WO2019137048A1 - 光学致动器及相应的摄像模组和摄像模组阵列 - Google Patents

光学致动器及相应的摄像模组和摄像模组阵列 Download PDF

Info

Publication number
WO2019137048A1
WO2019137048A1 PCT/CN2018/109681 CN2018109681W WO2019137048A1 WO 2019137048 A1 WO2019137048 A1 WO 2019137048A1 CN 2018109681 W CN2018109681 W CN 2018109681W WO 2019137048 A1 WO2019137048 A1 WO 2019137048A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
end fixing
shape memory
memory alloy
base end
Prior art date
Application number
PCT/CN2018/109681
Other languages
English (en)
French (fr)
Inventor
方银丽
涂洪德
陈振宇
张建龙
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820053573.4U external-priority patent/CN207937737U/zh
Priority claimed from CN201810031601.7A external-priority patent/CN110032024B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP18899895.9A priority Critical patent/EP3739383B1/en
Priority to US16/771,572 priority patent/US11733477B2/en
Publication of WO2019137048A1 publication Critical patent/WO2019137048A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys

Definitions

  • the present invention relates to the field of optical technology, and more particularly to an optical actuator and a corresponding camera module and camera module array.
  • shape memory alloy (SMA) wires have the property of stretching and contracting with temperature, the lens can be driven to move by using a shape memory alloy wire instead of a conventional motor. Moreover, since the shape memory alloy wire occupies a smaller volume, the volume of the camera module can be effectively reduced.
  • a periscope camera module on their mobile phones.
  • the camera using the periscope camera module has a smaller volume than the conventional external zoom camera, the size of the existing periscope camera module is not small enough for the mobile phone, mainly because the mobile phone The thinner the thinner the phone, the more compact the internal design of the mobile phone is. Therefore, the existing periscope camera module is difficult to reduce due to its size, and it is difficult to have a strong market application prospect.
  • the present invention is directed to providing a solution that overcomes at least one of the above-discussed deficiencies of the prior art.
  • an optical actuator comprising:
  • a lens module having an outer side surface including two first sides opposite to each other;
  • each of the two ends of the shape memory alloy wire is fixed at the base end
  • the device and the lens end fixing device wherein the base end fixing device is fixed to the base, and the lens end fixing device is disposed on the first side and fixed to the lens module;
  • the direction of the resultant force of the two wire groups acting on the lens module is consistent with the direction of the optical axis of the lens module, so as to drive the lens through the expansion and contraction of the shape memory alloy wire of the two wire sets.
  • the module moves along the optical axis direction of the lens module.
  • each of the two line groups includes two sub-line groups, each of which includes two shape memory alloy wires;
  • the two sets of the sub-wires placed on the same first side are configured in a symmetrical state to keep the lens module balanced.
  • each of the sub-line groups is staggered in a direction perpendicular to the first side due to two shape memory alloy wires thereof A torque is generated that deflects the lens module, the two sets of sub-wires being configured such that the respective moments that the respective lens modules are deflected by the lens module are offset or partially canceled.
  • the base is a support base, and an upper surface of the support base has a limiting structure to prevent the lens module from deviating from the optical axis.
  • the outer side surface further includes two second side surfaces, each of the second side surfaces intersecting the first side surface, and the two second side surfaces are disposed opposite to each other, and the limiting structure comprises Two second limiting structures respectively disposed outside the two second sides.
  • the limiting structure further includes two first limiting structures respectively disposed outside the two first side faces.
  • the bottom surface of the lens module has a limiting hole
  • the limiting structure is a limiting post adapted to the limiting hole
  • the limiting post is disposed on the upper surface of the supporting base and the lens The position of the limit hole on the bottom surface of the module.
  • the bottom surface of the lens module has a limiting post
  • the limiting structure is a limiting hole that is matched with the limiting post, and the limiting hole is disposed on the bottom surface of the supporting base and the lens module.
  • the position of the limit column corresponds to the position.
  • the lens end fixing device includes a convex portion disposed at a central portion of the first side surface and protruding outward; and the base end fixing device includes a fixing plate disposed outside the first side surface, The surface of the fixing plate is disposed opposite to the first side surface and has a through hole adapted to the protrusion.
  • the surface of the fixing plate facing away from the first side has a base end fixing terminal
  • the protrusion has a lens end fixing terminal
  • each of the shape memory alloy wires has two mounting ends. The two mounting ends are respectively mounted on the base end fixing terminal and the lens end fixing terminal.
  • each of the fixing plates has four of the base end fixing terminals, and the four of the base end fixing terminals are respectively disposed on a surface of the fixing plate facing away from the first side surface. Far from the location of the bumps.
  • each of the bumps has four of the lens end fixed terminals.
  • each of the first sides has two edges perpendicular to the surface of the base; the lens end fixing device is a lens end fixing terminal disposed on the first side; and the base end is fixed
  • the device is two uprights fixed to the base, the two uprights being respectively disposed along the two edges and having a gap between the uprights and the first side.
  • each of the columns has two base end fixing terminals, and the first side surface is provided with four lens end fixing terminals; wherein each of the shape memory alloy wires has two mounting ends, The two mounting ends are respectively mounted on the base end fixing terminal and the lens end fixing terminal.
  • each of the base end fixing devices has four base end fixing terminals
  • each of the lens end fixing devices has four lens end fixing terminals
  • each of the shape memory alloy wires has two mountings And the two mounting ends are respectively mounted on the base end fixing terminal and the lens end fixing terminal.
  • each of the first side faces has four corners; the four lens end fixed terminals are respectively disposed at positions on the lens end fixing device corresponding to the four corners of the first side; and Four base end fixing terminals are respectively disposed at positions on the base end fixing device corresponding to the four corners of the first side.
  • each of the first sides has four corners and has two edges parallel to the optical axis of the lens module
  • the four lens end fixing terminals are respectively disposed at positions on the lens end fixing device corresponding to the four corners of the first side;
  • Two of the four base end fixed terminals are arranged along one of the two edges, and the other two of the four base end fixed terminals are along the other of the two edges Arranged, and the distance between the two base end fixed terminals arranged along the same edge is smaller than the distance between the corresponding two lens end fixed terminals.
  • each of the first sides has two edges parallel to an optical axis of the lens module; the four lens end fixed terminals are disposed in a central region of the first side; and the four bases Two of the end fixing terminals are arranged along one of the two edges, and the other two of the four base end fixing terminals are arranged along the other of the two edges.
  • each of the first sides has two edges perpendicular to an optical axis of the lens module; the four lens end fixed terminals are disposed in a central region of the first side; and the four bases Two of the end fixing terminals are arranged along one of the two edges, and the other two of the four base end fixing terminals are arranged along the other of the two edges.
  • the height of the base end fixing device and the lens end fixing device in the optical axis direction of the lens module is lower than the height of the first side surface in the optical axis direction of the lens module.
  • a camera module comprising: the optical actuator described above; and a light steering mechanism adapted to reflect light to the optical actuator The lens module; wherein an optical axis of the lens module is perpendicular to a direction in which light is incident on the light steering mechanism, the first side being parallel to a direction in which the light is incident on the light steering mechanism.
  • the outer side surface further includes two second side surfaces, each of the second side surfaces intersecting the first side surface, and the two second side surfaces are opposite to each other
  • the second side is perpendicular to a direction in which the light is incident on the light steering mechanism.
  • an image sensor module comprising at least one camera module as described above.
  • the present invention has at least one of the following technical effects:
  • the present invention can significantly reduce the size of the optical actuator Y direction (referring to the Y direction in the plane perpendicular XOY coordinate system perpendicular to the optical axis of the lens), thereby facilitating the installation of the focus module as a front camera to the high screen.
  • the present invention can facilitate the installation of the moving focus module as a front camera to a high-screen smart phone (or other smart device with a high screen ratio).
  • the present invention can arrange a longer shape memory alloy wire on a single side, thereby increasing the driving force to drive the lens module to move, and any two shape memory alloy wires are not in contact with each other, thereby preventing the shape memory alloy wire driving lens from being driven. When moving, friction with each other causes wear.
  • the present invention can enhance the stability of the lens module by eliminating undesired moments that can deflect the lens module.
  • the present invention can reduce the size of the SMA-based camera module by the periscope structure, thereby allowing the camera module to be arranged in the Y direction to be consistent with the thickness direction of the mobile phone or other smart device, thereby facilitating the mobile phone or other Smart devices reduce thickness.
  • Figure 1 is a perspective view showing an optical actuator of one embodiment of the present invention
  • FIG. 2 is a perspective view showing an optical actuator according to another embodiment of the present invention.
  • Figure 3 is a perspective view showing an optical actuator according to still another embodiment of the present invention.
  • Figure 4 is a perspective view showing an optical actuator according to still another embodiment of the present invention.
  • 5A-E are schematic plan views showing the layout of a line set of optical actuators disposed on a first side 204 of a series of modified embodiments of the present invention
  • FIG. 6 is a side view of a camera module provided by an embodiment of the present invention.
  • FIG. 7 illustrates a dual camera module based on a periscope structure in an embodiment of the present invention
  • Figure 8 shows another embodiment of the shape memory alloy wire optical actuator of the present invention.
  • Figure 9 shows a variant embodiment based on the embodiment shown in Figure 8.
  • Figure 10 illustrates an optical actuator in accordance with another variant embodiment of the present invention.
  • 201-support base 202-lens module; 203-shape memory alloy wire;
  • 401-periscope camera module 402-normal camera module.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first subject discussed below may also be referred to as a second subject, without departing from the teachings of the present application.
