WO2019136722A1 - 反馈信息的传输方法和设备 - Google Patents

反馈信息的传输方法和设备 Download PDF

Info

Publication number
WO2019136722A1
WO2019136722A1 PCT/CN2018/072497 CN2018072497W WO2019136722A1 WO 2019136722 A1 WO2019136722 A1 WO 2019136722A1 CN 2018072497 W CN2018072497 W CN 2018072497W WO 2019136722 A1 WO2019136722 A1 WO 2019136722A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
determining
repetitions
time parameters
time
Prior art date
Application number
PCT/CN2018/072497
Other languages
English (en)
French (fr)
Inventor
费永强
余政
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/072497 priority Critical patent/WO2019136722A1/zh
Priority to CN201880075670.6A priority patent/CN111373680B/zh
Publication of WO2019136722A1 publication Critical patent/WO2019136722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and a device for transmitting feedback information.
  • a long term evolution (LTE) communication system can support machine type communication (MTC).
  • MTC machine type communication
  • DCI downlink control information
  • MPDCCH physical downlink control channel
  • the network device may send a hybrid automatic repeat request (HARQ) feedback message to the terminal device to indicate whether the network device correctly receives the terminal device and sends the signal through a physical uplink shared channel (PUSCH).
  • HARQ hybrid automatic repeat request
  • the HARQ feedback information can be carried in the DCI.
  • the network device may instruct the terminal device to repeatedly transmit the same data multiple times, and the network device may perform combined reception detection. The terminal device stops transmitting after the specified number of repetitions is always transmitted. The network device sends the HARQ feedback information to the terminal device after the terminal device repeats all the uplink data.
  • the terminal device Even if the network device correctly decodes the uplink data sent by the terminal device when the terminal device does not send the completely repeated data, the terminal device continues to send the repeated uplink data until the number of repetitions of sending the uplink data reaches the repetition indicated by the network device. The number of times.
  • the above transmission mechanism wastes spectrum resources and increases the power consumption of the terminal device.
  • the embodiment of the present application provides a method and a device for transmitting feedback information to save resource overhead and terminal energy consumption.
  • the embodiment of the present application provides a method for transmitting feedback information, where the method includes: determining N first time parameters according to a maximum number of repetitions of a downlink control channel, and/or, according to a maximum number of repetitions of a physical uplink shared channel. Determine M second time parameters. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined. The feedback information for the uplink data is detected in the second search space corresponding to the at least one of the L feedback moments.
  • the terminal device may detect the feedback information for the uplink data at at least one of the L feedback moments.
  • the terminal device can detect feedback information at a limited number of feedback moments, saving resource overhead and terminal energy consumption.
  • the group feedback transmission mode the problem that the feedback time confusion caused by each terminal device based on the initial end time of transmitting the PUSCH is avoided, and each terminal device can detect the feedback information at a limited number of feedback moments, thereby saving resource overhead and terminal. Energy consumption.
  • determining, by the maximum number of repetitions of the downlink control channel, the N first time parameters including: according to a maximum number of repetitions of the downlink control channel, and a predefined first relationship Determine N first time parameters.
  • the data processing process for determining the N first time parameters is simplified by static configuration.
  • the flexibility of determining N first time parameters is improved by means of configuration parameters of the network device.
  • the N2 first parameters indicate a repetition level of the N downlink control channels. Determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, including: determining N first time parameters according to a repetition level of the N downlink control channels and a maximum repetition number of the downlink control channel.
  • the N2 first parameters indicate N first reference coefficients, and the first reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • Determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel including: determining N first time parameters according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, N The one time parameter corresponds to the product of the N first reference coefficients and the maximum number of repetitions of the downlink control channel, respectively.
  • the N2 first parameters are used to indicate N third reference coefficients, and the third reference coefficient is greater than or equal to 1.
  • the N first time parameters are determined according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, including: according to N
  • the third reference coefficients and the maximum number of repetitions of the downlink control channel determine N first time parameters, and the N first time parameters respectively correspond to the quotient of the maximum repetition number of the downlink control channel and the N third reference coefficients.
  • determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel including: according to a maximum number of repetitions of the physical uplink shared channel and a predefined number
  • the second relationship determines M second time parameters.
  • the data processing process for determining the M second time parameters is simplified by static configuration.
  • the flexibility of determining M second time parameters is improved by means of configuration parameters of the network device.
  • the M2 second parameters indicate a repetition level of the M physical uplink shared channels, and the M is determined according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel.
  • the second time parameter includes: determining M second time parameters according to a repetition level of the M physical uplink shared channels and a maximum repetition quantity of the physical uplink shared channel.
  • the M2 second parameters indicate M second reference coefficients, and the second reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • Determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel including: determining M second time parameters according to the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel, where The second time parameters respectively correspond to the product of the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel.
  • the M2 second parameters indicate M fourth reference coefficients, and the fourth reference coefficient is greater than or equal to 1.
  • Determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel including: determining M second time parameters according to the M fourth reference coefficients and the maximum number of repetitions of the physical uplink shared channel, The M second time parameters respectively correspond to the quotient of the maximum repetition number of the physical uplink shared channel and the M fourth reference coefficients.
  • i and j are integers, 0 ⁇ i ⁇ N-1, and 0 ⁇ j ⁇ M-1.
  • the downlink subframe or index of Qj+O is the bandwidth reduction/coverage enhancement downlink subframe of n+Pi+Qj+O.
  • i, j and O are integers, 0 ⁇ i ⁇ N-1, 0 ⁇ j ⁇ M-1, and O ⁇ 4.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • a group feedback transmission manner is also provided.
  • the plurality of terminal devices may be divided into at least one terminal device group, and each terminal device group includes at least two terminal devices.
  • the group feedback information may include feedback information of each terminal device in the terminal device group.
  • the group feedback information may include multiple domains, each domain corresponding to one terminal device, or each domain corresponding to one HARQ process.
  • Each terminal device can determine whether the uplink data sent by the terminal device is correctly received by the network device by detecting feedback information carried in the domain.
  • the group feedback information may include multiple domains, and each domain corresponds to one frequency domain resource.
  • Each terminal device may determine the group feedback information, and determine, according to the frequency domain resource that the terminal device transmits the uplink data, a domain for feeding back uplink data of the terminal device in the group of feedback information, and further determining that the terminal device sends the Whether the uplink data is correctly received by the network device.
  • the feedback information of the multiple terminal devices can be transmitted through the group feedback information, which saves resource overhead and improves resource utilization.
  • the embodiment of the present application provides a method for transmitting feedback information, where the method includes: determining N first time parameters according to a maximum number of repetitions of a downlink control channel, and/or, according to a maximum repetition number of a physical uplink shared channel. Determine M second time parameters. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined. The second search space corresponding to the at least one of the L feedback moments sends feedback information to the terminal device to the uplink data.
  • determining, by the maximum number of repetitions of the downlink control channel, the N first time parameters including: according to a maximum number of repetitions of the downlink control channel, and a predefined first relationship , determining N first time parameters.
  • the N2 first parameters indicate a repetition level of the N downlink control channels. Determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, including: determining N first time parameters according to a repetition level of the N downlink control channels and a maximum repetition number of the downlink control channel.
  • the N2 first parameters indicate N first reference coefficients, and the first reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • Determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel including: determining N first time parameters according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, N The one time parameter corresponds to the product of the N first reference coefficients and the maximum number of repetitions of the downlink control channel, respectively.
  • the N2 first parameters indicate N third reference coefficients, and the third reference coefficient is greater than or equal to 1.
  • Determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel including: determining N first time parameters according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel, N The first time parameter corresponds to the maximum number of repetitions of the downlink control channel and the quotient of the N third reference coefficients, respectively.
  • determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel including: according to a maximum number of repetitions of the physical uplink shared channel and a predefined number
  • the second relationship determines M second time parameters.
  • the M2 second parameters indicate a repetition level of the M physical uplink shared channels. Determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel, including: determining the M second times according to the repetition level of the M physical uplink shared channels and the maximum repetition number of the physical uplink shared channel parameter.
  • the M2 second parameters indicate M second reference coefficients, and the second reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • Determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel including: determining M second time parameters according to the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel, where The second time parameters respectively correspond to the product of the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel.
  • the M2 second parameters indicate M fourth reference coefficients, and the fourth reference coefficient is greater than or equal to 1.
  • Determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel including: determining M second time parameters according to the M fourth reference coefficients and the maximum number of repetitions of the physical uplink shared channel, where The second time parameters respectively correspond to the maximum number of repetitions of the physical uplink shared channel and the quotient of the M fourth reference coefficients.
  • determining, according to the N first time parameters and/or the M second time parameters, and the first search space, the L feedback moments including: according to the i+1 first time parameters Pi, j+1th second time parameter Qj, and starting subframe index n of the first search space, determining that L feedback moments include downlink subframes with an index of n+Pi+Qj Or the bandwidth reduction/covering enhancement downlink subframe whose index is n+Pi+Qj.
  • i and j are integers, 0 ⁇ i ⁇ N-1, and 0 ⁇ j ⁇ M-1.
  • determining, according to the N first time parameters and/or the M second time parameters, and the first search space, the L feedback moments including: according to the i+1 first time parameters Pi, j+1th second time parameter Qj, starting subframe index n of the first search space, and first interval O, determining that L feedback moments include an index of n+Pi+
  • the downlink subframe or index of Qj+O is the bandwidth reduction/coverage enhancement downlink subframe of n+Pi+Qj+O.
  • i, j and O are integers, 0 ⁇ i ⁇ N-1, 0 ⁇ j ⁇ M-1, and O ⁇ 4.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • an embodiment of the present application provides a communications device, including: a processing module and a transceiver module.
  • the processing module is configured to determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined.
  • the transceiver module is configured to detect feedback information about the uplink data in the second search space corresponding to the at least one of the L feedback moments.
  • the processing module is specifically configured to: determine, according to a maximum number of repetitions of the downlink control channel, and a predefined first relationship, the N first time parameters. Or determining N2 first parameters, and determining N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, where N2 is an integer greater than or equal to 1 and less than or equal to N.
  • the N2 first parameters indicate a repetition level of the N downlink control channels.
  • the processing module is specifically configured to: determine N first time parameters according to a repetition level of the N downlink control channels and a maximum repetition quantity of the downlink control channel.
  • the N2 first parameters indicate N first reference coefficients, and the first reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • the processing module is specifically configured to: determine, according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, N first time parameters, where the N first time parameters are respectively the maximum repetition of the N first reference coefficients and the downlink control channel The product of the number of times corresponds.
  • the N2 first parameters indicate N third reference coefficients
  • the third reference coefficient is greater than or equal to 1.
  • the processing module is specifically configured to: determine, according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel, the N first time parameters, the N first time parameters and the maximum repetition number of the downlink control channel and the N third reference respectively The quotient of the coefficient corresponds.
  • the M second time parameters are determined according to a maximum number of repetitions of the physical uplink shared channel and a predefined second relationship. Or determining M2 second parameters, and determining M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel, where M2 is an integer greater than or equal to 1 and less than or equal to M.
  • the M2 second parameters indicate a repetition level of the M physical uplink shared channels.
  • the processing module is specifically configured to: determine M second time parameters according to a repetition level of the M physical uplink shared channels and a maximum repetition quantity of the physical uplink shared channel.
  • the M2 second parameters indicate M second reference coefficients, and the second reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • the processing module is specifically configured to: determine M second time parameters according to the M second reference coefficients and a maximum number of repetitions of the physical uplink shared channel, where the M second time parameters are respectively associated with the M second reference coefficients and the physical uplink shared channel The product of the maximum number of repetitions corresponds.
  • the M2 second parameters indicate M fourth reference coefficients
  • the fourth reference coefficient is greater than or equal to 1.
  • the processing module is specifically configured to: determine, according to the M fourth reference coefficients and the maximum number of repetitions of the physical uplink shared channel, the M second time parameters, and the M second time parameters respectively and the maximum number of repetitions of the physical uplink shared channel and the M The quotient of the four reference coefficients.
  • the processing module is specifically configured to: according to the (i+1)th first time parameter Pi, the j+1th second time parameter Qj, and the first search space
  • the starting subframe index n determines that the L feedback moments include a downlink subframe with an index of n+Pi+Qj or a bandwidth reduction/covering enhanced downlink subframe with an index of n+Pi+Qj.
  • i and j are integers, 0 ⁇ i ⁇ N-1, and 0 ⁇ j ⁇ M-1.
  • the processing module is specifically configured to: according to the (i+1)th first time parameter Pi, the j+1th second time parameter Qj, the first search space
  • the starting subframe index n and the first interval O determining that the L feedback moments include a downlink subframe with an index of n+Pi+Qj+O or a bandwidth reduction/covering enhancement downlink with an index of n+Pi+Qj+O frame.
  • i, j and O are integers, 0 ⁇ i ⁇ N-1, 0 ⁇ j ⁇ M-1, and O ⁇ 4.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • an embodiment of the present application provides a network device, including a processing module and a transceiver module.
  • the processing module is configured to determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined.
  • the transceiver module is configured to send, to the terminal device, feedback information about the uplink data in the second search space corresponding to the at least one of the L feedback moments.
  • the processing module is specifically configured to: determine, according to a maximum number of repetitions of the downlink control channel, and a predefined first relationship, the N first time parameters. Or determining N2 first parameters, and determining N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, where N2 is an integer greater than or equal to 1 and less than or equal to N.
  • the N2 first parameters indicate a repetition level of the N downlink control channels.
  • the processing module is specifically configured to: determine N first time parameters according to a repetition level of the N downlink control channels and a maximum repetition quantity of the downlink control channel.
  • the N2 first parameters indicate N first reference coefficients, and the first reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • the processing module is specifically configured to: determine, according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, N first time parameters, where the N first time parameters are respectively the maximum repetition of the N first reference coefficients and the downlink control channel The product of the number of times corresponds.
  • the N2 first parameters indicate N third reference coefficients
  • the third reference coefficient is greater than or equal to 1.
  • the processing module is specifically configured to: determine, according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel, the N first time parameters, the N first time parameters and the maximum repetition number of the downlink control channel and the N third reference respectively The quotient of the coefficient corresponds.
  • the processing module is configured to: determine, according to a maximum number of repetitions of the physical uplink shared channel and a predefined second relationship, the M second time parameters. Or determining M2 second parameters, and determining M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel, where M2 is an integer greater than or equal to 1 and less than or equal to M.
  • the M2 second parameters indicate a repetition level of the M physical uplink shared channels.
  • the processing module is specifically configured to: determine M second time parameters according to a repetition level of the M physical uplink shared channels and a maximum repetition quantity of the physical uplink shared channel.
  • the M2 second parameters indicate M second reference coefficients, and the second reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • the processing module is specifically configured to: determine M second time parameters according to the M second reference coefficients and a maximum number of repetitions of the physical uplink shared channel, where the M second time parameters are respectively associated with the M second reference coefficients and the physical uplink shared channel The product of the maximum number of repetitions corresponds.
  • the M2 second parameters indicate M fourth reference coefficients
  • the fourth reference coefficient is greater than or equal to 1.
  • the processing module is specifically configured to: determine, according to the M fourth reference coefficients and the maximum number of repetitions of the physical uplink shared channel, the M second time parameters, and the M second time parameters respectively and the maximum number of repetitions of the physical uplink shared channel and the M The quotient of the four reference coefficients.
  • the processing module is specifically configured to: according to the (i+1)th first time parameter Pi, the j+1th second time parameter Qj, and the first search space
  • the starting subframe index n determines that the L feedback moments include a downlink subframe with an index of n+Pi+Qj or a bandwidth reduction/covering enhanced downlink subframe with an index of n+Pi+Qj.
  • i and j are integers, 0 ⁇ i ⁇ N-1, and 0 ⁇ j ⁇ M-1.
  • the processing module is specifically configured to: according to the (i+1)th first time parameter Pi, the j+1th second time parameter Qj, the first search space
  • the starting subframe index n and the first interval O determining that the L feedback moments include a downlink subframe with an index of n+Pi+Qj+O or a bandwidth reduction/covering enhancement downlink with an index of n+Pi+Qj+O frame.
  • i, j and O are integers, 0 ⁇ i ⁇ N-1, 0 ⁇ j ⁇ M-1, and O ⁇ 4.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the first search space includes a downlink control channel for scheduling the terminal device to send uplink data, where N, M, and L are integers greater than or equal to 1.
  • the second search space is a common search space where the at least one feedback moment is located, or the second search space is the first common search space after the at least one feedback moment, or the second search space is the search space determined according to the at least one feedback moment. .
  • an embodiment of the present application provides a communication device, where the communication device includes a processor and a memory, where the memory is used to store an instruction, and the processor is configured to execute an instruction stored in the memory, so that the communication device performs the method of the foregoing first aspect. .
  • the communication device of the above fifth aspect may further include a transceiver for communicating with other devices.
  • an embodiment of the present application provides a network device, where the network device includes a processor and a memory, where the memory is used to store an instruction, and the processor is configured to execute an instruction stored in the memory, so that the network device performs the method of the second aspect. .
  • the communication device of the above sixth aspect may further include a transceiver for communicating with other devices.
  • the embodiment of the present application provides a storage medium, comprising: a readable storage medium and a computer program, the computer program being used to implement the method according to any one of the first aspects.
  • an embodiment of the present application provides a program product, where the program product includes a computer program (ie, an execution instruction), and the computer program is stored in a readable storage medium.
  • At least one processor of the terminal device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the terminal device implements the methods provided by the various embodiments of the first aspect.
  • the ninth aspect the embodiment of the present application provides a storage medium, comprising: a readable storage medium and a computer program, the computer program being used to implement the method according to any one of the second aspects.
  • an embodiment of the present application provides a program product, where the program product includes a computer program (ie, an execution instruction), and the computer program is stored in a readable storage medium.
  • At least one processor of the network device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the terminal device implements the methods provided by the various embodiments of the second aspect.
