WO2019136730A1 - 链路重新配置处理方法及相关产品 - Google Patents

链路重新配置处理方法及相关产品 Download PDF

Info

Publication number
WO2019136730A1
WO2019136730A1 PCT/CN2018/072515 CN2018072515W WO2019136730A1 WO 2019136730 A1 WO2019136730 A1 WO 2019136730A1 CN 2018072515 W CN2018072515 W CN 2018072515W WO 2019136730 A1 WO2019136730 A1 WO 2019136730A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset parameter
bwp
terminal
parameter group
network device
Prior art date
Application number
PCT/CN2018/072515
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202010388704.6A priority Critical patent/CN111642016B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2020538075A priority patent/JP7091459B2/ja
Priority to PCT/CN2018/072515 priority patent/WO2019136730A1/zh
Priority to CN201880064131.2A priority patent/CN111165049A/zh
Priority to EP18899214.3A priority patent/EP3735070B1/en
Priority to AU2018401520A priority patent/AU2018401520B2/en
Priority to ES18899214T priority patent/ES2921348T3/es
Priority to EP22157482.5A priority patent/EP4021121A1/en
Priority to KR1020207022327A priority patent/KR20200108296A/ko
Priority to TW108101247A priority patent/TWI785184B/zh
Publication of WO2019136730A1 publication Critical patent/WO2019136730A1/zh
Priority to US16/923,714 priority patent/US11006322B2/en
Priority to US17/228,115 priority patent/US11758437B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a link reconfiguration processing method and related products.
  • one carrier can contain multiple bandwidth parts (BWP).
  • BWP bandwidth parts
  • For a terminal only one upstream BWP can be activated for uplink transmission at a time.
  • only one downstream BWP can be activated for downlink transmission at a time.
  • Which BWP is currently activated by the terminal is indicated by Downlink Control Information (DCI), etc., and the BWP used by the terminal transmission can be dynamically switched in multiple BWPs in one carrier. How to efficiently configure the terminal to transmit on different BWPs is a technical problem that needs to be solved.
  • DCI Downlink Control Information
  • the embodiments of the present application provide a link reconfiguration processing method and related products, which are beneficial to more flexible configuration of processing operations performed on different BWPs, and improve beam management efficiency and system performance of BWP association.
  • the embodiment of the present application provides a link reconfiguration processing method, including:
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used to perform corresponding processing when the terminal transmits on the BWP. operating.
  • the embodiment of the present application provides a link reconfiguration processing method, including:
  • an embodiment of the present application provides a network device, where the network device has a function of implementing behavior of a first network device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processor configured to support the network device to perform corresponding functions in the methods described above. Further, the network device may further include a transceiver for supporting communication between the network device and the terminal. Further, the network device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present application provides a terminal, where the terminal has a function of implementing a behavior of a terminal in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a processor configured to support the terminal in performing the corresponding functions of the above methods.
  • the terminal may further include a transceiver for supporting communication between the terminal and the network device.
  • the terminal may further include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • an embodiment of the present application provides a network device, including a processor, a memory, a transceiver, and one or more programs, where the one or more programs are stored in the memory, and are configured by The processor executes, the program comprising instructions for performing the steps in any of the methods of the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory, and configured by the The processor executes, the program comprising instructions for performing the steps in any of the methods of the second aspect of the embodiments of the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause the computer to execute Apply some or all of the steps described in any of the methods of the first aspect of the embodiments.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to execute Apply some or all of the steps described in any of the methods of the second aspect of the embodiments.
  • the computer program product can be a software installation package.
  • the network device indicates, to the terminal, a preset parameter group, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used to perform corresponding when the terminal transmits on the BWP. Processing operations. It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • 1 is an example of a protocol architecture of a dual-connection transmission mode supporting a data replication function according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a link reconfiguration processing method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a link reconfiguration processing method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a link reconfiguration processing method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 1 shows a wireless communication system to which the present application relates.
  • the wireless communication system can work in a high frequency band, and can be a fifth generation mobile communication (the 5th generation, 5G) system, a new air interface (NR) system, and a machine to machine communication (M2M). System, etc.
  • the wireless communication system 100 can include one or more network devices 101, one or more terminals 103, and a core network device 105.
  • the network device 101 can be a base station, and the base station can be used to communicate with one or more terminals, or can be used to communicate with one or more base stations having partial terminal functions (such as a macro base station and a micro base station, such as access). Point, communication between).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities.
  • the core network device 105 includes devices on the core network side such as a Serving GateWay (SGW). Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • SGW Serving GateWay
  • the terminal 103 may be a mobile device (such as a smart phone), a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, and a mobile client. and many more.
  • the wireless communication system 100 shown in FIG. 1 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application.
  • Those skilled in the art may know that with the evolution of the network architecture and new services, The appearance of the scenario, the technical solution provided by the present application is equally applicable to similar technical problems.
  • one terminal can configure multiple downlink DL BWPs or uplink UL BWPs, and can transmit relatively dynamically on different BWPs through the DCI/Media Access Control Layer Control Unit MAC CE or the like.
