WO2019136943A1 - 超声系统负载与谐振频率关系的测试装置 - Google Patents

超声系统负载与谐振频率关系的测试装置 Download PDF

Info

Publication number
WO2019136943A1
WO2019136943A1 PCT/CN2018/094265 CN2018094265W WO2019136943A1 WO 2019136943 A1 WO2019136943 A1 WO 2019136943A1 CN 2018094265 W CN2018094265 W CN 2018094265W WO 2019136943 A1 WO2019136943 A1 WO 2019136943A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
ultrasonic transducer
mounting hole
ultrasonic
compression
Prior art date
Application number
PCT/CN2018/094265
Other languages
English (en)
French (fr)
Inventor
张建富
郁鼎文
周辉林
冯平法
吴志军
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019136943A1 publication Critical patent/WO2019136943A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency

Definitions

  • the invention relates to the field of precision machining technology, and in particular to a testing device for the relationship between an ultrasonic system load and a resonant frequency.
  • Ultrasonic transducers are widely used in high-speed machining of brittle and hard materials. Under the excitation of ultrasonic frequency signals, the ultrasonic mechanical vibration generated at the end of the tool can reduce the machining cutting force, improve the processing efficiency and extend the service life of the tool. With the increasing demand for difficult-to-machine materials, research on efficient ultrasonic machining systems has become a trend. Ultrasound systems typically need to operate near the resonant frequency of the processing system to maximize tool end output amplitude and system conversion efficiency.
  • Electromechanical conversion materials used in ultrasonic transducers are piezoelectric ceramic materials and giant magnetostrictive materials. Ultrasonic transducers made of two materials have frequency drift during processing. Among them, the change of load is one of the main causes of the resonance frequency of ultrasonic processing system. Therefore, it is of great significance to study the relationship between different loads of the ultrasound system and the resonant frequency.
  • the load change of the ultrasonic machining system during the machining process is complicated. Under the working conditions, the influence of the load on the resonant frequency of the system is relatively complicated and there are many interference factors.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a test apparatus for the relationship between the ultrasonic system load and the resonant frequency, which can test the influence of different loads on the resonant frequency of the ultrasonic system.
  • a testing apparatus for relationship between an ultrasonic system load and a resonant frequency includes: an ultrasonic transducer; a fixing system for supporting the ultrasonic transducer; a load loading system, the load loading system Connecting to the ultrasonic transducer to load a variable load to the ultrasonic transducer; a load detection system for detecting a load loaded by the load loading system toward the ultrasonic transducer; a test system electrically coupled to the ultrasonic transducer to emit a frequency sweep signal to the ultrasonic transducer and to obtain a resonant frequency of the ultrasonic transducer; the test system is loaded with the load The system is electrically coupled to output a control signal to the load loading system; the test system is electrically coupled to the load detection system to accept measured values measured by the load detection system; wherein the test system is The resonant frequency and the measured value are obtained as a relationship between the load of the ultrasonic transducer and the resonant frequency.
  • the test device for the relationship between the ultrasonic system load and the resonant frequency is provided with a test system, a load detection system and a load loading system, and the time parameter is used as an intermediate variable to obtain the load and resonance frequency of the ultrasonic transducer.
  • the relationship curve thus achieves the purpose of reacting different loads to the resonant frequency of the ultrasound system.
  • the load loading system includes: a support; a transmission mechanism, the transmission mechanism is movably disposed on the support; a compression mechanism, the compression mechanism is disposed on the support, a side of the compression mechanism that is away from the transmission mechanism is abutted on the ultrasonic transducer; and an elastic member, the two ends of the elastic member respectively abut against the transmission mechanism and the compression mechanism, a transmission mechanism applies a load to the ultrasonic transducer through the elastic member and the compression mechanism; a drive motor, the drive motor is disposed on the support, the drive motor and the test system and the transmission The mechanisms are coupled to control the activity of the transmission in accordance with the control signal.
  • the support is provided with a first mounting hole
  • the transmission mechanism is disposed in the first mounting hole
  • the transmission mechanism comprises: a lead screw, one end of the lead screw is connected to the driving motor a drive shaft that cooperates with the lead screw, the drive slider is slidably disposed in the first mounting hole along an axial direction of the first mounting hole, and the elastic member is stopped On the drive slider.
  • the compression mechanism includes: a compression sleeve coupled to a side end of the holder adjacent to the ultrasonic transducer, the compression sleeve being provided with The first mounting hole is opposite to and through the mounting hole; the top block is compressed, the compression top block is slidably fitted in the mounting hole, and the elastic member is abutted on the compression top block.
  • the compression top block has a matching hole
  • the matching hole is a blind hole opened toward one side of the elastic member
  • the load detecting system includes a sensor disposed on a bottom wall of the matching hole, One end of the elastic member protrudes into the fitting hole and is connected to the sensor.
  • the compression mechanism and the driving motor are respectively disposed on both axial sides of the first mounting hole to close the first mounting hole.
  • the ultrasonic transducer includes: a body coupled to the fixing system; a horn, one end of the horn being coupled to the body, the horn The other end is on the compression mechanism, the direction of the load applied by the compression mechanism to the horn coincides with the central axis of the horn.
  • the fixing system includes: a fixing seat having a second mounting hole; a mounting seat, one end of the mounting seat is fitted in the second mounting hole, and the mounting seat is another One end is connected to the ultrasonic transducer; and a connecting mechanism is used for connecting the mounting seat in the second mounting hole.
  • the attachment mechanism includes: a pull stud, one end of the pull stud is coupled to the mount; a pull sleeve, at least a portion of the pull sleeve is mated to the second mount In the hole, the rivet sleeve is sleeved on the rivet; and a set screw is used to connect the rivet sleeve in the second mounting hole.
  • the rivet sleeve includes: a positioning portion, the positioning portion is fitted in the second mounting hole by the set screw; a locking portion, the locking portion is located in the second mounting hole On the axially outer side, the locking portion is fitted with a lock nut, and one end of the lock nut abuts against the side wall of the mounting seat.
  • FIG. 1 is a schematic structural view of a test apparatus for relationship between an ultrasonic system load and a resonant frequency according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of an ultrasonic transducer and a fixing system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a load loading system and a load detecting system according to an embodiment of the present invention.
  • FIG. 4 is a full cross-sectional front view of a compressed top block in accordance with an embodiment of the present invention.
  • Figure 5 is a side elevational view of a compressed top block in accordance with an embodiment of the present invention.
  • Figure 6 is a full cross-sectional front view of a drive slider in accordance with an embodiment of the present invention.
  • Figure 7 is a side elevational view of a drive slider in accordance with an embodiment of the present invention.
  • the body 110 The body 110,
  • a compression sleeve 331 an assembly hole 3311, a compression top block 332, a sliding portion 3321, and a fitting hole 3322
  • first and second may include one or more of the features, either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • a test apparatus 1000 for the relationship between the ultrasonic system load and the resonant frequency according to an embodiment of the present invention will now be described with reference to Figs.
  • a test apparatus 1000 for ultrasonic system load and resonant frequency includes an ultrasonic transducer 100, a fixed system 200, a load loading system 300, a load detection system 400, and a test system 500. .
  • the fixation system 200 is for supporting an ultrasonic transducer 100 that is coupled to the ultrasonic transducer 100 to load a variable load to the ultrasonic transducer 100.