  • the embodiment of the present application provides a method and a device for transmitting feedback information.
  • the network device may send feedback information about the uplink data to the terminal device at least one of the L feedback moments by determining the L feedback moments, where the terminal device may The second search space corresponding to the at least one of the L feedback moments detects the feedback information.
  • the network device can send feedback information to the terminal device after correctly receiving the uplink data, thereby improving data transmission efficiency and real-time performance.
  • the terminal device can detect the feedback information in the second search space corresponding to the limited number of feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the network device can send group feedback information with a limited number of feedback times, which saves resource overhead.
  • the terminal device can detect the group feedback information in the second search space corresponding to the limited number of feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the second search space may be different from the first search space, for example, may be a common search space, and the first search space may be a user equipment-specific search space, so that multiple terminal devices with different user equipment-specific search spaces can also be the same.
  • the search space detection group feedback information enables group feedback, further saving resource overhead.
  • FIG. 1 is a network architecture diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of an existing single terminal device transmitting uplink data
  • 3 is a schematic diagram of an existing multiple terminal device transmitting uplink data
  • FIG. 4 is a message interaction diagram of a method for transmitting feedback information according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a downlink control channel in a USS according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for transmitting feedback information according to Embodiment 1 of the present application.
  • FIG. 7 is a schematic diagram of an implementation manner of a feedback moment in Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of another implementation manner of a feedback moment in Embodiment 1 of the present application.
  • FIG. 9 is a schematic diagram of still another implementation manner of a feedback moment in Embodiment 1 of the present application.
  • FIG. 10 is a schematic diagram of still another implementation manner of a feedback moment in Embodiment 1 of the present application.
  • FIG. 11 is a message interaction diagram of a method for transmitting feedback information according to Embodiment 6 of the present application.
  • FIG. 12 is a message interaction diagram of a method for transmitting feedback information according to Embodiment 7 of the present application.
  • FIG. 13 is a flowchart of a method for transmitting feedback information according to Embodiment 8 of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to Embodiment 1 of the present application.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 1 of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to Embodiment 2 of the present application.
  • FIG. 17 is a schematic structural diagram of a network device according to Embodiment 2 of the present application.
  • the method for transmitting feedback information provided by the embodiment of the present application can be applied to an LTE communication system, a subsequent evolved communication system, a future 5G communication system, and other communication systems.
  • the communication system can include a network device and a terminal device. Uplink and downlink communication can be performed between the network device and the terminal device.
  • the network device may receive uplink data sent by the terminal device, and provide feedback on whether the uplink data is correctly received.
  • the terminal device can send uplink data to the network device, and receive feedback information sent by the network device whether the uplink data is correctly received.
  • the network device involved in the embodiment of the present application may be any device having a management wireless network resource, or various wireless access points.
  • an evolved base station evolutional node B, eNB or eNodeB
  • a relay station or an access point in an LTE communication system e.g., a 5G base station
  • g node B, gNB 5G base station
  • NX wireless node
  • the embodiment of the present application is not limited.
  • the communication device may be a terminal device, for example, a mobile phone, a tablet computer, a handheld device, an in-vehicle device, a wearable device, a computing device, and various forms of user equipment (user equipment, which have a wireless connection function).
  • the coverage enhancement UE (CE UE) and the like are not limited in the embodiment of the present application.
  • FIG. 1 is a network architecture diagram of a communication system to which the embodiment of the present application is applied.
  • the communication system may include a base station 11 and terminal devices 12 to 17 devices.
  • the base station 11 and the terminal device 12 to the terminal device 17 can form a communication system.
  • the base station 11 can receive the uplink data sent by the terminal device 12 to the terminal device 17, and feed back to the terminal device 12 to the terminal device 17 whether the uplink data is correctly received.
  • the base station 11 functions as a network device
  • the terminal device 12 to the terminal device 17 serve as communication devices.
  • the terminal device 15, the terminal device 16, and the terminal device 17 may also constitute a communication system.
  • the terminal device 16 can receive the uplink data sent by the terminal device 15 and the terminal device 17, and feed back to the terminal device 15 and the terminal device 17 whether the uplink data is correctly received.
  • the terminal device 16 functions as a network device, and the terminal device 15 and the terminal device 17 function as communication devices.
  • the following uses the terminal equipment applied to the MTC in the LTE communication system as an example to describe the existing uplink scheduling process and the transmission process of the feedback information.
  • the network device sends an MPDCCH to the terminal device, and is used to schedule the terminal device to send the PUSCH (transmit uplink data).
  • the terminal device After receiving the MPDCCH, the terminal device initiates transmission of the PUSCH as soon as possible.
  • the subframe index of the terminal device receiving the MPDCCH is n
  • the starting subframe index at which the terminal device starts transmitting the PUSCH may be n+O, and O ⁇ 4.
  • the value of O depends on the effective uplink subframe number, and the communication system is a frequency division duplex (FDD) system or a time division duplex (TDD) system.
  • FDD frequency division duplex
  • TDD time division duplex
  • the network device may instruct the terminal device to repeatedly transmit the same data multiple times.
  • the terminal device transmits the completely duplicate PUSCH at time t1.
  • the network device After receiving the completely duplicated PUSCH, the network device sends the feedback information of the uplink data to the terminal device through the DCI carried by the MPDCCH. Even if the network device has correctly decoded at time t1', it is still necessary to send feedback information to the terminal device after time t1. The spectrum resources are wasted, and the power consumption of the terminal device is increased. Further, even if the network device can send the feedback information to the terminal device after correctly demodulating the uplink data, the terminal device does not know the transmission time of the feedback information, and therefore needs to be detected all the time, thereby increasing the power consumption of the terminal device.
  • FIG. 3 is a schematic diagram of an existing multiple terminal device transmitting uplink data.
  • the terminal device 1 to the terminal device 3 are involved.
  • the uplink scheduling process and the transmission process of the feedback information are similar for each terminal device.
  • the MPDCCH and the PUSCH are different from each other by using the labels 1 to 3.
  • the time interval O is not shown in FIG.
  • the feedback information for the PUSCH included in the DCI carried by each MPDCCH is only feedback information for one terminal device, that is, the feedback information in one DCI can only be sent for one terminal device.
  • the upstream data is fed back.
  • the network device needs to separately feed back uplink data sent by the three terminal devices, that is, send a total of three MPDCCHs for the terminal device 1 to the terminal device 3 respectively. It occupies more MPDCCH resources and has higher resource overhead.
  • the embodiment of the present application provides a group feedback transmission mode.
  • the multiple terminal devices may be divided into at least one terminal device group, and each terminal device group includes at least two terminal devices.
  • each terminal device group there may be one group feedback information carried by the MPDCCH (carried in the DCI), and the group feedback information may include feedback information of each terminal device in the terminal device group.
  • the group feedback information may include multiple domains, each domain corresponding to one terminal device, or each domain corresponding to one HARQ process.
  • Each terminal device can determine whether the uplink data sent by the terminal device is correctly received by the network device by detecting feedback information carried in the domain.
  • the group feedback information may include multiple domains, and each domain corresponds to one frequency domain resource.
  • Each terminal device may determine the group feedback information, and determine, according to the frequency domain resource that the terminal device transmits the uplink data, a domain for feeding back uplink data of the terminal device in the group of feedback information, and further determining that the terminal device sends the Whether the uplink data is correctly received by the network device.
  • the end time of the MPDCCH may be different.
  • different start times for different terminal devices to start transmitting PUSCH are different.
  • the number of times that the terminal device configured by the network device repeatedly transmits the PUSCH may be different, and the time for the different terminal devices to transmit the completely repeated PUSCH is also different.
  • the end time of the MPDCCH 1 corresponding to the terminal device 1 is t2
  • the end time of the corresponding PUSCH 1 is t5.
  • the end time of the MPDCCH 2 corresponding to the terminal device 2 is t1, and the end time of the corresponding PUSCH 2 is t3.
  • the end time of the MPDCCH 3 corresponding to the terminal device 3 is t2, and the end time of the corresponding PUSCH 3 is t4. It can be seen that multiple terminal devices corresponding to one group of feedback information may have different MPDCCH end times and different PUSCH end times, which leads to a technical problem of how to determine the transmission time of group feedback information. If the network device sends the group feedback information according to the latest PUSCH end time, the feedback delay is increased. If the network device can send the feedback information to the terminal device after correctly correcting the uplink data, since the terminal device does not know the sending time of the group feedback information, it needs to be detected all the time, and the power consumption of the terminal device is increased.
  • the method for transmitting feedback information may be applied to a feedback scenario of a single terminal device and/or a feedback scenario of multiple terminal devices.
  • the feedback scenario of the multiple terminal devices may include a manner in which the terminal device separately feeds back, and may also include the above-mentioned group feedback transmission mode.
  • the network device may send the feedback information or the group feedback information at the at least one of the L feedback moments by determining the L(L ⁇ 1) feedback moments, and the terminal device may detect the feedback at the at least one of the L feedback moments.
  • Information or group feedback information is solved, which saves resource overhead and terminal energy consumption.
  • the method for transmitting feedback information provided by the embodiment of the present application relates to an uplink and downlink data transmission process and a feedback time determination process.
  • FIG. 4 is a message interaction diagram of a method for transmitting feedback information according to an embodiment of the present application.
  • the uplink and downlink data transmission process may include: S101: The network device sends a downlink control channel to the terminal device, where the downlink control channel is used to schedule the terminal device to send uplink data. Correspondingly, the terminal device receives the downlink control channel sent by the network device. S102. The terminal device sends uplink data to the network device. Correspondingly, the network device receives the uplink data sent by the terminal device. S103.
  • the network device sends feedback information about the uplink data at the at least one feedback moment.
  • the terminal device detects feedback information about the uplink data sent by the network device at the at least one feedback moment.
  • S101 and S102 can refer to the methods of the prior art.
  • the embodiment of the present application mainly describes S103.
  • S102 and S103 may be performed cyclically until the terminal device detects feedback information on the uplink data and the feedback information indicates that the network device correctly receives the uplink data.
  • the execution body of the feedback time determination process may be a network device and a terminal device.
  • the embodiment of the present application does not limit the execution order of the feedback time determination process and the uplink and downlink data transmission process. As shown in FIG. 4, the execution sequence of the feedback time determination process can be referred to the "determination feedback time" in FIG.
  • the DCI may be used to schedule the terminal device to send uplink data, or include feedback information on the uplink data.
  • the "downlink control channel" in the following embodiments of the present application is used to schedule the terminal device to send uplink data.
  • the embodiment of the present application does not limit the type of the downlink control channel.
  • the downlink control channel may include: a physical downlink shared channel (PDCCH), an enhanced physical downlink shared channel (EPDCCH), and an MPDCCH.
  • the downlink control channel may be sent repeatedly.
  • the network device can configure the maximum number of repetitions of the downlink control channel, which can be labeled as Rmax.
  • the maximum number of repetitions Rmax of the downlink control channel is a common parameter, which is the same for all terminal devices in the same cell.
  • Rmax R1 R2 R3 R4 1 1 - - - 2 1 2 - - 4 1 2 4 - > 8 Rmax/8 Rmax/4 Rmax/2 Rmax
  • the value of Rmax can be ⁇ 1, 2, 4, 8, 16, 32, 64, 128, 256 ⁇ .
  • the PUSCH may be sent repeatedly.
  • the network device can configure the maximum number of repetitions of the PUSCH, which can be labeled as Vmax.
  • the maximum number of repetitions Vmax of the PUSCH is a common parameter, which is the same for all terminal devices in the same cell.
  • the terminal device works in CE mode B, and the DCI format carried by the MPDCCH is 6-0B.
  • the value of Vmax can be ⁇ 192, 256, 384, 512, 768, 1024, 1536, 2048 ⁇ .
  • the repetition level of the PUSCH of the terminal device 1 is n2
  • Vmax (CE mode B) ⁇ n1,n2,...,n8 ⁇ Not configured ⁇ 4,8,16,32,64,128,256,512 ⁇ 192 ⁇ 1,4,8,16,32,64,128,192 ⁇ 256 ⁇ 4,8,16,32,64,128,192,256 ⁇ 384 ⁇ 4,16,32,64,128,192,256,384 ⁇ 512 ⁇ 4,16,64,128,192,256,384,512 ⁇ 768 ⁇ 8,32,128,192,256,384,512,768 ⁇ 1024 ⁇ 4,8,16,64,128,256,512,1024 ⁇ 1536 ⁇ 4,16,64,256,512,768,1024,1536 ⁇ 2048 ⁇ 4,16,64,128,256,512,1024,2048 ⁇
  • Table 3 shows the maximum number of repetitions and repetition levels of the PUSCH corresponding to CE mode A.
  • Vmax (CE mode A) ⁇ n1,n2,n3,n4 ⁇ Not configured ⁇ 1,2,4,8 ⁇ 16 ⁇ 1,4,8,16 ⁇ 32 ⁇ 1,4,16,32 ⁇
  • the search space includes a downlink control channel, and the downlink control channel is used to schedule the terminal device to send uplink data.
  • the first search space may be a UE specific search space (USS).
  • the maximum repetition number Rmax of the downlink control channel may indicate a time domain range (duration) of one USS.
  • Each terminal device in the cell may determine the number of repetitions of the MPDCCH transmitted by the network device according to the maximum number of repetitions (Rmax) of the MPDCCH and the repetition level (r1 to r4) of the MPDCCH, and search for the MPDCCH in which the uplink data is scheduled to be transmitted in the USS.
  • FIG. 5 is a schematic diagram of a downlink control channel in a USS according to an embodiment of the present application. As shown in Figure 5, the USS start time is t0.
  • the first 4 lines indicate the possible start time and duration of the MPDCCH in the USS, respectively.
  • the last act is a concrete example.
  • the number of repetitions of the MPDCCH 1 of the scheduling terminal device 1 is Rmax/8, the start time of the MPDCCH 1 is t0, and the end time is t1.
  • the number of repetitions of the MPDCCH 2 of the scheduling terminal device 2 is Rmax/8, the start time of the MPDCCH 2 is t1, and the end time is t2.
  • the number of repetitions of the MPDCCH 3 of the scheduling terminal device 3 is Rmax/4, the start time of the MPDCCH 3 is t2, and the end time is t4.
  • the number of repetitions of the MPDCCH 4 of the scheduling terminal device 4 is Rmax/2, the start time of the MPDCCH 4 is t4, and the end time is t8.
  • the network device may send the feedback information of the uplink data to the terminal device in the second search space corresponding to the feedback moment.
  • the terminal device can detect the feedback information about the uplink data in the second search space corresponding to the feedback moment.
  • the second search space may be a common search space where the feedback moment is located.
  • the network device can pre-define at least one common search space.
  • the search space in which the moment is located in the at least one common search space is used as the second search space corresponding to the feedback moment.
  • the second search space may be the first common search space after the feedback moment.
  • the network device can pre-define at least one common search space. Feedback moments are not in any public search space.
  • the first common search space after the feedback moment is used as the second search space corresponding to the feedback moment.
  • the second search space is a search space determined according to the feedback moment.
  • the network device may pre-define at least one common search space.
  • Feedback moments are not in any public search space.
  • the second search space corresponding to the feedback moment includes the feedback moment.
  • the method for determining the second search space is not limited in the embodiment of the present application.
  • the feedback time is used as the time starting point, and a plurality of consecutive downlink subframes are used as the second search space.
  • the feedback information indicates whether the uplink data received by the network device before the deadline for the feedback is correctly received.
  • the feedback information may include first indication information and/or second indication information.
  • the first indication information indicates that the network device correctly receives the uplink data.
  • the second indication information indicates that the network device does not correctly receive the uplink data.
  • the feedback information is HARQ feedback information
  • the first indication information may be an ACK
  • the second indication information may be a NACK.
  • whether the network device correctly receives the uplink data may be indicated by a “01” flip of the third indication information.
  • the third indication information may be new data indicator (NDI) information.
  • the NDI information is the same as the NDI information in the DCI of the last scheduled PUSCH transmission (for example, the same as "1" or the same "0"), it indicates that the terminal device does not transmit new data, and indicates that the network device does not receive the data correctly. Upstream data. If the NDI information is opposite to the NDI information in the DCI of the last scheduled PUSCh transmission (one is "1" and the other is "0"), it indicates that the terminal device transmits new data, and indicates that the network device has correctly received the uplink. data.
  • the feedback information may be group feedback information.
  • group feedback information feedback information of each terminal device in the terminal device group may be included.
  • the terminal device group includes the first terminal device and the second terminal device, the network device has correctly received the uplink data sent by the first terminal device, and does not correctly receive the uplink data sent by the second terminal device, in the subsequent group.
  • the feedback information for the first terminal device may be the first indication information.
  • the communication device is described by taking the terminal device as an example. Moreover, in the embodiments of the present application, a single terminal device is taken as an example for description. Certainly, the method for transmitting feedback information provided by the embodiments of the present application is also applicable to the foregoing multi-terminal device scenario.
  • the time unit may be a subframe, a transmission time interval (one transmission time interval is equal to a sum of several subframe lengths, or a sum of several transmission time intervals is equal to one subframe length), a slot, and a plurality of slot aggregations. , mini-slot, multiple mini-slot aggregation, mini-slot and slot aggregation, time-domain symbols, or multiple time-domain symbols, and so on. That is to say, there are various lengths of time units in the future 5G communication system.
  • the description of the time in the time domain is performed using a subframe as an example.
  • One downlink transmission channel occupies one subframe, and one PUSCH occupies one subframe.
  • the following is the description of the time in the time domain by the number of repetitions of the downlink transmission channel and the number of repetitions of the PUSCH.
  • downlink control channel in each embodiment of the present application is described by taking an MPDCCH as an example.
  • the downlink subframe in the embodiment of the present application may be all downlink subframes, where the special subframe is not distinguished. Or, it is a bandwidth reduction/coverage enhancement (BL/CE) downlink subframe.