  • FIG. 2 is a schematic diagram of a link reconfiguration processing method according to an embodiment of the present application, which is applied to the foregoing example communication system, where the method includes:
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used when the terminal transmits on the BWP. Perform the appropriate processing operations.
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used when the terminal transmits on the BWP.
  • the corresponding processing operation It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the value of the threshold is specified by a protocol or a network configuration.
  • the operation of detecting whether the link quality is worse than a specified or configured threshold may be referred to as beam failure detection.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is selected to satisfy A signal for a predetermined condition.
  • the preset condition is configured by the network, for example, a value corresponding to the L1-RSRP may be used as a threshold. When the measured signal quality is higher than the threshold, the preset condition is considered to be met.
  • the selection of a signal that satisfies a predetermined condition may also be referred to as a new candidate beam identification operation.
  • the preset parameter group is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter group is specifically configured to configure a PRACH sequence and a time-frequency resource used to perform the foregoing new candidate beam identification operation.
  • the preset parameter set includes a set of power control parameters for PRACH transmission sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the power control parameter may be, for example, a desired received power.
  • the predetermined condition may be, for example, configured by a network, for example, a value corresponding to the L1-RSRP may be used as a threshold. When the measured signal quality is higher than the threshold, the predetermined condition is considered to be met.
  • the terminal can transmit the PRACH to the network device according to the power control parameter indicated by the network device, and the PRACH is sent by the network device, thereby ensuring that the terminal can switch to another BWP according to the corresponding The power control parameters are accurately transmitted to the PRACH to improve data transmission stability.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the method further includes: the network device configuring the preset parameter group of the BWP; the network device indicating the BWP activation; or the network device indicating the BWP activation And configuring the preset parameter group of the BWP.
  • the method for processing the link reconfiguration according to the embodiment of the present application is the same as the embodiment shown in FIG. 2, and is applied to the foregoing example communication system.
  • the method includes:
  • the terminal receives a preset parameter group from the network device, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used by the terminal to transmit on the BWP.
  • the corresponding processing operation is performed.
  • the terminal receives a preset parameter group from the network device, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used to perform corresponding when the terminal transmits on the BWP. Processing operations. It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, an SS/PBCH block; and the corresponding processing operation is selecting a signal that satisfies a predetermined condition.
  • the preset parameter set is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter set includes a set of power control parameters for PRACH transmission sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the method further includes:
  • the terminal receives an indication of activating the BWP from a network device, where the indication is sent by the network device after configuring the preset parameter group of the BWP, or the indication is the network device Transmitted during the process of configuring the preset parameter set of the BWP.
  • FIG. 4 is a link reconfiguration processing method provided by an embodiment of the present application, which is applied to the foregoing example communication system, and the method includes:
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used when the terminal transmits on the BWP. Perform the appropriate processing operations.
  • the terminal receives a preset parameter group from the network device, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used by the terminal to transmit on the BWP.
  • the corresponding processing operation is performed.
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used when the terminal transmits on the BWP.
  • the corresponding processing operation It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device is a first network device.
  • the network device includes a processor. a memory, a transceiver, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the processor, the program including instructions for performing the following steps;
  • the preset parameter group is configured to the terminal, and the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used to perform a corresponding processing operation when the terminal transmits on the BWP.
  • the network device indicates the preset parameter group to the terminal, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used when the terminal transmits on the BWP.
  • the corresponding processing operation It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is selected to satisfy A signal for a predetermined condition.
  • the preset parameter set is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter set includes a set of power control parameters for PRACH transmission sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the program further includes instructions for: configuring the preset parameter set of the BWP; and indicating the BWP activation; or, when the BWP is activated, configuring the location The preset parameter set of the BWP.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory and configured to be executed by the processor, the program comprising instructions for performing the following steps;
  • the preset parameter group is configured for a bandwidth part BWP of the terminal, where the preset parameter group is used to perform corresponding processing when the terminal transmits on the BWP operating.
  • the terminal receives a preset parameter group from the network device, where the preset parameter group is configured for the bandwidth part BWP of the terminal, and the preset parameter group is used to perform corresponding when the terminal transmits on the BWP. Processing operations. It can be seen that, for different BWPs of the terminal, by configuring the preset parameter group, the processing operations required to be transmitted on the BWP can be more flexibly configured, and the beam management efficiency and system performance of the BWP association are improved.