  • the load detection system 400 is for detecting a load loaded by the load loading system 300 toward the ultrasonic transducer 100, and the test system 500 is electrically connected to the ultrasonic transducer 100 to emit a frequency sweep signal to the ultrasonic transducer 100 and obtain an ultrasonic transducer.
  • test system 500 is electrically coupled to load loading system 300 to output a control signal to load loading system 300.
  • Test system 500 is electrically coupled to load detection system 400 to accept measured values measured by load detection system 400.
  • the test system 500 obtains a relationship between the load of the ultrasonic transducer 100 and the resonant frequency based on the resonant frequency and the measured value.
  • test system 500 controls the power signal generator to output a frequency sweep signal according to a communication protocol, and the signal acts on the ultrasonic transducer 100 through a compensation circuit that makes the transducer purely resistive at the resonant frequency.
  • the sweep acquisition circuit collects each frequency signal and calculates its effective value, and collects the sweep curve according to the following parameters:
  • test system 500 can obtain the relationship between the resonant frequency of the ultrasonic transducer 100 and time.
  • test system 500 since the test system 500 is connected to the load loading system 300 to output a control signal to the load loading system 300, that is, the test system 500 changes the load loading system 300 to the ultrasonic by outputting a control signal to the load loading system 300.
  • the load on the transducer 100, while the load applied by the load loading system 300 to the ultrasonic transducer 100 can be characterized by measured values measured by the load detection system 400.
  • the test system 500 can obtain the load versus time relationship of the ultrasonic transducer 100.
  • the load and resonance of the ultrasonic transducer 100 can be obtained.
  • the relationship between the frequencies thus achieving the purpose of reacting different loads to the resonant frequency of the ultrasound system.
  • the testing apparatus 1000 of the ultrasonic system load and the resonant frequency since the test system 500, the load detecting system 400, and the load loading system 300 are provided, the time parameter is used as an intermediate variable, and the ultrasonic transducer 100 is obtained.
  • the relationship between the load and the resonant frequency thereby achieving the purpose of reacting different loads to the resonant frequency of the ultrasonic system.
  • the load loading system 300 includes a mount 310, a transmission 320, a compression mechanism 330, an elastic member 340, and a drive motor 35.
  • the transmission mechanism 320 is movably disposed on the support 310, and the compression mechanism 330 is disposed on the support 310.
  • the side of the compression mechanism 330 remote from the transmission mechanism 320 is stopped on the ultrasonic transducer 100, and both ends of the elastic member 340
  • the drive mechanism 320 is applied to the ultrasonic transducer 100 through the elastic member 340 and the compression mechanism 330, and the drive motor 35 is disposed on the support 310, and the drive motor 35 and the test system 500 are respectively supported on the transmission mechanism 320 and the compression mechanism 330.
  • the transmission mechanism 320 is coupled to control the activity of the transmission mechanism 320 in accordance with the control signal.
  • the drive motor 35 drives the test system 500 to be connected.
  • the drive motor 35 drives the transmission mechanism 320 to move, and the elastic member 340 is disposed between the transmission mechanism 320 and the compression mechanism 330. Therefore, during the movement of the drive motor 35, the drive compression mechanism 330 applies a load toward the ultrasonic transducer 100, and the compression mechanism 330 is controlled to be applied toward the ultrasonic transducer 100 according to the difference in the rotational speed of the drive motor 35 and the length of time of the rotation.
  • the load size is such that the load magnitude of the ultrasonic transducer 100 can vary over time.
  • the support 310 is provided with a first mounting hole 311.
  • the transmission mechanism 320 is disposed in the first mounting hole 311.
  • the transmission mechanism 320 includes a lead screw 321 and a driving slider 323.
  • One end of the screw 321 is connected to the driving motor 35.
  • the driving slider 323 is slidably disposed in the first mounting hole 311 along the axial direction of the first mounting hole 311, and the elastic member 340 is abutted on the driving slider 323.
  • the driving slider 323 can slide in the first mounting hole 311 and press the elastic member 340 to push the compression mechanism 330 to move, thereby realizing the load applied to the ultrasonic transducer 100 by the compressor structure. the goal of.
  • the load applied to the ultrasonic transducer 100 by the compression mechanism 330 structure is relatively stable.
  • the compression mechanism 330 and the drive motor 35 are respectively disposed on both axial sides of the first mounting hole 311 to close the first mounting hole 311. Therefore, the transmission mechanism 320 is located in the closed first mounting hole 311, which effectively avoids excessive wear of the transmission slider 323 due to factors such as dust, particles, and the like, causing abnormal fluctuation of the load.
  • k is the stiffness coefficient of the elastic member 340 and F is the load size.
  • the load of the ultrasonic transducer 100 is related to the motor rotation speed, the stiffness coefficient of the elastic member 340, the number of threads of the screw 321, and the pitch of the screw 321 . Therefore, in actual testing, the size of the above parameters can be selected as needed so that the load range of the ultrasonic transducer 100 is large to expand the test range of the test apparatus 1000 and the type of the ultrasonic transducer 100 to be applied.
  • the transmission structure further includes a transmission nut 322.
  • the transmission nut 322 is engaged with the screw 321 and the transmission slider 323 is fitted on the transmission nut 322, thereby ensuring the transmission slider.
  • the 323 can smoothly slide in the first mounting hole 311, reducing the probability of the drive slider 323 being stuck.
  • the inner peripheral wall of the first mounting hole 311 is provided with a sliding slot extending along the axial direction thereof, and the driving slider 323 is matched with the sliding slot. Sliding convex 3231. That is, when the drive slider 323 can only slide in the axial direction of the first mounting hole 311. Thereby, it is ensured that the drive slider 323 does not undergo rotation, jitter, and the like which adversely affect the load during the sliding process.
  • two sliding slots are formed in the inner peripheral wall of the first mounting hole 311 , and the two sliding slots are disposed at intervals of 180° in the circumferential direction of the first mounting hole 311 , thereby further It is ensured that the drive slider 323 does not rotate, shake, etc. during the sliding process, which affects the bad movement of the load.
  • the transmission mechanism 320 may be formed as a slider rail structure, and the drive motor 35 is formed as a linear motor.
  • the transmission mechanism 320 can also be placed in the open air.
  • the compression mechanism 330 includes a compression sleeve 331 and a compression top block 332.
  • the compression sleeve 331 is connected to one end surface of the support 310 adjacent to the ultrasonic transducer 100.
  • the compression sleeve 331 is provided with a mounting hole 3311 opposite to the first mounting hole 311, and the compression top block 332 is slidably Fitted in the fitting hole 3311, the elastic member 340 abuts against the compression top block 332.
  • the compression top block 332 has a matching hole 3322 which is a blind hole opened toward one side of the elastic member 340.
  • the load detecting system 400 includes a sensor disposed on the bottom wall of the fitting hole 3322, one end of the elastic member 340 It extends into the mating hole 3322 and is connected to the sensor. Therefore, the measurement of the load detecting system 400 is relatively accurate, and the elastic member 340 can only be compressed or stretched in the axial direction thereof, thereby avoiding the bending of the elastic member 340 and causing the measurement of the load detecting system 400 to be large. The error increases the accuracy of the load detection system 400.
  • the inner peripheral wall of the fitting hole 3311 is provided with a sliding groove extending in the axial direction thereof, and the outer peripheral wall of the compression top block 332 is provided with the sliding groove and the sliding portion 3321, that is, when compressing the top block
  • the 332 can only slide in the axial direction of the fitting hole 3311, thereby ensuring that the compression top block 332 does not rotate, shake, etc. during the sliding process, which adversely affects the load.
  • the inner peripheral wall of the fitting hole 3311 is provided with two sliding grooves, and the two sliding grooves are disposed at intervals of 180° in the circumferential direction of the fitting hole 3311, thereby ensuring that the compression top block 332 does not rotate during sliding. , jitter, etc. affect the bad movement of the load.