  • BL/CE bandwidth reduction/coverage enhancement
  • FIG. 6 is a flowchart of a method for transmitting feedback information according to Embodiment 1 of the present application.
  • the method for transmitting feedback information provided by this embodiment may be a terminal device.
  • S201 to S202 may correspond to "determination feedback time" in FIG. 4, and S203 may correspond to S103 in FIG.
  • the method for transmitting feedback information provided in this embodiment may include:
  • S201 Determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel.
  • N and M are integers greater than or equal to 1.
  • the maximum number of repetitions of the downlink control channel is a common parameter of the cell. Therefore, the N first time parameters determined according to the maximum number of repetitions of the downlink control channel are also common parameters of the cell, and are the same for all terminal devices in the same cell. .
  • the maximum number of repetitions of the physical uplink shared channel is a common parameter of the cell. Therefore, the M second time parameters determined according to the maximum number of repetitions of the physical uplink shared channel are also common parameters of the cell, and are used for all terminal devices in the same cell. identical.
  • S202 Determine L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space.
  • the first search space includes a downlink control channel for scheduling the terminal device to send uplink data, where L is an integer greater than or equal to 1.
  • L feedback moments may be determined according to the N first time parameters and the first search space.
  • L feedback moments are determined according to the M second time parameters and the first search space.
  • the L feedback moments are determined according to the N first time parameters, the M second time parameters, and the first search space.
  • the terminal device may determine the at least one feedback moment by using the N first time parameters and/or the M second time parameters, and the first search space, so that the feedback time is known, and the problem that the feedback time is uncertain or the feedback time is confusing is solved. .
  • the terminal device only needs to detect the feedback information in the second search space corresponding to a limited number of feedback moments, thereby saving terminal energy consumption.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments are determined according to the N first time parameters and/or the M second time parameters, and the first search space and the first interval.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • L feedback moments may be determined according to the N first time parameters, the first search space, and the first interval.
  • L feedback moments are determined according to the M second time parameters, the first search space, and the first interval.
  • the start time of the first search space corresponding to each terminal device in the terminal device group is the same, or the end of the first search space corresponding to each terminal device in the terminal device group respectively The time is the same.
  • the terminal device detects feedback information about the uplink data in the second search space corresponding to the feedback moment.
  • the terminal device may sequentially detect feedback information of the uplink data in the second search space corresponding to each feedback moment according to the chronological order of the L feedback moments, until the detected feedback information indicates the network device.
  • the uplink data is correctly received, and the feedback information is stopped, and the uplink data is stopped, which saves resource overhead.
  • three feedback moments are determined, which are t0, t1, and t2, respectively, in chronological order.
  • the terminal device detects feedback information on the uplink data in the second search space corresponding to the time t0. If the feedback information is not detected, the terminal device continues to detect the feedback information for the uplink data in the second search space corresponding to the time t1. If the feedback information is detected, and the feedback information indicates that the network device has correctly received the uplink data, the terminal device stops transmitting the uplink data, and may stop detecting the feedback information.
  • the terminal device can detect the feedback information of the uplink data in the second search space corresponding to the at least one of the L feedback moments by determining the L feedback moments.
  • the terminal device can detect the feedback information in the second search space corresponding to the limited number of feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the group feedback transmission mode the problem that the feedback time is disordered by each terminal device based on the initial end time of the PUSCH sent by the terminal device is avoided, and each terminal device can detect the feedback information in the second search space corresponding to the limited number of feedback moments. It saves resource overhead and terminal energy consumption.
  • the second search space may be different from the first search space, such as a common search space, and the first search space may be a user equipment-specific search space, so that terminal devices with different user equipment-specific search spaces can also be in the same search.
  • the space detection group feedback information enables group feedback, which further saves resource overhead.
  • part or all of the feedback time points of the common search space may be set earlier than part or all of the feedback time points of the user equipment-specific search space, and the terminal device is compared to the dedicated search space.
  • the public search space can detect the feedback information earlier, so that the detection can be ended early, saving the terminal energy consumption.
  • the second search space is a common search space where the at least one feedback moment is located, or the second search space is the first common search space after the at least one feedback moment, or the second search space is based on the at least one feedback moment. Determined search space.
  • the N first time parameters are multiplied by two adjacent first time parameters after being sorted according to the numerical value.
  • the N first time parameters have the same difference between two adjacent first time parameters after being sorted by the numerical value.
  • the first time parameter is three, and the values are Rmax/4, Rmax/2, and Rmax, respectively.
  • the first time parameter is two, and the values are Rmax/4 and Rmax/2, respectively.
  • the coverage of the MPDCCH corresponding to the two adjacent first time parameters is always 2 times, so there is a gain of 3 dB, and the MPDCCH is covered as much as possible. From small to large coverage.
  • the two second time parameters of the M second time parameters are multiplied after being sorted according to the numerical value.
  • the M second time parameters have the same difference between two adjacent second time parameters after being sorted by the numerical value.
  • the second time parameter is three, and the values are Vmax/4, Vmax/2, and Vmax, respectively.
  • the second time parameter is four, and the values are Vmax/4, Vmax/2, Vmax*3/4, and Vmax, respectively.
  • the coverage of the PUSCH corresponding to the two adjacent second time parameters is always 2 times, so there is a gain of 3 dB, and the PUSCH is covered as much as possible. From small to large coverage.
  • the difference between the two adjacent second time parameters is convenient to uniformly distribute the feedback overhead on different transmission resources (time domain), which improves the rationality of the feedback time.
  • determining L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a sub-index of n+Pi+Qj frame.
  • the subframe may be a downlink subframe or a bandwidth reduction/coverage enhancement downlink subframe, and the subframes involved in the following description are similar.
  • i and j are integers, 0 ⁇ i ⁇ N-1, and 0 ⁇ j ⁇ M-1.
  • the maximum value of L is N x M.
  • the feedback time Rt0 is a subframe with an index of n+P0+Q0, which is determined according to the first time parameter P0, the second time parameter Q0 and the first search space.
  • the feedback time Rt1 is a subframe with an index of n+P1+Q0, which is determined according to the first time parameter P1, the second time parameter Q0 and the first search space.
  • the feedback time Rt2 is a subframe with an index of n+P0+Q1, which is determined according to the first time parameter P0, the second time parameter Q1 and the first search space.
  • the feedback time Rt3 is a subframe with an index of n+P1+Q1, determined according to the first time parameter P1, the second time parameter Q1, and the first search space.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • L feedback moments including an index of n+ according to the (i+1)th first time parameter Pi, the j+1th second time parameter Qj, the starting subframe index n of the first search space, and the first interval O Sub-frame of Pi+Qj+O.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the maximum value of L is N x M.
  • the first interval is considered in comparison to the first implementation.
  • the feedback time Rt0 is a subframe with an index of n+P0+Q0+O, and is determined according to the first time parameter P0, the second time parameter Q0, the first interval O, and the first search space.
  • the feedback time Rt1 is a sub-frame indexed as n+P1+Q0+O, and is determined according to the first time parameter P1, the second time parameter Q0, the first interval O, and the first search space.
  • the feedback time Rt2 is a sub-frame indexed as n+P0+Q1+O, and is determined according to the first time parameter P0, the second time parameter Q1, the first interval O, and the first search space.
  • the feedback time Rt3 is a subframe indexed as n+P1+Q1+O, and is determined according to the first time parameter P1, the second time parameter Q1, the first interval O, and the first search space.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe indexed as n+Pi.
  • i is an integer and 0 ⁇ i ⁇ N-1.
  • the maximum value of L is N.
  • the three first time parameters are P0, P1 and P2, respectively. As shown in Figure 9, the three feedback moments are:
  • the feedback time Rt0 is a subframe with an index of n+P0, which is determined according to the first time parameter P0 and the first search space.
  • the feedback time Rt1 is a subframe with an index of n+P1, which is determined according to the first time parameter P1 and the first search space.
  • the feedback time Rt2 is a subframe with an index of n+P2, which is determined according to the first time parameter P2 and the first search space.
  • determining L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of n+Pi+O.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the maximum value of L is N.
  • the first interval is considered in comparison to the third implementation.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of n+Qj.
  • the maximum value of L is M.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of n+Qj+O.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the maximum value of L is M.
  • the first interval is considered compared to the fifth implementation.
  • the starting subframe index n of the first search space is involved.
  • the end subframe index w of the first search space may also be involved.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of w+Qj.
  • the maximum value of L is M.
  • FIG. 10 is a schematic diagram of still another implementation manner of the feedback moment in the first embodiment of the present application.
  • M 3.
  • the three second time parameters are Q0, Q1 and Q2, respectively.
  • the three feedback moments are:
  • the feedback time Rt0 is a subframe with an index of w+Q0, which is determined according to the second time parameter Q0 and the first search space.
  • the feedback time Rt1 is a subframe indexed by w+Q1, and is determined according to the second time parameter Q1 and the first search space.
  • the feedback time Rt2 is a subframe indexed by w+Q2, which is determined according to the second time parameter Q2 and the first search space.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of w+Qj+O.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the maximum value of L is M.
  • the first interval is considered in comparison to the seventh implementation.
  • determining the L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of w+Pi.
  • i is an integer and 0 ⁇ i ⁇ N-1.
  • the maximum value of L is N.
  • determining L feedback moments according to the N first time parameters and/or the M second time parameters, and the first search space may include:
  • the L feedback moments include a subframe with an index of w+Pi+O.
  • the first interval is a time interval between when the terminal device ends receiving the downlink control channel and when the uplink data is started to be sent.
  • the maximum value of L is N.
  • the first interval is considered in comparison to the ninth implementation.
  • the actual MPDCCH repetition level of the terminal device may be used instead of Rmax, and the actual PUSCH repetition level of the terminal device may be used instead of Vmax.
  • the embodiment provides a method for transmitting feedback information, including: determining N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determining M second times according to a maximum number of repetitions of the physical uplink shared channel. And determining, according to the N first time parameters and/or the M second time parameters, and the first search space, the L feedback moments in the second search space corresponding to the at least one of the L feedback moments Detect feedback information on the uplink data.
  • the terminal device can detect the feedback information at at least one of the L feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the present application further provides a second embodiment of the method.
  • the method for transmitting feedback information provided in this embodiment specifically provides an implementation manner of determining N first time parameters according to the maximum number of repetitions of the downlink control channel in Embodiment 1 S201.
  • Determining the N first time parameters according to the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to a maximum number of repetitions of the downlink control channel and a predefined first relationship.
  • the terminal device may pre-store the predefined first relationship. It should be noted that the network device also needs to store the same predefined first relationship to synchronize the network device with the terminal device data. This predefined first relationship can be specified in the communication standard.
  • the terminal device In the static configuration mode, the terminal device only needs to obtain the maximum number of repetitions of the downlink control channel from the network device, and does not need to obtain other additional parameters, and directly determines N times according to the maximum number of repetitions of the downlink control channel and the predefined first relationship.
  • a time parameter simplifies the data processing process for determining N first time parameters.
  • the predefined first relationship may include N first time parameters, where the N first time parameters are related to a maximum number of repetitions of the downlink control channel.
  • the predefined first relationship may include Rmax/4 and Rmax/2.
  • N 2.
  • the two first time parameters are Rmax/4 and Rmax/2, respectively.
  • P0 can be Rmax/4 and P1 can be Rmax/2.
  • the three first time parameters are 4Rmax, 8Rmax, and 16Rmax, respectively.
  • P0 can be 4Rmax
  • P1 can be 8Rmax
  • P2 16Rmax.
  • the predefined first relationship may include N first predefined parameters, where the first predefined parameter is greater than or equal to 0 and less than or equal to 1, or the first predefined parameter Greater than 1.
  • determining the first first time parameters according to the maximum number of repetitions of the downlink control channel and the predefined first relationship may include:
  • N 2.
  • the two first predefined parameters are 1/4 and 1/2, respectively.
  • P0 can be Rmax/4 and P1 can be Rmax/2.
  • the N first time parameters determined according to the N first predefined parameters and the maximum number of repetitions of the downlink control channel may also be directly recorded in the table, so that the N first time parameters may be determined according to the lookup table.
  • a similar lookup table processing manner can be adopted for the similar implementations in the following, and will not be described again.
  • the predefined first relationship may include N second predefined parameters, where the second predefined parameter is greater than or equal to 1.
  • determining the first first time parameters according to the maximum number of repetitions of the downlink control channel and the predefined first relationship may include:
  • N first time parameters according to the N second predefined parameters and the maximum number of repetitions of the downlink control channel, and comparing the N first time parameters with the maximum repetition number of the downlink control channel and the N second predefined parameters correspond.
  • the method for transmitting feedback information specifically provides an implementation manner of determining N first time parameters.
  • the L feedback moments can be determined by the determined N first time parameters, and the terminal device can detect the feedback information at at least one of the L feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the present application further provides the third embodiment of the method.
  • the method for transmitting feedback information provided in this embodiment specifically provides another implementation manner of determining N first time parameters according to the maximum number of repetitions of the downlink control channel in Embodiment 1 S201.
  • Determining the N first time parameters according to the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, and N2 is an integer greater than or equal to 1 and less than or equal to N.
  • the terminal device needs to obtain the N2 first parameters and the maximum number of repetitions of the downlink control channel from the network device, and determine N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel, and improve The flexibility to determine the N first time parameters is determined.
  • the N2 first parameters may be carried in the high layer signaling or may be carried in the DCI.
  • the N2 first parameters indicate a repetition level of the N downlink control channels.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to a repetition level of the N downlink control channels and a maximum repetition number of the downlink control channel.
  • the network device and the terminal device may pre-store a correspondence between a repetition level of the downlink control channel and a maximum repetition number of the downlink control channel.
  • the correspondence may be specified in an existing protocol, such as Table 1.
  • the corresponding relationship may also be newly established, which is not limited in this embodiment.
  • Rmax ⁇ 8, N 2.
  • the repetition level of the two downlink control channels may be r1 and r2, or r2 and r3.
  • the N2 first parameters indicate N first reference coefficients, the first reference coefficient is greater than or equal to 0 and less than or equal to 1, or the first reference coefficient is greater than 1.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, and the N first time parameters respectively correspond to the products of the N first reference coefficients and the maximum number of repetitions of the downlink control channel.
  • the N first time parameters may be determined according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel by querying the table data.
  • a product of the N first reference coefficients and the maximum number of repetitions of the downlink control channel is calculated as N first time parameters.
  • the N2 first parameters indicate N third reference coefficients, and the third reference coefficient is greater than or 1.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel, and the N first time parameters respectively correspond to the quotient of the maximum repetition number of the downlink control channel and the N third reference coefficients.
  • the N first time parameters may be determined according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel by querying the table data.
  • the quotient of the maximum repetition number of the downlink control channel and the N third reference coefficients is calculated as N first time parameters.
  • the N2 first parameters indicate the first index value.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • the index value By setting the index value, the amount of data transmission between the network device and the terminal device is reduced, and resource utilization and data transmission efficiency are improved.
  • the N first time parameters are Rmax/4, Rmax/2, and 3*Rmax/4.
  • the N2 first parameters indicate the second index value.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to the N first reference coefficients and the maximum number of repetitions of the downlink control channel, and the N first time parameters respectively correspond to the products of the N first reference coefficients and the maximum number of repetitions of the downlink control channel.
  • the index value By setting the index value, the amount of data transmission between the network device and the terminal device is reduced, and resource utilization and data transmission efficiency are improved.
  • the N first reference coefficients are 1/4, 1/2, and 3/4, respectively.
  • the N2 first parameters indicate a third index value.
  • determining the N first time parameters according to the N2 first parameters and the maximum number of repetitions of the downlink control channel may include:
  • N first time parameters are determined according to the N third reference coefficients and the maximum number of repetitions of the downlink control channel, and the N first time parameters respectively correspond to the quotient of the maximum repetition number of the downlink control channel and the N third reference coefficients.
  • the method for transmitting feedback information specifically provides an implementation manner of determining N first time parameters.
  • N first first time parameters are determined according to the N2 first parameters and the maximum number of repetitions of the downlink control channel by determining N2 first parameters.
  • the L feedback moments can be determined according to the N first time parameters, and the terminal device can detect the feedback information at at least one of the L feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the present application further provides a fourth embodiment of the method.
  • the method for transmitting feedback information provided in this embodiment provides another implementation manner of determining M second time parameters according to the maximum number of repetitions of the physical uplink shared channel in Embodiment 1 S201.
  • Determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel may include:
  • the M second time parameters are determined according to a maximum number of repetitions of the physical uplink shared channel and a predefined second relationship.
  • the terminal device may pre-store the predefined second relationship. It should be noted that the network device also needs to store the same predefined second relationship to synchronize the network device with the terminal device data. This predefined second relationship can be specified in the communication standard.
  • the terminal device In the static configuration mode, the terminal device only needs to obtain the maximum number of repetitions of the physical uplink shared channel from the network device, and does not need to obtain other additional parameters, and directly determines the M according to the maximum number of repetitions of the physical uplink shared channel and the predefined second relationship.
  • the second time parameter simplifies the data processing process for determining the M second time parameters.
  • the predefined second relationship may include M second time parameters, where the M second time parameters are related to a maximum number of repetitions of the physical uplink shared channel.
  • the predefined second relationship may include Vmax/4 and Vmax/2.
  • M 2.
  • the two second time parameters are Vmax/4 and Vmax/2, respectively.
  • Q0 can be Vmax/4 and Q1 can be Vmax/2.
  • the three second time parameters are Vmax/8, Vmax/4, and Vmax/2, respectively.
  • Q0 may be Vmax/8
  • Q1 may be Vmax/4
  • Q2 may be Vmax/2.
  • the predefined second relationship may include M third predefined parameters, where the third predefined parameter is greater than or equal to 0 and less than or equal to 1.
  • determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel and the predefined second relationship may include:
  • M 2.
  • the two third predefined parameters are 1/4 and 1/2, respectively.
  • Q0 can be Vmax/4 and Q1 can be Vmax/2.