  • the reference signal used to determine the link quality if only for one BWP, when switching to other BWPs, this signal cannot be used to determine whether the link quality is too poor, and the link is reconfigured. Similar problems exist in other steps of the process. Therefore, different such signals need to be configured for different BWPs, corresponding to the preset parameter groups, thereby improving the flexibility of configuring the terminal to transmit on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, an SS/PBCH block; and the corresponding processing operation is selecting a signal that satisfies a predetermined condition.
  • the preset parameter set is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter set includes a set of power control parameters for PRACH transmissions sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the program further includes instructions for: receiving an indication from the network device to activate the BWP, the indication being that the network device is configuring the preset of the BWP The parameter group is sent later, or the indication is sent by the network device in the process of configuring the preset parameter group of the BWP.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for each particular application to implement the described functionality, but such implementation should not be considered to be beyond the scope of the application.
  • the embodiments of the present application may perform the division of functional units on the terminal and the network device according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software program module. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 7 shows a block diagram of a possible functional unit configuration of the network device involved in the above embodiment, the network device being the first network device.
  • the network device 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to perform control management on the actions of the network device.
  • the processing unit 702 is configured to support the network device to perform step 201 in FIG. 2, 401 in FIG. 4, and/or other processes for the techniques described herein.
  • the communication unit 703 is for supporting communication between the network device and other devices, such as communication with the terminal shown in FIG. 6.
  • the network device may further include a storage unit 701 for storing program codes and data of the network device.
  • the processing unit 702 can be a processor or a controller
  • the communication unit 703 can be a transceiver, a transceiver circuit, a radio frequency chip, etc.
  • the storage unit 701 can be a memory.
  • the processing unit 702 is configured to indicate, by using the communication unit 703, a preset parameter group, where the preset parameter group is configured for a bandwidth part BWP of the terminal, where the preset parameter group is used by the The terminal performs a corresponding processing operation when transmitting on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is selected to satisfy A signal for a predetermined condition.
  • the preset parameter set is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter set includes a set of power control parameters for PRACH transmissions sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the processing unit 702 is further configured to configure the preset parameter group of the BWP; and indicate the BWP activation; or, when the BWP is activated, configure the BWP Preset parameter group.
  • the network device involved in the embodiment of the present application may be the network device shown in FIG. 5.
  • FIG. 8 shows a block diagram of one possible functional unit configuration of the terminal involved in the above embodiment.
  • the terminal 800 includes a processing unit 802 and a communication unit 803.
  • the processing unit 802 is configured to control and manage the actions of the terminal.
  • the processing unit 802 is configured to support the terminal to perform step 301 in FIG. 3, step 402 in FIG. 4, and/or other processes for the techniques described herein.
  • the communication unit 803 is used to support communication between the terminal and other devices, such as communication with the network device shown in FIG.
  • the terminal may further include a storage unit 801 for storing program codes and data of the terminal.
  • the processing unit 802 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 803 may be a transceiver, a transceiver circuit, or the like, and the storage unit 801 may be a memory.
  • the processing unit 802 is configured to receive, by using the communication unit, a preset parameter group from a network device, where the preset parameter group is configured for a bandwidth part BWP of the terminal, where the preset parameter group is used.
  • the terminal performs a corresponding processing operation when transmitting on the BWP.
  • the preset parameter set includes at least one preset parameter group, and each preset parameter group corresponds to one or more BWPs.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, a synchronization signal/physical broadcast channel block SS/PBCH block; and the corresponding processing operation is a detection chain. Whether the quality of the road is worse than the threshold of the specified or configured.
  • the preset parameter set includes at least one of the following: a channel state information reference signal CSI-RS, an SS/PBCH block; and the corresponding processing operation is selecting a signal that satisfies a predetermined condition.
  • the preset parameter set is used to configure a corresponding physical random access channel PRACH sequence and/or a time-frequency resource.
  • the preset parameter set includes a set of power control parameters for PRACH transmission sent by the terminal to the network device after the terminal selects a signal that satisfies a predetermined condition.
  • the preset parameter set includes a control resource set CORESET; the corresponding processing operation is to send the physical random access channel PRACH signal on the BWP in the specified window within the CORESET To monitor the monitor physical downlink control channel PDCCH.
  • the processing unit 802 is further configured to receive, by the communication unit 803, an indication from the network device to activate the BWP, where the indication is that the network device is configured to configure the BWP And sending the parameter group, or the indication is sent by the network device in the process of configuring the preset parameter group of the BWP.
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 6.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a terminal as in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a network in the method embodiment as described above Some or all of the steps described by the device.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the method embodiment as described above Some or all of the steps described in the terminal.
  • the computer program product can be a software installation package.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform a network as in the above method Some or all of the steps described by the device.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)