  • the ultrasonic transducer 100 includes a body 110 and a horn 120.
  • the body 110 is coupled to the fixing system 200.
  • One end of the horn 120 is coupled to the body 110, and the horn is The other end of 120 rests on the compression mechanism 330, and the direction of the load applied by the compression mechanism 330 to the horn 120 coincides with the central axis of the horn 120.
  • the distortion of the horn 120 is ensured, and the probability of damage of the horn 120 is reduced, thereby avoiding adverse effects on the ultrasonic transducer 100 during the entire test, thereby reducing damage to the ultrasonic transducer 100.
  • the phenomenon occurs.
  • the fixing system 200 includes a fixing base 210, a mounting base and a connecting structure 230.
  • the fixing base 210 has a second mounting hole 211, and one end of the mounting seat fits in the second mounting hole 211.
  • the other end of the mount is coupled to the ultrasonic transducer 100, and the connection structure 230 is used to connect the mount within the second mounting hole 211.
  • the connecting mechanism includes a pull stud 231, a rivet sleeve 232, and a set screw 234.
  • One end of the pull stud 231 is coupled to the mount, and at least a portion of the pull stud 232 is mated.
  • the rivet sleeve 232 is sleeved on the rivet 231, and the set screw 234 is used to connect the rivet sleeve 232 in the second mounting hole 211.
  • the mounting seat has a cantilever structure, and the connection by the rivet 231 can make the mounting seat more stably connected to the fixing base 210, reducing the externality. The effect of the load on the mount.
  • the rivet sleeve 232 includes a positioning portion 2321 and a locking portion 2322.
  • the positioning portion 2321 is fitted into the second mounting hole 211 by a set screw 234; the locking portion 2322 is located axially outside the second mounting hole 211.
  • a locking nut 233 is fitted to the locking portion 2322, and one end of the locking nut 233 is abutted against the side wall of the mounting seat. Therefore, the rivet sleeve 232 can be relatively firmly connected in the second mounting hole 211, thereby ensuring that the mounting seat can be more stably connected to the fixing base 210, thereby reducing the influence of external load on the mounting seat.
  • test apparatus 1000 for the relationship between the ultrasonic system load and the resonant frequency of a specific embodiment of the present invention will be described below with reference to Figs.
  • the test system 500 of the present embodiment includes an ultrasonic transducer 100, a fixed system 200, a load loading system 300, a load detection system 400, and a test system 500.
  • the fixation system 200 is for supporting an ultrasonic transducer 100 that is coupled to the ultrasonic transducer 100 to load a variable load to the ultrasonic transducer 100.
  • the load detection system 400 is for detecting a load loaded by the load loading system 300 toward the ultrasonic transducer 100, and the test system 500 is electrically connected to the ultrasonic transducer 100 to emit a frequency sweep signal to the ultrasonic transducer 100 and obtain an ultrasonic transducer.
  • test system 500 is electrically coupled to load loading system 300 to output a control signal to load loading system 300.
  • Test system 500 is electrically coupled to load detection system 400 to accept measured values measured by load detection system 400.
  • the test system 500 obtains a relationship between the load of the ultrasonic transducer 100 and the resonant frequency based on the resonant frequency and the measured value.
  • the load loading system 300 includes a support 310, a transmission mechanism 320, a compression mechanism 330, an elastic member 340, and a drive motor 35.
  • the support 310 is provided with a first mounting hole 311.
  • the transmission mechanism 320 is movably disposed in the first mounting hole 311.
  • the compression mechanism 330 and the driving motor 35 are respectively disposed on the axial sides of the first mounting hole 311 to close the first portion.
  • the side of the compression mechanism 330 that is away from the transmission mechanism 320 is stopped on the ultrasonic transducer 100.
  • the two ends of the elastic member 340 respectively abut against the transmission mechanism 320 and the compression mechanism 330.
  • the transmission mechanism 320 passes through the elastic member 340 and the compression mechanism.
  • the transmission mechanism 320 includes a lead screw 321, a transmission nut 322 and a transmission slider 323.
  • One end of the screw 321 is connected to the motor shaft of the driving motor 35, and the driving slider 323 is slidably disposed along the axial direction of the first mounting hole 311.
  • the elastic member 340 abuts against the transmission slider 323.
  • the inner peripheral wall of the first mounting hole 311 is provided with a sliding groove extending along the axial direction thereof, and the driving slider 323 is provided with a sliding protrusion 3231 which cooperates with the sliding groove.
  • the compression mechanism 330 includes a compression sleeve 331 and a compression top block 332.
  • the compression sleeve 331 is connected to one end surface of the support 310 adjacent to the ultrasonic transducer 100.
  • the compression sleeve 331 is provided with a mounting hole 3311 opposite to the first mounting hole 311, and the compression top block 332 is slidably Fitted in the fitting hole 3311, the elastic member 340 abuts against the compression top block 332.
  • the inner peripheral wall of the fitting hole 3311 is provided with a sliding groove extending in the axial direction thereof, and the outer peripheral wall of the compressing top block 332 is provided with a sliding portion and a sliding portion 3321.
  • the compression top block 332 has a matching hole 3322 which is a blind hole opened toward one side of the elastic member 340.
  • the load detecting system 400 includes a sensor disposed on the bottom wall of the fitting hole 3322, and one end of the elastic member 340 extends into the hole. The inside of the hole 3322 is coupled to the sensor.
  • the ultrasonic transducer 100 includes a body 110 and a horn 120.
  • the body 110 is coupled to the fixing system 200.
  • One end of the horn 120 is coupled to the body 110, and the horn 120 is further Upon abutting against the compression mechanism 330, the direction of the load applied by the compression mechanism 330 to the horn 120 coincides with the central axis of the horn 120.
  • the fixing system 200 includes a fixing base 210, a mounting base and a connecting structure 230.
  • the fixing base 210 has a second mounting hole 211.
  • One end of the mounting seat is fitted in the second mounting hole 211, and the other end of the mounting seat is
  • the ultrasonic transducer 100 is coupled, and the connection structure 230 is used to connect the mount within the second mounting hole 211.
  • the connecting mechanism includes a pull stud 231, a rivet sleeve 232 and a set screw 234.
  • One end of the pull stud 231 is connected to the mounting seat, and at least a portion of the rivet sleeve 232 is fitted in the second mounting hole 211.
  • the 232 sleeve is disposed on the rivet 231, and the set screw 234 is used to connect the rivet sleeve 232 in the second mounting hole 211.
  • the rivet sleeve 232 includes a positioning portion 2321 and a locking portion 2322.
  • the positioning portion 2321 is fitted into the second mounting hole 211 by a set screw 234; the locking portion 2322 is located at an axial outer side of the second mounting hole 211, and the locking portion
  • a lock nut 233 is fitted to the 2322, and one end of the lock nut 233 is abutted against the side wall of the mount.
  • the testing method of the testing device 1000 of this embodiment is as follows:
  • the compression top block 332 is in contact with the end surface of the horn 120 in a free state, and the test system 500 outputs the pulse signal and the switch signal to the driver to control the rotation speed of the drive motor 35, through the transmission nut 322, the transmission slider 323, and the elastic member. 340 and the compression slider are transmitted to the horn 120 such that the load detection system 400 measures the load applied to the horn 120;
  • the test system 500 outputs the sweep frequency signal, and acts on the ultrasonic transducer 100 through the compensation circuit;
  • the acquisition circuit in the test system 500 can combine the sampling resistor and the signal conditioning module to collect the circuit output signal
  • the electromechanical conversion material Under the action of the excitation frequency, the electromechanical conversion material generates ultrasonic vibration mechanical vibration along its axial direction;
  • the testing apparatus 1000 of the ultrasonic system load and the resonant frequency relationship of the present embodiment has the following advantages:
  • the transmission mechanism 320, the elastic member 340 and the load detection system 400 are all located in a confined space, so that the structure is compact and sealed, and the core components of the device are effectively prevented from being damaged by dust, particles and the like;