  • FIG. 1 shows a perspective schematic view of an optical actuator of an embodiment of the present invention, the optical actuator including a base 100, a lens module 202, and a plurality of shape memory alloy wires 203.
  • the base 100 is a support base 201.
  • the lens module 202 has an outer side that includes two first sides 204 and two second sides 205.
  • the two first side faces 204 are disposed opposite each other, each of the second side faces 205 intersecting the first side face 204, and the two second side faces 205 are disposed opposite each other.
  • the two first sides 204 of the lens module 202 are both planar and parallel to each other, and the two second sides 205 are both planar and parallel to each other.
  • the plurality of shape memory alloy wires 203 constitute two wire groups.
  • the two sets of wires are arranged on the two first sides 204, respectively.
  • Each of the two ends of the shape memory alloy wire 203 is fixed to the base end fixing device 206 and the lens end fixing device (the lens end fixing device in FIG. 1 is blocked by the base end fixing device 206 due to the angle).
  • the base end fixing device 206 is fixed to the base, and the lens end fixing device 207 is disposed on the first side surface 204 and fixed to the lens module 202.
  • the direction of the resultant force of the two line groups respectively disposed on the two first sides acting on the lens module coincides with the direction of the optical axis of the lens module, so as to pass through the two line groups.
  • the shape memory alloy wire is telescoped to drive the lens module to move along the optical axis direction of the lens module.
  • autofocus can be achieved only by two line sets arranged on the two first side faces 204, and the two second side faces 205 can be arranged without the shape memory alloy wire, thereby reducing the optical actuator and the corresponding camera module. volume of.
  • the size in the Y direction of the optical actuator can be reduced.
  • the Y direction refers to the Y direction in a right angle XOY coordinate system on a plane perpendicular to the optical axis of the lens. Further, the Y direction is parallel to the first side surface 204, and the X direction is perpendicular to the first side surface 204.
  • each line group includes two sub-line groups.
  • Each of the sub-line groups includes two shape memory alloy wires 203.
  • the projection of the two shape memory alloy wires 203 on the first side surface 204 is in an intersecting state, and the two shape memory alloy wires 203 are in a direction perpendicular to the first side surface 204. Staggered so that the two shape memory alloy wires 203 are not coplanar.
  • the above-described intersecting state allows the shape memory alloy wire 203 disposed on the first side surface 204 to have a larger length, thereby increasing the stroke of the lens module 202. Referring to FIG.
  • the two shape memory alloy wires 203 in the sub-line group are crossed such that the two shape memory alloy wires 203 can be arranged along the diagonal of the first side surface 204, thereby increasing the shape memory alloy wire as much as possible.
  • the length of 203 On the other hand, the four shape memory alloy wires 203 on each side do not contact each other, and the shape memory alloy wires 203 are prevented from rubbing against each other to cause abrasion when the lens is driven to move.
  • the two sets of sub-wires disposed on the same first side 204 are configured in a symmetrical state to maintain the lens module 202 in balance. Since the two shape memory alloy wires 203 in the sub-line group intersect, at the same time, the two shape memory alloy wires 203 are staggered in a direction perpendicular to the first side face 204, which results in the two shape memory alloys. The line 203 is difficult to be arranged in a state of being parallel to the first side 204 at the same time, thereby generating a moment that deflects the lens module 202.
  • each of the sub-line groups may be in a direction perpendicular to the first side 204 due to its two shape memory alloy wires 203. Staggered to create a moment that deflects the lens module 202. This torque may cause the stability of the lens module 202 to decrease.
  • the lens module 202 can be eliminated by disposing the two sets of the sub-line groups such that the respective torques that cause the lens module 202 to be deflected are offset or partially canceled each other. The moment of deflection occurs, thereby enhancing the stability of the lens module 202.
  • each of the first sides 204 has two edges that are perpendicular to the surface of the base.
  • the lens end fixing device is a four lens end fixing terminal disposed on the first side surface 204, and the lens end fixing terminal may be a fixing structure disposed on the surface of the first side surface 204.
  • the base end fixture 206 is two uprights fixed to the base, the two uprights being respectively disposed along two edges and having a gap between the upright and the first side 204. In the direction perpendicular to the first side, there is a gap between the column and the lens end fixing device, which can leave a space for the shape memory alloy wire to prevent interference.
  • Each column has two base end fixed terminals.
  • Each of the shape memory alloy wires 203 has two mounting ends, and the two mounting ends are respectively mounted on the base end fixing terminal and the lens end fixing terminal.
  • the upper surface of the support base 201 has a limiting structure to prevent the lens module 202 from deviating from the optical axis.
  • the limiting structure includes two second limiting structures 209b disposed outside the two second side faces 205, respectively.
  • the limiting structure may further include two first limiting structures 209a outside the two first side faces 204 respectively disposed.
  • a limit structure is disposed on the support base 201 on each of the four sides of the lens module 202 .
  • the limit structure may include a first limit structure 209 a and a second limit structure 209 b .
  • a gap exists between any of the limiting structures and the lens module 202 for moving the lens under the driving of the shape memory alloy wire 203, and the presence of the limiting structure can also limit the movement of the lens module 202.
  • the range prevents the lens module 202 from being subjected to a strong impact force under a large external force, thereby exceeding the actual desired stroke range, causing damage to the shape memory alloy wire 203 line, and even affecting the function of the entire shape memory alloy wire camera module. .
  • the base end fixture 206 is disposed on the support base 201, and the base end fixture 206 has a high structural strength. This is mainly because the base end fixing device 206 is subjected to the pulling force from the shape memory alloy wire 203 in the direction of the mounting side, and the base end fixing device 206 is prevented from being pulled under the tensile force of the shape memory alloy wire 203 by thickening the size. It will cause deformation or even breakage, which affects the overall reliability of the shape memory alloy line camera module.
  • FIG. 2 is a perspective view showing an optical actuator according to another embodiment of the present invention.
  • the base end fixing devices 206 are disposed on the first side 204 of the shape memory alloy wire 203, and the same
  • the spacing between the two base end fixtures 206 on the side is smaller than the size of the lens module 202 corresponding to this side such that the base end fixture 206 does not occupy the two sides of the unmounted shape memory alloy wire 203.
  • the space can effectively reduce the spacing between the two sides of the unmounted shape memory alloy wire 203 and reduce the size of the module in this direction.
  • the optical actuator of FIG. 2 also eliminates the limit structure located outside the two sides (ie, the second side 205) where the shape memory alloy wire 203 is not mounted, thereby further reducing the Y direction of the optical actuator. size.
  • FIG. 3 is a perspective view showing an optical actuator according to still another embodiment of the present invention.
  • the embodiment mainly improves the position limiting structure.
  • the lens end fixing device 207 and the base are omitted in FIG. Seat end fixture 206.
  • the limiting structure of the pedestal surface is a limiting post 208 adapted to the limiting hole (the limiting hole is not shown in FIG. 3 due to the viewing angle), and the bottom surface of the lens module 202 has a limiting hole (Fig. Not shown in 3).
  • the limiting post 208 is disposed at a position corresponding to the limiting hole of the bottom surface of the lens module 202 on the upper surface of the supporting base 201.
  • a portion of the four corners of the support base 201 is provided with a limit post 208, and a corresponding position of a side of the lens module 202 in contact with the support base 201 is provided with a limit hole through which the limit hole and the limit post 208 are mutually
  • the function of limiting the lens module 202 is achieved, so that the limit structure 209a and 209b in FIG. 1 can be replaced, and the volume of the shape memory alloy wire optical actuator is further reduced, thereby reducing the volume of the corresponding camera module.
  • the positional relationship between the limiting post 208 and the limiting hole can also be changed.
  • the limiting block is disposed at the bottom of the lens module 202, and the limiting hole is disposed at the corresponding position of the supporting base 201.
  • the limiting column and the limiting hole are mutually Corresponding cooperation realizes the limitation of the lens module 202.
  • the matching gap between the limiting column and the limiting hole is not less than the preset stroke of the shape memory alloy line camera module, so that the normal motion of the number shape memory alloy line camera module is not affected.
  • the base end fixing device 206, the shape memory alloy wire 203 and the outer side of the fixed end of the lens need to be protected by an outer casing to prevent damage to the shape memory alloy wire 203 during assembly of the module.
  • the outer casing is preferably disposed on both sides of the shape memory alloy wire 203, so that the installation space on both sides of the shape memory alloy wire 203 is not occupied, so that the two sides of the shape memory alloy wire 203 are not mounted.
  • the size advantage on the second side is preferably disposed on both sides of the shape memory alloy wire 203, so that the installation space on both sides of the shape memory alloy wire 203 is not occupied, so that the two sides of the shape memory alloy wire 203 are not mounted.
  • Fig. 4 is a perspective view showing an optical actuator according to still another embodiment of the present invention.
  • the lens end fixing device 207 includes a bump disposed at a central portion of the first side surface 204 and protruding outward.
  • the base end fixture 206 includes a fixed plate disposed outside the first side 204.
  • the surface of the fixed plate is disposed opposite the first side 204 and has a through hole that is adapted to the bump.
  • the surface of the fixing plate facing away from the first side surface 204 has a base end fixing terminal 210, and the bump has a lens end fixing terminal 211.
  • Each of the shape memory alloy wires 203 has two mounting ends, and the two mounting ends are respectively installed.
  • the terminal 210 and the lens end fixing terminal 211 are fixed to the base end.
  • Each of the fixing plates has four base end fixing terminals 210, and the four base end fixing terminals 210 are respectively disposed at positions away from the bumps on the surface of the fixing plate facing away from the first side surface 204.
  • each of the bumps has four lens end fixed terminals 211.
  • the shape memory alloy wire 203 is still disposed on the two first side faces 204 of the lens module 202 oppositely disposed, and the four shape memory alloy wires 203 on each side are arranged in two groups, and the two wires are a group.
  • Each set of shape memory alloy wires 203 is disposed to be crossed, and both ends of the shape memory alloy wire 203 are fixed to the base end fixing device 206 and the lens end fixing device 207, respectively.
