission power of the random access preamble.
  • offset values corresponding to multiple random access preamble formats in a next generation mobile communication system are given, so that the transmission power of the random access preamble can be reasonably determined.
  • FIG. 3 is a schematic diagram of an interaction process of another communication method according to an embodiment of the present disclosure, where the method may include the following steps:
  • the network device sends information indicating a random access preamble format to the terminal device.
  • the terminal device receives the information indicating the random access preamble format.
  • the network device sends, to the terminal device, information indicating an offset value based on a random access preamble format.
  • the terminal device receives information from the network device indicating an offset value based on a random access preamble format.
  • the terminal device determines to send a transmit power of the random access preamble, where the transmit power is related to the information indicating the format of the random access preamble and the information indicating the offset value based on the random access preamble format.
  • the terminal device sends the random access preamble by using the determined transmit power.
  • the network device receives a random access preamble sent by the terminal device with a determined transmit power.
  • the network device also needs to send information indicating the offset value based on the random access preamble format to the terminal device, that is, the terminal device determines the offset according to the configuration value of the network device. Move the value.
  • the terminal device determines to send the transmit power of the random access preamble, which specifically includes:
  • the transmission power is a smaller one of: a maximum transmit power P CMAX,c (i) allowed by the terminal device, a sum of a random access preamble reception target power and a path loss PL c estimated by the terminal device; or
  • the transmit power is a smaller one of: a maximum transmit power allowed by the terminal device, a random access preamble receive target power, a subcarrier interval power offset value, and a PL c and at least one of the following parameters a sum of values; wherein the at least one parameter comprises: a subcarrier spacing power offset value f (SCS), a random access preamble sequence offset value h(L), and a beam correlation of the network device and/or the terminal device Offset value G;
  • SCS subcarrier spacing power offset value
  • h(L) random access preamble sequence offset value
  • the random access preamble receiving target power is the sum of the following three: a random access preamble initial receiving target power, an offset value based on a random access preamble format, and a power lifting number minus one and a power up step The product of.
  • the information for indicating an offset value based on a random access preamble format includes an index number of the offset value based on a random access preamble format, or the offset value based on a random access preamble format The value. The following is described in detail:
  • the information used to indicate an offset value based on a random access preamble format includes an index number of the offset value based on a random access preamble format.
  • the offset value based on the random access preamble format 0 to 3 may be a fixed value, and the value may refer to the offset value based on the random access preamble format 0 to 3 in the foregoing embodiment.
  • the offset values based on the random access preamble formats A0 to C2 are determined according to the index number of the configured offset value. As shown in Table 9, the offset values corresponding to the N index numbers are configured:
  • the offset value corresponding to index number 0 is Y(0) dB
  • the offset value corresponding to index number 1 is Y(1) dB
  • the offset value corresponding to index number 2 is Y(2) dB, and so on.
  • the network device and the terminal device pre-store the correspondence between the index number and the offset value of the offset value as shown in Table 9.
  • the network device may send any index number to the terminal device, and the terminal device searches for the corresponding one according to the index number.
  • the offset value corresponding to the index of the different offset values in Table 9 and the carrier frequency range of the random access resource, the subcarrier spacing of the random access preamble, the time length of the random access preamble, or the random access preamble length are related.
  • DELTA_PREAMBLE is related to the number of OFDM symbols occupied by the random access preamble, N OS , specifically round (-10 ⁇ log 10 N OS ).
  • the offset value DELTA_PREAMBLE is related to the number of base station receive beams N b performed in the random access preamble format, specifically round (-10 ⁇ log 10 N b ).
  • the base station receives the number of beams DELTA_PREAMBLE N b and occupied by the random access preamble (or repeats) the OFDM symbol number N OS related, in particular round (-10 ⁇ log 10 (N OS ⁇ N b)).
  • DELTA_PREAMBLE is related to the subcarrier spacing SCS of the random access preamble (or the index u corresponding to the subcarrier spacing) and the number of base station receiving beams N b , specifically round (-10 ⁇ log 10 (N b ⁇ SCSRef/SCS) ).
  • the DELTA_PREAMBLE is separated from the subcarrier spacing SCS of the random access preamble (or the index u corresponding to the subcarrier spacing), the number of OFDM symbols occupied by the random access preamble (or repeated), N OS , and the number of base station receiving beams N b Specifically, it is round (-10 ⁇ log 10 (N OS ⁇ N b ⁇ SCS Ref / SCS)). Among them, round is rounded off.
  • the offset value DELTA_PREAMBLE is related to a specific parameter, it may be other functions, such as rounding down, for example rounding, for example rounding up, and for example, (not limited to) the above implementation does not include the approximate operation. . There is no limit in practice.
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 7 are: ⁇ 0dB, -2dB, -4dB, -6dB, -8dB, -10dB, -12dB, - 14dB ⁇ .
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 7 are: ⁇ 8dB, 6dB, 4dB, 2dB, 0dB, -2dB, -4dB, -6dB ⁇ .
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 7 are: ⁇ 19 dB, 17 dB, 15 dB, 13 dB, 11 dB, 9 dB, 7 dB, 5 dB ⁇ .
  • DELTA_PREAMBLE_INDEX DELTA_PREAMBLE in tabular form.
  • DELTA_PREAMBLE_INDEX DELTA_PREAMBLE in tabular form.
  • it can also be presented in another way.
  • a system message or an RRC message it may be any of the following ways:
  • Y(0), ..., Y(N-1), N, D are related to the subcarrier spacing.
  • the subcarrier spacing may be at least one of the following: a subcarrier spacing of a random access preamble, a subcarrier spacing of an uplink partial bandwidth, a subcarrier spacing of a random access message 3, a subcarrier spacing of a downlink signal, and a downlink access part.
  • the subcarrier spacing of the bandwidth is not limited to the bandwidth.
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 6 are: ⁇ 0dB, -3dB, -4.5dB, -6dB, -8dB, -11dB, -14dB ⁇
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 6 are: ⁇ 8dB, 5dB, 3.5dB, 2dB, 0dB, -3dB, -6dB ⁇ .
  • the values of the offset values based on the random access preamble format corresponding to index numbers 0 to 6 are: ⁇ 19 dB, 16 dB, 14.5 dB, 13 dB, 11 dB, 8 dB, 5 dB ⁇ . It should be noted that the actual is not limited to this, and the above is merely an example.
  • C1 6 GHz.
  • Y(1), ..., Y(N-1), D, D(1), ..., D(N-1), E(1), ..., E(N-1) may also be similar. The value of the method is not repeated here.
  • Y(0), ..., Y(N-1), D, D(1), ..., D(N-1), E(1), ..., E(N-1) At least one of them is related to a subcarrier spacing.
  • the subcarrier spacing may be at least one of the following: a subcarrier spacing of a random access preamble, a subcarrier spacing of an uplink partial bandwidth, a subcarrier spacing of a random access message 3, a subcarrier spacing of a downlink signal, and a downlink access part.
  • the subcarrier spacing of the bandwidth As shown in Table 18,
  • DELTA_PREAMBLE_INDEX DELTA_PREAMBLE in tabular form.
  • it may be any of the following ways:
  • Y(0), Y(1), ..., Y(N-1), N, D, D(1), D(2), ..., D(N-1), E(( 1), at least one of E(2), ..., E(N-1) may directly or implicitly represent/indicate at least one of: a subcarrier spacing of a random access preamble, a length of a random access preamble, The beam gain corresponding to the network device receiving the random access preamble, the number of beams when the network device receives the random access preamble, the beam gain difference when the network device sends the downlink signal and the random access preamble, the carrier frequency range, and the network device are random. The number of receive beams within the length of the access preamble.
  • the network device uses N receive beams to receive the same random access preamble during a random access preamble to obtain a higher processing gain or obtain a receive beam more suitable for the terminal device. It should be understood that the N may be greater than/equal to/less than the number of preamble sequences in a random access preamble or the number of repetitions of the preamble sequence. When N can be greater than the number of preamble sequences in a random access preamble or the number of repetitions of the preamble sequence, the network device can adopt a beam of the digital domain, that is, multiple sets of digital domain beam coefficients are formed on the same antenna transceiver unit to form multiple Receive beams.
  • the information used to indicate an offset value based on a random access preamble format includes a value of the offset value based on the random access preamble format.
  • the offset values in Table 9 can be expressed as ⁇ Y(0), Y(1), Y(2)...Y(N-1) ⁇ , and the order of the offset values in the set represents its index.
  • the network device sends the set of the offset value to the terminal device, and the terminal device selects the first offset value in the set as the offset value calculated by the transmit power by default.
  • Tables 10 to 17 can also take the form of a set of offset values.
  • the order of the rows in the table can be arbitrarily changed/replaced/changed.
  • an offset value corresponding to multiple random access preamble formats in a next generation mobile communication system is provided, and the information indicating the offset value based on the random access preamble format includes The index value of the offset value of the random access preamble format or the value of the offset value based on the random access preamble format is based on the offset value, so that the transmission power of the random access preamble can be reasonably determined.
  • the embodiment of the present application further provides a schematic structural diagram of a communication device, which can be applied to the foregoing communication method.
  • the communication device 400 includes: a processing unit 41 and a transmitting unit 42; wherein:
  • the processing unit 41 is configured to determine a transmit power for sending a random access preamble, where the transmit power is related to a format of the random access preamble and an offset value DELTA_PREAMBLE based on a random access preamble format;
  • the sending unit 42 is configured to send the random access preamble with the transmit power determined by the processing unit.
  • processing unit 41 is specifically configured to:
  • the transmission power is a smaller one of: a maximum transmit power P CMAX,c (i) allowed by the terminal device, a sum of a random access preamble reception target power and a path loss PL c estimated by the terminal device; or
  • the transmit power is a smaller one of: a maximum transmit power allowed by the terminal device, a random access preamble receive target power, a subcarrier interval power offset value, and a PL c and at least one of the following parameters a sum of values; wherein the at least one parameter comprises: a subcarrier spacing power offset value f (SCS), a random access preamble sequence offset value h(L), and a beam correlation of the network device and/or the terminal device Offset value G;
  • SCS subcarrier spacing power offset value
  • h(L) random access preamble sequence offset value
  • the random access preamble receiving target power is the sum of the following three: a random access preamble initial receiving target power, an offset value DELTA_PREAMBLE based on a random access preamble format, and a power lifting number minus one and a power up step Long product.
  • the offset value DELTA_PREAMBLE based on the random access preamble format 2 is -6 dBB;
  • the offset value DELTA_PREAMBLE based on the random access preamble format 3 is 0 dB.
  • the offset value based on the random access preamble format A1 is X-3dB; or when the random access preamble format is A2, based on the random access preamble format The offset value of A2 is X-6dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is X-8dB; or when the random access preamble format is B1, based on random The offset value of the access preamble format B1 is X-3dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is X-6dB; or when the random access preamble format is B3 The offset value based on the random access preamble format B3 is X-8 dB; or when the random access preamble format is B4, the B4 offset value based on the random access preamble format is X-11 dB; or when the random access preamble When
  • the offset value based on the random access preamble format A1 is 8 dB; or when the random access preamble format is In A2, the offset value based on the random access preamble format A2 is 5 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 3 dB; or when the random access preamble format is In B1, the offset value based on the random access preamble format B1 is 8 dB; or when the random access preamble format is B2, the B2 offset value based on the random access preamble format is 5 dB; or when the random access preamble format is B3
  • the offset value based on the random access preamble format B3 is 3 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 0 dB; or when the
  • the offset value based on the random access preamble format A1 is 11 dB; or when the random access preamble format is In A2, the offset value based on the random access preamble format A2 is 8 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 6 dB; or when the random access preamble format is In B1, the offset value based on the random access preamble format B1 is 11 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 8 dB; or when the random access preamble format is In B3, the offset value based on the random access preamble format B3 is 6 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 3 dB; or when the
  • the offset value based on the random access preamble format A1 is 14 dB; or when the random access preamble format is In A2, the offset value based on the random access preamble format A2 is 11 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 9 dB; or when the random access preamble format is In B1, the offset value based on the random access preamble format B1 is 14 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 11 dB; or when the random access preamble format is In B3, the offset value based on the random access preamble format B3 is 9 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 6 dB; or when the random access preamble format
  • the offset value based on the random access preamble format A1 is 17 dB; or when the random access preamble format is In A2, the offset value based on the random access preamble format A2 is 14 dB; or when the random access preamble format is A3, the offset value based on the random access preamble format A3 is 12 dB; or when the random access preamble format is In B1, the offset value based on the random access preamble format B1 is 17 dB; or when the random access preamble format is B2, the offset value based on the random access preamble format B2 is 14 dB; or when the random access preamble format is In B3, the offset value based on the random access preamble format B3 is 12 dB; or when the random access preamble format is B4, the offset value based on the random access preamble format B4 is 9 dB; or when the random access preamble format
  • an offset value corresponding to multiple random access preamble formats in a next generation mobile communication system is given, so that the transmission power of the random access preamble can be reasonably determined.
  • the embodiment of the present application further provides a schematic structural diagram of another communication device.
  • the communication device can be applied to the above communication method.
  • the communication device 500 can include: a receiving unit 51, a processing unit 52, and a transmitting unit 53; wherein:
  • the receiving unit 51 is configured to receive information indicating a random access preamble format from the network device.
  • the receiving unit 51 is further configured to receive, by the network device, information indicating an offset value DELTA_PREAMBLE based on the random access preamble format;
  • the processing unit 52 is configured to determine, to send, a transmit power of a random access preamble, where the transmit power and the information indicating a format of a random access preamble and the indication are based on an offset value of a random access preamble format Information about DELTA_PREAMBLE;
  • the sending unit 53 is configured to send the random access preamble with the determined transmit power.
  • processing unit 52 is specifically configured to:
  • the transmission power is a smaller one of: a maximum transmit power P CMAX,c (i) allowed by the terminal device, a sum of a random access preamble reception target power and a path loss PL c estimated by the terminal device; or
  • the transmit power is a smaller one of: a maximum transmit power allowed by the terminal device, a random access preamble receive target power, a subcarrier interval power offset value, and a PL c and at least one of the following parameters a sum of values; wherein the at least one parameter comprises: a subcarrier spacing power offset value f (SCS), a random access preamble sequence offset value h(L), and a beam correlation of the network device and/or the terminal device Offset value G;
  • SCS subcarrier spacing power offset value
  • h(L) random access preamble sequence offset value
  • the random access preamble receiving target power is the sum of the following three: a random access preamble initial receiving target power, an offset value based on a random access preamble format, and a power lifting number minus one and a power up step The product of.
  • the information used to indicate an offset value based on a random access preamble format includes:
  • the index number of the offset value based on the random access preamble format or the value of the offset value based on the random access preamble format is not limited.
  • the value of the offset value DELTA_PREAMBLE based on the random access preamble format includes N elements, and the values of the N elements are in an equal difference distribution, and N is a positive integer.
  • the value of the offset value based on the random access preamble format includes: ⁇ 0dB, -2dB, -4dB, -6dB, -8dB, -10dB, -12dB, -14dB ⁇ , ⁇ 8dB, 6dB, 4dB, 2dB, 0dB, -2dB, -4dB, -6dB ⁇ or ⁇ 19dB, 17dB, 15dB, 13dB, 11dB, 9dB, 7dB, 5dB ⁇ .
  • the value of the offset value based on the random access preamble format includes M elements, and the values of the M elements are in increasing or decreasing distribution, and M is a positive integer.
  • the value of the offset value based on the random access preamble format includes: ⁇ 0dB, -3dB, -4.5dB, -6dB, -8dB, -11dB, -14dB ⁇ , ⁇ 8dB, 5dB, 3.5dB, 2dB, 0dB, -3dB, -6dB ⁇ or ⁇ 19dB, 16dB, 14.5dB, 13dB, 11dB, 8dB, 5dB ⁇ .
  • an offset value corresponding to multiple random access preamble formats in a next-generation mobile communication system is provided, and the information indicating the offset value based on the random access preamble format includes The index value of the offset value of the random access preamble format or the value of the offset value based on the random access preamble format is based on the offset value, so that the transmission power of the random access preamble can be reasonably determined.
  • the communication device 600 includes: a transmitting unit 61 and a receiving unit 62; wherein:
  • the sending unit 61 is configured to send information indicating a random access preamble format to the terminal device;
  • the receiving unit 62 is configured to receive a random access preamble sent by the terminal device to determine a transmit power, where the transmit power and the random access preamble format and an offset based on a random access preamble format Value related.
  • the sending unit is further configured to send, to the terminal device, information indicating an offset value based on a random access preamble format.
  • an offset value corresponding to multiple random access preamble formats in a next generation mobile communication system is given, so that the transmission power of the random access preamble can be reasonably determined.
  • the communication device in this application may be a terminal device or a chip or an integrated circuit installed in the terminal device.
  • FIG. 7 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit) of the terminal device, and a processor having a processing function is regarded as a processing unit of the terminal device.
  • the terminal device includes a receiving unit 401, a processing unit 402, and a transmitting unit 403.
  • the receiving unit 401 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 403 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the receiving unit 401 is configured to perform step S201 in the embodiment shown in FIG. 2; the processing unit 402 is configured to perform step S202 in the embodiment shown in FIG. 2; and the transmitting unit 403 is configured to execute the figure. Step S203 in the illustrated embodiment.
  • the receiving unit 401 is configured to perform steps S301 and S302 in the embodiment shown in FIG. 3; the processing unit 402 is configured to perform step S303 in the embodiment shown in FIG. 3; and the sending unit 403 It is used to perform step S304 in the embodiment shown in FIG.
  • a communication device is also provided in the embodiment of the present application, and the communication device is configured to execute the foregoing communication method.
  • Some or all of the foregoing communication methods may be implemented by hardware or by software.
  • the communication apparatus includes: a receiver for receiving information, for example, receiving an indication of a random access preamble from a network device. The information is further configured to receive information from the network device for indicating an offset value DELTA_PREAMBLE based on the random access preamble format; processing circuitry for performing the foregoing communication method, for example, determining a transmit power for transmitting a random access preamble; For outputting random access preambles.
  • the communication device may be a chip or an integrated circuit when implemented.
  • the communication device when part or all of the communication methods of the foregoing embodiments are implemented by software, the communication device includes: a memory for storing a program; a processor, a program for executing the memory storage, when the program is executed, The communication device can be implemented to implement the communication method provided by the above embodiments.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the communication device in this application may be a network device or a chip or an integrated circuit installed in the network device.
  • FIG. 8 shows a schematic diagram of the structure of a simplified network device.
  • the network device includes a radio frequency signal transceiving and converting portion and a 502 portion.
  • the radio frequency signal transceiving and converting portion further includes a receiving unit 501 portion and a transmitting unit 503 portion (also collectively referred to as a transceiving unit).
  • the RF signal transmission and reception and conversion part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals;
  • Section 502 is mainly used for baseband processing and control of network equipment.
  • the receiving unit 501 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 503 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • Section 502 is typically a control center for a network device, and may generally be referred to as a processing unit for controlling the network device to perform the steps performed by the network device described above with respect to FIG. 2 or FIG. For details, please refer to the description of the relevant part above.
  • Section 502 can include one or more boards, each board can include one or more processors and one or more memories for reading and executing programs in memory to implement baseband processing functions and to network devices control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the transmitting unit 503 is configured to perform step S201 in the embodiment shown in FIG. 2; and the receiving unit 501 is configured to perform step S203 in the embodiment shown in FIG. 2.
  • the transmitting unit 503 is configured to perform steps S301 and S302 in the embodiment shown in FIG. 3; and the receiving unit 501 is configured to perform step S304 in the embodiment shown in FIG.
  • a communication device is also provided in the embodiment of the present application, and the communication device is configured to execute the foregoing communication method.
  • Some or all of the foregoing communication methods may be implemented by hardware or by software.
  • the communication apparatus includes: a transmitter for outputting information, for example, for transmitting information indicating a random access preamble format. a terminal device; a receiver for inputting information, for example, a random access preamble for receiving the determined transmission power of the terminal device.
  • the communication device may be a chip or an integrated circuit when implemented.
  • the communication device when part or all of the communication methods of the foregoing embodiments are implemented by software, the communication device includes: a memory for storing a program; a processor, a program for executing the memory storage, when the program is executed, The communication device can be implemented to implement the communication method provided by the above embodiments.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a CPU, NP or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD may be a CPLD, an FPGA, a GAL, or any combination thereof.
  • the memory may include volatile memory, such as RAM; the memory may also include non-volatile memory, such as flash memory, hard disk or solid state hard disk; the memory may also include a combination of the above types of memory.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。其中的方法包括:终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关;以及所述终端设备以所述确定的发送功率发送所述随机接入前导。其中,该随机接入前导格式包括0~3、A0~A3、B1~B4、C0和C2中的部分或全部。还公开了相应的装置。本申请给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,从而能够合理地确定随机接入前导的发送功率。