  • the predefined second relationship may include M fourth predefined parameters, and the fourth predefined parameter is greater than or equal to 1.
  • determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel and the predefined second relationship may include:
  • the method for transmitting feedback information specifically provides an implementation manner for determining M second time parameters.
  • the L feedback moments can be determined by the determined M second time parameters, and the terminal device can detect the feedback information at at least one of the L feedback moments, thereby saving resource overhead and terminal energy consumption.
  • the present application further provides the fifth embodiment of the method.
  • the method for transmitting feedback information provided in this embodiment specifically provides another implementation manner of determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel in Embodiment 1 S201.
  • Determining the M second time parameters according to the maximum number of repetitions of the physical uplink shared channel may include:
  • the M second time parameters are determined according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel, and M2 is an integer greater than or equal to 1 and less than or equal to M.
  • the terminal device needs to obtain the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel from the network device, and determine the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel. Increases the flexibility to determine M second time parameters.
  • the M2 second parameters may be carried in the high layer signaling or may be carried in the DCI.
  • the M2 second parameters indicate a repetition level of the M physical uplink shared channels.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the M second time parameters are determined according to the repetition level of the M physical uplink shared channels and the maximum repetition number of the physical uplink shared channel.
  • the network device and the terminal device may pre-store a correspondence between a repetition level of the physical uplink shared channel and a maximum repetition number of the physical uplink shared channel.
  • the correspondence may be specified in an existing protocol, such as Table 2 or Table 3.
  • the corresponding relationship may also be newly established, which is not limited in this embodiment.
  • the M2 second parameters indicate M second reference coefficients, and the second reference coefficient is greater than or equal to 0 and less than or equal to 1.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the M second time parameters may be determined according to the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel by querying the table data.
  • a product of the M second reference coefficients and the maximum number of repetitions of the physical uplink shared channel is calculated as the M second time parameters.
  • the M2 second parameters indicate M fourth reference coefficients, and the fourth reference coefficient is greater than or 1.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the M second time parameters may be determined according to the M fourth reference coefficients and the maximum number of repetitions of the physical uplink shared channel by querying the table data.
  • the quotient of the maximum repetition number of the physical uplink shared channel and the M fourth reference coefficients is calculated as the M second time parameters.
  • the M2 second parameters indicate a fourth index value.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the index value By setting the index value, the amount of data transmission between the network device and the terminal device is reduced, and resource utilization and data transmission efficiency are improved.
  • Second time parameter (M) 0 ⁇ Vmax/4, Vmax/2 ⁇ 1 ⁇ Vmax/8, Vmax/4, Vmax/2 ⁇ 2 ⁇ Vmax/4, Vmax/2, 3*Vmax/4 ⁇ 3 ⁇ Vmax/8, 3*Vmax/8, 5*Vmax/8 ⁇
  • the M second time parameters are Vmax/4, Vmax/2, and 3*Vmax/4.
  • the M2 second parameters indicate a fifth index value.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the index value By setting the index value, the amount of data transmission between the network device and the terminal device is reduced, and resource utilization and data transmission efficiency are improved.
  • the M second reference coefficients are 1/4, 1/2, and 3/4, respectively.
  • Second reference coefficient (M) 0 ⁇ 1/4,1/2 ⁇ 1 ⁇ 1/8,1/4,1/2 ⁇ 2 ⁇ 1/4, 1/2, 3/4 ⁇ 3 ⁇ 1/8,3/8,5/8 ⁇
  • the M2 second parameters indicate a sixth index value.
  • determining the M second time parameters according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel may include:
  • the method for transmitting feedback information specifically provides an implementation manner for determining M second time parameters.
  • the M second time parameters are determined according to the M2 second parameters and the maximum number of repetitions of the physical uplink shared channel by determining the M2 second parameters.
  • the L feedback moments can be determined according to the M second time parameters, and the terminal device can detect the feedback information at at least one of the L feedback moments, thereby saving resource overhead and terminal energy consumption.
  • FIG. 11 is a message interaction diagram of a method for transmitting feedback information according to Embodiment 6 of the present application.
  • This embodiment provides an implementation manner for determining, by the terminal device, N2 first parameters, based on the foregoing third embodiment.
  • an implementation manner of determining, by the terminal device, the M2 second parameters is provided.
  • the method for transmitting feedback information provided in this embodiment may further include:
  • the network device sends downlink control information to the terminal device.
  • the downlink control information includes N2 first parameters and/or M2 second parameters.
  • the terminal device receives the downlink control information sent by the network device.
  • the downlink control information may be downlink control information that is used by the scheduling terminal device to perform uplink data transmission.
  • the method for transmitting feedback information specifically provides an implementation manner of determining, by the terminal device, N2 first parameters and/or M2 second parameters.
  • the downlink control information sent by the network device carries N2 first parameters and/or M2 second parameters, which improves the flexibility of data processing.
  • FIG. 12 is a message interaction diagram of a method for transmitting feedback information according to Embodiment 7 of the present application.
  • This embodiment provides an implementation manner for determining, by the terminal device, N2 first parameters, based on the foregoing third embodiment.
  • an implementation manner of determining, by the terminal device, the M2 second parameters is provided.
  • the method for transmitting feedback information provided in this embodiment may further include:
  • the network device sends high layer signaling to the terminal device.
  • the high layer signaling includes N2 first parameters and/or M2 second parameters.
  • the terminal device receives the high layer signaling sent by the network device.
  • the high layer signaling may be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the method for transmitting feedback information specifically provides an implementation manner in which the terminal device determines N2 first parameters and/or M2 second parameters.
  • the high-level signaling sent by the network device carries N2 first parameters and/or M2 second parameters, which improves the flexibility of data processing.
  • the network device may configure, by using the high layer signaling, a set of values of the plurality of first parameters and/or the plurality of second parameters.
  • the network device may indicate, by using downlink control information (DCI), which one or more of the set of values are used by the terminal device, thereby determining N2 first parameters and/or M2 second parameters.
  • DCI downlink control information
  • the set of values of the first group is ⁇ 4, 8, 16... ⁇
  • the set of values of the second group is ⁇ 3, 6, 9, ... ⁇ .
  • the 1-bit information in the DCI can be used to indicate whether the terminal device uses the first group or the second group.
  • FIG. 13 is a flowchart of a method for transmitting feedback information according to Embodiment 8 of the present application.
  • the method for transmitting feedback information provided by this embodiment may be a network device.
  • S501 to S502 may correspond to "determination feedback time" in FIG. 4, and S503 may correspond to S103 in FIG.
  • the method for transmitting feedback information provided in this embodiment may include:
  • S501 Determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel.
  • the first search space includes a downlink control channel for scheduling the terminal device to send uplink data, where N, M, and L are integers greater than or equal to 1.
  • S501 to S502 can be referred to the S201 to S202 in the embodiment shown in FIG. 6, and the principles are similar, and details are not described herein again.
  • the network device generates feedback information according to the uplink data sent by the terminal device received before the feedback time expires.
  • the network device sends feedback information on the uplink data at the feedback moment.
  • the network device may generate feedback information for the uplink data in the chronological order of the L feedback moments, and then send the information to the terminal device in the second search space corresponding to the feedback moment. Feedback.
  • this step may have different feedback and group feedback transmission methods for a single terminal device.
  • the network device may not generate the feedback information and send the feedback information at the subsequent feedback moment.
  • the actual MPDCCH repetition level of the terminal device may be used instead of Rmax, and the actual PUSCH repetition level of the terminal device may be used instead of Vmax.
  • the group feedback information may include feedback information of each terminal device in the terminal device group. If the first terminal device and the second terminal device are present in the terminal device group, the network device has correctly received the uplink data sent by the first terminal device, and does not correctly receive the uplink data sent by the second terminal device. The network device sends the group feedback information, where the group feedback information indicates that the uplink data sent by the first terminal device is correctly received. In the subsequent group feedback information, the network device may generate feedback information for the first terminal device, where the feedback information may be the first indication information. The first indication information indicates that the network device correctly receives the uplink data sent by the first terminal device. The second indication information indicates that the network device does not correctly receive the uplink data of the first terminal device.
  • the method for transmitting the feedback information provided in this embodiment by determining the L feedback moments, the network device can send the feedback information of the uplink data in at least one of the L feedback moments, thereby saving resource overhead.
  • the embodiment provides a method for transmitting feedback information, including: determining N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determining M second times according to a maximum number of repetitions of the physical uplink shared channel. And determining, according to the N first time parameters and/or the M second time parameters, and the first search space, the L feedback moments, and the second search space corresponding to the at least one of the L feedback moments to the terminal The device sends feedback information about the uplink data.