  • the base end fixing device 206 is disposed on the opposite first side faces 204.
  • a through hole is disposed at a central position of the base end fixing device 206, and the lens end fixing device 207 extends outward from the through hole and has a height difference from the base end fixing device 206, thereby ensuring that the two shape memory alloy wires 203 crossing each other do not Will interfere with each other.
  • the lens end fixing device 207 is a ground connection end, and the shape memory alloy wire 203 is attached to one end of the lens end fixing device 207 for connecting the ground wire, and one end of the base end fixing device 206 is connected for connecting the power line, wherein four
  • the shape memory alloy wires 203 may share one ground connection end, but one end of the shape memory alloy wire 203 is separately controlled at one end connected to the power supply line to realize different currents applied to different shape memory alloy wires 203 under different conditions. Different temperatures are obtained to control the shape memory alloy wire 203 to achieve different amounts of expansion and contraction, thereby controlling the lens in different position states. Further, in order to ensure the stability of the lens module 202 during the movement, the shape memory alloy wire 203 is controlled to control the middle position of the lens module 202 as much as possible.
  • Figures 5A-E illustrate schematic plan views of a line set of optical actuators disposed on a first side 204 of a series of modified embodiments of the present invention.
  • the dotted lines each indicate the optical axis direction.
  • each of the base end fixing devices has four base end fixing terminals 210, and each lens end fixing device 207 has four lens end fixing terminals 211; wherein each shape memory alloy wire
  • Each of the 203 has two mounting ends, and the two mounting ends are respectively mounted on the base end fixing terminal 210 and the lens end fixing terminal 211.
  • Each first side has four corners.
  • the four lens end fixing terminals 211 are respectively disposed at positions on the lens end fixing device 207 corresponding to the four corners of the first side surface 204.
  • Four base end fixing terminals 210 are respectively disposed at positions on the base end fixing device 206 corresponding to the four corners of the first side.
  • the mounting positions of the four shape memory alloy wires 203 shown on the base end fixing device and the lens module 202 are symmetrical to each other, but in actual mounting, the shape memory alloy wire 203 is to be avoided. There is a mutual interference between the actual storage positions of the shape memory alloy wire 203, and there may be a case where the shape memory alloy wire 203 is not completely symmetrical, but the shape memory alloy wire 203 is not affected to drive the lens for movement.
  • each first side has four corners and has two edges that are parallel to the optical axis of the lens module 202.
  • the four lens end fixing terminals 211 are respectively disposed at positions on the lens end fixing device corresponding to the four corners of the first side.
  • Two of the four base end fixed terminals 210 are arranged along one of the two edges, and the other two of the four base end fixed terminals 210 are arranged along the other of the two edges, and along the same
  • the distance between the two base end fixing terminals 210 arranged at one edge is smaller than the distance between the corresponding two lens end fixing terminals 211.
  • 5B and 5C can be such that the spacing between the four shape memory alloy wires 203 is enlarged after the mounting is completed, thereby facilitating the movement of the lens by the shape memory alloy wire 203. And the risk of mutual interference between different shape memory alloy wires 203 is reduced.
  • each first side has two edges that are parallel to the optical axis of the lens module 202.
  • the four lens end fixing terminals 211 are disposed in a central region of the first side.
  • Two of the four base end fixed terminals 210 are arranged along one of the two edges, and the other two of the four base end fixed terminals 210 are arranged along the other of the two edges.
  • the projections of any two shape memory alloy wires 203 belonging to different sub-line groups on the first side do not intersect. In this way, the risk of mutual interference between different shape memory alloy wires can be further reduced.
  • each first side has two edges that are perpendicular to the optical axis of the lens module 202.
  • the four lens end fixing terminals 211 are disposed in a central region of the first side.
  • Two of the four base end fixed terminals 210 are arranged along one of the two edges, and the other two of the four base end fixed terminals 210 are arranged along the other of the two edges.
  • FIG. 5A the layout shown in FIG.
  • 5E allows the spacing between the four shape memory alloy wires to be expanded after the installation is completed, thereby facilitating the movement of the shape memory alloy wire to move the lens and reducing the memory of different shapes. The risk of interference between alloy wires.
  • the layout shown in FIG. 5E helps to increase the length of the shape memory alloy wire, thereby helping to increase the stroke of the lens module.
  • the height of the base end fixture 206 and the lens end fixture 207 in the optical axis direction of the lens module 202 is lower than the height of the first side 204 in the optical axis direction of the lens module 202.
  • Figure 8 illustrates another embodiment of a shape memory alloy wire optical actuator of the present invention in which the shape memory alloy wire 203 is mounted closer to the lower end of the lens module 202, i.e., the height of the base end fixture 206 is lower than The height of the lens module 202, and the position of the shape memory alloy wire 203 mounted on the lens module 202 is also lower than the lens height, and the shape memory alloy wire 203 controls the overall movement of the lens module 202 by controlling the lower half position of the lens module 202, thereby The shape memory alloy wire 203 is driven to drive the lens for movement.
  • the shoulder height of the shape memory alloy wire camera module can be reduced, thereby reducing the volume occupied by the shape memory alloy wire camera module.
  • the space and volume occupied by the shape memory alloy wire on the side of the lens module can be controlled, and the shape memory alloy wire can be reduced by reducing the spacing between the two intersecting shape memory alloy wires.
  • the space and volume occupied but at the same time, a problem is that the lens stroke driven by the shape memory alloy wire becomes small, so that the solution in this embodiment is not applicable to the rear camera of the mobile phone.
  • the solution in this embodiment is applicable to the front camera of the mobile phone, and can conform to the development of the thin and light mobile phone.
  • the shape memory alloy wire 203 is only mounted on the opposite side of the lens module 202, the size of the shape memory alloy wire camera module can be reduced in the direction of the other side.
  • the space occupied by the shape memory alloy line camera module in the longitudinal dimension of the mobile phone can be effectively reduced.
  • FIG. 9 shows a modified embodiment based on the embodiment shown in FIG. 8, that is, reducing the overall height of the lens module 202, thereby reducing the overall height of the module and reducing the shape memory alloy line imaging based on reducing the shoulder height.
  • the space occupied by the module inside the mobile phone makes the shape memory alloy line camera module have wider practicality.
  • Figure 10 illustrates an optical actuator of another variation of the present invention.
  • the base end fixture 206 includes two uprights that are respectively disposed along the two sides of the first side that are perpendicular to the support base. Two base end fixed terminals are respectively arranged for each column. The lens end fixing terminal is disposed on the first side. Moreover, the positions of the fixed terminals of the lens end and the fixed terminals of the base end are staggered such that the distance between the fixed terminals of the lens end is smaller than the distance between the fixed terminals of the base end. This avoids the position of the base end fixture from interfering with the mounting of the shape memory alloy wire.
  • FIG. 6 shows a side view of a camera module provided by an embodiment of the present invention.
  • the camera module includes a photosensitive member 301, a shape memory alloy wire-based optical actuator 302 (including a lens module), and a light steering mechanism 303 of the previous embodiment.
  • the camera module of this embodiment adopts a periscope structure.
  • the shape-memory alloy wire-based optical actuator 302 and the photosensitive member 301 can constitute a shape memory alloy wire-based imaging unit that is placed sideways such that the optical axis direction of the lens module of the imaging unit and the light of the complete camera module The vertical direction of the incident direction.
  • the light incident direction of the complete camera module is the direction in which the external light is incident on the light steering mechanism 303.
  • the optical turning mechanism 303 realizes the transition of the optical path, and reflects the incident light into the imaging unit based on the shape memory alloy wire to realize the imaging function.
  • the mounting state of the shape memory alloy wire can be seen from the side view. That is, the first side of the optical actuator for arranging the shape memory alloy wire is parallel to the light incident direction of the complete camera module. The second side of the shape memory alloy wire is not disposed perpendicular to the light incident direction of the complete camera module. In this way, the space in which the shape memory alloy wire is mounted can be saved in the direction of the incident light, so that the size of the camera module in the incident light direction can be reduced.
  • the periscope camera module is installed on a smart phone (or other smart device)
  • the space occupied by the camera module in the direction perpendicular to the screen of the mobile phone can be reduced. That is to say, compared with the conventional module, the camera module in this embodiment can better adapt to the development trend of the thin and light mobile phone, and provide a better camera experience for the user while ensuring the photo quality.
  • the optical axis direction of the camera module (referring to the optical axis direction of the lens module) is no longer the thickness direction of the mobile phone, thereby reducing the thin and light design of the mobile phone.
  • the lens module can obtain a larger range of motion in the optical axis direction of the lens.
  • FIG. 7 shows a dual camera module based on a periscope structure in one embodiment of the present invention.
  • a periscope camera module 401 and an ordinary camera module 402 are used to form a dual camera module.
  • the common camera module 402 refers to a camera module in which the optical axis direction of the lens is consistent with the light incident direction of the module.
  • the conventional camera module 402 can be a conventional AF or FF module that is currently in use in the industry.
  • the periscope camera module 401 includes a light steering mechanism and an imaging unit based on a shape memory alloy wire. By post-synthesizing the images formed by the above two modules, high-quality photos can be obtained to better meet customer needs.
  • the optical axes of the common module and the periscope module are perpendicular to each other, and the optical axis direction of the common module corresponds to the direction of the incident light, so that the size of the periscope module in the optical axis direction is not Subject to excessive restrictions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学致动器(302),包括:基座(100);镜头模块(202),包括彼此相对的两个第一侧面(204);以及多根形状记忆合金线(203),其构成两个线组,两个线组分别布置于两个第一侧面(204);每根形状记忆合金线(203)的两端分别固定在基座端固定装置(206)和镜头端固定装置(207),其中两个线组作用于镜头模块(202)的合力的方向与镜头模块(202)的光轴的方向一致,以便通过两个线组的形状记忆合金线(203)伸缩来带动镜头模块(202)沿着镜头模块(202)的光轴方向移动。