Description

通信方法及装置
本申请要求在2018年01月12日提交中国国家知识产权局、申请号为201810029540.0、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在下一代移动通信系统(例如,新无线(new radio,NR))中,定义了新的随机接入前导格式。但是,尚未定义基于随机接入前导格式的偏移值以及如何确定随机接入前导的发送功率。因此,亟待定义下一代移动通信系统中基于随机接入前导格式的偏移值及确定随机接入前导的发送功率。
发明内容
本申请提供一种通信方法及装置,以定义下一代移动通信系统中基于随机接入前导格式的偏移值及合理地确定随机接入前导的发送功率。
一方面,提供了一种通信方法,包括:终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关;以及所述终端设备以所述确定的发送功率发送所述随机接入前导。在该方面中,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,从而能够合理地确定随机接入前导的发送功率。
在一种可能的实现方式中,所述终端设备确定发送随机接入前导的发送功率,具体包括:确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与PL c以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值、随机接入前导序列偏移值、以及网络设备和/或终端设备的波束相关的偏移值;其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。在该实现方式中,给出了几种具体的发送功率的确定方式,考虑了新无线通信系统中多波束的场景。
在另一种可能的实现方式中,当随机接入前导格式为2时,基于随机接入前导格式2的偏移值为-6分贝dB;或者,当随机接入前导格式为3时,基于随机接入前导格式3的偏移值为0dB。在该实现方式中,分别给出了与LTE中不同的基于随机接入格式2、3的偏移值。
在又一种可能的实现方式中,当随机接入前导格式为A1时,基于随机接入前导 格式A1的偏移值为X-3dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为X-6dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为X-8dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为X-3dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为X-6dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为X-8dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4偏移值为X-11dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0偏移值为X+0dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为X-6dB,其中,X为整数或小数。在该实现方式中,偏移值与预设值X有关,可以根据需要设置预设值。
在又一种可能的实现方式中,所述X的取值与载波频率或子载波间隔相关。
在又一种可能的实现方式中,X的取值包括0,3,8,11,14,17,18,19和20。
在又一种可能的实现方式中,所述X的取值是从网络设备接收的。
在又一种可能的实现方式中,当子载波间隔取第一值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为8dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为5dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为3dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为8dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2偏移值为5dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为3dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为0dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为11dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为5dB。在该实现方式中,偏移值与子载波间隔有关,给出了具体的多种随机接入前导格式对应的偏移值,网络设备和终端设备可以预先存储该对应关系表,终端设备根据发送的随机接入前导格式和该对应关系表确定对应的偏移值。
在又一种可能的实现方式中,当子载波间隔取第二值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为11dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为8dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为6dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为11dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为8dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为6dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为3dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为14dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为8dB。在该实现方式中,偏移值与子载波间隔有关,给出了具体的多种随机接入前导格式对应的偏移值,网络设备和终端设备可以预先存储该对应关系表,终端设备根据发送的随机接入前导格式和该对应关系表确定对 应的偏移值。
在又一种可能的实现方式中,当子载波间隔取第三值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为14dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为11dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为9dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为14dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为11dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为9dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为6dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为17dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为11dB。在该实现方式中,偏移值与子载波间隔有关,给出了具体的多种随机接入前导格式对应的偏移值,网络设备和终端设备可以预先存储该对应关系表,终端设备根据发送的随机接入前导格式和该对应关系表确定对应的偏移值。
在又一种可能的实现方式中,当子载波间隔取第四值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为17dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为14dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为12dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为17dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为14dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为12dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为9dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为20dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为14dB。在该实现方式中,偏移值与子载波间隔有关,给出了具体的多种随机接入前导格式对应的偏移值,网络设备和终端设备可以预先存储该对应关系表,终端设备根据发送的随机接入前导格式和该对应关系表确定对应的偏移值。
相应地,本申请的另一方面还提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括处理单元和发送单元。所述处理单元用于实现上述方法中的确定功能,所述发送单元用于实现上述方法中的发送功能。例如,所述处理单元用于确定发送随机接入前导的发送功率,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关;所述发送单元用于以所述处理单元确定的发送功率发送所述随机接入前导。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
又一方面,提供了一种通信方法,包括:终端设备接收来自网络设备的指示随机接入前导格式的信息;所述终端设备接收来自网络设备的用于指示基于随机接入前导格式的偏移值的信息;所述终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与所述指示随机接入前导的格式的信息以及所述指示基于随机接入前导格式的偏移值的信息相关;以及所述终端设备以所述确定的发送功率发送所述随机接入前导。
在一种可能的实现方式中,所述终端设备确定发送随机接入前导的发送功率,具体包括:确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值、随机接入前导序列偏移值、以及网络设备和/或终端设备的波束相关的偏移值;其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
在另一种可能的实现方式中,所述用于指示基于随机接入前导格式的偏移值的信息包括所述基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值。
在又一种可能的实现方式中,所述基于随机接入前导格式的偏移值的取值包括N个元素,所述N个元素的取值呈等差分布,N为正整数。
在又一种可能的实现方式中,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-2dB,-4dB,-6dB,-8dB,-10dB,-12dB,-14dB}、{8dB,6dB,4dB,2dB,0dB,-2dB,-4dB,-6dB}或者{19dB,17dB,15dB,13dB,11dB,9dB,7dB,5dB}。
在又一种可能的实现方式中,所述基于随机接入前导格式的偏移值的取值包括M个元素,所述M个元素的取值呈递增或递减分布,M为正整数。
在又一种可能的实现方式中,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-3dB,-4.5dB,-6dB,-8dB,-11dB,-14dB}、{8dB,5dB,3.5dB,2dB,0dB,-3dB,-6dB}或者{19dB,16dB,14.5dB,13dB,11dB,8dB,5dB}。
相应地,本申请的又一方面还提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可 以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括接收单元、处理单元和发送单元。所述处理单元用于实现上述方法中的确定功能,所述接收单元和发送单元分别用于实现上述方法中的接收和发送功能。例如,所述接收单元,用于接收来自网络设备的指示随机接入前导格式的信息;所述接收单元,还用于接收来自网络设备的用于指示基于随机接入前导格式的偏移值的信息;所述处理单元,用于确定发送随机接入前导的发送功率,其中,所述发送功率与所述指示随机接入前导的格式的信息以及所述指示基于随机接入前导格式的偏移值的信息相关;以及所述发送单元,用于以所述确定的发送功率发送所述随机接入前导。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
又一方面,提供了一种通信方法,其特征在于,包括:网络设备发送指示随机接入前导格式的信息给终端设备;以及所述网络设备接收所述终端设备以确定的发送功率发送的随机接入前导,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关。
在一种可能的实现方式中,所述方法还包括:所述网络设备发送指示基于随机接入前导格式的偏移值的信息给所述终端设备。
在另一种可能的实现方式中,所述用于指示基于随机接入前导格式的偏移值的信息包括所述基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值。
相应地,本申请还提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括发送单元和接收单元。例如,所述发送单元,用于发送指示随机接入前导格式的信息给终端设备;以及所述接收单元,用于接收所述终端设备以确定的发送功率发送的随机接入前导,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关。
当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时, 使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种通信方法的交互流程示意图;
图3为本申请实施例提供的另一种通信方法的交互流程示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的另一种通信装置的结构示意图;
图6为本申请实施例提供的又一种通信装置的结构示意图;
图7为本申请实施例提供的一种简化的终端设备的结构示意图;
图8为本申请实施例提供的一种简化的网络设备的结构示意图。
具体实施方式
下面结合附图对本申请实施例进行描述。
在长期演进(long term evolution,LTE)通信系统中,终端发送随机接入前导的功率与以下参数中的至少一个有关:前导初始接收目标功率(preamble initial received target power)、基于接入前导格式的偏移值(the preamble format based offset,也可以称为DELTA_PREAMBLE)、前导传输次数(preambletransmissioncounter)也可以称为前导功率抬升次数(preamble power ramping counter)、功率抬升步长(power ramping step)、终端估计的路径损耗(PL c)、以及终端允许的最大发送功率(P CMAX,c(i))。
其中,基于接入前导格式的偏移值DELTA_PREAMBLE与随机接入前导格式(random access preamble format)相关。LTE中,包括0~4共五种随机接入前导格式,每种随机接入前导格式对应的参数如下表1所示:
表1:LTE中定义的五种随机接入前导格式的参数
Figure PCTCN2018119420-appb-000001
其中,每种随机接入前导格式对应的DELTA_PREAMBLE如下表2所示:
表2:LTE中每种随机接入前导格式对应的DELTA_PREAMBLE
随机接入前导格式 DELTA_PREAMBLE
0 0dB
1 0dB
2 -3dB
3 -3dB
4 8dB
而在NR(New Redio,新空口)中,定义了两类随机接入前导格式:
如表3-1所示的NR中定义的一类随机接入前导格式,包括四种随机接入前导格式:格式0~3。
表3-1 NR中定义的一类随机接入前导格式
Figure PCTCN2018119420-appb-000002
在表3-1中,随机接入前导格式对应的随机接入前导序列长度L=839。
其中,所述的格式0~3的时间长度N u隐含包含了保护时间,u为当前上行/下行数据的子载波间隔索引。在表3-1中固定为0。前导格式的时间长度包括三个部分:循环前缀、前导序列、保护时间(隐含包括该时间段),格式0和格式3的时间长度约为1ms(和LTE前导格式1的时间长度一样),但是子载波间隔相差4倍(相应地,频域带宽分别为1.25*864kHz和5*864kHz,相差4倍);格式1的时间长度约为3ms(和LTE前导格式3的时间长度一样);格式2的时间长度约为3.5ms。
如表3-2所示的NR中定义的另一类随机接入前导格式,包括10种随机接入前导格式,分别由不同数量的前导正交频分复用(orthogonal frequency division multiplexing,OFDM)符号重复得到(即表3-2中的第二列)。
表3-2:NR中定义的另一类随机接入前导格式
Figure PCTCN2018119420-appb-000003
在表3-2中,随机接入前导格式对应的随机接入前导序列长度L=127或者139。该长度的随机接入前导格式的子载波间隔Δf RA有4种,即15kHz,30kHz,60kHz,120kHz(μ=0,1,2,3,为前导格式子载波间隔索引)。其中,15kHz和30kHz用于载波频率低于6GHz的场景中,60kHz和120kHz用于载波频率大于6GHz的场景中。在每一个子载波间隔的10种随机接入前导格式中,总共有7种不同数量的前导OFDM符号重复值,分别用于不同的场景。格式A1、A2、A3分别和格式B1、B2、 B3的绝对时间长度N u相同,但是两者对应的循环前缀(cyclic prefix,CP)的时间长度
Figure PCTCN2018119420-appb-000004
不一样。B1、B2、B3格式中,隐含包含了保护时间,即B1、B2、B3三种随机接入前导格式中CP的长度分别比A1、A2、A3的CP短,隐含了该格式通过减少CP长度来实现保护时间。但是B1、B2、B3分别和A1、A2、A3的覆盖范围或者覆盖能力相差不大。
在表3-1和表3-2中,其中循环前缀
Figure PCTCN2018119420-appb-000005
绝对时间长度N u的时间单位为Tc,κ为相对参考时间单位的倍数因子。例如参考时间单位Ts=1/(15×1000×2048)秒,Tc=1/(480×1000×4096)秒,相应的κ=Ts/Tc,即κ=64。
需要说明的是,表3-2给出的是第三代合作伙伴计划(3rd generation partnership project,3GPP)版本15(release 15,R15)中包括的10种随机接入格式。在其它版本中,可以对以上随机接入格式进行删减或增加,在此不作限制。比如,表3-3中包括9中前导接入格式。
表3-3:NR中定义的另一类随机接入前导格式
Figure PCTCN2018119420-appb-000006
另外,给出发送功率的定义:
发送功率,也称为输出功率。可以定义为在给定时间和/或周期内,在所支持的全部或者部分频率、频段或者带宽上测量得到的输出功率。例如测量的时间至少为1ms,再例如测量的时间至少为与某个子载波间隔对应的一个时隙。在一个示例中,使用测量的时间为至少1ms所获取的功率。
图1给出了一种通信系统示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备)等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100 还可以是可穿戴设备或车载设备等。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
终端设备200是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、终端、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本申请中,子载波间隔SCS或者对应的子载波间隔索引u,在SCS不小于15kHz可以表示为SCS=15×2 u。具体地,SCS可以为以下任意一种:15kHz,30kHz,60kHz,120kHz,240kHz,480kHz,960kHz,1920kHz,3840kHz,……;相应地,u可以为任意实数或整数,例如0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,…。本申请中的方案也可以应用于其他子载波间隔取值,这里不作限定。
本申请中,基于随机接入前导格式的偏移值也可以称为基于随机接入前导格式的功率偏移值,或者功率偏移值,或者偏移值。
本申请中,随机接入资源可以是指随机接入时间、频率资源;也可以是指随机接入时间、频率资源上的随机接入前导集合;也可以是随机接入时机(RACH occasion,RO),RO是指用来发送一个随机接入前导所需要的时间、频率资源。
本申请中,P PRACH为随机接入前导的发送功率,也可以是终端确定的服务小区的载波所对应的发送功率(即transmission power for a physical random access channel(PRACH)for carrier f of serving cell c in transmission period i);P CMAX,c(i)为终端允许的最大发送功率或者被配置的最大发送功率,也可以是服务小区的载波所对应的配置的终端发送功率(即configured UE transmission power for carrier f of serving cell c within transmission period i);PREAMBLE_RECEIVED_TARGET_POWER为随机接入前导目标接收功率,表示终端设备估计路径损耗正确的情况下,网络设备侧能够获取的接收功率;PL c为终端设备估计的路径损耗,终端设备可以根据网络设备发送参考信号的功率以及终端设备接收信号质量(例如参考信号接收功率(Reference signal received power,RSRP))获取,例如 PL c=referenceSignalPower-higher layer filtered RSRP,referenceSignalPower为网络设备发送的参考信号(例如同步信号SS/PBCH块)发送功率,higher layer filtered RSRP为终端设备接收信号质量。preambleInitialReceivedTargetPower为前导初始接收目标功率,表示终端设备初次前导传输或者初始功率抬升次数时,网络设备预期能接收到的随机接入前导的功率;DELTA_PREAMBLE为基于随机接入前导格式的偏移值,如果不同随机接入前导格式对应的DELTA_PREAMBLE不同时,通过该参数可以补偿由于随机接入前导格式带来的前导目标接收功率的差别,或者DELTA_PREAMBLE由网络设备配置信息指示,从而取得更大的灵活性;PREAMBLE_POWER_RAMPING_COUNTER为功率抬升次数,powerRampingStep为功率抬升步长,通过该值的大小,可以控制不同前导传输次数或者功率抬升次数时,能够取得不同的的基站检测随机接入前导的性能。例如,小区中的终端设备数量比较少时,网络设备可以配置比较大的功率抬升步长,从而提高前导重传的正确概率,降低随机接入时延。再例如,小区中终端设备数量比较多时,网络设备可以配置比较小的功率抬升补偿,从而降低终端设备之间的相互干扰。
图2为本申请实施例提供的一种通信方法的交互流程示意图,该方法可包括以下步骤:
S201、网络设备发送指示随机接入前导格式的信息给终端设备。终端设备接收该指示随机接入前导格式的信息。
S202、终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值DELTA_PREAMBLE相关。
S203、所述终端设备以所述确定的发送功率发送所述随机接入前导。所述网络设备接收所述终端设备发送的随机接入前导。
具体地,在S201中,在随机接入过程中,网络设备通过消息发送随机接入配置参数。消息可以是无线资源控制(radio resource control,RRC)消息、系统信息(system information,SI)、剩余最小系统信息(remaining minimum system information,RMSI)、NR系统信息块0(new radio system information block type 0,NR SIB0)、NR系统信息块1(new radio system information block type 1,NR SIB1)、媒体接入控制-控制元素(Medium access control-control element,MAC CE)消息、下行控制信息(downlink control information,DCI)、物理广播信道(physical broadcast channel,PBCH)、或物理下行控制信道指令(physical downlink control channel order,PDCCH order)等。
其中,随机接入配置参数可以包括指示随机接入前导格式的信息。例如,基站在RRC消息或者系统消息(system information,SI)中配置随机接入配置索引(PRACH configuration index);终端设备可以根据预设/预配置的随机接入配置表格和基站配置的随机接入配置索引,获取随机接入前导格式、随机接入资源的时间和/或频率等信息。实际中,不局限于通过以上方式获取随机接入前导格式,网络设备可以配置更多的参数用于随机接入。
在本实施例中,随机接入前导格式包括0~3、A0~A3、B1~B4、C0和C2。需要说明的是,根据需求,可以对随机接入前导格式进行增删,即终端设备发送增删后 的随机接入前导格式对应的随机接入前导,例如删除前导格式A0,或者增加一种新的前导格式,本申请不予限定。
S202中终端设备确定发送随机接入前导的发送功率,具体包括:
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率P CMAX,c(i),随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与PL c以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值f(SCS)、随机接入前导序列偏移值h(L)、以及网络设备和/或终端设备的波束相关的偏移值G;
其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数(PREAMBLE_POWER_RAMPING_COUNTER)减1后与功率抬升步长的乘积。
具体地,在一个实现方式中,终端设备可以根据公式(1)确定随机接入前导的发送功率。公式(1)如下:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PL c}_[dBm],
公式(1)
其中,PREAMBLE_RECEIVED_TARGET_POWER=preambleInitialReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1)*powerRampingStep.
在一种实现方式中,以下至少一个参数为预设/默认/初始化设置值:P CMAX,c(i)、前导初始接收目标功率、DELTA_PREAMBLE、前导传输次数、功率抬升次数、功率抬升步长。例如,P CMAX,c(i)默认/预设为23dBm;再例如,前导初始接收目标功率默认/预设为-90dBm;再例如,功率抬升步长默认/预设为2dB;再例如,DELTA_PREAMBLE默认/预设为2dB;再例如,前导传输次数初始化为1;再例如,功率抬升次数初始化为1。
在一种实现方式中,功率抬升次数与前导传输次数有关,例如:功率抬升次数即为前导传输次数,再例如:功率抬升次数≤前导传输次数,再例如:功率抬升次数=floor(前导传输次数/K),其中K为预设或者预配置的常数。终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(1)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率。
在另一个实现方式中,在公式(1)的基础上,发送功率还可以与基于子载波间隔的功率偏移值f(SCS)有关。例如,子载波间隔越大,相同随机接入前导格式对应的随机接入前导的时间长度越短,为了实现相同的检测性能,对应的发送功率偏移值应该更大。具体地,终端设备可以根据公式(2)确定随机接入前导的发送功率。公式(2)如下:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER相同。
其中,SCS为子载波间隔,f(SCS)为基于子载波间隔的功率偏移值。例如,f(SCS)=round(10*log10(SCS/SCS0)),SCS0为参考子载波间隔。
例如当参考子载波间隔SCS0=1.25kHz,SCS=15kHz,那么功率偏移值f(SCS)=8dB;
再例如当参考子载波间隔SCS0=1.25kHz,SCS=30kHz,那么功率偏移值f(SCS)=11dB;
再例如,当参考子载波间隔SCS0=1.25kHz,SCS=60kHz,那么功率偏移值f(SCS)=17dB;
再例如当参考子载波间隔SCS0=1.25kHz,SCS=120kHz,那么功率偏移值f(SCS)=20dB;
再例如当参考子载波间隔SCS0=15kHz,SCS=30kHz,那么功率偏移值f(SCS)=3dB;
再例如当参考子载波间隔SCS0=15kHz,SCS=60kHz,那么功率偏移值f(SCS)=6dB;
再例如当参考子载波间隔SCS0=15kHz,SCS=120kHz,那么功率偏移值f(SCS)=9dB。其它参数的含义与公式(1)相同。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(2)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率与f(SCS)之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还可以与基于随机接入前导序列的偏移值h(L)有关。
基于随机接入前导序列的偏移值h(L)是指随机接入前导序列长度对应的偏移值。
例如,随机接入前导序列越短,序列检测时能够获取的增益越小,为了实现相同的检测性能,对应的发送功率偏移值应该更大。具体地,终端设备可以根据公式(3)确定随机接入前导的发送功率。公式(3)如下:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+h(L)+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
其中,L为随机接入前导序列的长度,h(L)为基于随机接入前导序列的偏移值。例如h(L)=round(10*log10(L/L0)),L0为参考随机接入前导序列长度。
例如L0=839,L=139,h(L)=-8dB;
再例如L0=139,L=839,h(L)=8dB;
再例如L0=127,L=839,h(L)=8dB;
再例如L0=71,L=139,h(L)=3dB;
再例如L0=31,L=139,h(L)=7dB。