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明公开了一种超声系统负载与谐振频率关系的测试装置(1000),所述测试装置(1000)包括超声换能器(100)、固定系统(200)、负载加载系统(300)、负载检测系统及测试系统(400)。固定系统(200)用于支撑超声换能器(100),负载加载系统(400)可以向超声换能器(100)加载可变负载。负载检测及测试系统(400)用于检测负载加载系统(300)朝向超声换能器(100)加载的负载。

Description

超声系统负载与谐振频率关系的测试装置 技术领域
本发明涉及精密加工技术领域,尤其涉及一种超声系统负载与谐振频率关系的测试装置。
背景技术
超声换能器广泛应用于脆硬材料的高速切削加工中,在超声频电信号的激励下,工具端部产生的超声频机械振动可以降低加工切削力,提高加工效率,延长刀具使用寿命。随着难加工材料需求的日益扩大,高效的超声加工系统研究成为发展趋势。超声系统通常需要工作在加工系统谐振频率附近,以使得工具端部输出振幅与系统转换效率最高。
超声换能器采用的机电转换材料有压电陶瓷材料和超磁致伸缩材料两种。两种材料制成的超声换能器在加工过程中均存在频率漂移现象,其中,负载的变化是引起超声加工系统谐振频率变化的主要原因之一。因此,研究超声系统不同负载与谐振频率关系的意义重大。超声加工系统在加工过程中的负载变化情况复杂,在工况下研究负载对系统谐振频率的影响相对复杂且干扰因素较多。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种超声系统负载与谐振频率关系的测试装置,所述测试装置能够测试不同负载对超声系统的谐振频率的影响规律
根据本发明实施例的超声系统负载与谐振频率关系的测试装置,包括:超声换能器;固定系统,所述固定系统用于支撑所述超声换能器;负载加载系统,所述负载加载系统与所述超声换能器相连,以向所述超声换能器加载可变负载;负载检测系统,所述负载检测系统用于检测所述负载加载系统朝向所述超声换能器加载的负载;测试系统,所述测试系统与所述超声换能器电连接,以向所述超声换能器发出扫频信号且获得所述超声换能器的谐振频率;所述测试系统与所述负载加载系统电连接,以向所述负载加载系统输出控制信号;所述测试系统与所述负载检测系统电连接,以接受所述负载检测系统测量到的实测值;其中,所述测试系统根据所述谐振频率与所述实测值,得到所述超声换能器的负载与谐振频率的关系曲线。
根据本发明实施例的超声系统负载与谐振频率关系的测试装置,由于设有测试系统、负载检测系统和负载加载系统,实现了以时间参数作为中间变量,得到超声换能器的负载与谐振频率的关系曲线,从而实现了反应不同负载对超声系统的谐振频率影响的目的。
在一些实施例中,所述负载加载系统包括:支座;传动机构,所述传动机构可活动地设在所述支座上;压缩机构,所述压缩机构设在所述支座上,所述压缩机构的远离所述传动机构的一侧止抵在所述超声换能器上;弹性件,所述弹性件的两端分别止抵在所述传动机构与所述压缩机构上,所述传动机构通过所述弹性件、所述压缩机构向所述超声换能器施加负载;驱动电机,所述驱动电机设在所述支座上,所述驱动电机与所述测试系统和所述传动机构相连以根据所述控制信号控制所述传动机构的活动。
具体地,所述支座上设有第一安装孔,所述传动机构设在所述第一安装孔内,所述传动机构包括:丝杠,所述丝杠的一端连接在所述驱动电机的电机轴上;与所述丝杠配合的传动滑块,所述传动滑块沿所述第一安装孔的轴线方向可滑动地设在所述第一安装孔内,所述弹性件止抵在所述传动滑块上。
在一些实施例中,所述压缩机构包括:压缩套筒,所述压缩套筒连接在所述支座的靠近所述超声换能器的一侧端面上,所述压缩套筒上设有与所述第一安装孔相对且贯通的装配孔;压缩顶块,所述压缩顶块可滑动地配合在所述装配孔内,所述弹性件止抵在所述压缩顶块上。
具体地,所述压缩顶块具有配合孔,所述配合孔为朝向所述弹性件的一侧敞开的盲孔,所述负载检测系统包括设在所述配合孔的底壁上的传感器,所述弹性件的一端伸入到所述配合孔内且与所述传感器相连。
在一些可选的实施例中,所述压缩机构与所述驱动电机分别设在所述第一安装孔的轴向两侧以封闭所述第一安装孔。
在一些实施例中,所述超声换能器包括:本体,所述本体连接在所述固定系统上;变幅杆,所述变幅杆的一端连接在所述本体上,所述变幅杆的另一止抵在所述压缩机构上,所述压缩机构施加给所述变幅杆的负载的方向与所述变幅杆的中心轴线重合。
在一些实施例中,所述固定系统包括:固定座,所述固定座具有第二安装孔;安装座,所述安装座的一端配合在所述第二安装孔内,所述安装座的另一端与所述超声换能器连接;连接机构,所述连接结构用于将所述安装座连接在所述第二安装孔内。
在一些实施例中,所述连接机构包括:拉钉,所述拉钉的一端连接在所述安装座上;拉钉套筒,所述拉钉套筒的至少部分配合在所述第二安装孔内,所述拉钉套筒套设在所 述拉钉上;紧定螺钉,所述紧定螺钉用于将所述拉钉套筒连接在所述第二安装孔内。
具体地,所述拉钉套筒包括:定位部,所述定位部通过所述紧定螺钉配合在所述第二安装孔内;锁紧部,所述锁紧部位于所述第二安装孔的轴向外侧,所述锁紧部上配合有锁紧螺母,所述锁紧螺母的一端止抵在所述安装座的侧壁上。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的超声系统负载与谐振频率关系的测试装置结构示意图。
图2是根据本发明实施例的超声换能器与固定系统结构示意图。
图3是根据本发明实施例的负载加载系统和负载检测系统的结构示意图。
图4是根据本发明实施例的压缩顶块的全剖主视图。
图5是根据本发明实施例的压缩顶块的侧视图。
图6是根据本发明实施例的传动滑块的全剖主视图。
图7是根据本发明实施例的传动滑块的侧视图。
附图标记:
测试装置1000
超声换能器100、
本体110、
变幅杆120、
固定系统200、
固定座210、
第二安装孔211、
安装座220、
连接结构230、
拉钉231、拉钉套筒232、固定部2321、锁紧部2322、锁紧螺母233、紧定螺钉234、
负载加载系统300、
支座310、
第一安装孔311、
传动机构320、
丝杠321、传动螺母322、传动滑块323、滑凸3231、
压缩机构330、
压缩套筒331、装配孔3311、压缩顶块332、滑动部3321、配合孔3322、
弹性件340、
驱动电机350、
负载检测系统400、
测试系统500。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图7描述根据本发明实施例的超声系统负载与谐振频率关系的测试装置1000。