Description

光学致动器及相应的摄像模组和摄像模组阵列
相关申请的交叉引用
本申请要求于2018年1月12日向中国国家知识产权局提交的第201810031601.7号和201820053573.4号中国专利申请的优先权和权益,该申请的全部内容通过引用并入本文。
技术领域
本发明涉及光学技术领域,具体地说,本发明涉及光学致动器及相应的摄像模组和摄像模组阵列。
背景技术
如今,随着手机行业的不断发展壮大,智能手机能够集成越来越多的功能,在手机的集成功能方面已经很难再继续有提升的情况下,多数手机厂商将目光放到的手机的拍照功能上,希望通过拍照功能,增强用户体验,获得更大的卖点。现在随着手机像素不断提高,用户能够获得更加清晰的高质量的图像。但是实际上,手机拍照还存在一个问题就是很难将远处的图像拍摄清楚,或者是将较低倍率下拍摄到的远处的图像放大后,图片容易变得模糊。因此,人们期待摄像模组具有大行程的变焦能力。然而智能手机越来越轻薄化,手机中用于容纳摄像模组的空间十分有限,这与人们对更大的变焦能力的期待是矛盾的。
由于形状记忆合金(SMA)线具有随温度变化而伸缩的性质,可以通过使用形状记忆合金线代替传统马达来驱动镜头进行运动。并且由于形状记忆合金线占用的体积更小,因而能够有效降低摄像模组的 体积。
另一方面,为了让手机能够拍摄出更加清晰,具有更高质量的图片,行业内人士希望通过在手机上应用潜望式摄像模组来进行拍照。虽然使用潜望式摄像模组的相机相对于传统的外变焦相机来说具有更小的体积,但是对于手机来说,现有的潜望式摄像模组的体积还是不够小,主要原因是手机越做越薄,且手机内部的设计也更加紧凑,因此已有的潜望式摄像模组由于体积难以降低,而难以具有较强的市场应用前景。
综上所述,当前迫切需要能够克服上述缺陷的解决方案。
发明内容
本发明旨在提供一种能够克服现有技术的上述至少一个缺陷的解决方案。
根据本发明的一个方面,提供了一种光学致动器包括:
基座;
镜头模块,其具有外侧面,所述外侧面包括彼此相对的两个第一侧面;以及
多根形状记忆合金线,其构成两个线组,所述的两个线组分别布置于所述的两个第一侧面;其中每根形状记忆合金线的两端分别固定在基座端固定装置和镜头端固定装置,其中所述基座端固定装置与所述基座固定在一起,所述镜头端固定装置设置于所述第一侧面并与所述镜头模块固定在一起;
其中所述的两个线组作用于所述镜头模块的合力的方向与所述镜头模块的光轴的方向一致,以便通过所述的两个线组的形状记忆合金线伸缩来带动所述镜头模块沿着所述镜头模块的光轴方向移动。
其中,所述两个线组中的每个均包括两个子线组,每个子线组均 包括两根形状记忆合金线;
其中,对于每个所述子线组,其两根形状记忆合金线在所述第一侧面的投影呈交叉状态,并且这两根形状记忆合金线在垂直于所述第一侧面的方向上错开,使得这两根形状记忆合金线不共面。
其中,置于同一个所述第一侧面的两个所述子线组被配置为对称状态,以使所述镜头模块保持平衡。
其中,对于布置于同一个所述第一侧面的两个所述子线组,其中每个所述子线组因其两根形状记忆合金线在垂直于所述第一侧面的方向上错开而产生使所述镜头模块偏转的力矩,这两个所述子线组被配置为使它们各自产生的所述使所述镜头模块偏转的力矩互相抵消或者部分抵消。
其中,所述基座为支撑底座,所述支撑底座的上表面具有限位结构,以防止所述镜头模块偏离所述光轴。
其中,所述外侧面还包括两个第二侧面,每个所述第二侧面均与所述第一侧面相交,并且所述的两个第二侧面互相相对地设置,所述限位结构包括分别设置于所述的两个第二侧面外侧的两个第二限位结构。
其中,所述限位结构还包括分别设置于所述的两个第一侧面外侧的两个第一限位结构。
其中,所述镜头模块的底面具有限位孔,所述限位结构为与所述限位孔适配的限位柱,所述限位柱设置于所述支撑底座上表面的与所述镜头模块底面的所述限位孔对应的位置。
其中,所述镜头模块的底面具有限位柱,所述限位结构为与所述限位柱适配的限位孔,所述限位孔设置于所述支撑底座的与所述镜头模块底面的所述限位柱对应的位置。
其中,所述镜头端固定装置包括设置于所述第一侧面的中央区域并 向外侧凸出的凸块;以及所述基座端固定装置包括设置在所述第一侧面外侧的固定板,所述固定板的表面与所述第一侧面相对设置,并具有与所述凸块适配的通孔。
其中,所述固定板的背向所述第一侧面的表面上具有基座端固定端子,所述凸块上具有镜头端固定端子,每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
其中,每个所述固定板均具有四个所述基座端固定端子,所述四个所述基座端固定端子分别设置在所述固定板的背向所述第一侧面的表面上的远离所述凸块的位置处。
其中,每个所述凸块均具有四个所述镜头端固定端子。
其中,每个所述第一侧面均具有垂直于所述基座表面的两条边缘;所述镜头端固定装置为设置在所述第一侧面的镜头端固定端子;以及所述基座端固定装置为固定于所述基座的两条立柱,所述两条立柱分别沿着所述两条边缘布置且所述立柱与所述第一侧面之间具有间隙。
其中,每个所述立柱均具有两个基座端固定端子,所述第一侧面设置有四个所述镜头端固定端子;其中每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
其中,每个所述基座端固定装置具有四个基座端固定端子,每个所述镜头端固定装置具有四个镜头端固定端子;其中每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
其中,每个所述第一侧面具有四个角;所述四个镜头端固定端子分别布置于所述镜头端固定装置上对应于所述第一侧面的四个角的位置处;以及所述四个基座端固定端子分别布置于所述基座端固定装置上对 应于所述第一侧面的四个角的位置处。
其中,每个所述第一侧面具有四个角且具有平行于所述镜头模块的光轴的两条边缘;
所述四个镜头端固定端子分别布置于所述镜头端固定装置上对应于所述第一侧面的四个角的位置处;以及
所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置,并且沿着同一条边缘布置的两个所述基座端固定端子之间的距离小于所对应的两个所述镜头端固定端子之间的距离。
其中,每个所述第一侧面具有平行于所述镜头模块的光轴的两条边缘;所述四个镜头端固定端子布置于所述第一侧面的中央区域;以及所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置。
其中,属于不同所述子线组的任意两根形状记忆合金线在所述第一侧面的投影不交叉。
其中,每个所述第一侧面具有垂直于所述镜头模块的光轴的两条边缘;所述四个镜头端固定端子布置于所述第一侧面的中央区域;以及所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置。
其中,存在分属于不同所述子线组的两根形状记忆合金线,这两根形状记忆合金线在所述第一侧面的投影呈交叉状态。
其中,所述基座端固定装置和所述镜头端固定装置在所述镜头模块的光轴方向上的高度低于所述第一侧面在所述镜头模块的光轴方向上的高度。
根据本发明的另一方面,提供了一种摄像模组,包括:前文所述的光学致动器;以及光转向机构,所述光转向机构适于将光反射至所 述光学致动器的所述镜头模块;其中,所述镜头模块的光轴与光入射所述光转向机构的方向垂直,所述第一侧面与所述光入射所述光转向机构的方向平行。
其中,所述光学致动器中,所述外侧面还包括两个第二侧面,每个所述第二侧面均与所述第一侧面相交,并且所述的两个第二侧面互相相对地设置;所述第二侧面与所述光入射所述光转向机构的方向垂直。
根据本发明的又一方面,提供了一种摄像模组阵列,其特征在于,包括至少一个前文所述的摄像模组。
与现有技术相比,本发明具有下列至少一个技术效果:
1、本发明可以显著减小光学致动器Y方向(指垂直于镜头光轴的平面直角XOY坐标系中的Y方向)上的尺寸,从而便于动焦模组作为前置摄像头安装到高屏占比的智能手机(或高屏占比的其它智能设备)中。
2、本发明可以便于动焦模组作为前置摄像头安装到高屏占比的智能手机(或高屏占比的其它智能设备)中。
3、本发明可以在单个侧面布置更长的形状记忆合金线,从而增大驱动力以驱动镜头模块运动,同时任意两根形状记忆合金线彼此互不接触,从而防止形状记忆合金线驱动镜头进行运动时,彼此之间相互摩擦产生磨损。
4、本发明可以通过消除不期望的可使镜头模块发生偏转的力矩来增强镜头模块的稳定性。
5、本发明可以通过潜望式结构来降低基于SMA的摄像模组的尺寸,从而容许该摄像模组被布置成Y方向与手机或其它智能设备的厚度方向一致,从而有助于手机或其它智能设备减小厚度。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本发明一个实施例的光学致动器的立体示意图;
图2示出了本发明另一个实施例的光学致动器的立体示意图;
图3示出了本发明又一个实施例的光学致动器的立体示意图;
图4示出了本发明再一个实施例的光学致动器的立体示意图;
图5A至E示出了本发明一系列变形的实施例中光学致动器的布置于一个第一侧面204的线组的平面布局示意图;