  • the network device may send feedback information about the uplink data to the terminal device at least one of the L feedback moments by determining the L feedback moments.
  • the network device can send feedback information to the terminal device after correctly receiving the uplink data, thereby improving data transmission efficiency and real-time performance.
  • the problem that the feedback time is disordered due to the determination of the start time of the PUSCH by each terminal device is avoided, and the network device can send feedback information with a limited number of feedback times, thereby saving resource overhead.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device provided in this embodiment may perform the method for transmitting feedback information provided in any of the embodiments shown in FIG. 6 to FIG.
  • the communication device provided in this embodiment may include a processing module 21 and a transceiver module 22.
  • the communication device may specifically be a terminal device.
  • the processing module 21 is configured to determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined.
  • the first search space includes a downlink control channel for scheduling the terminal device to send uplink data, where N, M, and L are integers greater than or equal to 1.
  • the transceiver module 22 is configured to detect feedback information about the uplink data in the second search space corresponding to the at least one of the L feedback moments.
  • the processing module 21 and the transceiver module 22 can perform the corresponding functions performed by the terminal device in the foregoing method for transmitting the feedback information according to the present application, and details are not described herein again.
  • the communication device provided in this embodiment is used to perform the method for transmitting feedback information provided by any of the embodiments shown in FIG. 6 to FIG. 12, and the technical principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 1 of the present application.
  • the network device provided in this embodiment may perform the method for transmitting feedback information provided in any of the embodiments shown in FIG. 11 to FIG.
  • the network device provided in this embodiment may include a processing module 31 and a transceiver module 32.
  • the processing module 31 is configured to determine N first time parameters according to a maximum number of repetitions of the downlink control channel, and/or determine M second time parameters according to a maximum number of repetitions of the physical uplink shared channel. Based on the N first time parameters and/or the M second time parameters, and the first search space, L feedback moments are determined.
  • the first search space includes a downlink control channel for scheduling the terminal device to send uplink data, where N, M, and L are integers greater than or equal to 1.
  • the transceiver module 32 is configured to send feedback information about the uplink data to the terminal device in the second search space corresponding to the at least one of the L feedback moments.
  • the processing module 31 and the transceiver module 32 can perform the corresponding functions performed by the network device in the foregoing method for transmitting the feedback information according to the present application, and details are not described herein again.
  • the network device provided in this embodiment may perform the method for transmitting the feedback information provided by any of the embodiments shown in FIG. 11 to FIG. 13 , and the technical principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a communication device according to Embodiment 2 of the present application.
  • the terminal communication device provided in this embodiment may include: a processor 41 and a memory 42.
  • the memory 42 is used to store instructions.
  • the processor 41 is configured to execute the instruction stored in the memory, so that the communication device performs the transmission method of the feedback information provided by any of the embodiments shown in FIG. 6 to FIG. 12, and the specific implementation manner and the technical effect are similar. I won't go into details here.
  • the communication device can also include a transceiver 43 for communicating with other devices.
  • FIG. 17 is a schematic structural diagram of a network device according to Embodiment 2 of the present application.
  • the network device provided in this embodiment may include: a processor 51 and a memory 52.
  • the memory 52 is used to store instructions.
  • the processor 51 is configured to execute the instruction stored in the memory, so that the network device performs the transmission method of the feedback information provided by any of the embodiments shown in FIG. 11 to FIG. 13 , and the specific implementation manner and the technical effect are similar. I won't go into details here.
  • the network device can also include a transceiver 53 for communicating with other devices.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programming logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种反馈信息的传输方法和设备。其中,反馈信息的传输方法包括:根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。其中,第一搜索空间中包括用于调度通信设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数。在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。本申请实施例提供的反馈信息的传输方法,节省了资源开销和终端能耗。

Description

反馈信息的传输方法和设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种反馈信息的传输方法和设备。
背景技术
长期演进(long term evolution,LTE)通信系统可以支持机器类型通信(machine type communication,MTC)。应用于MTC的终端设备的接收带宽小于系统带宽,通过机器类型通信的物理下行控制信道(MTC physical downlink control channel,MPDCCH)接收承载在MPDCCH中的下行控制信息(downlink control information,DCI)。
网络设备可以向终端设备发送混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息,用于指示该网络设备是否正确接收该终端设备通过物理上行共享信道(physical uplink shared channel,PUSCH)发送的上行数据,该HARQ反馈信息可以承载于DCI中。为了增强传输的可靠性,在MTC中,网络设备可以指示终端设备把相同的数据重复发送多次,网络设备可以进行合并接收检测。终端设备总是传完指定的重复次数之后才停止传输,网络设备也是在终端设备将上行数据全部重复发送完毕后才向终端设备发送HARQ反馈信息。即使网络设备在终端设备没有发送完全部重复的数据时就已经对终端设备发送的上行数据正确解码,终端设备也会继续发送重复的上行数据,直到发送上行数据的重复次数达到网络设备指示的重复次数为止。
上述的传输机制,浪费了频谱资源,增大了终端设备的功耗。
发明内容
本申请实施例提供一种反馈信息的传输方法和设备,以节省资源开销和终端能耗。
第一方面,本申请实施例提供一种反馈信息的传输方法,该方法包括:根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。
通过第一方面提供的反馈信息的传输方法,由于确定了L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测对上行数据的反馈信息。对于单一终端设备的反馈场景,终端设备可以在有限数目的反馈时刻检测反馈信息,节省了资源开销和终端能耗。对于组反馈传输方式,避免了每个终端设备基于自身发送PUSCH的起始结束时间导致的反馈时间混乱的问题,每个终端设备可以在有限数目的反馈时刻检测反馈信息,节省了资源开销和终端能耗。
可选的,在第一方面的一种可能的实施方式中,根据下行控制信道的最大重复次数确定N个第一时间参数,包括:根据下行控制信道的最大重复次数和预定义的第一关系确定N个第一时间参数。或者,确定N2个第一参数,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
通过该可能的实施方式提供的反馈信息的传输方法,通过静态配置的方式,简化了确定N个 第一时间参数的数据处理过程。通过网络设备配置参数的方式,提升了确定N个第一时间参数的灵活性。
可选的,在第一方面的一种可能的实施方式中,N2个第一参数指示N个下行控制信道的重复等级。根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,包括:根据N个下行控制信道的重复等级和下行控制信道的最大重复次数确定N个第一时间参数。或者,N2个第一参数指示N个第一参考系数,第一参考系数大于或者等于0且小于或者等于1。根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,包括:根据N个第一参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。或者,N2个第一参数指示N个第三参考系数,第三参考系数大于或者等于1,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,包括:根据N个第三参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
可选的,在第一方面的一种可能的实施方式中,根据物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据物理上行共享信道的最大重复次数和预定义的第二关系确定M个第二时间参数。或者,确定M2个第二参数,根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
通过该可能的实施方式提供的反馈信息的传输方法,通过静态配置的方式,简化了确定M个第二时间参数的数据处理过程。通过网络设备配置参数的方式,提升了确定M个第二时间参数的灵活性。
可选的,在第一方面的一种可能的实施方式中,M2个第二参数指示M个物理上行共享信道的重复等级,根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个物理上行共享信道的重复等级和物理上行共享信道的最大重复次数确定M个第二时间参数。或者,M2个第二参数指示M个第二参考系数,第二参考系数大于或者等于0且小于或者等于1。根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个第二参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。或者,M2个第二参数指示M个第四参考系数,第四参考系数大于或者等于1。根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个第四参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
可选的,在第一方面的一种可能的实施方式中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧。其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
可选的,在第一方面的一种可能的实施方式中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧。其中,i、j和O为整 数,0≤i≤N-1,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
可选的,在第一方面的一种可能的实施方式中,还提供一种组反馈传输方式。多个终端设备可以划分成至少一个终端设备组,每个终端设备组中包括至少两个终端设备。针对每个终端设备组,组反馈信息可以包括终端设备组中每个终端设备的反馈信息。可选的,组反馈信息可以包括多个域,每个域对应一个终端设备,或者每个域对应一个HARQ进程。每个终端设备可以通过检测该域中携带的反馈信息,确定终端设备发送的上行数据是否被网络设备正确接收。可选的,组反馈信息可以包括多个域,每个域对应一个频域资源。每个终端设备可以通过检测所述组反馈信息,并根据该终端设备传输上行数据所占的频域资源确定该组反馈信息中用于反馈该终端设备上行数据的域,进而确定该终端设备发送的上行数据是否被网络设备正确接收。
通过该可能的实施方式提供的反馈信息的传输方法,多个终端设备的反馈信息可以通过组反馈信息传输,节省了资源开销,提升了资源利用率。
第二方面,本申请实施例提供一种反馈信息的传输方法,该方法包括:根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向终端设备发送对上行数据的反馈信息。
可选的,在第二方面的一种可能的实施方式中,根据下行控制信道的最大重复次数确定N个第一时间参数,包括:根据下行控制信道的最大重复次数和预定义的第一关系,确定N个第一时间参数。或者,确定N2个第一参数,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
可选的,在第二方面的一种可能的实施方式中,N2个第一参数指示N个下行控制信道的重复等级。根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,包括:根据N个下行控制信道的重复等级和下行控制信道的最大重复次数确定N个第一时间参数。或者,N2个第一参数指示N个第一参考系数,第一参考系数大于或者等于0且小于或者等于1。根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,包括:根据N个第一参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。或者,N2个第一参数指示N个第三参考系数,第三参考系数大于或者等于1。根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,包括:根据N个第三参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
可选的,在第二方面的一种可能的实施方式中,根据物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据物理上行共享信道的最大重复次数和预定义的第二关系确定M个第二时间参数。或者,确定M2个第二参数,根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
可选的,在第二方面的一种可能的实施方式中,M2个第二参数指示M个物理上行共享信道的重复等级。根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个物理上行共享信道的重复等级和物理上行共享信道的最大重复次数确定M个第 二时间参数。或者,M2个第二参数指示M个第二参考系数,第二参考系数大于或者等于0且小于或者等于1。根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个第二参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。或者,M2个第二参数指示M个第四参考系数,第四参考系数大于或者等于1。根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,包括:根据M个第四参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
可选的,在第二方面的一种可能的实施方式中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧。其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
可选的,在第二方面的一种可能的实施方式中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧。其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
第三方面,本申请实施例提供一种通信设备,包括:处理模块和收发模块。处理模块,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。收发模块,用于在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。
可选的,在第三方面的一种可能的实施方式中,处理模块具体用于:根据下行控制信道的最大重复次数和预定义的第一关系确定N个第一时间参数。或者,确定N2个第一参数,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
可选的,在第三方面的一种可能的实施方式中,N2个第一参数指示N个下行控制信道的重复等级。处理模块具体用于:根据N个下行控制信道的重复等级和下行控制信道的最大重复次数确定N个第一时间参数。或者,N2个第一参数指示N个第一参考系数,第一参考系数大于或者等于0且小于或者等于1。处理模块具体用于:根据N个第一参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。或者,N2个第一参数指示N个第三参考系数,第三参考系数大于或者等于1。处理模块具体用于:根据N个第三参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
可选的,在第三方面的一种可能的实施方式中,根据物理上行共享信道的最大重复次数和预定义的第二关系确定M个第二时间参数。或者,确定M2个第二参数,根据M2个第二参数和物 理上行共享信道的最大重复次数确定M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
可选的,在第三方面的一种可能的实施方式中,M2个第二参数指示M个物理上行共享信道的重复等级。处理模块具体用于:根据M个物理上行共享信道的重复等级和物理上行共享信道的最大重复次数确定M个第二时间参数。或者,M2个第二参数指示M个第二参考系数,第二参考系数大于或者等于0且小于或者等于1。处理模块具体用于:根据M个第二参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。或者,M2个第二参数指示M个第四参考系数,第四参考系数大于或者等于1。处理模块具体用于:根据M个第四参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
可选的,在第三方面的一种可能的实施方式中,处理模块具体用于:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧。其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
可选的,在第三方面的一种可能的实施方式中,处理模块具体用于:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧。其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
第四方面,本申请实施例提供一种网络设备,包括处理模块和收发模块。处理模块,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。收发模块,用于在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向终端设备发送对上行数据的反馈信息。
可选的,在第四方面的一种可能的实施方式中,处理模块具体用于:根据下行控制信道的最大重复次数和预定义的第一关系确定N个第一时间参数。或者,确定N2个第一参数,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