Abstract

本申请实施例公开了链路重新配置处理方法及相关产品,包括:网络设备向终端指示预设参数组,预设参数组是针对终端的带宽部分BWP配置的,预设参数组用于终端在BWP上传输时执行相应的处理操作。本申请实施例有利于在不同的BWP上更灵活的配置传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。

Description

链路重新配置处理方法及相关产品 技术领域
本申请涉及通信技术领域,尤其涉及一种链路重新配置处理方法及相关产品。
背景技术
在新空口(NR,New radio)中,一个载波可以包含多个带宽部分(Bandwidth Part,BWP)。对于一个终端来说,在一个时刻只有一个上行BWP可以被激活用于上行传输。同样的,在一个时刻只有一个下行BWP可以被激活用于下行传输。终端当前被激活哪个BWP是通过下行控制信息(Downlink Control Information,DCI)等指示的,终端传输所使用的BWP是可以在一个载波内的多个BWP中动态切换的。如何高效的配置终端在不同的BWP上传输,是需要解决的技术问题。
发明内容
本申请的实施例提供一种链路重新配置处理方法及相关产品,有利于在不同的BWP上更灵活的配置传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。
第一方面,本申请实施例提供一种链路重新配置处理方法,包括:
网络设备向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
第二方面,本申请实施例提供一种链路重新配置处理方法,包括:
终端接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
第三方面,本申请实施例提供一种网络设备,该网络设备具有实现上述方法设计中第一网络设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,网络设备包括处理器,所述处理器被配置为支持网络设备执行上述方法中相应的功能。进一步的,网络设备还可以包括收发器,所述收发器用于支持网络设备与终端之间的通信。进一步的,网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本申请实施例提供一种终端,该终端具有实现上述方法设计中终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,终端包括处理器,所述处理器被配置为支持终端执行上述方法中相应的功能。进一步的,终端还可以包括收发器,所述收发器用于支持终端与网络设备之间的通信。进一步的,终端还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
第五方面,本申请实施例提供一种网络设备,包括处理器、存储器、收发器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器 执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第二方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例,网络设备向终端指示预设参数组,该预设参数组是针对终端的带宽部分BWP配置的,且该预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种支持数据复制功能的双连接传输模式的协议架构示例;
图2是本申请实施例提供的一种链路重新配置处理方法的流程示意图;
图3是本申请实施例提供的一种链路重新配置处理方法的流程示意图;
图4是本申请实施例提供的一种链路重新配置处理方法的流程示意图;
图5是本申请实施例提供的一种网络设备的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图;
图7是本申请实施例提供的一种网络设备的结构示意图;
图8是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
图1示出了本申请涉及的无线通信系统。所述无线通信系统可以工作在高频频段上,可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。如所示,无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网设备105。其中:网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是 时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。核心网设备105包括服务网关(Serving GateWay,SGW)等核心网侧的设备。终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备(如智能手机)、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
下面对本申请涉及的相关技术进行介绍。
目前,在现在的NR设计中,一个终端可以配置多个下行DL BWP或者上行UL BWP,并且可以通过DCI/媒体接入控制层控制单元MAC CE等方式来相对动态地在不同的BWP上传输。