其它参数的含义与公式(1)相同。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(3)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和h(L)之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还与网络设备和/或终端设备的波束相关的偏移值G有关。
具体地,终端设备可以根据公式(4)确定随机接入前导的发送功率。公式(4)如下:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+G+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
例如,G为网络设备下行信号发送波束增益和网络设备随机接入前导信号接收波束增益差,例如G=发送波束增益-接收波束增益;
再例如,G与网络设备在随机接入前导中的接收波束数量N b相关,例如为G=round(-10×log 10N b);例如,N b=1时,G=0dB;N b=2时,G=3dB;N b=3时,G=5dB;N b=4时,G=6dB。
再例如,G为终端设备下行信号接收波束增益和终端设备随机接入前导信号发送波束增益差;
再例如,G包括以下参数中的至少两个:网络设备下行信号发送波束增益和网络设备随机接入前导信号接收波束增益差、终端设备下行信号接收波束增益和终端设备随机接入前导信号发送波束增益差、网络设备在随机接入前导中的接收波束数量。
其中,网络设备下行信号发送波束增益和网络设备随机接入前导信号接收波束增益差可以由网络设备配置,或者根据预设的规则和/或网络设备配置的参数获取。
例如,波束指向性更好/或者增益更高,能够获取的信号强度越好,因此随机接入前导的发送功率可以更低。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(4)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和G之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还可以同时与f(SCS)、 h(L)相关,则发送功率可以根据公式(5)确定:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+h(L)+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(5)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和f(SCS)、h(L)三者之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还可以同时与f(SCS)、G相关,则发送功率可以根据公式(6)确定:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+G+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(6)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和f(SCS)、G三者之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还可以同时与G、h(L)相关,则发送功率可以根据公式(7)确定:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+G+h(L)+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(7)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和G、h(L)的三者之和。
在又一个实现方式中,在公式(1)的基础上,发送功率还可以同时与f(SCS)、G、h(L)相关,则发送功率可以根据公式(8)确定:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+f(SCS)+h(L)+G+PL c}_[dBm]
其中,PREAMBLE_RECEIVED_TARGET_POWER与公式(1)中的PREAMBLE_RECEIVED_TARGET_POWER是相同的。
值得注意的是,公式(1)到公式(8)中的以下任意一项或者多项:f(SCS)、h(L)、G, 也可以放在PREAMBLE_RECEIVED_TARGET_POWER对应的公式中,即两种方式最终取得相同的发送功率P PRACH
终端设备确定发送功率后,根据该发送功率发送随机接入前导。具体实现过程可参考现有技术。网络设备接收到终端设备以确定的发送功率发送的随机接入前导后,网络设备根据公式(8)确定获取到的随机接入前导接收信号的功率。具体地,在路径损耗估计准确的前提下,网络设备能够获取到的随机接入前导接收信号的功率为随机接入前导接收目标功率和f(SCS)、G、h(L)四者之和。
在又一个实现方式中,上述公式1~公式8中PREAMBLE_RECEIVED_TARGET_POWER还可以根据如下方式确定:
PREAMBLE_RECEIVED_TARGET_POWER=preambleInitialReceivedTargetPower+(PREAMBLE_POWER_RAMPING_COUNTER–1)*powerRampingStep.
即随机接入前导接收目标功率为以下两者之和:随机接入前导初始接收目标功率、以及功率抬升次数(PREAMBLE_POWER_RAMPING_COUNTER,例如初始化为1)减1后与功率抬升步长的乘积。该实现方式中,可以通过比较大的preambleInitialReceivedTargetPower的选择范围来实现网络设备实现的灵活性;网络设备在不同前导格式下,能够取得的前导检测性能(例如前导接收信噪比或者接收功率)可能不一致,但是每个前导格式提供的选择范围足够/比较大。
在一种实现方式中,上述公式1~公式8中的以下至少一个参数为网络设备配置或者根据网络设备配置信息获取:P CMAX,c(i)、前导初始接收目标功率、DELTA_PREAMBLE、功率抬升步长。
针对上述公式1~公式8,每种随机接入前导格式存在对应的DELTA_PREAMBLE,其中,不同的前导格式对应的偏移值可以相同,也可以不同。
具体地,在一个实现方式中,终端设备可以存储下述表4a,根据表4a获取DELTA_PREAMBLE,然后根据上述公式1~8中的任一种公式来计算发送功率。
如表4a所示,全部或部分随机接入前导格式对应的DELTA_PREAMBLE可以与预设值X有关。如表4a所示的随机接入前导格式对应的DELTA_PREAMBLE:
表4a
Figure PCTCN2018119420-appb-000007
Figure PCTCN2018119420-appb-000008
在表4a中,X为整数或小数。所述X的取值可以是从网络设备接收的。X的取值范围可以是-100~100。
还需要说明的是,表4a中的随机接入前导格式可能有删除或增加。比如,删除A0,或者增加一种新的前导格式C3,这里不予限定。
具体地,X的取值可以是0,3,8,11,14,17,18,19和20。
具体地,例如,X由网络设备配置如下:
DeltaPreamblePowerOffset ENUMERATED{dB11,dB14,dB17,dB20}
OPTIONAL
再例如,X既与随机接入资源所处频段有关,还与网络设备配置值有关。例如,X=X1+X2,其中X1与随机接入资源所处的频段有关,具体地,随机接入资源所在载频位于C1GHz以下时,X1=11dB,否则X1=17dB。X2由网络配置如下:
DeltaPreamblePowerOffset ENUMERATED{dB0,dB3}
OPTIONAL
其中dB n表示n分贝。
具体地,在一个实现方式中,终端设备预存储下述表4b,根据表4b获取DELTA_PREAMBLE,然后根据上述公式1~8中的任一种公式来计算发送功率。表4b中W(0),W(1),….,W(9)为预设或者配置的常数,取值为[-100,100],表示-100到100之间任意数字。
表4b
Figure PCTCN2018119420-appb-000009
在表4b对应的一种实现方式中,W(0)=W(8),W(1)=W(4),W(2)=W(5)=W(9),W(3)=W(6)。即,相同时间长度/OFDM符号数量的随机接入前导格式对应的偏移值可以相同。
在表4b对应的一种实现方式中,W(i)=W(0)+F(i),其中i=1,2,3,…,9。即, W(1)=W(0)+F(1),W(2)=W(0)+F(2),W(3)=W(0)+F(3),W(4)=W(0)+F(4),W(5)=W(0)+F(5),W(6)=W(0)+F(6),W(7)=W(0)+F(7),W(8)=W(0)+F(8),W(9)=W(0)+F(9)。
再例如,W(0)=W(8)或者F(8)=0;
再例如,W(1)=W(4)或者F(1)=F(4);
再例如,W(2)=W(5)=W(9),或者F(2)=F(5)=F(9);
再例如,W(3)=W(6)或者F(3)=F(6)。
在另一种实现方式中,F(3)≤F(2)≤F(1)和/或F(7)≤F(6)≤F(5)≤F(4)和/或者F(9)≤F(8),再或者,W(3)≤W(2)≤W(1)≤W(0)和/或W(7)≤W(6)≤W(5)≤W(4)和/或者W(9)≤W(8)。
在另一种实现方式中F(1)的取值区间为[-3,0],和/或者F(2)的取值区间为[-6,0],和/或者F(3)的取值区间为[-8,0],和/或者F(4)的取值区间为[-3,0],和/或者F(5)的取值区间为[-6,0],和/或者F(6)的取值区间为[-8,0],和/或者F(7)的取值区间为[-11,0],和/或者F(9)的取值区间为[-6,0]。再例如,F(1)=-1.5,F(2)=-3,F(3)=-4,F(4)=-1.5,F(5)=-3,F(6)=-4,F(7)=-5.5,F(8)=0,F(9)=-3,即W(1)=W(0)-1.5,W(2)=W(0)-3,W(3)=W(0)-4,W(4)=W(0)-1.5,W(5)=W(0)-3,W(6)=W(0)-4,W(7)=W(0)-5.5,W(8)=W(0),W(9)=W(0)-3。
在另一种实现方式中,W(i)=W,其中i=0,1,2,3,…,9。即,随机接入前导格式A0,A1,A2,A3,B1,B2,B3,B4,C0,C2对应的功率偏移值相同。在一种实现方式中,所有前导格式取相同的W值,可以保证在一些实现方式(例如一个基站波束内仅仅接收一个前导序列OFDM符号)中取得相同的性能,即网络设备对各个前导格式取得的接收性能(例如接收信噪比,例如接收波束内的正确前导序列检测概率)一致。再例如,W=0dB。
应理解,本实施例支持基站接收随机接入前导的多种方式,例如在随机接入前导内进行接收波束扫描,并且终端不需要获取基站接收方式。
在一种实现方式中,W(0)、W(1)、…、Y(9)、W、F(1)、…、F(9)中的至少一个的取值与子载波间隔和/或载波频率有关。子载波间隔可以为以下至少一种:随机接入前导的子载波间隔、上行部分带宽的子载波间隔、随机接入消息3的子载波间隔、下行信号的子载波间隔、下行接入部分带宽的子载波间隔。具体地,例如,当子载波间隔取第一值(例如,SCS=15kHz)时,W(0)=11;再例如,当子载波间隔取第一值(例如,SCS=30kHz)时,W(0)=14;再例如,当子载波间隔取第一值(例如,SCS=60kHz)时,W(0)=17;再例如,当子载波间隔取第一值(例如,SCS=120kHz)时,W(0)=20。;再例如,如表4c所示。应理解,W(1)、…、Y(9)、W、F(1)、…、F(9)也可以有类似的取值方式,这里不再赘述。
表4c
Figure PCTCN2018119420-appb-000010
Figure PCTCN2018119420-appb-000011
进一步地,不同前导格式对应的DELTA_PREAMBLE与随机接入资源的载波频率范围、随机接入前导的子载波间隔(subcarrier spacing,SCS)、随机接入前导时间长度、随机接入前导长度N u、随机接入资源带宽、初始上行接入部分带宽(initial active uplink bandwidth part,IAU BWP)、上行带宽、以及随机接入前导所占OFDM符号数目中的至少一个有关。
例如,DELTA_PREAMBLE与随机接入资源的载波频率范围有关。例如,当随机接入资源所在的载波频率小于C1GHz时,X=8;再例如当载波频率大于C1GHz时,X=14。具体地,例如C1=6GHz。
例如,在另一个实现方式中,终端设备预存储下述表5,根据表5获取DELTA_PREAMBLE,然后根据上述公式1~8中的任一种公式来计算发送功率。则随机接入前导格式对应的DELTA_PREAMBLE为:
表5
Figure PCTCN2018119420-appb-000012
又例如,在另一个实现方式中,终端设备存储下述表6,根据表6获取DELTA_PREAMBLE,然后根据上述公式1~8中的任一种公式来计算发送功率。则随机接入前导格式对应的DELTA_PREAMBLE为:
表6
Figure PCTCN2018119420-appb-000013
Figure PCTCN2018119420-appb-000014
又例如,在另一个实现方式中,终端设备存储下述表7,根据表7获取DELTA_PREAMBLE,然后根据上述公式1~8中的任一种公式来计算发送功率。则随机接入前导格式对应的DELTA_PREAMBLE为:
表7
Figure PCTCN2018119420-appb-000015
当然,前导格式0~3也可以是一个与X有关的值,而不限于前面示例中所示。
应该理解,不同的偏移值体现随机接入前导格式之间的差异,例如时间长度、序列长度、子载波间隔、随机接入前导格式中前导符号的重复次数。
或者应该理解,不同的偏移值体现终端发送或基站接收随机接入前导格式的方法的差异:例如,基站接收随机接入前导格式时,用于接收随机接入前导的波束参数;再例如,基站发送下行信号时的波束参数;再例如,终端接收下行信号时的波束参数;再例如,终端发送随机接入前导时的波束参数;其中波束参数与以下至少一项有关:波束数量、波束增益、波束宽度、波束方向。
在另一个实现方式中,表5~表7中任意一个示意图中的随机接入前导格式与 DELTA_PREAMBLE的对应关系也可以是随机接入前导格式与DELTA_PREAMBLE的具体值的对应关系。该对应关系可以预先存储在网络设备和终端设备中。当终端设备接收到网络设备发送的随机接入配置参数中包括的某种随机接入前导格式时,根据该对应关系,可以查找到具体的DELTA_PREAMBLE值。即这里可以不定义预设值X。
以上是以表格形式配置的。
除了表格的方式,还可以根据公式来计算DELTA_PREAMBLE。
比如,DELTA_PREAMBLE与随机接入前导所占的(或者重复的)OFDM符号数目N OS有关,具体为round(-10×log 10N OS)。
再例如,DELTA_PREAMBLE与随机接入前导长度N u相关,具体为round(-10×log 10(N u/N Ref)),其中N Ref为参考长度,例如N Ref=24576κ。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)有关,具体为round(-10×log 10(SCS Ref/SCS)),其中SCS Ref为参考子载波间隔,例如SCS Ref=1.25kHz,再例如SCS Ref=15kHz。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)和随机接入前导所占的(或者重复的)OFDM符号数目N OS有关,具体为round(-10×log 10(N OS×SCS Ref/SCS))。其中round为四舍五入。
值得注意的是,偏移值DELTA_PREAMBLE与具体参数相关时,可以是其它函数,例如向下取整,例如四舍五入,例如向上取整,再例如,(不局限于)以上实现方式中不包括近似操作。实际当中不作限制。
再例如,表8中,DELTA_PREAMBLE与子载波间隔有关。子载波间隔可以为以下至少一种:随机接入前导的子载波间隔、上行部分带宽的子载波间隔、随机接入消息3的子载波间隔、下行信号的子载波间隔、下行接入部分带宽的子载波间隔。