图6示出了本发明的一个实施例所提供的摄像模组的侧视图;
图7示出了本发明一个实施例中的基于潜望式结构的双摄模组;
图8示出了本发明形状记忆合金线光学致动器的另一实施例;
图9示出了基于图8所示实施例的一个变形实施例;
图10示出了本发明另一个变形的实施例的光学致动器。
附图标记说明:
100-基座;
201-支撑底座;         202-镜头模块;      203-形状记忆合金线;
204-第一侧面;         205-第二侧面;      206-基座端固定装置;
207-镜头端固定装置;   208-限位柱;
209a-第一限位结构;    209b-第二限位结构; 210-基座端固定端子;
211-镜头端固定端子;   301-感光组件;
302-形状记忆合金线光学制动器;             303-光转向机构;
401-潜望式摄像模组;   402-普通摄像模组。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化 或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本发明一个实施例的光学致动器的立体示意图,该光学致动器包括基座100、镜头模块202、以及多根形状记忆合金线203。本实施例中基座100为支撑底座201。镜头模块202具有外侧面,所述外侧面包括两个第一侧面204和两个第二侧面205。两个第一侧面204彼此相对地设置,每个所述第二侧面205均与所述第一侧面204相交,并且所述的两个第二侧面205彼此相对地设置。在图1的例子中,所述镜头模块202的两个第一侧面204均为平面且互相平行,两个第二侧面205均为平面且彼此平行。所述的多根形状记忆合金线203组成两个线组。这两个线组分别布置于两个第一侧面204。其中每根形状记忆合金线203的两端分别固定在基座端固定装置206和镜头端固定装置(由于角度原因,图1中的镜头端固定装置被基座端固定装置206遮挡)。其中所述基座端固定装置206与所述基座固定在一起,所述镜头端固定装置207设置于所述第一侧面204并与所述镜头模块202固定在一起。本实施例中,分别布置于两个第一侧面的两个线组作用于所述镜头模块的合力的方向与所述镜头模块的光轴的方向一致,以便通过所述的两个线组的形状记忆合金线伸缩来带动所述镜头模块沿着所述镜头模块的光轴方向移动。这样,可以仅通过布置于两个第一侧面204的两个线组来实现自动对焦,而两个第二侧面205可以不布置形状记忆合金线,从而缩小光学致动器及对应的摄像模组的体积。尤其是可以减小光学致动器Y方向上的尺寸。其中,Y方向是指垂直于镜头光轴的平面上的直角XOY坐标系中的Y方向。并且,Y方向与第一侧面204平行,X方向与第一侧面204垂直。
进一步地,仍然参考图1在一个实施例中,每个线组均包括两个子线组。每个子线组均包括两根形状记忆合金线203。其中,对于每个子线组,其两根形状记忆合金线203在所述第一侧面204的投影呈交叉状态,并且这两根形状记忆合金线203在垂直于所述第一侧面204的方向上错开,使得这两根形状记忆合金线203不共面。上述交叉状态允许第一侧面204上所布置的形状记忆合金线203具有更大的长度,从而提高镜头模块202的行程。参考图1,子线组中的两根形状记忆合金线203交叉,使得这两根形状记忆合金线203均可以沿着第一侧面204的对角线布置,从而尽可能地增加形状记忆合金线203的长度。另一方面,每个侧面上的四根形状记忆合金线203彼此互不接触,防止形状记忆合金线203驱动镜头进行运动时,彼此之间相互摩擦产生磨损。
进一步地,在一个实施例中,布置于同一个所述第一侧面204的两个所述子线组被配置为对称状态,以使所述镜头模块202保持平衡。由于子线组中的两根形状记忆合金线203交叉,但与此同时,这两根形状记忆合金线203在垂直于所述第一侧面204的方向上错开,这导致这两根形状记忆合金线203难以被布置成同时平行于所述第一侧面204的状态,从而产生使所述镜头模块202偏转的力矩。换句话说,对于布置于同一个所述第一侧面204的两个子线组,每个所述子线组均可能因其两根形状记忆合金线203在垂直于所述第一侧面204的方向上错开而产生使所述镜头模块202偏转的力矩。而这种力矩可能会导致镜头模块202的稳定性下降。本实施例中,可以通过将这两个所述子线组配置为使它们各自产生的所述使所述镜头模块202偏转的力矩互相抵消或者部分抵消,来消除不期望的可使镜头模块202发生偏转的力矩,从而增强镜头模块202的稳定性。
仍然参考图1,在一个实施例中,每个第一侧面204均具有垂直 于基座表面的两条边缘。镜头端固定装置为设置在第一侧面204的四个镜头端固定端子,且镜头端固定端子可以是设置在第一侧面204表面的固定结构。基座端固定装置206为固定于基座的两条立柱,两条立柱分别沿着两条边缘布置且所述立柱与第一侧面204之间具有间隙。在垂直于第一侧面的方向上,立柱与镜头端固定装置存在间隙,此间隙可以为形状记忆合金线留出避让空间,防止干涉。每个立柱均具有两个基座端固定端子。其中每根形状记忆合金线203均具有两个安装端,两个安装端分别安装于基座端固定端子和镜头端固定端子。
进一步地,在一个实施例中,参考图1,支撑底座201的上表面具有限位结构,以防止镜头模块202偏离光轴。限位结构包括分别设置于的两个第二侧面205外侧的两个第二限位结构209b。在另一个实施例中,限位结构还可以包括分别设置的两个第一侧面204外侧的两个第一限位结构209a。
还参考图1,在一个实施例中,镜头模块202的四个侧面上,分别在支撑底座201上设置限位结构(该限位结构可以包括第一限位结构209a和第二限位结构209b),且任一限位结构与镜头模块202之间均存在一定的间隙,用来供镜头在形状记忆合金线203线的驱动下进行运动,限位结构的存在也可以限制镜头模块202的运动范围,防止镜头模块202在较大的外力作用下会受到强烈的冲击力,从而超出实际期望的行程范围,造成形状记忆合金线203线的损坏,甚至影响整个形状记忆合金线摄像模组的功能。基座端固定装置206设置于支撑底座201,且基座端固定装置206的具有较高的结构强度。这主要是因为在安装侧面的方向上,基座端固定装置206会受到来自形状记忆合金线203的拉力,通过加厚尺寸,防止基座端固定装置206在形状记忆合金线203的拉力作用下会产生形变甚至是断裂,影响形状记忆合金线摄像模组的整体可靠性。
图2示出了本发明另一个实施例的光学致动器的立体示意图,如 图2所示,基座端固定装置206均设置于安装形状记忆合金线203的第一侧面204,且同一个侧面的两个基座端固定装置206之间的间距要小于这个侧面所对应的镜头模块202的尺寸,从而使基座端固定装置206不占据未安装形状记忆合金线203的两个侧面上的空间,能够有效减小未安装形状记忆合金线203的两个侧面之间的间距,减小模组在该方向上的尺寸。另一方面,图2中的光学致动器还取消了位于未安装形状记忆合金线203的两个侧面(即第二侧面205)外侧的限位结构,从而进一步降低光学致动器的Y方向尺寸。
图3示出了本发明又一个实施例的光学致动器的立体示意图,该实施例主要改进的是限位结构,为使图示清晰,图3中隐去了镜头端固定装置207和基座端固定装置206。参考图3,基座表面的限位结构为与限位孔(由于视角原因,图3中未示出限位孔)适配的限位柱208,镜头模块202的底面具有限位孔(图3中未示出)。限位柱208设置于支撑底座201上表面的与镜头模块202底面的限位孔对应的位置。
参考图3,其中支撑底座201的四个角落的部分设置有限位柱208,镜头模块202与支撑底座201相接触的一面的对应位置设置有限位孔,通过限位孔与限位柱208的相互配合实现对镜头模块202的限位作用,从而能够代替图1中的限位结构209a和209b,进一步减小形状记忆合金线光学致动器的体积,进而减小相应的摄像模组的体积。其中,限位柱208和限位孔的位置关系也可以进行一定的转变,即镜头模块202底部设置限位柱,在支撑底座201的对应位置设置限位孔,限位柱和限位孔相互对应配合,实现对镜头模块202的限位作用。进一步地,限位柱和限位孔之间的配合间隙不小于形状记忆合金线摄像模组的预设行程,从而不影响数形状记忆合金线摄像模组的正常运动。更进一步地,基座端固定装置206,形状记忆合金线203以及镜头固定端外侧需增加一外壳进行保护,防止在模组组装过程中,对形状记忆 合金线203造成损坏。外壳方案优选为设置在安装形状记忆合金线203的两个侧面,这样可以不占据未安装形状记忆合金线203两个侧面的安装空间,从而能够保证在未安装形状记忆合金线203的两个侧面(即第二侧面)上的尺寸优势。
图4示出了本发明再一个实施例的光学致动器的立体示意图。参考图4,本实施例中,镜头端固定装置207包括设置于第一侧面204的中央区域并向外侧凸出的凸块。基座端固定装置206包括设置在第一侧面204外侧的固定板,固定板的表面与第一侧面204相对设置,并具有与凸块适配的通孔。固定板的背向第一侧面204的表面上具有基座端固定端子210,凸块上具有镜头端固定端子211,每根形状记忆合金线203均具有两个安装端,两个安装端分别安装于基座端固定端子210和镜头端固定端子211。每个固定板均具有四个基座端固定端子210,四个基座端固定端子210分别设置在固定板的背向第一侧面204的表面上的远离凸块的位置处。本实施例中,每个凸块均具有四个镜头端固定端子211。