但是在目前的链路重新配置(波束失败恢复,beam failure recovery)机制中,很多配置不能有效地支持上述BWP动态切换行为。例如用于测量链路质量是否过差(beam failure detection)的信号如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差。在链路重新配置流程的其他步骤也都是有类似问题。
针对上述问题,本申请实施例提出以下实施例,下面结合附图进行详细描述。
请参阅图2,图2是本申请实施例提供的一种链路重新配置处理方法,应用于上述示例通信系统,该方法包括:
在201部分,网络设备向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
可以看出,本申请实施例中,网络设备向终端指示预设参数组,该预设参数组是针对终端的带宽部分BWP配置的,且该预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
其中,所述门限的值由协议规定,或者网络配置。所述检测链路质量是否差于规定或配置的门限的操作又可以称为波束失败检测beam failure detection。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为选择满足预 定条件的一个信号。
其中,所述预设条件由网络配置,例如可以是L1-RSRP对应的一个数值作为门限,当测量的信号质量高于这一门限时,则认为满足预设条件。所述选择满足预定条件的一个信号又可以称为新候选波束识别new candidate beam identification操作。
在本可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
其中,该预设参数组具体用于配置执行上述新候选波束识别操作所使用的PRACH序列和时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
其中,所述功率控制参数例如可以是期望接收功率。所述预定条件例如可以是由网络配置,例如可以是L1-RSRP对应的一个数值作为门限,当测量的信号质量高于这一门限时,则认为满足预设条件。
可见,本示例中,终端选择满足预定条件的一个信号后,可以根据网络设备指示的功率控制参数向PRACH传输,该PRACH为所述网络设备发送,从而确保终端切换倒其他BWP时,可以根据对应的功率控制参数准确向PRACH传输,提高数据传输稳定性。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述方法还包括:所述网络设备配置所述BWP的所述预设参数组;所述网络设备指示所述BWP激活;或者,所述网络设备指示所述BWP激活时,配置所述BWP的所述预设参数组。
与图2所示实施例一致的,请参阅图3,图3是本申请实施例提供的另一种链路重新配置处理方法,应用于上述示例通信系统,该方法包括:
在301部分,终端接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
可以看出,本申请实施例中,终端接收来自网络设备的预设参数组,预设参数组是针对终端的带宽部分BWP配置的,预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
在一个可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述方法还包括:
所述终端接收来自网络设备的激活所述BWP的指示,所述指示是所述网络设备在配置所述BWP的所述预设参数组之后而发送的,或者,所述指示是所述网络设备在配置所述BWP的所述预设参数组的过程中而发送的。
与图2和图3实施例一致的,请参阅图4,图4是本申请实施例提供的一种链路重新配置处理方法,应用于上述示例通信系统,该方法包括:
在401部分,网络设备向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
在402部分,终端接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
可以看出,本申请实施例中,网络设备向终端指示预设参数组,该预设参数组是针对终端的带宽部分BWP配置的,且该预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
与上述实施例一致的,请参阅图5,图5是本申请实施例提供的一种网络设备的结构示意图,该网络设备为第一网络设备,如图所示,该网络设备包括处理器、存储器、收发器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
可以看出,本申请实施例中,网络设备向终端指示预设参数组,该预设参数组是针对终端的带宽部分BWP配置的,且该预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
在一个可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:配置所述BWP的所述预设参数组;以及指示所述BWP激活;或者,指示所述BWP激活时,配置所述BWP的所述预设参数组。