可选的,在第四方面的一种可能的实施方式中,N2个第一参数指示N个下行控制信道的重复等级。处理模块具体用于:根据N个下行控制信道的重复等级和下行控制信道的最大重复次数确定N个第一时间参数。或者,N2个第一参数指示N个第一参考系数,第一参考系数大于或者等于0且小于或者等于1。处理模块具体用于:根据N个第一参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。或者,N2个第一参数指示N个第三参考系数,第三参考系数大于或者等于1。处理模块具体用于:根据N个第三参考系数和下行控制信道的最大重复次数确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
可选的,在第四方面的一种可能的实施方式中,处理模块具体用于:根据物理上行共享信道 的最大重复次数和预定义的第二关系确定M个第二时间参数。或者,确定M2个第二参数,根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
可选的,在第四方面的一种可能的实施方式中,M2个第二参数指示M个物理上行共享信道的重复等级。处理模块具体用于:根据M个物理上行共享信道的重复等级和物理上行共享信道的最大重复次数确定M个第二时间参数。或者,M2个第二参数指示M个第二参考系数,第二参考系数大于或者等于0且小于或者等于1。处理模块具体用于:根据M个第二参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。或者,M2个第二参数指示M个第四参考系数,第四参考系数大于或者等于1。处理模块具体用于:根据M个第四参考系数和物理上行共享信道的最大重复次数确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
可选的,在第四方面的一种可能的实施方式中,处理模块具体用于:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧。其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
可选的,在第四方面的一种可能的实施方式中,处理模块具体用于:根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧。其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
结合上述第一方面以及第一方面的各可能的实施方式、第二方面以及第二方面的各可能的实施方式、第三方面以及第三方面的各可能的实施方式、第四方面以及第四方面的各可能的实施方式,第一搜索空间中包括用于调度终端设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数。第二搜索空间为至少一个反馈时刻所在的公共搜索空间,或者,第二搜索空间为至少一个反馈时刻后的首个公共搜索空间,或者,第二搜索空间为根据至少一个反馈时刻确定的搜索空间。
第五方面,本申请实施例提供一种通信设备,该通信设备包括处理器和存储器,存储器用于存储指令,处理器用于执行存储器中存储的指令,以使通信设备执行上述第一方面的方法。
上述第五方面的通信设备还可以包括收发器,该收发器用于和其他设备通信。
第六方面,本申请实施例提供一种网络设备,该网络设备包括处理器和存储器,存储器用于存储指令,处理器用于执行存储器中存储的指令,以使网络设备执行上述第二方面的方法。
上述第六方面的通信设备还可以包括收发器,该收发器用于和其他设备通信。
第七方面,本申请实施例提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第一方面任一项所述的方法。
第八方面,本申请实施例提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得该终端设备实施第一方面的各种实施方式提供的方法。
第九方面,本申请实施例提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第二方面任一项所述的方法。
第十方面,本申请实施例提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得该终端设备实施第二方面的各种实施方式提供的方法。
本申请实施例提供一种反馈信息的传输方法和设备,通过确定L个反馈时刻,网络设备可以在L个反馈时刻中的至少一个反馈时刻向终端设备发送对上行数据的反馈信息,终端设备可以在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间检测反馈信息。对于单一终端设备的反馈场景,网络设备可以在正确接收上行数据后就向终端设备发送反馈信息,提升了数据传输效率和实时性。终端设备可以在有限数目的反馈时刻对应的第二搜索空间检测反馈信息,节省了资源开销和终端能耗。对于组反馈传输场景,网络设备可以在有限数目的反馈时间发送组反馈信息,节省了资源开销。终端设备可以在有限数目的反馈时刻对应的第二搜索空间检测组反馈信息,节省了资源开销和终端能耗。而且,该第二搜索空间可以与第一搜索空间不同,比如可以为公共搜索空间,第一搜索空间可以是用户设备专用搜索空间,使得用户设备专用搜索空间不同的多个终端设备也能在相同的搜索空间检测组反馈信息,使能了组反馈,进一步节省了资源开销。
附图说明
图1为本申请实施例适用的通信系统的网络架构图;
图2为现有的单一终端设备传输上行数据的示意图;
图3为现有的多个终端设备传输上行数据的示意图;
图4为本申请实施例涉及的反馈信息的传输方法的消息交互图;
图5为本申请实施例涉及的USS中下行控制信道的示意图;
图6为本申请实施例一提供的反馈信息的传输方法的流程图;
图7为本申请实施例一中反馈时刻的一种实现方式的示意图;
图8为本申请实施例一中反馈时刻的另一种实现方式的示意图;
图9为本申请实施例一中反馈时刻的又一种实现方式的示意图;
图10为本申请实施例一中反馈时刻的又一种实现方式的示意图;
图11为本申请实施例六提供的反馈信息的传输方法的消息交互图;
图12为本申请实施例七提供的反馈信息的传输方法的消息交互图;
图13为本申请实施例八提供的反馈信息的传输方法的流程图;
图14为本申请实施例一提供的通信设备的结构示意图;
图15为本申请实施例一提供的网络设备的结构示意图;
图16为本申请实施例二提供的通信设备的结构示意图;
图17为本申请实施例二提供的网络设备的结构示意图。
具体实施方式
本申请实施例提供的反馈信息的传输方法,可以应用于LTE通信系统及其后续演进通信系统、未来5G通信系统及其他通信系统。所述通信系统可以包括网络设备和终端设备。网络设备与终 端设备之间可以进行上下行通信。其中,网络设备可以接收终端设备发送的上行数据,并对所述上行数据是否正确接收进行反馈。相应的,终端设备可以向网络设备发送上行数据,并接收网络设备发送的对所述上行数据是否正确接收的反馈信息。
本申请实施例涉及的网络设备,可以为任一具有管理无线网络资源的设备,或者各种无线接入点。例如:LTE通信系统中的演进型基站(evolutional node B,eNB或eNodeB)、中继站或者接入点,未来5G通信系统中的5G基站(g node B,gNB)、无线收发设备(next node,NX)等,本申请实施例不作限制。
本申请实施例涉及的通信设备,可以是终端设备,比如,具有无线连接功能的手机、平板电脑、手持设备、车载设备、可穿戴设备、计算设备,以及各种形式的用户设备(user equipment,UE)、移动台(mobile station,MS)及终端(terminal),或者是进行MTC业务的UE、带宽降低低复杂度用户设备(bandwidth-reduced low-complexity UE,BL UE)、non-BL UE或者覆盖增强用户设备(coverage enhancement UE,CE UE)等,本申请实施例不作限制。
示例性的,图1为本申请实施例适用的通信系统的网络架构图。如图1所示,通信系统可以包括基站11和终端设备12~终端设备17。其中,基站11和终端设备12~终端设备17可以组成一个通信系统。在该通信系统中,基站11可以接收终端设备12~终端设备17发送的上行数据,并对所述上行数据是否正确接收反馈给终端设备12~终端设备17。此时,基站11作为网络设备,终端设备12~终端设备17作为通信设备。另外,终端设备15、终端设备16和终端设备17也可以组成一个通信系统。在该通信系统中,终端设备16可以接收终端设备15和终端设备17发送的上行数据,并对所述上行数据是否正确接收反馈给终端设备15和终端设备17。此时,终端设备16作为网络设备,终端设备15和终端设备17作为通信设备。
下面以LTE通信系统中终端设备应用于MTC为例,对现有的上行调度过程以及反馈信息的传输过程进行说明。
图2为现有的单一终端设备传输上行数据的示意图。如图2所示,网络设备向终端设备发送MPDCCH,用于调度终端设备发送PUSCH(传输上行数据)。终端设备接收MPDCCH后,会尽快发起PUSCH的传输。通常,若终端设备结束接收MPDCCH的子帧索引为n,则终端设备开始发送PUSCH的起始子帧索引可以为n+O,O≥4。O的取值取决于有效的上行子帧号、通信系统是频分双工(frequency division duplex,FDD)系统还是时分双工(time division duplex,TDD)系统等公共因素。在MTC中,为了增强传输的可靠性,网络设备可以指示终端设备把相同的数据重复发送多次。终端设备在t1时刻发送完全部重复的PUSCH。网络设备在t1时刻接收完全部重复的PUSCH后,才会通过MPDCCH承载的DCI向终端设备发送对上行数据的反馈信息。即使网络设备在t1’时刻已经正确解码,但是,依然要在t1时刻之后向终端设备发送反馈信息。浪费了频谱资源,增大了终端设备的功耗。进一步的,即使网络设备可以在正确解调上行数据后就向终端设备发送反馈信息,但是,终端设备并不知道反馈信息的发送时间,因此需要一直检测,增大了终端设备的功耗。
图3为现有的多个终端设备传输上行数据的示意图。在图3中,涉及终端设备1~终端设备3。每个终端设备的上行调度过程以及反馈信息的传输过程相似,原理可以参见图2,MPDCCH和PUSCH通过标号1~3区分不同的终端设备,此处不再赘述。需要说明,图3中未示出时间间隔O。在现有的传输机制中,每个MPDCCH承载的DCI中包括的对PUSCH的反馈信息仅仅是针对一个终端设备的反馈信息,也就是说,一个DCI中的反馈信息只能针对一个终端设备发送的上行数据 进行反馈。例如,在图3所示场景中,网络设备需要针对3个终端设备发送的上行数据分别反馈,即,分别针对终端设备1~终端设备3共计发送3个MPDCCH。占用了较多的MPDCCH资源,资源开销较大。
针对图3所示多个终端设备的反馈场景,本申请实施例提供一种组反馈传输方式。具体的,多个终端设备可以划分成至少一个终端设备组,每个终端设备组中包括至少两个终端设备。针对每个终端设备组,都可以有一个MPDCCH承载的组反馈信息(携带在DCI中),所述组反馈信息可以包括终端设备组中每个终端设备的反馈信息。可选的,组反馈信息可以包括多个域,每个域对应一个终端设备,或者每个域对应一个HARQ进程。每个终端设备可以通过检测该域中携带的反馈信息,确定终端设备发送的上行数据是否被网络设备正确接收。可选的,组反馈信息可以包括多个域,每个域对应一个频域资源。每个终端设备可以通过检测所述组反馈信息,并根据该终端设备传输上行数据所占的频域资源确定该组反馈信息中用于反馈该终端设备上行数据的域,进而确定该终端设备发送的上行数据是否被网络设备正确接收。
但是,网络设备调度不同的终端设备时,MPDCCH的结束时间可能不同。相应的,不同的终端设备开始发送PUSCH的起始时间不相同。而且,针对不同的终端设备,网络设备配置的终端设备重复发送PUSCH的次数可能不同,导致了不同的终端设备发送完全部重复的PUSCH的时间也不相同。例如,如图3所示,终端设备1对应的MPDCCH1的结束时间为t2,对应的PUSCH1的结束时间为t5。终端设备2对应的MPDCCH2的结束时间为t1,对应的PUSCH2的结束时间为t3。终端设备3对应的MPDCCH3的结束时间为t2,对应的PUSCH3的结束时间为t4。可见,一个组反馈信息所对应的多个终端设备可能具有不同的MPDCCH结束时间和不同的PUSCH结束时间,导致了如何确定组反馈信息的发送时间的技术问题。网络设备如果按照最晚的PUSCH结束时间发送组反馈信息,增加了反馈时延。如果网络设备可以在正确解调上行数据后就向终端设备发送反馈信息,由于终端设备并不知道组反馈信息的发送时间,因此需要一直检测,增大了终端设备的功耗。
针对上述技术问题,本申请实施例提供的反馈信息的传输方法,可以应用于单一终端设备的反馈场景和/或多个终端设备的反馈场景。对于多个终端设备的反馈场景,可以包括终端设备单独反馈的方式,也可以包括上述组反馈传输方式。通过确定L(L≥1)个反馈时刻,网络设备可以在L个反馈时刻中的至少一个反馈时刻发送反馈信息或者组反馈信息,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息或者组反馈信息。解决了反馈时延过大、反馈时间不确定或者反馈时间混乱的技术问题,节省了资源开销和终端能耗。
本申请实施例提供的反馈信息的传输方法,涉及上下行数据传输过程和反馈时刻确定过程。图4为本申请实施例涉及的反馈信息的传输方法的消息交互图。如图4所示,上下行数据传输过程可以包括:S101、网络设备向终端设备发送下行控制信道,所述下行控制信道用于调度终端设备发送上行数据。相应的,终端设备接收网络设备发送的下行控制信道。S102、终端设备向网络设备发送上行数据。相应的,网络设备接收终端设备发送的上行数据。S103、网络设备在至少一个反馈时刻发送对上行数据的反馈信息。相应的,终端设备在至少一个反馈时刻检测网络设备发送的对上行数据的反馈信息。S101和S102可以参考现有技术的方法。本申请实施例主要对S103进行说明。可选的,S102和S103可以循环执行,直至终端设备检测到对上行数据的反馈信息且所述反馈信息指示了网络设备正确接收所述上行数据。其中,反馈时刻确定过程的执行主体可以为网络设备和终端设备。本申请实施例对于反馈时刻确定过程和上下行数据传输过程的执行顺序 不做限定。如图4所示,反馈时刻确定过程的执行顺序可以参见图4中的“确定反馈时刻”。
下面对本申请实施例涉及的相关概念进行介绍。
1)下行控制信道
用于承载DCI。所述DCI可以用于调度终端设备发送上行数据,或者,包括对上行数据的反馈信息。本申请下述各实施例中的“下行控制信道”用于调度终端设备发送上行数据。本申请实施例对于下行控制信道的类型不做限定。可选的,下行控制信道可以包括:物理下行控制信道(physical downlink shared channel,PDCCH)、增强型物理下行控制信道(enhanced physical downlink shared channel,EPDCCH)和MPDCCH。
下行控制信道可能是重复发送的。对于一个小区而言,网络设备可以配置下行控制信道的最大重复次数,可以标记为Rmax。下行控制信道的最大重复次数Rmax为公共参数,对于同一个小区内的所有终端设备是相同的。
下面通过具体示例说明。
表1 MPDCCH的最大重复次数和重复等级
Rmax r1 r2 r3 r4
1 1 - - -
2 1 2 - -
4 1 2 4 -
>=8 Rmax/8 Rmax/4 Rmax/2 Rmax
如表1所示,Rmax的取值可以为{1,2,4,8,16,32,64,128,256}。虽然Rmax对小区中的所有终端设备是相同的,但是,对于不同的终端设备的MPDCCH,网络设备可以以4种不同的重复等级(r1~r4)发送。也就是说,对于一个终端设备,网络设备发送MPDCCH的重复次数,是由MPDCCH的最大重复次数(Rmax)和MPDCCH的重复等级(r1~r4)共同确定的。例如,假设Rmax=128。如果终端设备1的MPDCCH的重复等级为r2,则终端设备1对应的MPDCCH实际会重复Rmax/4=128/4=32次。如果终端设备2的MPDCCH的重复等级为r3,则终端设备2对应的MPDCCH实际会重复Rmax/2=128/2=64次。如果一个MPDCCH占1个子帧,则终端设备1对应的MPDCCH实际会占32个子帧,终端设备2对应的MPDCCH实际会占64个子帧。
2)PUSCH
用于承载终端设备发送的上行数据。PUSCH可能是重复发送的。对于一个小区而言,网络设备可以配置PUSCH的最大重复次数,可以标记为Vmax。PUSCH的最大重复次数Vmax为公共参数,对于同一个小区内的所有终端设备是相同的。
下面通过具体示例说明。
如表2所示,终端设备工作在CE mode B,MPDCCH承载的DCI格式为6-0B。Vmax的取值可以为{192,256,384,512,768,1024,1536,2048}。虽然Vmax对小区中所有CE Mode B的终端设备而言是相同的,但是,对于不同的终端设备的PUSCH,网络设备可以指示8种不同的重复等级(n1~n8)。也就是说,对于一个终端设备,网络设备在调度其传输PUSCH时,PUSCH的重复次数是由PUSCH的最大重复次数(Vmax)和PUSCH的重复等级(n1~n8)共同确定的。例如,假设Vmax=512。如果终端设备1的PUSCH的重复等级为n2,则终端设备1实际会重复发送的PUSCH次数为n2=16。如果终端设备2的PUSCH的重复等级为n8,则终端设备2实际会重复发送的PUSCH次数为n8=512。如果一个PUSCH占1个子帧,则终端设备1对应的PUSCH实际会 占16个子帧,终端设备2对应的PUSCH实际会占512个子帧。
表2 PUSCH的最大重复次数和重复等级(DCI格式6-0B)
Vmax(CE mode B) {n1,n2,…,n8}
未配置 {4,8,16,32,64,128,256,512}
192 {1,4,8,16,32,64,128,192}
256 {4,8,16,32,64,128,192,256}
384 {4,16,32,64,128,192,256,384}
512 {4,16,64,128,192,256,384,512}
768 {8,32,128,192,256,384,512,768}
1024 {4,8,16,64,128,256,512,1024}
1536 {4,16,64,256,512,768,1024,1536}
2048 {4,16,64,128,256,512,1024,2048}
在另一个示例中,表3示出了CE mode A对应的PUSCH的最大重复次数和重复等级。
表3 PUSCH的最大重复次数和重复等级(DCI格式6-0A)
Vmax(CE mode A) {n1,n2,n3,n4}
未配置 {1,2,4,8}
16 {1,4,8,16}
32 {1,4,16,32}
3)第一搜索空间
是指包括下行控制信道的搜索空间,所述下行控制信道用于调度终端设备发送上行数据。
可选的,第一搜索空间可以为用户设备专有搜索空间(UE specific search space,USS)。其中,下行控制信道的最大重复次数Rmax可以指示一个USS的时域范围(持续时间)。小区中的每个终端设备,可以根据MPDCCH的最大重复次数(Rmax)和MPDCCH的重复等级(r1~r4)确定网络设备发送MPDCCH的重复次数,并在USS中搜索调度其传输上行数据的MPDCCH。图5为本申请实施例涉及的USS中下行控制信道的示意图。如图5所示,USS开始时间为t0。前4行分别指示了MPDCCH在USS中可能的开始时间和持续时间。最后一行为具体示例。其中,调度终端设备1的MPDCCH1的重复次数为Rmax/8,MPDCCH1的起始时间为t0,结束时间为t1。调度终端设备2的MPDCCH2的重复次数为Rmax/8,MPDCCH2的起始时间为t1,结束时间为t2。调度终端设备3的MPDCCH3的重复次数为Rmax/4,MPDCCH3的起始时间为t2,结束时间为t4。调度终端设备4的MPDCCH4的重复次数为Rmax/2,MPDCCH4的起始时间为t4,结束时间为t8。
4)第二搜索空间
对于每个反馈时刻,可以对应有第二搜索空间。网络设备可以在反馈时刻对应的第二搜索空间向终端设备发送上行数据的反馈信息。相应的,终端设备可以在反馈时刻对应的第二搜索空间检测对上行数据的反馈信息。
可选的,第二搜索空间可以为反馈时刻所在的公共搜索空间。
网络设备可以预先定义至少一个公共搜索空间。在至少一个公共搜索空间中反馈时刻所在的搜索空间作为反馈时刻对应的第二搜索空间。
可选的,第二搜索空间可以为反馈时刻后的首个公共搜索空间。
网络设备可以预先定义至少一个公共搜索空间。反馈时刻不在任一个公共搜索空间中。在至少一个公共搜索空间中,将反馈时刻之后的首个公共搜索空间作为反馈时刻对应的第二搜索空间。
可选的,第二搜索空间为根据反馈时刻确定的搜索空间。
具体的,网络设备可以预先定义至少一个公共搜索空间。反馈时刻不在任一个公共搜索空间中。反馈时刻对应的第二搜索空间包括所述反馈时刻。本申请实施例对于第二搜索空间的确定方法不做限定。例如,以反馈时刻作为时间起点,将之后连续的多个下行子帧作为第二搜索空间。
5)反馈信息
在本申请各实施例中,确定了至少一个反馈时刻。反馈信息指示了网络设备针对反馈时刻截止之前接收到的上行数据是否正确接收。反馈信息可以包括第一指示信息和/或第二指示信息。所述第一指示信息指示了网络设备正确接收到上行数据。所述第二指示信息指示了网络设备没有正确接收到上行数据。例如,反馈信息为HARQ反馈信息,第一指示信息可以为ACK,第二指示信息可以为NACK。可选的,网络设备是否正确接收到上行数据可以通过第三指示信息的“01”翻转来指示。例如,第三指示信息可以为新数据指示(new data indicator,NDI)信息。若该NDI信息与上一次调度PUSCH传输的DCI中的NDI信息相同(例如同为“1”或者同为“0”),则表示终端设备不传输新数据,也指示了网络设备没有正确接收到上行数据。若该NDI信息与上一次调度PUSCh传输的DCI中的NDI信息相反(一个为“1”,另一个为“0”),则表示终端设备传输新数据,也指示了网络设备已正确接收到上行数据。
需要说明,对于组反馈传输方式,反馈信息可以为组反馈信息。可选的,对于组反馈信息,可以包括终端设备组中每个终端设备的反馈信息。可选的,若终端设备组包括第一终端设备和第二终端设备,网络设备已经正确接收第一终端设备发送的上行数据,没有正确接收第二终端设备发送的上行数据,则在后续的组反馈信息中,针对第一终端设备的反馈信息可以为第一指示信息。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
需要说明,本申请各实施例中通信设备以终端设备为示例进行说明。并且,本申请各实施例中以单一终端设备为示例进行说明。当然,本申请各实施例提供的反馈信息的传输方法,同样适用于上述多终端设备场景。
需要说明,在未来5G通信系统中,数据在时间域上以时间单元为粒度进行传输。该时间单元可以是子帧、传输时间间隔(一个传输时间间隔等于若干个子帧长度的和,或者若干个传输时间间隔的和等于一个子帧长度)、时隙(slot)、多个时隙聚合、迷你时隙(mini-slot)、多个迷你时隙聚合、迷你时隙和时隙聚合、时域符号、或多个时域符号等等。也就是说,未来5G通信系统中存在多种长度的时间单元。在本申请各实施例中,为了描述方便,以子帧作为示例进行时域上时间的说明。一个下行传输信道占1个子帧,一个PUSCH占1个子帧。或者,以下行传输信道的重复次数和PUSCH的重复次数进行时域上时间的说明。
需要说明,本申请各实施例中的下行控制信道以MPDCCH为示例进行说明。
需要说明,本申请实施例中的下行子帧,可以是所有下行子帧,其中并不区分特殊子帧。或者,为带宽降低/覆盖增强(BL/CE)下行子帧。
需要说明,本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、 “第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图6为本申请实施例一提供的反馈信息的传输方法的流程图。本实施例提供的反馈信息的传输方法,执行主体可以为终端设备。其中,S201~S202可以与图4中的“确定反馈时刻”对应,S203可以与图4中的S103对应。如图6所示,本实施例提供的反馈信息的传输方法,可以包括:
S201、根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。
其中,N和M均为大于或者等于1的整数。
具体的,下行控制信道的最大重复次数为小区公共参数,因此,根据下行控制信道的最大重复次数确定的N个第一时间参数也是小区公共参数,对于同一个小区内的所有终端设备是相同的。相似的,物理上行共享信道的最大重复次数为小区公共参数,因此,根据物理上行共享信道的最大重复次数确定的M个第二时间参数也是小区公共参数,对于同一个小区内的所有终端设备是相同的。
S202、根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。
其中,第一搜索空间中包括用于调度终端设备发送上行数据的下行控制信道,L为大于或者等于1的整数。
具体的,可以根据N个第一时间参数和第一搜索空间确定L个反馈时刻。或者,根据M个第二时间参数和第一搜索空间确定L个反馈时刻。或者,根据N个第一时间参数、M个第二时间参数和第一搜索空间,确定L个反馈时刻。
通过N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,终端设备可以确定至少一个反馈时刻,使得反馈时间已知,解决了反馈时间不确定或者反馈时间混乱的问题。终端设备仅需要在有限数目的反馈时刻所对应的第二搜索空间检测反馈信息即可,节省了终端能耗。
可选的,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间和第一间隔,确定L个反馈时刻。其中,第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
具体的,可以根据N个第一时间参数、第一搜索空间和第一间隔确定L个反馈时刻。或者,根据M个第二时间参数、第一搜索空间和第一间隔确定L个反馈时刻。或者,根据N个第一时间参数、M个第二时间参数、第一搜索空间和第一间隔,确定L个反馈时刻。
可选的,在组反馈传输场景,终端设备组中每个终端设备分别对应的第一搜索空间的起始时间相同,或者,终端设备组中每个终端设备分别对应的第一搜索空间的结束时间相同。
S203、在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。
具体的,如果L=1,反馈时刻只有1个。终端设备在该反馈时刻对应的第二搜索空间中检测对上行数据的反馈信息。
如果L>1,则终端设备可以按照L个反馈时刻的时间先后顺序,依次在各个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息,直至检测到的反馈信息指示了网络设备正确接收 上行数据,并停止检测反馈信息,停止发送上行数据,节省了资源开销。例如,确定了3个反馈时刻,按照时间先后顺序分别为t0、t1和t2。首先,终端设备在t0时刻所对应的第二搜索空间中检测对上行数据的反馈信息。如果没有检测到反馈信息,则终端设备在t1时刻所对应的第二搜索空间中继续检测对上行数据的反馈信息。如果检测到反馈信息,且所述反馈信息指示了网络设备已经正确接收上行数据,则终端设备停止发送上行数据,且可以停止检测反馈信息。