参考图4,其中形状记忆合金线203依然被设置在镜头模块202相对设置的两个第一侧面204,且每一面的四根形状记忆合金线203分两组设置,两根线为一组,每一组形状记忆合金线203交叉设置,形状记忆合金线203的两端分别固定于基座端固定装置206和镜头端固定装置207。本实施例中,基座端固定装置206设置于相对设置的两个第一侧面204。基座端固定装置206中央位置设置一通孔,镜头端固定装置207自通孔向外延伸,并与基座端固定装置206存在一高度差,从而保证相互交叉的两根形状记忆合金线203不会相互干涉。镜头端固定装置207为地线连接端,形状记忆合金线203安装于镜头端固定装置207的一端用于连接地线,安装于基座端固定装置206的一端用于连接电源线,其中四根形状记忆合金线203可共用一个地线 连接端,但是连接于电源线的一端则每根形状记忆合金线203单独控制,以实现在不同情况下通过对不同形状记忆合金线203施加不同的电流,得到不同的温度来控制形状记忆合金线203实现不同的伸缩量及拉伸量,从而控制镜头位于不同的位置状态。进一步地,为保证镜头模块202在运动过程中的稳定性,尽量使形状记忆合金线203控制镜头模块202的中段位置。
进一步地,图5A至E示出了本发明一系列变形的实施例中光学致动器的布置于一个第一侧面204的线组的平面布局示意图。图5A至E中,点画线均表示光轴方向。
参考图5A,在一个实施例中,每个基座端固定装置具有四个基座端固定端子210,每个镜头端固定装置207具有四个镜头端固定端子211;其中每根形状记忆合金线203均具有两个安装端,两个安装端分别安装于基座端固定端子210和镜头端固定端子211。每个第一侧面具有四个角。四个镜头端固定端子211分别布置于镜头端固定装置207上对应于第一侧面204的四个角的位置处。四个基座端固定端子210分别布置于基座端固定装置206上对应于第一侧面的四个角的位置处。
参考图5A,图中所示四根形状记忆合金线203在基座端固定装置及镜头模块202上的安装位置都是彼此对称的,但是在实际的安装中,由于要避免形状记忆合金线203之间的相互干涉,所以形状记忆合金线203的实际安装位置会有少许偏差,可能会存在形状记忆合金线203不是完全对称的情况,但是不影响形状记忆合金线203驱动镜头进行运动。
参考图5B和图5C,在这两个实施例中,每个第一侧面具有四个角且具有平行于镜头模块202的光轴的两条边缘。四个镜头端固定端子211分别布置于镜头端固定装置上对应于第一侧面的四个角的位置处。四个基座端固定端子210中的两个沿着两条边缘中的一条布置,四个基座端固定端子210中的另两个沿着两条边缘中的另一条布置,并且沿着 同一条边缘布置的两个基座端固定端子210之间的距离小于所对应的两个镜头端固定端子211之间的距离。相对于图5A的实施例,图5B和图5C所示出的布局方式可使得在完成安装以后,四条形状记忆合金线203之间的间距扩大,从而便于形状记忆合金线203带动镜头进行运动,并降低不同形状记忆合金线203之间相互干涉的风险。
参考图5D,在一个实施例中,每个第一侧面具有平行于镜头模块202的光轴的两条边缘。四个镜头端固定端子211布置于第一侧面的中央区域。四个基座端固定端子210中的两个沿着两条边缘中的一条布置,四个基座端固定端子210中的另两个沿着两条边缘中的另一条布置。其中,属于不同子线组的任意两根形状记忆合金线203在第一侧面的投影不交叉。这样,可进一步地降低不同形状记忆合金线之间相互干涉的风险。
参考图5E,在一个实施例中,每个第一侧面具有垂直于镜头模块202的光轴的两条边缘。四个镜头端固定端子211布置于第一侧面的中央区域。四个基座端固定端子210中的两个沿着两条边缘中的一条布置,四个基座端固定端子210中的另两个沿着两条边缘中的另一条布置。其中,存在分属于不同子线组的两根形状记忆合金线203,这两根形状记忆合金线203在第一侧面的投影呈交叉状态。相对于图5A的实施例,图5E所示出的布局方式可使得在完成安装以后,四条形状记忆合金线之间的间距扩大,从而便于形状记忆合金线带动镜头进行运动,并降低不同形状记忆合金线之间相互干涉的风险。相对于图5D的实施例,图5E所示出的布局方式有助于增加形状记忆合金线的长度,从而有助于增加镜头模块的行程。
进一步地,在一些实施例中,基座端固定装置206和镜头端固定装置207在镜头模块202的光轴方向上的高度低于第一侧面204在镜头模块202的光轴方向上的高度。
图8示出了本发明形状记忆合金线光学致动器的另一实施例,其中形状记忆合金线203被安装于较靠近镜头模块202下端的位置,即基座端固定装置206的高度低于镜头模块202的高度,且形状记忆合金线203安装于镜头模块202上的位置也低于镜头高度,形状记忆合金线203通过控制镜头模块202的下半边位置来控制镜头模块202的整体运动,从而实现形状记忆合金线203驱动镜头进行运动。
通过将形状记忆合金线设置于镜头模块的底部来驱动镜头模块进行运动,能够降低形状记忆合金线摄像模组的肩高,从而减小形状记忆合金线摄像模组所占据的体积。
通过调整形状记忆合金线的安装位置,能够控制形状记忆合金线在镜头模块侧面所占据的空间及体积,通过降低两根交叉的形状记忆合金线之间的间距能够减小安装形状记忆合金线所占据的空间及体积,但是同时带来一个问题就是会导致形状记忆合金线所驱动的镜头行程变小,使得本实施例中方案不适用于手机后置摄像头。但是由于手机前摄的行程要求远小于手机后置摄像头的行程要求,因此本实施例中方案适用于手机前置摄像头,并能够符合手机轻薄化的发展。
进一步地,由于只在镜头模块202的其中一组两两相对设置的侧面上安装形状记忆合金线203,因此另一侧的方向上,形状记忆合金线摄像模组的尺寸能够降低,将该方向对应于手机纵向尺寸,则能够有效降低形状记忆合金线摄像模组在手机纵向尺寸中所占据的空间。
图9示出了基于图8所示实施例的一个变形实施例,即降低镜头模块202的整体高度,从而在减小肩高的基础上降低模组的整体高度,减小形状记忆合金线摄像模组在手机内部所占据的空间,使形状记忆合金线摄像模组具有更加广泛的实用性。
图10示出了本发明另一个变形的实施例光学致动器。该实施例中,基座端固定装置206包括两个立柱,它们分别沿着第一侧面的垂 直于支撑底座的两条边缘布置。每个立柱分别布置两个基座端固定端子。镜头端固定端子设置于第一侧面。并且镜头端固定端子与基座端固定端子的位置错开,使得镜头端固定端子之间的距离小于基座端固定端子之间的距离。这样可以避免基座端固定装置的位置妨碍形状记忆合金线的安装。
进一步地,图6示出了本发明的一个实施例所提供的摄像模组的侧视图。该摄像模组包括感光组件301、前文实施例的基于形状记忆合金线的光学致动器302(含镜头模块)、以及光转向机构303。本实施例的摄像模组采用了潜望式结构。基于形状记忆合金线的光学致动器302和感光组件301可构成一个基于形状记忆合金线的摄像单元,该摄像单元侧放,使得摄像单元的镜头模块的光轴方向与完整摄像模组的光入射方向的垂直。需注意,完整摄像模组的光入射方向为外界光入射到光转向机构303的方向。通过光转向机构303,实现光路的转变,将入射光线反射至基于形状记忆合金线的摄像单元中,即可实现成像功能。
本实施例中,通过侧视图能够看到形状记忆合金线的安装状态。即光学致动器的用于布置形状记忆合金线的第一侧面平行于完整摄像模组的光入射方向。而未布置形状记忆合金线的第二侧面垂直于完整摄像模组的光入射方向。这样,入射光线方向上能够节省出安装形状记忆合金线的空间,从而能够减小摄像模组在入射光方向上的尺寸。当这种潜望式摄像模组安装于智能手机(或其它智能设备)时,可缩小摄像模组在手机内部垂直于手机屏幕方向上所占据的空间。即相比于传统模组而言,本实施例中的摄像模组能够更好地适应和手机轻薄化的发展趋势,并在保证照片质量的同时,为用户带来更好的拍照体验。
进一步地,由于本实施例的摄像模组侧向放置,因此摄像模组的 光轴方向(指镜头模块的光轴方向)对应的不再是手机的厚度方向,因此能够减小手机轻薄化设计对摄像模组光轴方向上尺寸的限制,镜头模块在镜头的光轴方向上能够获得更大的活动范围。
更进一步地,图7示出了本发明一个实施例中的基于潜望式结构的双摄模组。本实施例中,采用一个潜望式摄像模组401和一个普通摄像模组402来构成双摄模组。其中普通摄像模组402是指镜头光轴方向与模组的光入射方向一致的摄像模组。该普通摄像模组402可以是行业内现在常规在用的普通AF或FF模组。潜望式摄像模组401包括光转向机构和基于形状记忆合金线的摄像单元共同构成。通过对上述两个模组形成的图像进行后期合成,可得到高质量的照片,从而更好地满足客户需求。
本实施例中,普通模组和潜望式模组的光轴相互垂直,且普通模组的光轴方向对应于入射光的方向,从而使得潜望式模组在光轴方向的尺寸不会受到过大的限制。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (26)