与上述实施例一致的,请参阅图6,图6是本申请实施例提供的一种终端的结构示意图,如图所示,该终端包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
可以看出,本申请实施例中,终端接收来自网络设备的预设参数组,预设参数组是针对终端的带宽部分BWP配置的,预设参数组用于终端在BWP上传输时执行相应的处理操作。可见针对终端的不同的BWP,通过配置预设参数组,能够更加灵活的配置在BWP上传输时所需要执行的处理操作,提高BWP关联的波束管理效率和系统性能。例如在不同的带宽部分BWP,用于判断链路质量的参考信号,如果只针对一个BWP,则切换到其他BWP时,将无法使用这个信号来判断链路质量是否过差,在链路重新配置流程其他步骤也都存在类似问题。因此需要针对不同的BWP配置不同的这种信号,对应上述预设参数组,以此提高配置终端在BWP上传输的灵活性。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
在一个可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用 于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:接收来自网络设备的激活所述BWP的指示,所述指示是所述网络设备在配置所述BWP的所述预设参数组之后而发送的,或者,所述指示是所述网络设备在配置所述BWP的所述预设参数组的过程中而发送的。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的网络设备的一种可能的功能单元组成框图,该网络设备为第一网络设备。网络设备700包括:处理单元702和通信单元703。处理单元702用于对网络设备的动作进行控制管理,例如,处理单元702用于支持网络设备执行图2中的步骤201、图4中的401和/或用于本文所描述的技术的其它过程。通信单元703用于支持网络设备与其他设备的通信,例如与图6中示出的终端之间的通信。网络设备还可以包括存储单元701,用于存储网络设备的程序代码和数据。
其中,处理单元702可以是处理器或控制器,通信单元703可以是收发器、收发电路、射频芯片等,存储单元701可以是存储器。
其中,所述处理单元702用于通过所述通信单元703向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
在一个可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用 于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述处理单元702还用于配置所述BWP的所述预设参数组;以及指示所述BWP激活;或者,指示所述BWP激活时,配置所述BWP的所述预设参数组。
当处理单元702为处理器,通信单元703为通信接口,存储单元701为存储器时,本申请实施例所涉及的网络设备可以为图5所示的网络设备。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的终端的一种可能的功能单元组成框图。终端800包括:处理单元802和通信单元803。处理单元802用于对终端的动作进行控制管理,例如,处理单元802用于支持终端执行图3中的步骤301,图4中的步骤402和/或用于本文所描述的技术的其它过程。通信单元803用于支持终端与其他设备的通信,例如与图5中示出的网络设备之间的通信。终端还可以包括存储单元801,用于存储终端的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元803可以是收发器、收发电路等,存储单元801可以是存储器。
其中,所述处理单元802用于通过所述通信单元接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
在一个可能的示例中,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
在一个可能的示例中,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
在一个可能的示例中,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
在一个可能的示例中,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
在一个可能的示例中,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
在一个可能的示例中,所述处理单元802还用于通过所述通信单元803接收来自网络设备的激活所述BWP的指示,所述指示是所述网络设备在配置所述BWP的所述预设参数组之后而发送的,或者,所述指示是所述网络设备在配置所述BWP的所述预设参数组的过程中 而发送的。
当处理单元802为处理器,通信单元803为通信接口,存储单元801为存储器时,本申请实施例所涉及的终端可以为图6所示的终端。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法中网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (22)