如图1-图3所示,根据本发明实施例的超声系统负载与谐振频率关系的测试装置 1000包括超声换能器100、固定系统200、负载加载系统300、负载检测系统400及测试系统500。
固定系统200用于支撑超声换能器100,负载加载系统300与超声换能器100相连,以向超声换能器100加载可变负载。负载检测系统400用于检测负载加载系统300朝向超声换能器100加载的负载,测试系统500与超声换能器100电连接,以向超声换能器100发出扫频信号且获得超声换能器100的谐振频率,测试系统500与负载加载系统300电连接,以向负载加载系统300输出控制信号。测试系统500与负载检测系统400电连接,以接受负载检测系统400测量到的实测值。测试系统500根据谐振频率与实测值,得到超声换能器100的负载与谐振频率的关系曲线。
需要说明的是,测试系统500根据通讯协议控制功率信号发生器输出扫频信号,信号通过补偿电路作用在超声换能器100上,补偿电路使得换能器在谐振频率下呈纯电阻性。扫频采集电路采集每种频率信号,并计算其有效值,根据以下参数采集扫频曲线:
采样频率=2-5倍信号频率;
每秒计算有效值点数=1/扫频步长时间(Hz);
采集间隔时间=扫频间隔(s);
测试系统500发出的的各扫频曲线的极值即为对应的谐振点,由此测试系统500可以获得超声换能器100的谐振频率与时间的关系,
可以理解的是,由于测试系统500与负载加载系统300相连以向负载加载系统300输出控制信号,也就是说,测试系统500通过向负载加载系统300输出控制信号从而改变负载加载系统300施加到超声换能器100上的载荷,而负载加载系统300施加到超声换能器100上的载荷可以由负载检测系统400测量到的实测值表征。因此,当负载检测系统400测量的实测值传递到测试系统500时,测试系统500可以获得超声换能器100的负载与时间的关系。综上所述,根据超声换能器100的谐振频率与时间的关系及超声换能器100的负载与时间的关系,以时间参数作为中间变量,即可得到超声换能器100的负载与谐振频率的关系曲线,从而实现了反应不同负载对超声系统的谐振频率影响的目的。
根据本发明实施例的超声系统负载与谐振频率关系的测试装置1000,由于设有测试系统500、负载检测系统400和负载加载系统300,实现了以时间参数作为中间变量,得到超声换能器100的负载与谐振频率的关系曲线,从而实现了反应不同负载对超声系统的谐振频率影响的目的。
在一些实施例中,如图3所示,负载加载系统300包括支座310、传动机构320、 压缩机构330、弹性件340和驱动电机35。传动机构320可活动地设在支座310上,压缩机构330设在支座310上,压缩机构330的远离传动机构320的一侧止抵在超声换能器100上,弹性件340的两端分别止抵在传动机构320与压缩机构330上,传动机构320通过弹性件340、压缩机构330向超声换能器100施加负载,驱动电机35设在支座310上,驱动电机35与测试系统500和传动机构320相连以根据控制信号控制传动机构320的活动。
可以理解的是,驱动电机35驱测试系统500相连,当测试系统500向驱动系统发出控制信号时,驱动电机35驱动传动机构320运动,由于传动机构320与压缩机构330之间设有弹性件340,因此,驱动电机35运动的过程中,驱动压缩机构330朝向超声换能器100施加负载,并且根据驱动电机35的转速不同、转动的时间长度不同来控制压缩机构330朝向超声换能器100施加的负载大小,从而实现了超声换能器100的载荷大小可以随时间发生变化。
具体地,支座310上设有第一安装孔311,传动机构320设在第一安装孔311内,传动机构320包括丝杠321和传动滑块323,丝杠321的一端连接在驱动电机35的电机轴上,传动滑块323沿第一安装孔311的轴线方向可滑动地设在第一安装孔311内,弹性件340止抵在传动滑块323上。由此,驱动电机35转动的过程中,传动滑块323可以在第一安装孔311内滑动并挤压弹性件340使得推动压缩机构330运动,从而实现压缩机结构朝向超声换能器100施加负载的目的。由此,压缩机构330结构朝向超声换能器100施加的负载较为稳定。
更具体地,压缩机构330与驱动电机35分别设在第一安装孔311的轴向两侧以封闭第一安装孔311。由此,传动机构320位于封闭的第一安装孔311内,有效地避免了灰尘、颗粒等因素使得传动滑块323发生过度磨损,使得负载发生不正常波动的现象。
需要说明的是,根据假定丝杠321线数为n以及螺距为p,则丝杠321的导程S满足关系式:
S=np
由此,可以计算出驱动电机35的转速n 电机与传动滑块323轴向运动位移y 传动的关系:
y 传动=n 电机×n×p×t
设定零起始点,可知弹性件340的压缩量Δx=y 传动,结合胡克定律:
F=kΔx
其中,k为弹性件340的刚度系数,F为负载大小。
综上所述,可以建立驱动电机35的转速与作用在超声换能器100上的负载之间的关系:
F(t)=kΔx=ky 传动=(kn 电机np)t
也就是说,超声换能器100的负载与电机转速、弹性件340的刚度系数、丝杠321的线数、丝杠321的螺距均有关系。因此,在实际测试中,可以根据需要选择上述参数的大小,使得超声换能器100的负载范围较大,以扩大测试装置1000的测试范围和适用的超声换能器100的种类。
在一些可选的实施例中,如图3所示,传动结构还包括传动螺母322,传动螺母322配合丝杠321上,传动滑块323配合在传动螺母322上,由此保证了传动滑块323可以平稳地在第一安装孔311内滑动,降低了传动滑块323的卡死几率。
在一些可选的实施例中,如图6-图7所示,第一安装孔311的内周壁上开设有沿其轴向延伸的滑槽,传动滑块323上设有与滑槽相配合的滑凸3231。也就是说,当传动滑块323只能沿第一安装孔311额轴向方向滑动。由此,保证了传动滑块323在滑动过程中不会发生旋转、抖动等影响负载的不良运动。
有利的,如图6-图7所示,第一安装孔311的内周壁上开两个滑槽,两个滑槽在第一安装孔311的周向方向间隔180°设置,由此,进一步保证了传动滑块323在滑动过程中不会发生旋转、抖动等影响负载的不良运动。
当然,在本发明的其他实施例中,传动机构320可以形成为滑块导轨结构,驱动电机35形成为直线电机。当然,在本发明的其他实施例中,传动机构320也可以露天设置。
在一些实施例中,如图3-图5所示,压缩机构330包括压缩套筒331和压缩顶块332。压缩套筒331连接在支座310的靠近超声换能器100的一侧端面上,压缩套筒331上设有与第一安装孔311相对且贯通的装配孔3311,压缩顶块332可滑动地配合在装配孔3311内,弹性件340止抵在压缩顶块332上。