  1. 一种光学致动器,其特征在于,包括:
    基座;
    镜头模块,其具有外侧面,所述外侧面包括彼此相对的两个第一侧面;以及
    多根形状记忆合金线,其构成两个线组,所述的两个线组分别布置于所述的两个第一侧面;其中每根形状记忆合金线的两端分别固定在基座端固定装置和镜头端固定装置,其中所述基座端固定装置与所述基座固定在一起,所述镜头端固定装置设置于所述第一侧面并与所述镜头模块固定在一起;
    其中所述的两个线组作用于所述镜头模块的合力的方向与所述镜头模块的光轴的方向一致,以便通过所述的两个线组的形状记忆合金线伸缩来带动所述镜头模块沿着所述镜头模块的光轴方向移动。
  2. 根据权利要求1所述的光学致动器,其特征在于,所述两个线组中的每个均包括两个子线组,每个子线组均包括两根形状记忆合金线;
    其中,对于每个所述子线组,其两根形状记忆合金线在所述第一侧面的投影呈交叉状态,并且这两根形状记忆合金线在垂直于所述第一侧面的方向上错开,使得这两根形状记忆合金线不共面。
  3. 根据权利要求2所述的光学致动器,其特征在于,布置于同一个所述第一侧面的两个所述子线组被配置为对称状态,以使所述镜头模块保持平衡。
  4. 根据权利要求3所述的光学致动器,其特征在于,布置于同一个所述第一侧面的两个所述子线组被配置为:使这两个所述子线组各自产生的使所述镜头模块偏转的力矩互相抵消或者部分抵消。
  5. 根据权利要求1所述的光学致动器,其特征在于,所述基座为支撑底座,所述支撑底座的上表面具有限位结构,以防止所述镜头模块偏离所述光轴。
  6. 根据权利要求5所述的光学致动器,其特征在于,所述外侧面还包括两个第二侧面,每个所述第二侧面均与所述第一侧面相交,并且所述的两个第二侧面互相相对地设置,所述限位结构包括分别设置于所述的两个第二侧面外侧的两个第二限位结构。
  7. 根据权利要求6所述的光学致动器,其特征在于,所述限位结构还包括分别设置于所述的两个第一侧面外侧的两个第一限位结构。
  8. 根据权利要求5所述的光学致动器,其特征在于,所述镜头模块的底面具有限位孔,所述限位结构为与所述限位孔适配的限位柱,所述限位柱设置于所述支撑底座上表面的与所述镜头模块底面的所述限位孔对应的位置。
  9. 根据权利要求5所述的光学致动器,其特征在于,所述镜头模块的底面具有限位柱,所述限位结构为与所述限位柱适配的限位孔,所述限位孔设置于所述支撑底座的与所述镜头模块底面的所述限位柱对应的位置。
  10. 根据权利要求1-4中任意一项所述的光学致动器,其特征在于,所述镜头端固定装置包括设置于所述第一侧面的中央区域并向外侧凸出的凸块;以及
    所述基座端固定装置包括设置在所述第一侧面外侧的固定板,所述固定板的表面与所述第一侧面相对设置,并具有与所述凸块适配的通孔。
  11. 根据权利要求10所述的光学致动器,其特征在于,所述固定板的背向所述第一侧面的表面上具有基座端固定端子,所述凸块上具有镜头端固定端子,每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
  12. 根据权利要求11所述的光学致动器,其特征在于,每个所述固定板均具有四个所述基座端固定端子,所述四个所述基座端固定端子分别设置在所述固定板的背向所述第一侧面的表面上的远离所述凸块的位置处。
  13. 根据权利要求12所述的光学致动器,其特征在于,每个所述凸块均具有四个所述镜头端固定端子。
  14. 根据权利要求1-4中任意一项所述的光学致动器,其特征在于,每个所述第一侧面均具有垂直于所述基座表面的两条边缘;
    所述镜头端固定装置为设置在所述第一侧面的镜头端固定端子;以及
    所述基座端固定装置为固定于所述基座的两条立柱,所述两条立柱分别沿着所述两条边缘布置且所述立柱与所述第一侧面之间具有间 隙。
  15. 根据权利要求14所述的光学致动器,其特征在于,每个所述立柱均具有两个基座端固定端子,所述第一侧面设置有四个所述镜头端固定端子;其中每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
  16. 根据权利要求2所述的光学致动器,其特征在于,每个所述基座端固定装置具有四个基座端固定端子,每个所述镜头端固定装置具有四个镜头端固定端子;其中每根所述形状记忆合金线均具有两个安装端,所述两个安装端分别安装于所述基座端固定端子和所述镜头端固定端子。
  17. 根据权利要求16所述的光学致动器,其特征在于,每个所述第一侧面具有四个角;
    所述四个镜头端固定端子分别布置于所述镜头端固定装置上对应于所述第一侧面的四个角的位置处;以及
    所述四个基座端固定端子分别布置于所述基座端固定装置上对应于所述第一侧面的四个角的位置处。
  18. 根据权利要求16所述的光学致动器,其特征在于,每个所述第一侧面具有四个角且具有平行于所述镜头模块的光轴的两条边缘;
    所述四个镜头端固定端子分别布置于所述镜头端固定装置上对应于所述第一侧面的四个角的位置处;以及
    所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布 置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置,并且沿着同一条边缘布置的两个所述基座端固定端子之间的距离小于所对应的两个所述镜头端固定端子之间的距离。
  19. 根据权利要求16所述的光学致动器,其特征在于,每个所述第一侧面具有平行于所述镜头模块的光轴的两条边缘;
    所述四个镜头端固定端子布置于所述第一侧面的中央区域;以及
    所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置。
  20. 根据权利要求19所述的光学致动器,其特征在于,属于不同所述子线组的任意两根形状记忆合金线在所述第一侧面的投影不交叉。
  21. 根据权利要求16所述的光学致动器,其特征在于,每个所述第一侧面具有垂直于所述镜头模块的光轴的两条边缘;
    所述四个镜头端固定端子布置于所述第一侧面的中央区域;以及
    所述四个基座端固定端子中的两个沿着所述两条边缘中的一条布置,所述四个基座端固定端子中的另两个沿着所述两条边缘中的另一条布置。
  22. 根据权利要求21所述的光学致动器,其特征在于,存在分属于不同所述子线组的两根形状记忆合金线,这两根形状记忆合金线在所述第一侧面的投影呈交叉状态。
  23. 根据权利要求1所述的光学致动器,其特征在于,所述基座 端固定装置和所述镜头端固定装置在所述镜头模块的光轴方向上的高度低于所述第一侧面在所述镜头模块的光轴方向上的高度。
  24. 一种摄像模组,其特征在于,包括:
    权利要求1-23中任意一项所述的光学致动器;以及
    光转向机构,所述光转向机构适于将光反射至所述光学致动器的所述镜头模块;
    其中,所述镜头模块的光轴与光入射所述光转向机构的方向垂直,所述第一侧面与所述光入射所述光转向机构的方向平行。
  25. 根据权利要求24所述的摄像模组,其特征在于,所述光学致动器中,所述外侧面还包括两个第二侧面,每个所述第二侧面均与所述第一侧面相交,并且所述的两个第二侧面互相相对地设置;
    所述第二侧面与所述光入射所述光转向机构的方向垂直。
  26. 一种摄像模组阵列,其特征在于,包括至少一个权利要求24或25所述的摄像模组。
PCT/CN2018/109681 2018-01-12 2018-10-10 光学致动器及相应的摄像模组和摄像模组阵列 WO2019137048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18899895.9A EP3739383B1 (en) 2018-01-12 2018-10-10 Optical actuator, and corresponding camera module and camera module array
US16/771,572 US11733477B2 (en) 2018-01-12 2018-10-10 Optical actuator, and corresponding camera module and camera module array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820053573.4U CN207937737U (zh) 2018-01-12 2018-01-12 光学致动器及相应的摄像模组和摄像模组阵列
CN201820053573.4 2018-01-12
CN201810031601.7 2018-01-12
CN201810031601.7A CN110032024B (zh) 2018-01-12 2018-01-12 光学致动器及相应的摄像模组和摄像模组阵列