  1. 一种链路重新配置处理方法,其特征在于,包括:
    网络设备向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
  2. 根据权利要求1所述的方法,其特征在于,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
  4. 根据权利要求1或2所述的方法,其特征在于,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
  5. 根据权利要求4所述的方法,其特征在于,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
  6. 根据权利要求1或2所述的方法,其特征在于,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
  7. 根据权利要求1-6所述的方法,其特征在于,所述预设参数组包括控制资源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备配置所述BWP的所述预设参数组;
    所述网络设备指示所述BWP激活;或者,
    所述网络设备指示所述BWP激活时,配置所述BWP的所述预设参数组。
  9. 一种链路重新配置处理方法,其特征在于,包括:
    终端接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
  10. 根据权利要求9所述的方法,其特征在于,所述预设参数组包括至少一个预设参数组,每个预设参数组对应一个或多个BWP。
  11. 根据权利要求9或10所述的方法,其特征在于,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SS/PBCH block;所述相应的处理操作为检测链路质量是否差于规定或配置的门限。
  12. 根据权利要求9或10所述的方法,其特征在于,所述预设参数组包括以下至少一种信号:信道状态信息参考信号CSI-RS、SS/PBCH block;所述相应的处理操作为选择满足预定条件的一个信号。
  13. 根据权利要求12所述的方法,其特征在于,所述预设参数组用于配置对应的物理随机接入信道PRACH序列和/或时频资源。
  14. 根据权利要求9或10所述的方法,其特征在于,所述预设参数组包括一组功率控制参数,所述功率控制参数用于所述终端选择满足预定条件的一个信号后向所述网络设备发送的PRACH传输。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述预设参数组包括控制资 源集合CORESET;所述相应的处理操作为在所述BWP上发送物理随机接入信道PRACH信号后,在规定的窗口内在所述CORESET内去监听monitor物理下行控制信道PDCCH。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自网络设备的激活所述BWP的指示,所述指示是所述网络设备在配置所述BWP的所述预设参数组之后而发送的,或者,所述指示是所述网络设备在配置所述BWP的所述预设参数组的过程中而发送的。
  17. 一种网络设备,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于通过所述通信单元向终端指示预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
  18. 一种终端,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于通过所述通信单元接收来自网络设备的预设参数组,所述预设参数组是针对所述终端的带宽部分BWP配置的,所述预设参数组用于所述终端在所述BWP上传输时执行相应的处理操作。
  19. 一种网络设备,其特征在于,包括处理器、存储器、收发器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-8任一项所述的方法中的步骤的指令。
  20. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求9-16任一项所述的方法中的步骤的指令。
  21. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-8任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求9-16任一项所述的方法。
PCT/CN2018/072515 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品 WO2019136730A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2018401520A AU2018401520B2 (en) 2018-01-12 2018-01-12 Link reconfiguration processing method and related products
JP2020538075A JP7091459B2 (ja) 2018-01-12 2018-01-12 リンク再設定処理方法及び関連製品
PCT/CN2018/072515 WO2019136730A1 (zh) 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品
CN201880064131.2A CN111165049A (zh) 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品
EP18899214.3A EP3735070B1 (en) 2018-01-12 2018-01-12 Link reconfiguration processing method and related products
CN202010388704.6A CN111642016B (zh) 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品
ES18899214T ES2921348T3 (es) 2018-01-12 2018-01-12 Método de procesamiento de reconfiguración de enlaces y productos relacionados
EP22157482.5A EP4021121A1 (en) 2018-01-12 2018-01-12 Link reconfiguration processing method and related products
KR1020207022327A KR20200108296A (ko) 2018-01-12 2018-01-12 링크 재구성 처리 방법 및 관련 제품
TW108101247A TWI785184B (zh) 2018-01-12 2019-01-11 鏈路重新配置處理方法及相關產品
US16/923,714 US11006322B2 (en) 2018-01-12 2020-07-08 Link reconfiguration processing method and related products
US17/228,115 US11758437B2 (en) 2018-01-12 2021-04-12 Link reconfiguration processing method and related products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072515 WO2019136730A1 (zh) 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/923,714 Continuation US11006322B2 (en) 2018-01-12 2020-07-08 Link reconfiguration processing method and related products