表8
Figure PCTCN2018119420-appb-000016
需要说明的是,以上示例中,随机接入格式A0~C2对应的DELTA_PREAMBLE与子载波间隔有关,而随机接入格式0~3对应的DELTA_PREAMBLE可以与子载波间隔无关。
终端设备确定DELTA_PREAMBLE之后,以及接收到前导初始接收目标功率和 功率抬升步长后,终端设备确定随机接入前导的发送功率。
根据本申请实施例提供的一种通信方法,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,从而能够合理地确定随机接入前导的发送功率。
图3为本申请实施例提供的另一种通信方法的交互流程示意图,该方法可包括以下步骤:
S301、网络设备发送指示随机接入前导格式的信息给终端设备。终端设备接收该指示随机接入前导格式的信息。
S302、所述网络设备发送指示基于随机接入前导格式的偏移值的信息给所述终端设备。所述终端设备接收来自网络设备的用于指示基于随机接入前导格式的偏移值的信息。
S303、终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与所述指示随机接入前导的格式的信息以及所述指示基于随机接入前导格式的偏移值的信息相关。
S304、所述终端设备以所述确定的发送功率发送所述随机接入前导。所述网络设备接收所述终端设备以确定的发送功率发送的随机接入前导。
与图2所示实施例不同的是,本实施例中,网络设备还需发送指示基于随机接入前导格式的偏移值的信息给终端设备,即终端设备是根据网络设备的配置值确定偏移值。
在S303中,终端设备确定发送随机接入前导的发送功率,具体包括:
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率P CMAX,c(i),随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与PL c以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值f(SCS)、随机接入前导序列偏移值h(L)、以及网络设备和/或终端设备的波束相关的偏移值G;
其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
具体的公式计算可参考上述实施例中的公式(1)~(8),在此不再赘述。
具体地,所述用于指示基于随机接入前导格式的偏移值的信息包括所述基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值。下面详细描述:
在一个实现方式中,所述用于指示基于随机接入前导格式的偏移值的信息包括所述基于随机接入前导格式的偏移值的索引号。具体地,基于随机接入前导格式0~3的偏移值可以为固定值,其值可以参考前述实施例中基于随机接入前导格式0~3的偏移值。基于随机接入前导格式A0~C2的偏移值根据配置的偏移值的索引号确定。如表9所示,配置了N个索引号对应的偏移值:
表9
DELTA_PREAMBLE_INDEX DELTA_PREAMBLE
  (dB)
0 Y(0)dB
1 Y(1)dB
2 Y(2)dB
…… ……
N-1 Y(N-1)dB
其中,索引号0对应的偏移值为Y(0)dB,索引号1对应的偏移值为Y(1)dB,索引号2对应的偏移值为Y(2)dB,等等。网络设备和终端设备预先存储了如表9所示的偏移值的索引号与偏移值的对应关系,网络设备可以发送任一个索引号给终端设备,终端设备根据该索引号查找到对应的偏移值。在表9中,N,Y(0),Y(1),…,Y(N-1)为预设值,例如N=1~128,Y(0),Y(1),…,Y(N-1)取值范围为-100~100。应理解,表9中不同偏移值的索引对应的偏移值与随机接入资源的载波频率范围、随机接入前导的子载波间隔、随机接入前导的时间长度、或随机接入前导长度N u相关、随机接入前导所占OFDM符号数目、随机接入前导格式内进行的基站接收波束数量N b、随机接入前导的终端发送波束和/或基站接收波束参数中的至少一个有关。
例如,DELTA_PREAMBLE与随机接入前导所占的OFDM符号数目N OS有关,具体为round(-10×log 10N OS)。
再例如,DELTA_PREAMBLE与随机接入前导长度N u相关,具体为round(-10×log 10(N u/N Ref)),其中N Ref为参考长度,例如N Ref=24576κ。
再例如,偏移值DELTA_PREAMBLE与随机接入前导格式内进行的基站接收波束数量N b相关,具体为round(-10×log 10N b)。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)和随机接入前导所占的(或者重复的)OFDM符号数目N OS有关,具体为round(-10×log 10(N OS×SCS Ref/SCS))。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)和随机接入前导所占的(或者重复的)OFDM符号数目N OS有关,具体为round(-10×log 10(N OS×SCS Ref/SCS))。
再例如,DELTA_PREAMBLE与基站接收波束数量N b和随机接入前导所占的(或者重复的)OFDM符号数目N OS有关,具体为round(-10×log 10(N OS×N b))。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)和基站接收波束数量N b有关,具体为round(-10×log 10(N b×SCSRef/SCS))。
再例如,DELTA_PREAMBLE与随机接入前导的子载波间隔SCS(或者子载波间隔对应的索引u)、随机接入前导所占的(或者重复的)OFDM符号数目N OS、以及基站接收波束数量N b有关,具体为round(-10×log 10(N OS×N b×SCS Ref/SCS))。其中,round为四舍五入。
值得注意的是,偏移值DELTA_PREAMBLE与具体参数相关时,可以是其它函数,例如向下取整,例如四舍五入,例如向上取整,再例如,(不局限于)以上实现方式中不包括近似操作。实际当中不作限制。
其中,关于偏移值的分布,下面举例进行说明:
在一个示例中,所述基于随机接入前导格式的偏移值的取值包括N个元素,所述N个元素的取值呈等差分布,N为正整数。采用该种偏移值的取值简单可行。即Y(i)=Y(i-1)+D,其中,差分值D可以为任意常数,Y(0)或者Y(N-1)可以为任意常数。
例如,如图表10所示,Y(0)=0,D=-2:
表10
Figure PCTCN2018119420-appb-000017
在表10中,索引号0~7对应的基于随机接入前导格式的偏移值的取值分别为:{0dB,-2dB,-4dB,-6dB,-8dB,-10dB,-12dB,-14dB}。
再例如,如表11所示,Y(0)=8,D=-2:
表11
Figure PCTCN2018119420-appb-000018
在表11中,索引号0~7对应的基于随机接入前导格式的偏移值的取值分别为:{8dB,6dB,4dB,2dB,0dB,-2dB,-4dB,-6dB}。
再例如,如表12所示,Y(0)=19,D=-2:
表12
Figure PCTCN2018119420-appb-000019
在表12中,索引号0~7对应的基于随机接入前导格式的偏移值的取值分别为: {19dB,17dB,15dB,13dB,11dB,9dB,7dB,5dB}。
以上是以表格形式表示的DELTA_PREAMBLE_INDEX与DELTA_PREAMBLE的对应关系。在实际当中,还可以以另外的方式呈现。例如在系统消息或者RRC消息中,可以是如下方式中的任意一种:
DeltaPreamblePowerOffset ENUMERATED{dB Y(0),dB Y(1),dB Y(2),dB Y(3),…,dB Y(N-1),spare,…}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-14,dB-12,dB-10,dB-8,dB-6,dB-4,dB-2,dB0}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-6,dB-4,dB-2,dB-0,dB2,dB4,dB6,dB8}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB5,dB7,dB9,dB11,dB13,dB15,dB17,dB19}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-3,dB-1,dB1,dB3,dB5,dB7,dB9,dB11}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB0,dB2,dB4,dB6,dB8,dB10,dB12,dB14}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB6,dB8,dB10,dB12,dB14,dB16,dB18,dB20}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-14,dB-11,dB-8,dB-6,dB-4.5,dB-3,dB0}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-6,dB-3,dB0,dB2,dB3.5,dB5,dB8}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB5,dB8,dB11,dB13,dB14.5,dB16,dB19}OPTIONAL
或者N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-6,dB-8,dB-10,dB-12,dB-14,dB-16,dB-18,dB-20}OPTIONAL
进一步地,Y(0)、…、Y(N-1)、N、D与子载波间隔有关。所述子载波间隔可以为以下至少一种:随机接入前导的子载波间隔、上行部分带宽的子载波间隔、随机接入消息3的子载波间隔、下行信号的子载波间隔、下行接入部分带宽的子载波间 隔。
例如,如表13所示:
表13
Figure PCTCN2018119420-appb-000020
在表13中,D=-2,且当子载波间隔为15kHz时,Y(0)=11,则索引号0~7对应的偏移值分别为{11dB,9dB,7dB,5dB,3dB,1dB,-1dB,-3dB};当子载波间隔为30kHz时,Y(0)=14,则索引号0~7对应的偏移值分别为{14dB,12dB,10dB,8dB,6dB,4dB,2dB,0dB};再例如当子载波间隔为60kHz时,Y(0)=17,则索引号0~7对应的偏移值分别为{17dB,15dB,13dB,11dB,9dB,7dB,5dB,3dB};再例如当子载波间隔为120kHz时,Y(0)=20,则索引号0~7对应的偏移值分别为{20dB,18dB,16dB,14dB,10dB,8dB,6dB}。
在另一个示例中,所述基于随机接入前导格式的偏移值的取值包括M个元素,所述M个元素的取值呈递增或递减分布,M为正整数。即Y(i)=Y(i-1)+D(i)或者Y(i)=Y(0)+E(i),其中,D(i)、E(i)可以为任意常数,各个D(i)、E(i)可以相同或不同,其中i=1,2,…,N-1。Y(0)或者Y(N-1)可以为任意常数。例如,表14:
表14
Figure PCTCN2018119420-appb-000021
在表14中,采用Y(i)=Y(0)+E(i)表示,索引号0~6对应的E(i)分别为0,-3,-4.5,-6,-8,-11,-14。
具体地,若采用表14中的表达式,且Y(0)=0,则如表15所示:
表15
Figure PCTCN2018119420-appb-000022
Figure PCTCN2018119420-appb-000023
在表15中,索引号0~6对应的基于随机接入前导格式的偏移值的取值分别为:{0dB,-3dB,-4.5dB,-6dB,-8dB,-11dB,-14dB}
若采用表14中的表达式,且Y(0)=0,则如表16所示:
表16
Figure PCTCN2018119420-appb-000024
在表16中,索引号0~6对应的基于随机接入前导格式的偏移值的取值分别为:{8dB,5dB,3.5dB,2dB,0dB,-3dB,-6dB}。
若采用表14中的表达式,且Y(0)=0,则如表17所示:
表17
Figure PCTCN2018119420-appb-000025
在表17中,索引号0~6对应的基于随机接入前导格式的偏移值的取值分别为:{19dB,16dB,14.5dB,13dB,11dB,8dB,5dB}。应该注意的是,实际中不限于此,以上仅为示例。
进一步地,Y(0)、…、Y(N-1)、D、D(1)、…、D(N-1)、E(1)、…、E(N-1)中的至少一个与载波频率范围和/或子载波间隔有关。例如与载波频率有关,当随机接入资源所在的载波频率小于C1GHz时,Y(0)=8;再例如当随机接入资源所在的载波频率大于C1GHz时,Y(0)=14。具体地,例如C1=6GHz。应理解,Y(1)、…、Y(N-1)、D、D(1)、…、D(N-1)、E(1)、…、E(N-1)也可以有类似的取值方式,这里不再赘述。
在另外的实现方式中,Y(0)、…、Y(N-1)、D、D(1)、…、D(N-1)、E(1)、…、E(N-1)中的至少一个与子载波间隔有关。所述子载波间隔可以为以下至少一种:随机接入前导的子载波间隔、上行部分带宽的子载波间隔、随机接入消息3的子载波间隔、下行信号的子载波间隔、下行接入部分带宽的子载波间隔。如表18所示,
表18
Figure PCTCN2018119420-appb-000026
在表18中,当子载波间隔为15kHz时,Y(0)=11;再例如,当子载波间隔为30kHz时,Y(0)=14;再例如,当子载波间隔为60kHz时,Y(0)=17;再例如,当子载波间隔为120kHz时,Y(0)=20。
以上是以表格形式表示的DELTA_PREAMBLE_INDEX与DELTA_PREAMBLE的对应关系。在另外的实现方式中,可以是如下方式中的任意一种:
在子载波间隔为15kHz且N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB-3,dB0,dB3,dB5,dB6.5,dB8,dB11}OPTIONAL
在子载波间隔为30kHz且N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB0,dB3,dB6,dB8,dB9.5,dB11,dB14}OPTIONAL
在子载波间隔为60kHz且N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB3,dB6,dB9,dB11,dB12.5,dB14,dB17}OPTIONAL
在子载波间隔为120kHz且N=8时,
DeltaPreamblePowerOffset ENUMERATED{dB6,dB9,dB12,dB14,dB15.5,dB17,dB20}OPTIONAL
应该理解,以上不同的Y(0),Y(1),…,Y(N-1),N,D,D(1),D(2),…,D(N-1),E(1),E(2),…,E(N-1)中的至少一个可以直接或者隐含体现/指示以下至少一项:随机接入前导的子载波间隔、随机接入前导序列的长度、网络设备接收随机接入前导时对应的波束增益、网络设备接收随机接入前导时的波束数量、网络设备发送下行信号与接收随机接入前导时的波束增益差、载波频率范围、网络设备在随机接入前导的时间长度内的接收波束数量。其中,在一个随机接入前导的时间内,网络设备采用N个接收波束来接收同一个随机接入前导,以获取更高的处理增益或者获取更加适合终端设备的接收波束。应理解,所述N可以大于/等于/小于一个随机接入前导中前导序列的数量或者前导序列的重复次数。当N可以大于一个随机接入前导中前导序列的数量或者前导序列的重复次数时,网络设备可以采取数字域的波束,即在相同的天线收发单元上,采取多组数字域波束系数,形成多个接收波束。