具体地,压缩顶块332具有配合孔3322,配合孔3322为朝向弹性件340的一侧敞开的盲孔,负载检测系统400包括设在配合孔3322的底壁上的传感器,弹性件340的一端伸入到配合孔3322内且与传感器相连。由此使得负载检测系统400的测量至较为准确,且保证了弹性件340只能沿其轴向方向进行压缩或者拉伸,避免了弹性件340发生弯扭导致负载检测系统400的测量出现较大误差,提高了负载检测系统400的精确度。
更具体地,装配孔3311的内周壁上开设有沿其轴向延伸的滑动槽,压缩顶块332 的外周壁上设有与滑动槽相配合和滑动部3321,也就是说,当压缩顶块332只能沿装配孔3311的轴向方向滑动,由此,保证了压缩顶块332在滑动过程中不会发生旋转、抖动等影响负载的不良运动。
有利的,装配孔3311的内周壁上开两个滑动槽,两个滑动槽在装配孔3311的周向方向间隔180°设置,由此,保证了压缩顶块332在滑动过程中不会发生旋转、抖动等影响负载的不良运动。
在一些实施例中,如图2所示,超声换能器100包括本体110和变幅杆120,本体110连接在固定系统200上,变幅杆120的一端连接在本体110上,变幅杆120的另一止抵在压缩机构330上,压缩机构330施加给变幅杆120的负载的方向与变幅杆120的中心轴线重合。由此,保证了变幅杆120不会发生扭曲,降低了变幅杆120的损坏几率,从而避免了在整个测试过程中对超声换能器100产生不良影响,从而降低损害超声换能器100的现象发生。
在一些实施例中,如图2所示,固定系统200包括固定座210、安装座及连接结构230,固定座210具有第二安装孔211,安装座的一端配合在第二安装孔211内,安装座的另一端与超声换能器100连接,连接结构230用于将安装座连接在第二安装孔211内。由此可以保证超声换能器100较为稳定地连接在安装座上,避免在测试过程中超声换能器100出现掉落的现象。
在一些实施例中,如图2所示,连接机构包括拉钉231、拉钉套筒232及紧定螺钉234,拉钉231的一端连接在安装座上,拉钉套筒232的至少部分配合在第二安装孔211内,拉钉套筒232套设在拉钉231上,紧定螺钉234用于将拉钉套筒232连接在第二安装孔211内。可以理解的是,安装座的一部分连接在第二安装孔211内,也就是说安装座为悬臂结构,采用拉钉231连接可以使得安装座更为稳定的连接在固定座210上,降低了外部载荷对安装座的影响。
具体地,拉钉套筒232包括定位部2321和锁紧部2322,定位部2321通过紧定螺钉234配合在第二安装孔211内;锁紧部2322位于第二安装孔211的轴向外侧,锁紧部2322上配合有锁紧螺母233,锁紧螺母233的一端止抵在安装座的侧壁上。由此,可以将拉钉套筒232较为牢固的连接在第二安装孔211内,从而保证了安装座能够更为稳定的连接在固定座210上,降低了外部载荷对安装座的影响。
下面参考图1-图7描述本发明一个具体实施例的超声系统负载与谐振频率关系的测试装置1000的具体结构。
本实施例的测试系统500包括超声换能器100、固定系统200、负载加载系统300、负载检测系统400及测试系统500。
固定系统200用于支撑超声换能器100,负载加载系统300与超声换能器100相连,以向超声换能器100加载可变负载。负载检测系统400用于检测负载加载系统300朝向超声换能器100加载的负载,测试系统500与超声换能器100电连接,以向超声换能器100发出扫频信号且获得超声换能器100的谐振频率,测试系统500与负载加载系统300电连接,以向负载加载系统300输出控制信号。测试系统500与负载检测系统400电连接,以接受负载检测系统400测量到的实测值。测试系统500根据谐振频率与实测值,得到超声换能器100的负载与谐振频率的关系曲线。
如图3-图7所示,负载加载系统300包括支座310、传动机构320、压缩机构330、弹性件340和驱动电机35。支座310上设有第一安装孔311,传动机构320可活动地设在第一安装孔311内,压缩机构330与驱动电机35分别设在第一安装孔311的轴向两侧以封闭第一安装孔311。压缩机构330的远离传动机构320的一侧止抵在超声换能器100上,弹性件340的两端分别止抵在传动机构320与压缩机构330上,传动机构320通过弹性件340、压缩机构330向超声换能器100施加负载。传动机构320包括丝杠321、传动螺母322和传动滑块323,丝杠321的一端连接在驱动电机35的电机轴上,传动滑块323沿第一安装孔311的轴线方向可滑动地设在第一安装孔311内,弹性件340止抵在传动滑块323上。第一安装孔311的内周壁上开设有沿其轴向延伸的滑槽,传动滑块323上设有与滑槽相配合的滑凸3231。
压缩机构330包括压缩套筒331和压缩顶块332。压缩套筒331连接在支座310的靠近超声换能器100的一侧端面上,压缩套筒331上设有与第一安装孔311相对且贯通的装配孔3311,压缩顶块332可滑动地配合在装配孔3311内,弹性件340止抵在压缩顶块332上。装配孔3311的内周壁上开设有沿其轴向延伸的滑动槽,压缩顶块332的外周壁上设有与滑动槽相配合和滑动部3321。压缩顶块332具有配合孔3322,配合孔3322为朝向弹性件340的一侧敞开的盲孔,负载检测系统400包括设在配合孔3322的底壁上的传感器,弹性件340的一端伸入到配合孔3322内且与传感器相连。
如图1-图2所示,超声换能器100包括本体110和变幅杆120,本体110连接在固定系统200上,变幅杆120的一端连接在本体110上,变幅杆120的另一止抵在压缩机构330上,压缩机构330施加给变幅杆120的负载的方向与变幅杆120的中心轴线重合。
如图2所示,固定系统200包括固定座210、安装座及连接结构230,固定座210具有第二安装孔211,安装座的一端配合在第二安装孔211内,安装座的另一端与超声 换能器100连接,连接结构230用于将安装座连接在第二安装孔211内。接机构包括拉钉231、拉钉套筒232及紧定螺钉234,拉钉231的一端连接在安装座上,拉钉套筒232的至少部分配合在第二安装孔211内,拉钉套筒232套设在拉钉231上,紧定螺钉234用于将拉钉套筒232连接在第二安装孔211内。拉钉套筒232包括定位部2321和锁紧部2322,定位部2321通过紧定螺钉234配合在第二安装孔211内;锁紧部2322位于第二安装孔211的轴向外侧,锁紧部2322上配合有锁紧螺母233,锁紧螺母233的一端止抵在安装座的侧壁上。
本实施例的测试装置1000的测试方式如下:
1.将压缩顶块332在自由状态下与变幅杆120端面接触,测试系统500通过输出脉冲信号与开关信号给驱动器,控制驱动电机35转速,通过传动螺母322、传动滑块323、弹性件340及压缩滑块向变幅杆120传递,从而使得负载检测系统400测量出施加在变幅杆120上负载;
2.设定扫频参数,测试系统500输出扫频信号,并通过补偿电路作用在超声换能器100上;
3.测试系统500中的采集电路可以结合采样电阻与信号调理模块对电路输出信号进行采集;
4.在激励频率的作用下,机电转换材料沿其轴向产生超声频的机械振动;
5.随着负载改变,超声换能器100的谐振频率曲线逐渐漂移;
6.根据采集到的负载和超声还换能器的谐振频率拟合超声换能器100的负载与谐振频率的关系曲线。
相比现有技术,本实施例的超声系统负载与谐振频率关系的测试装置1000具有以下优点:
(1)、丝杠321、传动螺母322、传动滑块323、配合弹性件340的结构设计,使得关键零部件具有互换性,有利于在实验中使用;
(2)、可模拟可控负载下的超声加工系统,建立了驱动电机35转速与负载之间的关系,可以模拟冲击载荷、连续载荷、阶跃载荷、阶梯载荷等不同载荷情况;
(3)、传动机构320、弹性件340和负载检测系统400均位于密闭空间,使得结构紧凑且密封,有效地避免了灰尘、颗粒等因素损坏装置的核心构件;
(4)、建立了负载控制与扫频采集环节,在结合频率跟踪系统下,可以建立加工负载与超声换能器100输出功率的关系,可在超声加工频率跟踪实验中使用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施 例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种超声系统负载与谐振频率关系的测试装置,其特征在于,包括:
    超声换能器;
    固定系统,所述固定系统用于支撑所述超声换能器;
    负载加载系统,所述负载加载系统与所述超声换能器相连,以向所述超声换能器加载可变负载;
    负载检测系统,所述负载检测系统用于检测所述负载加载系统朝向所述超声换能器加载的负载;
    测试系统,所述测试系统与所述超声换能器电连接,以向所述超声换能器发出扫频信号且获得所述超声换能器的谐振频率;所述测试系统与所述负载加载系统电连接,以向所述负载加载系统输出控制信号;所述测试系统与所述负载检测系统电连接,以接受所述负载检测系统测量到的实测值;其中,
    所述测试系统根据所述谐振频率与所述实测值,得到所述超声换能器的负载与谐振频率的关系曲线。
  2. 根据权利要求1所述的超声系统负载与谐振频率关系的测试装置,其特征在于,所述负载加载系统包括:
    支座;
    传动机构,所述传动机构可活动地设在所述支座上;
    压缩机构,所述压缩机构设在所述支座上,所述压缩机构的远离所述传动机构的一侧止抵在所述超声换能器上;
    弹性件,所述弹性件的两端分别止抵在所述传动机构与所述压缩机构上,所述传动机构通过所述弹性件、所述压缩机构向所述超声换能器施加负载;
    驱动电机,所述驱动电机设在所述支座上,所述驱动电机与所述测试系统和所述传动机构相连以根据所述控制信号控制所述传动机构的活动。
  3. 根据权利要求2所述的超声系统负载与谐振频率关系的测试装置,其特征在于,所述支座上设有第一安装孔,所述传动机构设在所述第一安装孔内,所述传动机构包括:
    丝杠,所述丝杠的一端连接在所述驱动电机的电机轴上;
    与所述丝杠配合的传动滑块,所述传动滑块沿所述第一安装孔的轴线方向可滑动地设在所述第一安装孔内,所述弹性件止抵在所述传动滑块上。
  4. 根据权利要求2所述的超声系统负载与谐振频率关系的测试装置,其特征在于, 所述压缩机构包括:
    压缩套筒,所述压缩套筒连接在所述支座的靠近所述超声换能器的一侧端面上,所述压缩套筒上设有与所述第一安装孔相对且贯通的装配孔;
    压缩顶块,所述压缩顶块可滑动地配合在所述装配孔内,所述弹性件止抵在所述压缩顶块上。
  5. 根据权利要求4所述的超声系统负载与谐振频率关系的测试装置,其特征在于,所述压缩顶块具有配合孔,所述配合孔为朝向所述弹性件的一侧敞开的盲孔,所述负载检测系统包括设在所述配合孔的底壁上的传感器,所述弹性件的一端伸入到所述配合孔内且与所述传感器相连。
  6. 根据权利要求3所述的超声系统负载与谐振频率关系的测试装置,其特征在于,所述压缩机构与所述驱动电机分别设在所述第一安装孔的轴向两侧以封闭所述第一安装孔。
  7. 根据权利要求2所述超声系统负载与谐振频率关系的测试装置,其特征在于,所述超声换能器包括:
    本体,所述本体连接在所述固定系统上;
    变幅杆,所述变幅杆的一端连接在所述本体上,所述变幅杆的另一止抵在所述压缩机构上,所述压缩机构施加给所述变幅杆的负载的方向与所述变幅杆的中心轴线重合。
  8. 根据权利要求1所述超声系统负载与谐振频率关系的测试装置,其特征在于,所述固定系统包括:
    固定座,所述固定座具有第二安装孔;
    安装座,所述安装座的一端配合在所述第二安装孔内,所述安装座的另一端与所述超声换能器连接;
    连接机构,所述连接结构用于将所述安装座连接在所述第二安装孔内。
  9. 根据权利要求8所述超声系统负载与谐振频率关系的测试装置,其特征在于,所述连接机构包括:
    拉钉,所述拉钉的一端连接在所述安装座上;
    拉钉套筒,所述拉钉套筒的至少部分配合在所述第二安装孔内,所述拉钉套筒套设在所述拉钉上;
    紧定螺钉,所述紧定螺钉用于将所述拉钉套筒连接在所述第二安装孔内。
  10. 根据权利要求9所述超声系统负载与谐振频率关系的测试装置,其特征在于,所述拉钉套筒包括:
    定位部,所述定位部通过所述紧定螺钉配合在所述第二安装孔内;
    锁紧部,所述锁紧部位于所述第二安装孔的轴向外侧,所述锁紧部上配合有锁紧螺母,所述锁紧螺母的一端止抵在所述安装座的侧壁上。
PCT/CN2018/094265 2018-01-15 2018-07-03 超声系统负载与谐振频率关系的测试装置 WO2019136943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810037140.4A CN108287196B (zh) 2018-01-15 2018-01-15 超声系统负载与谐振频率关系的测试装置
CN201810037140.4 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019136943A1 true WO2019136943A1 (zh) 2019-07-18