Publications (1)

Publication Number Publication Date
WO2019137048A1 true WO2019137048A1 (zh) 2019-07-18

Family

ID=67219276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109681 WO2019137048A1 (zh) 2018-01-12 2018-10-10 光学致动器及相应的摄像模组和摄像模组阵列

Country Status (3)

Country Link
US (1) US11733477B2 (zh)
EP (1) EP3739383B1 (zh)
WO (1) WO2019137048A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185060B1 (ko) * 2018-07-20 2020-12-01 삼성전기주식회사 카메라 모듈
KR20200055317A (ko) * 2018-11-13 2020-05-21 삼성전기주식회사 카메라 모듈의 액츄에이터
KR102139770B1 (ko) * 2018-11-05 2020-08-11 삼성전기주식회사 렌즈 모듈 및 이를 구비하는 카메라 모듈
KR102356806B1 (ko) * 2020-04-08 2022-01-28 삼성전기주식회사 렌즈 모듈 및 이를 구비하는 카메라 모듈
KR102369440B1 (ko) * 2020-09-03 2022-03-03 삼성전기주식회사 렌즈 모듈 및 이를 구비하는 카메라 모듈
KR102393215B1 (ko) * 2020-09-03 2022-05-02 삼성전기주식회사 렌즈 모듈 및 이를 구비하는 카메라 모듈
EP4249978A1 (en) 2022-03-22 2023-09-27 Goodix Technology (HK) Company Limited Shape-memory-alloy actuator assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416090A (zh) * 2006-03-30 2009-04-22 1...有限公司 照相机镜头驱动设备
CN102770804A (zh) * 2010-02-26 2012-11-07 剑桥机电有限公司 Sma致动装置
CN103168264A (zh) * 2010-08-09 2013-06-19 剑桥机电有限公司 摄像装置
US20150322929A1 (en) * 2012-02-07 2015-11-12 Konica Minolta Inc. Drive device and lens unit
CN107517285A (zh) * 2016-06-17 2017-12-26 宁波舜宇光电信息有限公司 分体式潜望模组及其组装方法和应用
CN207937737U (zh) * 2018-01-12 2018-10-02 宁波舜宇光电信息有限公司 光学致动器及相应的摄像模组和摄像模组阵列

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451972B (en) 2006-03-30 2010-06-30 1 Ltd Camera lens actuation apparatus
JP5702735B2 (ja) * 2009-02-09 2015-04-15 ケンブリッジ メカトロニクス リミテッド 光学画像安定化
JP2011169443A (ja) * 2010-02-22 2011-09-01 Mitsumi Electric Co Ltd 板バネおよびレンズ駆動装置
US9374516B2 (en) * 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
GB201508968D0 (en) * 2015-05-26 2015-07-01 Cambridge Mechatronics Ltd SMA wire assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416090A (zh) * 2006-03-30 2009-04-22 1...有限公司 照相机镜头驱动设备
CN102770804A (zh) * 2010-02-26 2012-11-07 剑桥机电有限公司 Sma致动装置
CN103168264A (zh) * 2010-08-09 2013-06-19 剑桥机电有限公司 摄像装置
US20150322929A1 (en) * 2012-02-07 2015-11-12 Konica Minolta Inc. Drive device and lens unit
CN107517285A (zh) * 2016-06-17 2017-12-26 宁波舜宇光电信息有限公司 分体式潜望模组及其组装方法和应用
CN207937737U (zh) * 2018-01-12 2018-10-02 宁波舜宇光电信息有限公司 光学致动器及相应的摄像模组和摄像模组阵列

Also Published As

Publication number Publication date
US11733477B2 (en) 2023-08-22
US20200310224A1 (en) 2020-10-01
EP3739383B1 (en) 2023-05-10
EP3739383A4 (en) 2021-03-10
EP3739383A1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2019137048A1 (zh) 光学致动器及相应的摄像模组和摄像模组阵列
CN110032024B (zh) 光学致动器及相应的摄像模组和摄像模组阵列
CN107533272B (zh) 折叠式镜头相机的低剖面三轴致动器
KR102007379B1 (ko) 이중-조리개 디지털 카메라의 광학식 손떨림 방지 및 자동-초점을 위한 양-방향성 강성
KR102113379B1 (ko) 폴딩된 광학 어레이 카메라들을 위한 자동초점
CN207937737U (zh) 光学致动器及相应的摄像模组和摄像模组阵列
TW202305487A (zh) 數位相機及其行動電子裝置
US10007125B2 (en) Actuator inside of motion control
CN101206379A (zh) 镜头模组
US8602666B2 (en) Long hinge actuator snubbing
CN113572918B (zh) 潜望式连续光变模组及相应的多摄模组
US8027077B2 (en) Low cost moveable mirror
KR20180042341A (ko) 채널 특정 조정 가능성을 갖는 다중 조리개 이미징 디바이스
WO2021104402A1 (zh) 一种摄像头模组及电子设备
KR20200072256A (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
WO2019174758A1 (en) Plenoptic camera for mobile devices
KR20200005879A (ko) 카메라 모듈
KR102146677B1 (ko) 카메라 모듈
KR100526250B1 (ko) 압전 굴곡변위형 액츄에이터를 사용하는 렌즈 이송장치 및 렌즈 모듈
KR102516769B1 (ko) 듀얼 카메라 모듈
KR20210081385A (ko) 이미징 모듈
WO2022170962A1 (zh) 透镜组件、光学镜头和摄像模组以及连续变焦方法
CN115314619A (zh) 一种基于微扫描技术的微透镜阵列非聚焦型光场相机
KR20220151367A (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
KR20210142955A (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899895

Country of ref document: EP

Effective date: 20200812