在另一个实现方式中,所述用于指示基于随机接入前导格式的偏移值的信息包括所述基于随机接入前导格式的偏移值的取值。例如,表9中的偏移值可以表示为{Y(0),Y(1),Y(2)……Y(N-1)},偏移值在集合中的顺序即代表它的索引。网络设备发送该偏移值的集合给终端设备,终端设备默认选取集合中第几个偏移值作为自己 发送功率计算的偏移值。同理,表10~表17也可以采用一个偏移值的集合的形式。
本申请中,不同的实现方法之间可以结合进行,具体实现方式在这里不再赘述。
本申请中,表格中各行的顺序可以任意调换/置换/改变。
根据本申请实施例提供的一种通信方法,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,该指示基于随机接入前导格式的偏移值的信息包括基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值,根据该偏移值,从而能够合理地确定随机接入前导的发送功率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
基于上述实施例中的通信方法的同一构思,如图4所示,本申请实施例还提供一种通信装置的结构示意图,该通信装置可应用于上述通信方法中。该通信装置400包括:处理单元41和发送单元42;其中:
所述处理单元41,用于确定发送随机接入前导的发送功率,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值DELTA_PREAMBLE相关;
所述发送单元42,用于以所述处理单元确定的发送功率发送所述随机接入前导。
在一个实现方式中,所述处理单元41具体用于:
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率P CMAX,c(i),随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与PL c以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值f(SCS)、随机接入前导序列偏移值h(L)、以及网络设备和/或终端设备的波束相关的偏移值G;
其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值DELTA_PREAMBLE、以及功率抬升次数减1后与功率抬升步长的乘积。
在另一个实现方式中,当随机接入前导格式为2时,基于随机接入前导格式2的偏移值DELTA_PREAMBLE为-6分贝dB;和/或,
当随机接入前导格式为3时,基于随机接入前导格式3的偏移值DELTA_PREAMBLE为0dB。
在又一个实现方式中,当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为X-3dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为X-6dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为X-8dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为X-3dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为X-6dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为X-8dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4偏移值为X-11dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0偏移值为X+0dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为X-6dB,其中,X为整数或小数。
在又一个实现方式中,当子载波间隔取第一值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为8dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为5dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为3dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为8dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2偏移值为5dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为3dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为0dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为11dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为5dB。
在又一个实现方式中,当子载波间隔取第二值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为11dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为8dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为6dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为11dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为8dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为6dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为3dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为14dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为8dB。
在又一个实现方式中,当子载波间隔取第三值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为14dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为11dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为9dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为14dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为11dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为9dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为6dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为17dB;或者当随机接入前导格式为C2时,基于随机接入前导格式C2的偏移值为11dB。
在又一个实现方式中,当子载波间隔取第四值时,以及当随机接入前导格式为A1时,基于随机接入前导格式A1的偏移值为17dB;或者当随机接入前导格式为A2时,基于随机接入前导格式A2的偏移值为14dB;或者当随机接入前导格式为A3时,基于随机接入前导格式A3的偏移值为12dB;或者当随机接入前导格式为B1时,基于随机接入前导格式B1的偏移值为17dB;或者当随机接入前导格式为B2时,基于随机接入前导格式B2的偏移值为14dB;或者当随机接入前导格式为B3时,基于随机接入前导格式B3的偏移值为12dB;或者当随机接入前导格式为B4时,基于随机接入前导格式B4的偏移值为9dB;或者当随机接入前导格式为C0时,基于随机接入前导格式C0的偏移值为20dB;或者当随机接入前导格式为C2时,基于随 机接入前导格式C2的偏移值为14dB。
根据本申请实施例提供的一种通信装置,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,从而能够合理地确定随机接入前导的发送功率。
基于上述实施例中的通信方法的同一构思,如图5所示,本申请实施例还提供另一种通信装置的结构示意图。该通信装置可以应用于上述通信方法中。该通信装置500可包括:接收单元51、处理单元52和发送单元53;其中:
所述接收单元51,用于接收来自网络设备的指示随机接入前导格式的信息;
所述接收单元51,还用于接收来自网络设备的用于指示基于随机接入前导格式的偏移值DELTA_PREAMBLE的信息;
所述处理单元52,用于确定发送随机接入前导的发送功率,其中,所述发送功率与所述指示随机接入前导的格式的信息以及所述指示基于随机接入前导格式的偏移值的信息DELTA_PREAMBLE相关;
所述发送单元53,用于以所述确定的发送功率发送所述随机接入前导。
在一个实现方式中,所述处理单元52具体用于:
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率P CMAX,c(i),随机接入前导接收目标功率与终端设备估计的路径损耗PL c之和;或者
确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与PL c以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值f(SCS)、随机接入前导序列偏移值h(L)、以及网络设备和/或终端设备的波束相关的偏移值G;
其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
在另一个实现方式中,所述用于指示基于随机接入前导格式的偏移值的信息包括:
所述基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值。
在又一个实现方式中,所述基于随机接入前导格式的偏移值DELTA_PREAMBLE的取值包括N个元素,所述N个元素的取值呈等差分布,N为正整数。
在又一个实现方式中,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-2dB,-4dB,-6dB,-8dB,-10dB,-12dB,-14dB}、{8dB,6dB,4dB,2dB,0dB,-2dB,-4dB,-6dB}或者{19dB,17dB,15dB,13dB,11dB,9dB,7dB,5dB}。
在又一个实现方式中,所述基于随机接入前导格式的偏移值的取值包括M个元素,所述M个元素的取值呈递增或递减分布,M为正整数。
在又一个实现方式中,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-3dB,-4.5dB,-6dB,-8dB,-11dB,-14dB}、{8dB,5dB,3.5dB,2dB,0dB,-3dB,-6dB}或者{19dB,16dB,14.5dB,13dB,11dB,8dB,5dB}。
根据本申请实施例提供的一种通信装置,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,该指示基于随机接入前导格式的偏移值的信息包括基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值,根据该偏移值,从而能够合理地确定随机接入前导的发送功率。
基于上述实施例中的通信方法的同一构思,如图6所示,本申请实施例还提供又一种通信装置的结构示意图。该通信装置600包括:发送单元61和接收单元62;其中:
所述发送单元61,用于发送指示随机接入前导格式的信息给终端设备;
所述接收单元62,用于接收所述终端设备以确定的发送功率发送的随机接入前导,其中,所述发送功率与所述随机接入前导的格式以及基于随机接入前导格式的偏移值相关。
在一个实现方式中,所述发送单元,还用于发送指示基于随机接入前导格式的偏移值的信息给所述终端设备。
根据本申请实施例提供的一种通信装置,给出了下一代移动通信系统中多种随机接入前导格式对应的偏移值,从而能够合理地确定随机接入前导的发送功率。
本申请中的通信装置可以是终端设备,也可以是安装于终端设备中的芯片或集成电路。
以通信装置为终端设备为例,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括接收单元401、处理单元402和发送单元403。接收单元401也可以称为接收器、接收机、接收电路等,发送单元403也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元401用于执行图2所示实施例中的步骤S201;处理单元402用于执行图2所示实施例中的步骤S202;以及发送单元403用于执行图2所示实施例中的步骤S203。
又如,在另一个实施例中,接收单元401用于执行图3所示实施例中的步骤S301和S302;处理单元402用于执行图3所示实施例中的步骤S303;以及发送单元403用于执行图3所示实施例中的步骤S304。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,通信装置包括:接收器,用于接收信息,例如接收来自网络设备的指示随机接入前导格式的信息,还用于接收来自网络设备的用于指示基于随机接入前导格式的偏移值DELTA_PREAMBLE的信息;处理电路,用于执行上述通信方法,例如确定发送随机接入前导的发送功率;发送器,用于输出随机接入前导。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
本申请中的通信装置可以是网络设备,也可以是安装于网络设备中的芯片或集成电路。
以通信装置为网络设备为例。图8示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及502部分,该射频信号收发及转换部分又包括接收单元501部分和发送单元503部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;502部分主要用于基带处理,对网络设备进行控制等。接收单元501也可以称为接收器、接收机、接收电路等,发送单元503也可以称为发送器、发射器、发射机、发射电路 等。502部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图2或图3中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
502部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元503用于执行图2所示实施例中的步骤S201;以及接收单元501用于执行图2所示实施例中的步骤S203。
又如,在另一个实施例中,发送单元503用于执行图3所示实施例中的步骤S301和S302;以及接收单元501用于执行图3所示实施例中的步骤S304。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,通信装置包括:发送器,用于输出信息,例如用于发送指示随机接入前导格式的信息给终端设备;接收器,用于输入信息,例如,用于接收所述终端设备以确定的发送功率发送的随机接入前导。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是CPU,NP或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。
存储器可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器还可以包括上述种类的存储器的组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (48)