Publications (1)

Publication Number Publication Date
WO2019136730A1 true WO2019136730A1 (zh) 2019-07-18

Family

ID=67219236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072515 WO2019136730A1 (zh) 2018-01-12 2018-01-12 链路重新配置处理方法及相关产品

Country Status (9)

Country Link
US (2) US11006322B2 (zh)
EP (2) EP3735070B1 (zh)
JP (1) JP7091459B2 (zh)
KR (1) KR20200108296A (zh)
CN (2) CN111165049A (zh)
AU (1) AU2018401520B2 (zh)
ES (1) ES2921348T3 (zh)
TW (1) TWI785184B (zh)
WO (1) WO2019136730A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111165049A (zh) * 2018-01-12 2020-05-15 Oppo广东移动通信有限公司 链路重新配置处理方法及相关产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097796A1 (en) * 2010-02-10 2011-08-18 Telefonaktiebolaget Lm Ericsson Method and arrangement in a telecommunications system
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
CN102263583A (zh) * 2011-08-19 2011-11-30 电信科学技术研究院 一种发送和接收csi的方法、系统及设备
CN106233773A (zh) * 2014-04-28 2016-12-14 夏普株式会社 基站装置及其传输方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282902B (zh) * 2009-01-14 2015-12-16 瑞典爱立信有限公司 无线通信系统中的方法和设备
US8599708B2 (en) * 2010-01-14 2013-12-03 Qualcomm Incorporated Channel feedback based on reference signal
US9603048B2 (en) * 2012-03-16 2017-03-21 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
US20170005770A1 (en) * 2013-12-26 2017-01-05 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
EP3139658B1 (en) * 2014-04-28 2023-11-29 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
KR102574004B1 (ko) * 2015-01-19 2023-09-01 퀄컴 인코포레이티드 Fd-mimo 를 위한 csi 피드백 오버헤드 감축
CN106162673B (zh) 2015-04-17 2020-02-14 华为技术有限公司 波束选择方法及终端设备
WO2018082016A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Methods and apparatus for setting subband csi-related parameters
TWI601388B (zh) * 2016-11-17 2017-10-01 翌勤通訊股份有限公司 對稱式中繼器及其測量天線隔離度的方法
US10506523B2 (en) * 2016-11-18 2019-12-10 Qualcomm Incorporated Subband set dependent uplink power control
CN110612743B (zh) * 2017-03-17 2022-08-12 瑞典爱立信有限公司 用于移动性管理的方法和设备
US10595291B2 (en) * 2017-08-10 2020-03-17 Electronics And Telecommunications Research Institute Method for communicating using synchronization signal block in mobile communication system and apparatus for the same
CN111165049A (zh) * 2018-01-12 2020-05-15 Oppo广东移动通信有限公司 链路重新配置处理方法及相关产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097796A1 (en) * 2010-02-10 2011-08-18 Telefonaktiebolaget Lm Ericsson Method and arrangement in a telecommunications system
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
CN102263583A (zh) * 2011-08-19 2011-11-30 电信科学技术研究院 一种发送和接收csi的方法、系统及设备
CN106233773A (zh) * 2014-04-28 2016-12-14 夏普株式会社 基站装置及其传输方法

Also Published As

Publication number Publication date
TW201931895A (zh) 2019-08-01
US11006322B2 (en) 2021-05-11
US20210235324A1 (en) 2021-07-29
CN111642016A (zh) 2020-09-08
TWI785184B (zh) 2022-12-01
ES2921348T3 (es) 2022-08-24
AU2018401520B2 (en) 2022-12-08
CN111165049A (zh) 2020-05-15
EP3735070A4 (en) 2020-12-16
US20200336944A1 (en) 2020-10-22
US11758437B2 (en) 2023-09-12
AU2018401520A1 (en) 2020-08-20
KR20200108296A (ko) 2020-09-17
EP3735070B1 (en) 2022-04-06
EP4021121A1 (en) 2022-06-29
EP3735070A1 (en) 2020-11-04
JP2021516472A (ja) 2021-07-01
CN111642016B (zh) 2023-06-27
JP7091459B2 (ja) 2022-06-27

Similar Documents

Publication Publication Date Title
WO2019136728A1 (zh) 传输配置方法及相关产品
WO2018228468A1 (zh) 一种无线链路监控方法和装置
WO2019157705A1 (zh) 辅小区组配置方法及相关产品
WO2019149023A1 (zh) 一种中继传输方法和装置
US11304081B2 (en) Data transmission method and data transmission apparatus
JP7265021B2 (ja) ダウンリンクデータ送信方法及び関連製品
WO2019196885A1 (zh) 一种波束恢复的方法及装置
WO2018201926A1 (zh) 上行载波切换的方法、网络设备和终端设备
CN113747478A (zh) 通信方法及装置
WO2023125089A1 (zh) 故障检测的方法及其装置
TWI785184B (zh) 鏈路重新配置處理方法及相關產品
US11005626B2 (en) Parameter configuration method and related products
WO2021031004A1 (zh) 载波测量方法和装置
WO2019153284A1 (zh) 无线链路监测方法及相关设备
US12028282B2 (en) Parameter configuration method and related products
WO2023024704A1 (zh) 通信方法以及通信装置
WO2024031692A1 (zh) Ai/ml模型的监测方法和装置
CN109691025B (zh) Pdcp实体的配置方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207022327

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018899214

Country of ref document: EP

Effective date: 20200728

ENP Entry into the national phase

Ref document number: 2018401520

Country of ref document: AU

Date of ref document: 20180112

Kind code of ref document: A