可见,本实施例提供的反馈信息的传输方法,通过确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间检测对上行数据的反馈信息。对于单一终端设备的反馈场景,终端设备可以在有限数目的反馈时刻对应的第二搜索空间检测反馈信息,节省了资源开销和终端能耗。对于组反馈传输方式,避免了每个终端设备基于自身发送PUSCH的起始结束时间导致的反馈时间混乱的问题,每个终端设备可以在有限数目的反馈时刻对应的第二搜索空间检测反馈信息,节省了资源开销和终端能耗。而且,该第二搜索空间可以与第一搜索空间不同,比如可以为公共搜索空间,第一搜索空间可以是用户设备专用搜索空间,使得用户设备专用搜索空间不同的终端设备也能在相同的搜索空间检测组反馈信息,使能了组反馈,进一步节省了资源开销。并且,第二搜索空间是公共搜索空间时,可以设置公共搜索空间的部分或全部反馈时间点早于用户设备专用搜索空间的部分或全部反馈时间点,则相比于专用搜索空间,终端设备在公共搜索空间可以更早地检测到反馈信息,从而可以提前结束检测,节省了终端能耗。
可选的,第二搜索空间为至少一个反馈时刻所在的公共搜索空间,或者,第二搜索空间为至少一个反馈时刻后的首个公共搜索空间,或者,第二搜索空间为根据至少一个反馈时刻确定的搜索空间。
可选的,若N大于1,则N个第一时间参数在按照数值大小排序后相邻的两个第一时间参数为倍数关系。或者,N个第一时间参数在按照数值大小排序后相邻的两个第一时间参数之间的差值相同。
例如,第一时间参数为3个,数值分别为Rmax/4、Rmax/2和Rmax。或者,第一时间参数为2个,数值分别为Rmax/4和Rmax/2。
通过设置相邻的两个第一时间参数为倍数关系,相当于相邻的两个第一时间参数对应的MPDCCH的覆盖范围总是2倍关系,因此存在3dB的增益,而且尽可能涵盖了MPDCCH从小到大的覆盖范围。通过设置相邻的两个第一时间参数之间的差值相同,便于把反馈开销均匀的分布在不同的传输资源(时域)上,提升了反馈时间的合理性。
可选的,若M大于1,则M个第二时间参数在按照数值大小排序后相邻的两个第二时间参数为倍数关系。或者,M个第二时间参数在按照数值大小排序后相邻的两个第二时间参数之间的差值相同。
例如,第二时间参数为3个,数值分别为Vmax/4、Vmax/2和Vmax。或者,第二时间参数为4个,数值分别为Vmax/4、Vmax/2、Vmax*3/4和Vmax。
通过设置相邻的两个第二时间参数为倍数关系,相当于相邻的两个第二时间参数对应的PUSCH的覆盖范围总是2倍关系,因此存在3dB的增益,而且尽可能涵盖了PUSCH从小到大的覆盖范围。通过设置相邻的两个第二时间参数之间的差值相同,便于把反馈开销均匀的分布在不同的传输资源(时域)上,提升了反馈时间的合理性。
可选的,作为第一种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi+Qj的子帧。该子帧可以是下行子帧,也可以是带宽降低/覆盖增强下行子帧,下面的描述中涉及的子帧类似。
其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
在该种实现方式中,L的最大值为N×M。
下面通过示例详细说明。
图7为本申请实施例一中反馈时刻的一种实现方式的示意图。假设N=2,M=2。2个第一时间参数分别为P0和P1。2个第二时间参数分别为Q0和Q1。如图7所示,4个反馈时刻依次为:
1)反馈时刻Rt0是索引为n+P0+Q0的子帧,根据第一时间参数P0、第二时间参数Q0和第一搜索空间确定。
2)反馈时刻Rt1是索引为n+P1+Q0的子帧,根据第一时间参数P1、第二时间参数Q0和第一搜索空间确定。
3)反馈时刻Rt2是索引为n+P0+Q1的子帧,根据第一时间参数P0、第二时间参数Q1和第一搜索空间确定。
4)反馈时刻Rt3是索引为n+P1+Q1的子帧,根据第一时间参数P1、第二时间参数Q1确定和第一搜索空间确定。
可选的,作为第二种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+Qj+O的子帧。
其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
在该种实现方式中,L的最大值为N×M。相比于第一种实现方式,考虑了第一间隔。
下面通过示例详细说明。
图8为本申请实施例一中反馈时刻的另一种实现方式的示意图。假设N=2,M=2。2个第一时间参数分别为P0和P1。2个第二时间参数分别为Q0和Q1。第一间隔为O。如图8所示,4个反馈时刻依次为:
1)反馈时刻Rt0是索引为n+P0+Q0+O的子帧,根据第一时间参数P0、第二时间参数Q0、第一间隔O和第一搜索空间确定。
2)反馈时刻Rt1是索引为n+P1+Q0+O的子帧,根据第一时间参数P1、第二时间参数Q0、第一间隔O和第一搜索空间确定。
3)反馈时刻Rt2是索引为n+P0+Q1+O的子帧,根据第一时间参数P0、第二时间参数Q1、第一间隔O和第一搜索空间确定。
4)反馈时刻Rt3是索引为n+P1+Q1+O的子帧,根据第一时间参数P1、第二时间参数Q1、第一间隔O和第一搜索空间确定。
可选的,作为第三种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Pi的子帧。
其中,i为整数,0≤i≤N-1。
在该种实现方式中,L的最大值为N。
下面通过示例详细说明。
图9为本申请实施例一中反馈时刻的又一种实现方式的示意图。假设N=3。3个第一时间参数分别为P0、P1和P2。如图9所示,3个反馈时刻依次为:
1)反馈时刻Rt0是索引为n+P0的子帧,根据第一时间参数P0和第一搜索空间确定。
2)反馈时刻Rt1是索引为n+P1的子帧,根据第一时间参数P1和第一搜索空间确定。
3)反馈时刻Rt2是索引为n+P2的子帧,根据第一时间参数P2和第一搜索空间确定。
可选的,作为第四种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Pi+O的子帧。
其中,i和O为整数,0≤i≤N-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
在该种实现方式中,L的最大值为N。相比于第三种实现方式,考虑了第一间隔。
可选的,作为第五种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第j+1个第二时间参数Qj和第一搜索空间的起始子帧索引n,确定L个反馈时刻包括索引为n+Qj的子帧。
其中,j为整数,0≤j≤M-1。
在该种实现方式中,L的最大值为M。
可选的,作为第六种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第j+1个第二时间参数Qj、第一搜索空间的起始子帧索引n和第一间隔O,确定L个反馈时刻包括索引为n+Qj+O的子帧。
其中,j和O为整数,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
在该种实现方式中,L的最大值为M。相比于第五种实现方式,考虑了第一间隔。
在上述S202步骤的第一种~第六种实现方式中,涉及了第一搜索空间的起始子帧索引n。可选的,还可以涉及第一搜索空间的结束子帧索引w。下面通过S202步骤的第七种~第十种实现方式进行说明。
可选的,作为第七种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第j+1个第二时间参数Qj和第一搜索空间的结束子帧索引w,确定L个反馈时刻包括索引为w+Qj的子帧。
其中,j为整数,0≤j≤M-1。
在该种实现方式中,L的最大值为M。
下面通过示例详细说明。
图10为本申请实施例一中反馈时刻的又一种实现方式的示意图。假设M=3。3个第二时间参 数分别为Q0、Q1和Q2。如图10所示,3个反馈时刻依次为:
1)反馈时刻Rt0是索引为w+Q0的子帧,根据第二时间参数Q0和第一搜索空间确定。
2)反馈时刻Rt1是索引为w+Q1的子帧,根据第二时间参数Q1和第一搜索空间确定。
3)反馈时刻Rt2是索引为w+Q2的子帧,根据第二时间参数Q2和第一搜索空间确定。
可选的,作为第八种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第j+1个第二时间参数Qj、第一搜索空间的结束子帧索引w和第一间隔O,确定L个反馈时刻包括索引为w+Qj+O的子帧。
其中,j和O为整数,0≤j≤M-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
在该种实现方式中,L的最大值为M。相比于第七种实现方式,考虑了第一间隔。
可选的,作为第九种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi和第一搜索空间的结束子帧索引w,确定L个反馈时刻包括索引为w+Pi的子帧。
其中,i为整数,0≤i≤N-1。
在该种实现方式中,L的最大值为N。
可选的,作为第十种实现方式,S202中,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,可以包括:
根据第i+1个第一时间参数Pi、第一搜索空间的结束子帧索引w和第一间隔O,确定L个反馈时刻包括索引为w+Pi+O的子帧。
其中,i和O为整数,0≤i≤N-1,O≥4。第一间隔为终端设备从结束接收下行控制信道到开始发送上行数据之间的时间间隔。
在该种实现方式中,L的最大值为N。相比于第九种实现方式,考虑了第一间隔。
可选的,对于单一终端设备的反馈,可以使用该终端设备的实际MPDCCH重复等级替代Rmax,可以使用该终端设备的实际PUSCH重复等级替代Vmax。
本实施例提供了一种反馈信息的传输方法,包括:根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。本实施例提供的反馈信息的传输方法,通过确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息,节省了资源开销和终端能耗。
进一步的,在图6所示方法实施例一的基础上,本申请还提供了方法实施例二。本实施例提供的反馈信息的传输方法,具体提供了实施例一S201中,根据下行控制信道的最大重复次数确定N个第一时间参数的一种实现方式。
根据下行控制信道的最大重复次数确定N个第一时间参数,可以包括:
根据下行控制信道的最大重复次数和预定义的第一关系,确定N个第一时间参数。
在本实施例中,终端设备可以预先存储所述预定义的第一关系。需要说明,网络设备也需要 存储同样的预定义的第一关系,以使得网络设备与终端设备数据同步。该预定义的第一关系可以在通信标准中规定。
通过静态配置的方式,终端设备仅需要从网络设备获取下行控制信道的最大重复次数,不需要获取其他额外的参数,根据下行控制信道的最大重复次数和预定义的第一关系直接确定N个第一时间参数,简化了确定N个第一时间参数的数据处理过程。
可选的,在一种实现方式中,预定义的第一关系可以包括N个第一时间参数,N个第一时间参数与下行控制信道的最大重复次数相关。
例如,预定义的第一关系可以包括Rmax/4和Rmax/2。此时,N=2。2个第一时间参数分别为Rmax/4和Rmax/2。与图7和图8相关联,在图7和图8中,P0可以为Rmax/4,P1可以为Rmax/2。
又例如,预定义的第一关系可以包括k0×Rmax、k1×Rmax和k2×Rmax,k0~k2为大于1的整数。假设k0~k2分别为4、8和16。此时,N=3。3个第一时间参数分别为4Rmax、8Rmax和16Rmax。与图9相关联,在图9中,P0可以为4Rmax,P1可以为8Rmax,P2可以为16Rmax。
可选的,在另一种实现方式中,预定义的第一关系可以包括N个第一预定义参数,第一预定义参数大于或者等于0且小于或者等于1,或者,第一预定义参数大于1。
相应的,根据下行控制信道的最大重复次数和预定义的第一关系,确定N个第一时间参数,可以包括:
根据N个第一预定义参数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与N个第一预定义参数和下行控制信道的最大重复次数的乘积对应。
例如,N=2。2个第一预定义参数分别为1/4和1/2。此时,2个第一时间参数分别为1/4×Rmax=Rmax/4,1/2×Rmax=Rmax/2。与图7和图8相关联,在图7和图8中,P0可以为Rmax/4,P1可以为Rmax/2。
又例如,请参照表4。Rmax取值不同时,对应的N个第一预定义参数可能不同。以Rmax=16为例。N=3,3个第一预定义参数分别为1/8、1/4和1/2。此时,3个第一时间参数分别为1/8×Rmax=2,1/4×Rmax=4,1/2×Rmax=8。还可以将根据N个第一预定义参数和下行控制信道的最大重复次数所确定的N个第一时间参数直接记录在表中,从而可以根据查表确定该N个第一时间参数。对于后面的类似实现方式可以采用类似的查表处理方式,不再赘述。
表4预定义的第一关系
Figure PCTCN2018072497-appb-000001
可选的,在又一种实现方式中,预定义的第一关系可以包括N个第二预定义参数,第二预定义参数大于或者等于1。
相应的,根据下行控制信道的最大重复次数和预定义的第一关系,确定N个第一时间参数,可以包括:
根据N个第二预定义参数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第二预定义参数的商对应。
本实施例提供的反馈信息的传输方法,具体提供了确定N个第一时间参数的一种实现方式。 通过确定的N个第一时间参数进而可以确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息,节省了资源开销和终端能耗。
进一步的,在图6所示方法实施例一的基础上,本申请还提供了方法实施例三。本实施例提供的反馈信息的传输方法,具体提供了实施例一S201中,根据下行控制信道的最大重复次数确定N个第一时间参数的另一种实现方式。
根据下行控制信道的最大重复次数确定N个第一时间参数,可以包括:
确定N2个第一参数。
根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
在本实施例中,终端设备需要从网络设备获取N2个第一参数和下行控制信道的最大重复次数,根据N2个第一参数和下行控制信道的最大重复次数确定N个第一时间参数,提升了确定N个第一时间参数的灵活性。
可选的,该N2个第一参数可以携带在高层信令中,也可以携带在DCI中。
可选的,在一种实现方式中,N2个第一参数指示N个下行控制信道的重复等级。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可以包括:
根据N个下行控制信道的重复等级和下行控制信道的最大重复次数,确定N个第一时间参数。
具体的,网络设备和终端设备可以预先存储下行控制信道的重复等级和下行控制信道的最大重复次数之间的对应关系。所述对应关系可以是现有协议中规定的,例如表1。所述对应关系也可以是新建立的,本实施例不做限定。
下面以表1为例详细说明。若Rmax≥8,N=3。3个下行控制信道的重复等级可以为r2、r3和r4,3个第一时间参数可以为Rmax/4、Rmax/2和Rmax。假设Rmax=32,则3个第一时间参数分别为32/4=8、32/2=16和32。若Rmax≥8,N=2。2个下行控制信道的重复等级可以为r3和r4,2个第一时间参数可以为Rmax/2和Rmax。若Rmax=4,N=2。2个下行控制信道的重复等级可以为r1和r2,或者r2和r3。2个第一时间参数可以为1和2,或者2和4。若Rmax=1,则只有1个下行控制信道的重复等级,1个第一时间参数为1。
可选的,在另一种实现方式中,N2个第一参数指示N个第一参考系数,第一参考系数大于或者等于0且小于或者等于1,或者,第一参考系数大于1。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可以包括:
根据N个第一参考系数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。
具体的,可以通过查询表格数据的方式直接根据N个第一参考系数和下行控制信道的最大重复次数,确定N个第一时间参数。或者,计算N个第一参考系数分别和下行控制信道的最大重复次数的乘积,作为N个第一时间参数。
可选的,在又一种实现方式中,N2个第一参数指示N个第三参考系数,第三参考系数大于或者1。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可 以包括:
根据N个第三参考系数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
具体的,可以通过查询表格数据的方式直接根据N个第三参考系数和下行控制信道的最大重复次数,确定N个第一时间参数。或者,计算下行控制信道的最大重复次数分别和N个第三参考系数的商,作为N个第一时间参数。
可选的,在又一种实现方式中,N2个第一参数指示第一索引值。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可以包括:
根据第一索引值查询预设的索引值与第一时间参数之间的对应关系,确定第一索引值对应的N个第一时间参数。
通过设置索引值,降低了网络设备和终端设备之间的数据传输量,提升了资源利用率和数据传输效率。
例如,请参照表5。假如第一索引值为2,则N个第一时间参数为Rmax/4、Rmax/2和3*Rmax/4。
表5索引值与第一时间参数的对应关系
索引值 第一时间参数(N个)
0 {Rmax/4,Rmax/2}
1 {Rmax/8,Rmax/4,Rmax/2}
2 {Rmax/4,Rmax/2,3*Rmax/4}
3 {Rmax/8,3*Rmax/8,5*Rmax/8}
可选的,在又一种实现方式中,N2个第一参数指示第二索引值。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可以包括:
根据第二索引值查询预设的索引值与第一参考系数之间的对应关系,确定第二索引值对应的N个第一参考系数。
根据N个第一参考系数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与N个第一参考系数和下行控制信道的最大重复次数的乘积对应。
通过设置索引值,降低了网络设备和终端设备之间的数据传输量,提升了资源利用率和数据传输效率。
例如,请参照表6。假如索引值为2,则N个第一参考系数分别为1/4、1/2和3/4。N个第一时间参数分别为1/4×Rmax=Rmax/4、1/2×Rmax=Rmax/2和3/4×Rmax==3*Rmax/4。
表6索引值与第一参考系数的对应关系
索引值 第一参考系数(N个)
0 {1/4,1/2}
1 {1/8,1/4,1/2}
2 {1/4,1/2,3/4}
3 {1/8,3/8,5/8}
可选的,在又一种实现方式中,N2个第一参数指示第三索引值。
相应的,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数,可 以包括:
根据第三索引值查询预设的索引值与第三参考系数之间的对应关系,确定第三索引值对应的N个第三参考系数。
根据N个第三参考系数和下行控制信道的最大重复次数,确定N个第一时间参数,N个第一时间参数分别与下行控制信道的最大重复次数和N个第三参考系数的商对应。
本实施例提供的反馈信息的传输方法,具体提供了确定N个第一时间参数的一种实现方式。通过确定N2个第一参数,根据N2个第一参数和下行控制信道的最大重复次数,确定N个第一时间参数。进而,根据N个第一时间参数可以确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息,节省了资源开销和终端能耗。
进一步的,在图6所示方法实施例一的基础上,本申请还提供了方法实施例四。本实施例提供的反馈信息的传输方法,提供了实施例一S201中,根据物理上行共享信道的最大重复次数确定M个第二时间参数的另一种实现方式。
根据物理上行共享信道的最大重复次数确定M个第二时间参数,可以包括:
根据物理上行共享信道的最大重复次数和预定义的第二关系,确定M个第二时间参数。
在本实施例中,终端设备可以预先存储所述预定义的第二关系。需要说明,网络设备也需要存储同样的预定义的第二关系,以使得网络设备与终端设备数据同步。该预定义的第二关系可以在通信标准中规定。
通过静态配置的方式,终端设备仅需要从网络设备获取物理上行共享信道的最大重复次数,不需要获取其他额外的参数,根据物理上行共享信道的最大重复次数和预定义的第二关系直接确定M个第二时间参数,简化了确定M个第二时间参数的数据处理过程。
可选的,在一种实现方式中,预定义的第二关系可以包括M个第二时间参数,M个第二时间参数与物理上行共享信道的最大重复次数相关。
例如,预定义的第二关系可以包括Vmax/4和Vmax/2。此时,M=2。2个第二时间参数分别为Vmax/4和Vmax/2。与图7和图8相关联,在图7和图8中,Q0可以为Vmax/4,Q1可以为Vmax/2。
又例如,预定义的第二关系可以包括j0×Vmax、j1×Vmax和j2×Vmax,j0~j2可以大于0且小于1。假设j0~j2分别为1/8、1/4和1/2。此时,M=3。3个第二时间参数分别为Vmax/8、Vmax/4和Vmax/2。与图10相关联,在图10中,Q0可以为Vmax/8,Q1可以为Vmax/4,Q2可以为Vmax/2。
可选的,在另一种实现方式中,预定义的第二关系可以包括M个第三预定义参数,第三预定义参数大于或者等于0且小于或者等于1。
相应的,根据物理上行共享信道的最大重复次数和预定义的第二关系,确定M个第二时间参数,可以包括:
根据M个第三预定义参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与M个第三预定义参数和物理上行共享信道的最大重复次数的乘积对应。
例如,M=2。2个第三预定义参数分别1/4和1/2。此时,2个第二时间参数分别为1/4×Vmax=Vmax/4,1/2×Vmax=Vmax/2。与图7和图8相关联,在图7和图8中,Q0可以为Vmax/4,Q1可以为Vmax/2。
可选的,在又一种实现方式中,预定义的第二关系可以包括M个第四预定义参数,第四预定 义参数大于或者等于1。
相应的,根据物理上行共享信道的最大重复次数和预定义的第二关系,确定M个第二时间参数,可以包括:
根据M个第四预定义参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四预定义参数的商对应。
本实施例提供的反馈信息的传输方法,具体提供了确定M个第二时间参数的一种实现方式。通过确定的M个第二时间参数进而可以确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息,节省了资源开销和终端能耗。
进一步的,在图6所示方法实施例一的基础上,本申请还提供了方法实施例五。本实施例提供的反馈信息的传输方法,具体提供了实施例一S201中,根据物理上行共享信道的最大重复次数确定M个第二时间参数的另一种实现方式。
根据物理上行共享信道的最大重复次数确定M个第二时间参数,可以包括:
确定M2个第二参数。
根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
在本实施例中,终端设备需要从网络设备获取M2个第二参数和物理上行共享信道的最大重复次数,根据M2个第二参数和物理上行共享信道的最大重复次数确定M个第二时间参数,提升了确定M个第二时间参数的灵活性。
可选的,该M2个第二参数可以携带在高层信令中,也可以携带在DCI中。
可选的,在一种实现方式中,M2个第二参数指示M个物理上行共享信道的重复等级。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据M个物理上行共享信道的重复等级和物理上行共享信道的最大重复次数,确定M个第二时间参数。
具体的,网络设备和终端设备可以预先存储物理上行共享信道的重复等级和物理上行共享信道的最大重复次数之间的对应关系。所述对应关系可以是现有协议中规定的,例如表2或者表3。所述对应关系也可以是新建立的,本实施例不做限定。
下面以表2为例详细说明。若M=2,2个物理上行共享信道的重复等级可以为n4和n8。若M=3,3个物理上行共享信道的重复等级可以为n2、n4和n8。若M=4,4个物理上行共享信道的重复等级可以为n2、n4、n6和n8。假设Vmax=512,则4个第二时间参数可以为16、128、256和512。
可选的,在另一种实现方式中,M2个第二参数指示M个第二参考系数,第二参考系数大于或者等于0、且小于或者等于1。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据M个第二参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。
例如,若M=2,2个第二参考系数可以为1/2和1。若M=3,3个第二参考系数可以为1/4、 1/2和1。若M=4,4个第二参考系数可以为1/4、1/2、3/4和1。在最简单的情况下,甚至可以只取一个第二参考系数,该第二参考系数可以为1或者1/2。
具体的,可以通过查询表格数据的方式直接根据M个第二参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数。或者,计算M个第二参考系数分别和物理上行共享信道的最大重复次数的乘积,作为M个第二时间参数。
可选的,在又一种实现方式中,M2个第二参数指示M个第四参考系数,第四参考系数大于或者1。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据M个第四参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
具体的,可以通过查询表格数据的方式直接根据M个第四参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数。或者,计算物理上行共享信道的最大重复次数分别和M个第四参考系数的商,作为M个第二时间参数。
可选的,在又一种实现方式中,M2个第二参数指示第四索引值。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据第四索引值查询预设的索引值与第二时间参数之间的对应关系,确定第四索引值对应的M个第二时间参数。
通过设置索引值,降低了网络设备和终端设备之间的数据传输量,提升了资源利用率和数据传输效率。
表7索引值与第二时间参数的对应关系
索引值 第二时间参数(M个)
0 {Vmax/4,Vmax/2}
1 {Vmax/8,Vmax/4,Vmax/2}
2 {Vmax/4,Vmax/2,3*Vmax/4}
3 {Vmax/8,3*Vmax/8,5*Vmax/8}
例如,请参照表7。假如第一索引值为2,则M个第二时间参数为Vmax/4、Vmax/2和3*Vmax/4。
可选的,在又一种实现方式中,M2个第二参数指示第五索引值。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据第五索引值查询预设的索引值与第二参考系数之间的对应关系,确定第五索引值对应的M个第二参考系数。
根据M个第二参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与M个第二参考系数和物理上行共享信道的最大重复次数的乘积对应。
通过设置索引值,降低了网络设备和终端设备之间的数据传输量,提升了资源利用率和数据传输效率。
例如,请参照表8。假如索引值为2,则M个第二参考系数分别为1/4、1/2和3/4。M个第二时间参数分别为1/4×Vmax=Vmax/4、1/2×Vmax=Vmax/2和3/4×Vmax==3*Vmax/4。
表8索引值与第二参考系数的对应关系
索引值 第二参考系数(M个)
0 {1/4,1/2}
1 {1/8,1/4,1/2}
2 {1/4,1/2,3/4}