  1. 一种通信装置,其特征在于,包括:处理单元和发送单元;其中:
    所述处理单元,用于确定发送随机接入前导的发送功率,其中,所述发送功率与基于随机接入前导格式的偏移值相关;
    所述发送单元,用于以所述发送功率发送所述随机接入前导。
  2. 如权利要求1所述的装置,其特征在于,所述处理单元具体用于:
    确定所述发送功率为以下两者中的较小值:终端设备允许的或者被配置的最大发送功率,随机接入前导接收目标功率与终端设备估计的路径损耗之和;或者
    确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与所述随机接入前导接收目标功率与终端设备估计的路径损耗以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值、随机接入前导序列偏移值、以及网络设备和/或终端设备的波束相关的偏移值;
    其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
  3. 如权利要求1或2所述的装置,其特征在于,当随机接入前导格式为2时,基于随机接入前导格式2的偏移值为-6分贝dB;和/或,
    当随机接入前导格式为3时,基于随机接入前导格式3的偏移值为0dB。
  4. 如权利要求1或2所述的装置,其特征在于,当随机接入格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,所述基于随机接入前导格式的偏移值与子载波间隔有关。
  5. 如权利要求1或2或4任意一项所述的装置,其特征在于,当子载波间隔取第一值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为8dB、5dB、3dB、8dB、5dB、3dB、0dB、11dB、5dB。
  6. 如权利要求5所述的装置,其特征在于,所述子载波间隔为15kHz。
  7. 如权利要求1或2或4任意一项所述的装置,其特征在于,当子载波间隔取第二值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为11dB、8dB、6dB、11dB、8dB、6dB、3dB、14dB、8dB。
  8. 如权利要求7所述的装置,其特征在于,所述子载波间隔为30kHz。
  9. 如权利要求1或2或4任意一项所述的装置,其特征在于,当子载波间隔取第三值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为14dB、11dB、9dB、14dB、11dB、9dB、6dB、17dB、11dB。
  10. 如权利要求9所述的装置,其特征在于,所述子载波间隔为60kHz。
  11. 如权利要求1或2或4任意一项所述的装置,其特征在于,当子载波间隔取第四值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时, 对应的基于随机接入前导格式的偏移值分别为17dB、14dB、12dB、17dB、14dB、12dB、9dB、20dB、14dB。
  12. 如权利要求11所述的装置,其特征在于,所述子载波间隔为120kHz。
  13. 如权利要求1或2所述的装置,其特征在于,当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于接入前导格式偏移值分别为X-3dB、X-6dB、X-8dB、X-3dB、X-6dB、X-8dB、X-11dB、X+0dB、X-6dB;其中,X为整数或小数。
  14. 如权利要求13所述的装置,其特征在于,所述X的取值与载波频率或子载波间隔相关。
  15. 如权利要求13或14所述的装置,其特征在于,X的取值包括0,3,8,11,14,17,18,19和20。
  16. 如权利要求1或2所述的装置,其特征在于,当子载波间隔取第一值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为11dB。
  17. 如权利要求1或2所述的装置,其特征在于,当子载波间隔取第二值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为14dB。
  18. 如权利要求1或2所述的装置,其特征在于,当子载波间隔取第三值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为17dB。
  19. 如权利要求1或2所述的装置,其特征在于,当子载波间隔取第四值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为20dB。
  20. 一种通信装置,其特征在于,包括:接收单元、处理单元和发送单元;其中:
    所述接收单元,用于接收来自网络设备的指示随机接入前导格式的信息;
    所述接收单元,还用于接收来自网络设备的用于指示基于随机接入前导格式的偏移值的信息;
    所述处理单元,用于确定发送随机接入前导的发送功率,其中,所述发送功率与所述基于随机接入前导格式的偏移值的信息相关;
    所述发送单元,用于以所述确定的发送功率发送所述随机接入前导。
  21. 如权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率与终端设备估计的路径损耗之和;或者
    确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与随机接入前导接收目标功率与终端设备估计的路径损耗以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值、随机接入前导序列偏移值、以及网络设备和/或终端设备的波束相关的偏移值;
    其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收 目标功
    率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
  22. 如权利要求20或21所述的装置,其特征在于,所述用于指示基于随机接入前导格式的偏移值的信息包括:
    所述基于随机接入前导格式的偏移值的索引号、或者所述基于随机接入前导格式的偏移值的取值。
  23. 如权利要求22所述的装置,其特征在于,所述基于随机接入前导格式的偏移值的取值包括N个元素,所述N个元素的取值呈等差分布,N为正整数。
  24. 如权利要求23所述的装置,其特征在于,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-2dB,-4dB,-6dB,-8dB,-10dB,-12dB,-14dB}、{8dB,6dB,4dB,2dB,0dB,-2dB,-4dB,-6dB}或者{19dB,17dB,15dB,13dB,11dB,9dB,7dB,5dB}。
  25. 如权利要求22所述的装置,其特征在于,所述基于随机接入前导格式的偏移值的取值包括M个元素,所述M个元素的取值呈递增或递减分布,M为正整数。
  26. 如权利要求25所述的装置,其特征在于,所述基于随机接入前导格式的偏移值的取值包括:{0dB,-3dB,-4.5dB,-6dB,-8dB,-11dB,-14dB}、{8dB,5dB,3.5dB,2dB,0dB,-3dB,-6dB}或者{19dB,16dB,14.5dB,13dB,11dB,8dB,5dB}。
  27. 一种通信方法,其特征在于,包括:
    终端设备确定发送随机接入前导的发送功率,其中,所述发送功率与基于随机接入前导格式的偏移值相关;
    所述终端设备以所述确定的发送功率发送所述随机接入前导。
  28. 如权利要求27所述的方法,其特征在于,所述终端设备确定发送随机接入前导的发送功率,具体包括:
    确定所述发送功率为以下两者中的较小值:终端设备允许的或被配置的最大发送功率,随机接入前导接收目标功率与终端设备估计的路径损耗之和;或者
    确定所述发送功率为以下两者中的较小值:终端设备允许的最大发送功率,随机接入前导接收目标功率、子载波间隔功率偏移值与随机接入前导接收目标功率与终端设备估计的路径损耗以及以下参数中的至少一个参数的值之和;其中,所述至少一个参数包括:子载波间隔功率偏移值、随机接入前导序列偏移值、以及网络设备和/或终端设备的波束相关的偏移值;
    其中,所述随机接入前导接收目标功率为以下三者之和:随机接入前导初始接收目标功
    率、基于随机接入前导格式的偏移值、以及功率抬升次数减1后与功率抬升步长的乘积。
  29. 如权利要求27或28所述的方法,其特征在于,当随机接入前导格式为2时,基于随机接入前导格式2的偏移值为-6分贝dB;或者,
    当随机接入前导格式为3时,基于随机接入前导格式3的偏移值为0dB。
  30. 如权利要求27或28所述的方法,其特征在于,当随机接入格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,基于随机接入前导格式的偏移值与子载波间隔有关。
  31. 如权利要求27或28或30任意一项所述的方法,其特征在于,当子载波间隔取第一值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为8dB、5dB、3dB、8dB、5dB、3dB、0dB、11dB、5dB。
  32. 如权利要求31所述的方法,其特征在于,所述子载波间隔为15kHz。
  33. 如权利要求27或28或30任意一项所述的方法,其特征在于,当子载波间隔取第二值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为11dB、8dB、6dB、11dB、8dB、6dB、3dB、14dB、8dB。
  34. 如权利要求33所述的方法,其特征在于,所述子载波间隔为30kHz。
  35. 如权利要求27或28或30任意一项所述的方法,其特征在于,当子载波间隔取第三值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为14dB、11dB、9dB、14dB、11dB、9dB、6dB、17dB、11dB。
  36. 如权利要求35所述的方法,所述子载波间隔为60kHz。
  37. 如权利要求27或28或30任意一项所述的方法,其特征在于,当子载波间隔取第四值时,以及当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于随机接入前导格式的偏移值分别为17dB、14dB、12dB、17dB、14dB、12dB、9dB、20dB、14dB。
  38. 如权利要求37所述的方法,其特征在于,所述子载波间隔为120kHz。
  39. 如权利要求27或28所述的方法,其特征在于,当随机接入前导格式为A1,A2,A3,B1,B2,B3,B4,C0,C2时,对应的基于接入前导格式偏移值分别为X-3dB、X-6dB、X-8dB、X-3dB、X-6dB、X-8dB、X-11dB、X+0dB、X-6dB;其中,X为整数或小数。
  40. 如权利要求39所述的方法,其特征在于,所述X的取值与载波频率或子载波间隔相关。
  41. 如权利要求39或40所述的方法,其特征在于,X的取值包括0,3,8,11,14,17,18,19和20。
  42. 如权利要求39~41任一项所述的方法,其特征在于,所述X的取值是从网络设备接收的。
  43. 如权利要求27或28所述的方法,其特征在于,当子载波间隔取第一值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为11dB。
  44. 如权利要求27或28所述的方法,其特征在于,当子载波间隔取第二值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为14dB。
  45. 如权利要求27或28所述的方法,其特征在于,当子载波间隔取第三值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为17dB。
  46. 如权利要求27或28所述的方法,其特征在于,当子载波间隔取第四值时,随机接入前导格式A1,A2,A3,B1,B2,B3,B4,C0,C2对应的基于随机接入前导格式的偏移值均为20dB。
  47. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求27~46任意一项所述的方法。
  48. 一种计算机程序产品,当其在计算机上运行时,使得所述计算机执行如权利要求27~46任意一项所述的方法。
PCT/CN2018/119420 2018-01-12 2018-12-05 通信方法及装置 WO2019137119A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112019019742-7A BR112019019742A2 (pt) 2018-01-12 2018-12-05 método de comunicação e aparelho de comunicações
RU2019129498A RU2771171C2 (ru) 2018-01-12 2018-12-05 Способ связи и устройство связи
AU2018401905A AU2018401905B9 (en) 2018-01-12 2018-12-05 Communication method and device
EP18900463.3A EP3573381B1 (en) 2018-01-12 2018-12-05 Communication method and device
JP2019548586A JP7030832B2 (ja) 2018-01-12 2018-12-05 通信方法および通信装置
US16/523,668 US11160116B2 (en) 2018-01-12 2019-07-26 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810029540.0A CN110035488B (zh) 2018-01-12 2018-01-12 通信方法及装置
CN201810029540.0 2018-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,668 Continuation US11160116B2 (en) 2018-01-12 2019-07-26 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019137119A1 true WO2019137119A1 (zh) 2019-07-18