Family

ID=62835286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094265 WO2019136943A1 (zh) 2018-01-15 2018-07-03 超声系统负载与谐振频率关系的测试装置

Country Status (2)

Country Link
CN (1) CN108287196B (zh)
WO (1) WO2019136943A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496779B (zh) * 2019-08-20 2022-07-15 河南科技学院 超声筛分换能器谐振频率自锁定与实时修正方法及超声筛分换能器电源电路
CN115077691B (zh) * 2022-07-15 2024-04-09 清华大学 超声加工系统承载能力的测量装置及评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243451A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 超音波ボンディング装置及び超音波ボンディング方法
CN102156041A (zh) * 2011-03-15 2011-08-17 清华大学 力加载装置
CN103962642A (zh) * 2014-04-23 2014-08-06 杭州电子科技大学 一种金属带锯超声锯切加工方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243451A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 超音波ボンディング装置及び超音波ボンディング方法
CN102156041A (zh) * 2011-03-15 2011-08-17 清华大学 力加载装置
CN103962642A (zh) * 2014-04-23 2014-08-06 杭州电子科技大学 一种金属带锯超声锯切加工方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, ZHE ET AL.: "Study on Influence of Load on Acoustic System Characteristics of Ultrasonic Machining", AVIATION PRECISION MANUFACTURING TECHNOLGY, vol. 48, no. 1, 15 February 2012 (2012-02-15) *
MARUYAMA YUTAKA: "Resonance Frequency Tracing System for Langevin Type Ultrasonic Transducers", MECHATRONIC SYSTEMS SIMULATION MODELING AND CONTROL, 1 March 2010 (2010-03-01), pages 105 - 116, XP055626205 *

Also Published As

Publication number Publication date
CN108287196A (zh) 2018-07-17
CN108287196B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
EP1818994B1 (en) Piezoelectric vibrator, intrinsic frequency adjusting method of piezoelectric vibrator, piezoelectric actuator and electronic device
Wang et al. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields
WO2019136943A1 (zh) 超声系统负载与谐振频率关系的测试装置
US8866316B2 (en) Tunable vibration energy harvester and method
KR0137352B1 (ko) 헤드작동기
CN103414371B (zh) 一种基于压电叠堆的激振器
CN110940353B (zh) 裸石英振子的压电激励装置及品质因子的测试装置和方法
CN208254930U (zh) 悬臂式压电疲劳试验机
JPS5856425B2 (ja) 力変換機構
WO2010071607A1 (en) Method and system for monitoring fastener loads
JP3315263B2 (ja) 音響放射変換器
US10396270B2 (en) Vibration actuator that is easy in conduction inspection
CN109238308B (zh) 一种金属筒形谐振陀螺的高精度模态测试系统及测试方法
CN201066316Y (zh) 一种活塞环张力的测量装置
JP2008530966A (ja) 電気機械駆動素子
CN112304348A (zh) 振动限位开关用的带有前置式紧固机构的堆叠式压电驱动装置
JP7204455B2 (ja) 振動型アクチュエータ、雲台、および電子機器
WO2020250431A1 (ja) 回転電機のウェッジ緩み検査装置、回転電機のウェッジ緩み検査システム、および、回転電機のウェッジ緩み検査方法
CN109728744B (zh) 一种基于叠层压电陶瓷的纤维推出装置及其工作方法
CN220063950U (zh) 板材超声波探伤机器人的超声波探头组件
CN210720016U (zh) 超声波疲劳试验机
Leinvuo et al. Flextensional ultrasonic motor using the contour mode of a square piezoelectric plate
CN215179917U (zh) 一种压电陶瓷片固定装置及其构成的检测工具
CN221037917U (zh) 一种多通道振动激励装置
KR20130064172A (ko) 초정밀 갭 센서의 초기위치 조정장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900231

Country of ref document: EP

Kind code of ref document: A1