Family

ID=65930175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119420 WO2019137119A1 (zh) 2018-01-12 2018-12-05 通信方法及装置

Country Status (8)

Country Link
US (1) US11160116B2 (zh)
EP (1) EP3573381B1 (zh)
JP (1) JP7030832B2 (zh)
CN (2) CN109587780B (zh)
AU (1) AU2018401905B9 (zh)
BR (1) BR112019019742A2 (zh)
RU (1) RU2771171C2 (zh)
WO (1) WO2019137119A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4054274B1 (en) * 2017-07-04 2023-06-14 Samsung Electronics Co., Ltd. Method and apparatus for communication based on frame structure
CN112425213B (zh) * 2018-10-22 2023-06-20 Oppo广东移动通信有限公司 确定前导序列发射功率的方法、通信设备、芯片和介质
CN112584507B (zh) * 2019-09-30 2022-05-17 华为技术有限公司 一种数据处理方法、装置及存储介质
US11678379B2 (en) * 2020-02-25 2023-06-13 Qualcomm Incorporated Physical random access channel (PRACH) transmission in new radio (NR)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074130A1 (en) * 2008-09-19 2010-03-25 Pierre Bertrand Preamble Group Selection in Random Access of Wireless Networks
CN103037491A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 功率控制方法、基站及装置
CN103687009A (zh) * 2008-04-29 2014-03-26 华为技术有限公司 随机接入中资源选择方法和终端设备
CN106961721A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944254B2 (ja) 2008-01-11 2012-05-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信ネットワークにおけるランダムアクセス送信電力制御のための方法およびデバイス
RU2469507C2 (ru) * 2008-05-05 2012-12-10 Нокиа Сименс Нетуоркс Ой Способ, устройство и машинная программа для управления мощностью в связи с процедурами произвольного доступа
CN102724746A (zh) * 2011-03-29 2012-10-10 中兴通讯股份有限公司 随机接入过程中前导码发送功率的控制、确定方法及系统
CN104025671A (zh) * 2011-11-29 2014-09-03 富士通株式会社 Prach的发送功率的控制方法和装置
CN103179654B (zh) * 2011-12-26 2017-07-18 中兴通讯股份有限公司 Prach的发射功率的确定方法及装置
JP5418648B2 (ja) 2012-09-06 2014-02-19 日本電気株式会社 無線通信方法及びシステム
KR102008467B1 (ko) * 2012-12-27 2019-08-07 삼성전자주식회사 빔포밍 기반 무선 통신시스템의 상향링크 전력 제어 방법 및 장치
WO2015021605A1 (zh) * 2013-08-13 2015-02-19 华为技术有限公司 一种发送前导序列的的方法及用户设备
CN109743775B (zh) 2014-01-28 2021-10-15 华为技术有限公司 一种覆盖增强场景下确定发射功率的方法和设备
KR102029082B1 (ko) * 2014-01-28 2019-10-07 후아웨이 테크놀러지 컴퍼니 리미티드 물리 랜덤 액세스 채널 강화 전송 방법, 네트워크 장치 및 단말
WO2016121252A1 (ja) 2015-01-29 2016-08-04 ソニー株式会社 装置及び方法
CN105992328B (zh) * 2015-01-30 2019-07-09 华为技术有限公司 一种前导序列的发送方法及装置
CN107925605B (zh) * 2015-09-10 2021-01-15 苹果公司 针对5g rat中的基于波束的无小区操作的随机接入过程
WO2017121408A1 (zh) * 2016-01-11 2017-07-20 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端
EP3577793A1 (en) * 2017-02-03 2019-12-11 IDAC Holdings, Inc. Uplink beam management
WO2018204887A1 (en) * 2017-05-04 2018-11-08 Ofinno Technologies, Llc Rach power offset
CN110832913B (zh) * 2017-08-11 2022-12-27 富士通株式会社 随机接入功率控制方法、装置以及通信系统
JP6944528B2 (ja) * 2017-09-08 2021-10-06 株式会社Nttドコモ 端末、通信方法、基地局及び無線通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687009A (zh) * 2008-04-29 2014-03-26 华为技术有限公司 随机接入中资源选择方法和终端设备
US20100074130A1 (en) * 2008-09-19 2010-03-25 Pierre Bertrand Preamble Group Selection in Random Access of Wireless Networks
CN103037491A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 功率控制方法、基站及装置
CN106961721A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573381A4

Also Published As

Publication number Publication date
AU2018401905B2 (en) 2021-01-21
RU2019129498A3 (zh) 2022-02-14
JP7030832B2 (ja) 2022-03-07
RU2019129498A (ru) 2022-02-14
CN109587780A (zh) 2019-04-05
CN110035488A (zh) 2019-07-19
AU2018401905A1 (en) 2019-08-29
EP3573381A4 (en) 2020-04-15
US20190350009A1 (en) 2019-11-14
RU2771171C2 (ru) 2022-04-28
EP3573381A1 (en) 2019-11-27
JP2020509713A (ja) 2020-03-26
AU2018401905B9 (en) 2021-02-11
US11160116B2 (en) 2021-10-26
BR112019019742A2 (pt) 2020-07-21
EP3573381B1 (en) 2022-05-11
CN109587780B (zh) 2019-11-19
CN110035488B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2019137119A1 (zh) 通信方法及装置
US11337166B2 (en) Random access power control method and apparatus and communication system
US11382135B2 (en) Configuring different types of random resources
US20220078721A1 (en) Power Control Method and Power Control Apparatus
EP3618511B1 (en) Uplink signal transmit power determination method and device
CN110622580B (zh) NB-IoT/MTC的绝对功率控制容差
JP5712934B2 (ja) 中継装置、中継システム、中継方法、無線通信システム、プログラム
US11026267B2 (en) Random access preamble sending method and apparatus
US10206227B2 (en) Device and method of setting clear channel assessment threshold
US20180176890A1 (en) Device and method for transmitting/receiving signal in wireless communication system supporting unlicensed band
US20210289561A1 (en) Transmission method and apparatus
CN110139382B (zh) 随机接入前导的发送方法、接收方法和装置
US20190110256A1 (en) Device and method for a wireless communication system
KR20190022643A (ko) 랜덤 액세스 프리앰블 전송 방법 및 기기
EP3079415A1 (en) Method, device and system for suppressing uplink background noise in indoor distributed system
RU2539355C2 (ru) Способ оценки качества сигнала в системах мобильной радиосвязи
EP3826375A1 (en) Uplink transmitting power determining method, network device, and storage medium
CN111385865B (zh) 随机接入方法、装置、系统及存储介质
CN116349147A (zh) 用于无线通信系统中随机接入的方法和设备
JP6892133B2 (ja) 通信端末、無線通信制御方法及び無線通信制御プログラム
CN117616852A (zh) 用于增强上行链路覆盖的方法、设备和系统
CN117676822A (zh) 上行发射功率的调整方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018401905

Country of ref document: AU

Date of ref document: 20181205

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018900463

Country of ref document: EP

Effective date: 20190820

ENP Entry into the national phase

Ref document number: 2019548586

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019742

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019019742

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190920