3 {1/8,3/8,5/8}
可选的,在又一种实现方式中,M2个第二参数指示第六索引值。
相应的,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数,可以包括:
根据第六索引值查询预设的索引值与第四参考系数之间的对应关系,确定第六索引值对应的M个第四参考系数。
根据M个第四参考系数和物理上行共享信道的最大重复次数,确定M个第二时间参数,M个第二时间参数分别与物理上行共享信道的最大重复次数和M个第四参考系数的商对应。
本实施例提供的反馈信息的传输方法,具体提供了确定M个第二时间参数的一种实现方式。通过确定M2个第二参数,根据M2个第二参数和物理上行共享信道的最大重复次数,确定M个第二时间参数。进而,根据M个第二时间参数可以确定L个反馈时刻,终端设备可以在L个反馈时刻中的至少一个反馈时刻检测反馈信息,节省了资源开销和终端能耗。
图11为本申请实施例六提供的反馈信息的传输方法的消息交互图。本实施例在上述实施例三的基础上,提供了终端设备确定N2个第一参数的实现方式。在上述实施例五的基础上,提供了终端设备确定M2个第二参数的实现方式。如图11所示,本实施例提供的反馈信息的传输方法,还可以包括:
S301、网络设备向终端设备发送下行控制信息。
其中,下行控制信息包括N2个第一参数和/或M2个第二参数。
相应的,终端设备接收网络设备发送的下行控制信息。
可选的,所述下行控制信息可以是调度终端设备进行上行数据传输的下行控制信息。
本实施例提供的反馈信息的传输方法,具体提供了终端设备确定N2个第一参数和/或M2个第二参数的实现方式。通过网络设备发送的下行控制信息携带N2个第一参数和/或M2个第二参数,提升了数据处理的灵活性。
图12为本申请实施例七提供的反馈信息的传输方法的消息交互图。本实施例在上述实施例三的基础上,提供了终端设备确定N2个第一参数的实现方式。在上述实施例五的基础上,提供了终端设备确定M2个第二参数的实现方式。如图12所示,本实施例提供的反馈信息的传输方法,还可以包括:
S401、网络设备向终端设备发送高层信令。
其中,高层信令包括N2个第一参数和/或M2个第二参数。
相应的,终端设备接收网络设备发送的高层信令。
可选的,高层信令可以为无线资源控制(radio resource control,RRC)信令。
本实施例提供的反馈信息的传输方法,具体提供了终端设备确定N2个第一参数和/或M2个 第二参数的实现方式。通过网络设备发送的高层信令携带N2个第一参数和/或M2个第二参数,提升了数据处理的灵活性。
需要说明的是,图11所示方法实施例六和图12所示方法实施例七可以相互结合。可选的,网络设备可以通过高层信令配置多个第一参数和/或多个第二参数的取值集合。网络设备可以通过下行控制信息(DCI)指示终端设备使用这些取值集合中的哪一个或者哪几个,从而确定N2个第一参数和/或M2个第二参数。
例如,通过RRC信令为终端设备配置了两组第一参数,第一组的取值集合为{4,8,16…},第二组的取值集合为{3,6,9,…}。则可以通过DCI中的1比特信息指示终端设备使用第一组还是第二组。
图13为本申请实施例八提供的反馈信息的传输方法的流程图。本实施例提供的反馈信息的传输方法,执行主体可以为网络设备。其中,S501~S502可以与图4中的“确定反馈时刻”对应,S503可以与图4中的S103对应。如图13所示,本实施例提供的反馈信息的传输方法,可以包括:
S501、根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。
S502、根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。
其中,第一搜索空间中包括用于调度终端设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数。
S501~S502可以参见图6所示实施例中的S201~S202,原理相似,此处不再赘述。
S503、在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向终端设备发送对上行数据的反馈信息。
具体的,网络设备根据在反馈时刻截止之前接收到的终端设备发送的上行数据生成反馈信息。
如果L=1,反馈时刻只有1个。网络设备在该反馈时刻发送对上行数据的反馈信息。
如果L>1,则网络设备可以按照L个反馈时刻的时间先后顺序,依次在各个反馈时刻截止之前生成对上行数据的反馈信息,并在反馈时刻对应的第二搜索空间向终端设备发送所述反馈信息。
需要说明,本步骤对于单一终端设备的反馈和组反馈传输方式可能有所不同。
对于单一终端设备的反馈,当网络设备正确接收上行数据并向终端设备发送反馈信息后,在后续的反馈时刻,网络设备可以不生成反馈信息以及发送反馈信息。
可选的,对于单一终端设备的反馈,可以使用该终端设备的实际MPDCCH重复等级替代Rmax,可以使用该终端设备的实际PUSCH重复等级替代Vmax。
对于组反馈传输场景,组反馈信息可以包括终端设备组中每个终端设备的反馈信息。如果终端设备组中存在第一终端设备和第二终端设备,网络设备已经正确接收第一终端设备发送的上行数据,没有正确接收第二终端设备发送的上行数据。网络设备发送了组反馈信息,所述组反馈信息指示了正确接收第一终端设备发送的上行数据。在后续的组反馈信息中,网络设备针对第一终端设备可以生成反馈信息,所述反馈信息可以为第一指示信息。所述第一指示信息指示了网络设备正确接收到第一终端设备发送的上行数据。第二指示信息指示了网络设备没有正确接收到第一终端设备的上行数据。
本实施例提供的反馈信息的传输方法,通过确定L个反馈时刻,网络设备可以在L个反馈时 刻中的至少一个反馈时刻发送对上行数据的反馈信息,节省了资源开销。
需要说明,本实施例提供的反馈信息的传输方法,除S503之外与上述方法实施例一~方法实施例七任一所示实施例的原理相似,此处不再赘述。
本实施例提供了一种反馈信息的传输方法,包括:根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数,根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向终端设备发送对上行数据的反馈信息。本实施例提供的反馈信息的传输方法,通过确定L个反馈时刻,网络设备可以在L个反馈时刻中的至少一个反馈时刻向终端设备发送对上行数据的反馈信息。对于单一终端设备的反馈场景,网络设备可以在正确接收上行数据后就向终端设备发送反馈信息,提升了数据传输效率和实时性。对于组反馈传输场景,避免了基于每个终端设备发送PUSCH的起始结束时间确定反馈时间导致的反馈时间混乱的问题,网络设备可以在有限数目的反馈时间发送反馈信息,节省了资源开销。
图14为本申请实施例提供的通信设备的结构示意图。本实施例提供的通信设备,可以执行图6~图12所示任一实施例提供的反馈信息的传输方法。如图14所示,本实施例提供的通信设备,可以包括处理模块21和收发模块22。该通信设备具体可以是终端设备。
处理模块21,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。其中,第一搜索空间中包括用于调度终端设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数。
收发模块22,用于在L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对上行数据的反馈信息。
具体的,处理模块21和收发模块22可以执行本申请上述随反馈信息的传输方法实施例中终端设备所执行的相应功能,详细的不再赘述。
本实施例提供的通信设备,用于执行图6~图12所示任一实施例提供的反馈信息的传输方法,其技术原理和技术效果类似,此处不再赘述。
图15为本申请实施例一提供的网络设备的结构示意图。本实施例提供的网络设备,可以执行图11~图13所示任一实施例提供的反馈信息的传输方法。如图15所示,本实施例提供的网络设备,可以包括处理模块31和收发模块32。
处理模块31,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数。根据N个第一时间参数和/或M个第二时间参数,以及第一搜索空间,确定L个反馈时刻。其中,第一搜索空间中包括用于调度终端设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数。
收发模块32,用于在L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向终端设备发送对上行数据的反馈信息。
具体的,处理模块31和收发模块32可以执行本申请上述随反馈信息的传输方法实施例中网络设备所执行的相应功能,详细的不再赘述。
本实施例提供的网络设备,可以执行图11~图13所示任一实施例提供的反馈信息的传输方法, 其技术原理和技术效果类似,此处不再赘述。
图16为本申请实施例二提供的通信设备的结构示意图。如图16所示,本实施例提供的终端通信设备,可以包括:处理器41和存储器42。其中,所述存储器42用于存储指令。所述处理器41用于执行所述存储器中存储的指令,以使所述通信设备执行图6~图12所示任一实施例提供的反馈信息的传输方法,具体实现方式和技术效果类似,这里不再赘述。该通信设备还可以包括收发器43,所述收发器43用于和其他设备通信。
图17为本申请实施例二提供的网络设备的结构示意图。如图17所示,本实施例提供的网络设备,可以包括:处理器51和存储器52。其中,所述存储器52用于存储指令。所述处理器51用于执行所述存储器中存储的指令,以使所述网络设备执行图11~图13所示任一实施例提供的反馈信息的传输方法,具体实现方式和技术效果类似,这里不再赘述。该网络设备还可以包括收发器53,所述收发器53用于和其他设备通信。
可以理解,本申请实施例中的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (30)

  1. 一种反馈信息的传输方法,其特征在于,包括:
    根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数;
    根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻;其中,所述第一搜索空间中包括用于调度通信设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数;
    在所述L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对所述上行数据的反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据下行控制信道的最大重复次数确定N个第一时间参数,包括:
    根据所述下行控制信道的最大重复次数和预定义的第一关系,确定所述N个第一时间参数;
    或者,
    确定N2个第一参数;
    根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
  3. 根据权利要求2所述的方法,其特征在于,
    所述N2个第一参数指示N个下行控制信道的重复等级,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个下行控制信道的重复等级和所述下行控制信道的最大重复次数,确定所述N个第一时间参数;
    或者,
    所述N2个第一参数指示N个第一参考系数,所述第一参考系数大于或者等于0且小于或者等于1,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个第一参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述N个第一参考系数和所述下行控制信道的最大重复次数的乘积对应;
    或者,
    所述N2个第一参数指示N个第三参考系数,所述第三参考系数大于或者等于1,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个第三参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述下行控制信道的最大重复次数和所述N个第三参考系数的商对应。
  4. 根据权利要求1所述的方法,其特征在于,所述根据物理上行共享信道的最大重复次数确定M个第二时间参数,包括:
    根据所述物理上行共享信道的最大重复次数和预定义的第二关系,确定所述M个第二时间参数;
    或者,
    确定M2个第二参数;
    根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
  5. 根据权利要求4所述的方法,其特征在于,
    所述M2个第二参数指示M个物理上行共享信道的重复等级,所述根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个物理上行共享信道的重复等级和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数;
    或者,
    所述M2个第二参数指示M个第二参考系数,所述第二参考系数大于或者等于0且小于或者等于1,所述根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个第二参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述M个第二参考系数和所述物理上行共享信道的最大重复次数的乘积对应;
    或者,
    所述M2个第二参数指示M个第四参考系数,所述第四参考系数大于或者等于1,所述根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个第四参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述物理上行共享信道的最大重复次数和所述M个第四参考系数的商对应。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和所述第一搜索空间的起始子帧索引n,确定所述L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧;
    其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、所述第一搜索空间的起始子帧索引n和第一间隔O,确定所述L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧;
    其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4;所述第一间隔为所述通信设备从结束接收所述下行控制信道到开始发送所述上行数据之间的时间间隔。
  8. 一种反馈信息的传输方法,其特征在于,包括:
    根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数;
    根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反 馈时刻;其中,所述第一搜索空间中包括用于调度通信设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数;
    在所述L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向所述通信设备发送对所述上行数据的反馈信息。
  9. 根据权利要求8所述的方法,其特征在于,所述根据下行控制信道的最大重复次数确定N个第一时间参数,包括:
    根据所述下行控制信道的最大重复次数和预定义的第一关系,确定所述N个第一时间参数;
    或者,
    确定N2个第一参数;
    根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
  10. 根据权利要求9所述的方法,其特征在于,
    所述N2个第一参数指示N个下行控制信道的重复等级,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个下行控制信道的重复等级和所述下行控制信道的最大重复次数,确定所述N个第一时间参数;
    或者,
    所述N2个第一参数指示N个第一参考系数,所述第一参考系数大于或者等于0且小于或者等于1,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个第一参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述N个第一参考系数和所述下行控制信道的最大重复次数的乘积对应;
    或者,
    所述N2个第一参数指示N个第三参考系数,所述第三参考系数大于或者等于1,所述根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,包括:
    根据所述N个第三参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述下行控制信道的最大重复次数和所述N个第三参考系数的商对应。
  11. 根据权利要求8所述的方法,其特征在于,所述根据物理上行共享信道的最大重复次数确定M个第二时间参数,包括:
    根据所述物理上行共享信道的最大重复次数和预定义的第二关系,确定所述M个第二时间参数;
    或者,
    确定M2个第二参数;
    根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述M2个第二参数指示M个物理上行共享信道的重复等级,所述根据所述M2个第二参数 和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个物理上行共享信道的重复等级和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数;
    或者,
    所述M2个第二参数指示M个第二参考系数,所述第二参考系数大于或者等于0且小于或者等于1,所述根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个第二参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述M个第二参考系数和所述物理上行共享信道的最大重复次数的乘积对应;
    或者,
    所述M2个第二参数指示M个第四参考系数,所述第四参考系数大于或者等于1,所述根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,包括:
    根据所述M个第四参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述物理上行共享信道的最大重复次数和所述M个第四参考系数的商对应。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和所述第一搜索空间的起始子帧索引n,确定所述L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧;
    其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
  14. 根据权利要求8至12中任一项所述的方法,其特征在于,所述根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻,包括:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、所述第一搜索空间的起始子帧索引n和第一间隔O,确定所述L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧;
    其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4;所述第一间隔为所述通信设备从结束接收所述下行控制信道到开始发送所述上行数据之间的时间间隔。
  15. 一种通信设备,其特征在于,包括:
    处理器,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数;根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻;其中,所述第一搜索空间中包括用于调度通信设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数;
    收发器,用于在所述L个反馈时刻中的至少一个反馈时刻所对应的第二搜索空间中检测对所述上行数据的反馈信息。
  16. 根据权利要求15所述的通信设备,其特征在于,所述处理器具体用于:
    根据所述下行控制信道的最大重复次数和预定义的第一关系,确定所述N个第一时间参数;
    或者,
    确定N2个第一参数;
    根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
  17. 根据权利要求16所述的通信设备,其特征在于,
    所述N2个第一参数指示N个下行控制信道的重复等级,所述处理器具体用于:
    根据所述N个下行控制信道的重复等级和所述下行控制信道的最大重复次数,确定所述N个第一时间参数;
    或者,
    所述N2个第一参数指示N个第一参考系数,所述第一参考系数大于或者等于0且小于或者等于1,所述处理器具体用于:
    根据所述N个第一参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述N个第一参考系数和所述下行控制信道的最大重复次数的乘积对应;
    或者,
    所述N2个第一参数指示N个第三参考系数,所述第三参考系数大于或者等于1,所述处理器具体用于:
    根据所述N个第三参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述下行控制信道的最大重复次数和所述N个第三参考系数的商对应。
  18. 根据权利要求15所述的通信设备,其特征在于,所述处理器具体用于:
    根据所述物理上行共享信道的最大重复次数和预定义的第二关系,确定所述M个第二时间参数;
    或者,
    确定M2个第二参数;
    根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
  19. 根据权利要求18所述的通信设备,其特征在于,
    所述M2个第二参数指示M个物理上行共享信道的重复等级,所述处理器具体用于:
    根据所述M个物理上行共享信道的重复等级和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数;
    或者,
    所述M2个第二参数指示M个第二参考系数,所述第二参考系数大于或者等于0且小于或者等于1,所述处理器具体用于:
    根据所述M个第二参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述M个第二参考系数和所述物理上行共享信道的最大重复次数的乘积对应;
    或者,
    所述M2个第二参数指示M个第四参考系数,所述第四参考系数大于或者等于1,所述处理 器具体用于:
    根据所述M个第四参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述物理上行共享信道的最大重复次数和所述M个第四参考系数的商对应。
  20. 根据权利要求15至19中任一项所述的通信设备,其特征在于,所述处理器具体用于:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和所述第一搜索空间的起始子帧索引n,确定所述L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧;
    其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
  21. 根据权利要求15至19中任一项所述的通信设备,其特征在于,所述处理器具体用于:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、所述第一搜索空间的起始子帧索引n和第一间隔O,确定所述L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧;
    其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4;所述第一间隔为所述通信设备从结束接收所述下行控制信道到开始发送所述上行数据之间的时间间隔。
  22. 一种网络设备,其特征在于,包括:
    处理器,用于根据下行控制信道的最大重复次数确定N个第一时间参数,和/或,根据物理上行共享信道的最大重复次数确定M个第二时间参数;根据所述N个第一时间参数和/或所述M个第二时间参数,以及第一搜索空间,确定L个反馈时刻;其中,所述第一搜索空间中包括用于调度通信设备发送上行数据的下行控制信道,N、M和L均为大于或者等于1的整数;
    收发器,用于在所述L个反馈时刻中的至少一个反馈时刻对应的第二搜索空间向所述通信设备发送对所述上行数据的反馈信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述处理器具体用于:
    根据所述下行控制信道的最大重复次数和预定义的第一关系,确定所述N个第一时间参数;
    或者,
    确定N2个第一参数;
    根据所述N2个第一参数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,N2为大于或者等于1且小于或者等于N的整数。
  24. 根据权利要求23所述的网络设备,其特征在于,
    所述N2个第一参数指示N个下行控制信道的重复等级,所述处理器具体用于:
    根据所述N个下行控制信道的重复等级和所述下行控制信道的最大重复次数,确定所述N个第一时间参数;
    或者,
    所述N2个第一参数指示N个第一参考系数,所述第一参考系数大于或者等于0且小于或者等于1,所述处理器具体用于:
    根据所述N个第一参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述N个第一参考系数和所述下行控制信道的最大重复次数的乘积对应;
    或者,
    所述N2个第一参数指示N个第三参考系数,所述第三参考系数大于或者等于1,所述处理器具体用于:
    根据所述N个第三参考系数和所述下行控制信道的最大重复次数,确定所述N个第一时间参数,所述N个第一时间参数分别与所述下行控制信道的最大重复次数和所述N个第三参考系数的商对应。
  25. 根据权利要求22所述的网络设备,其特征在于,所述处理器具体用于:
    根据所述物理上行共享信道的最大重复次数和预定义的第二关系,确定所述M个第二时间参数;
    或者,
    确定M2个第二参数;
    根据所述M2个第二参数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,M2为大于或者等于1且小于或者等于M的整数。
  26. 根据权利要求25所述的网络设备,其特征在于,
    所述M2个第二参数指示M个物理上行共享信道的重复等级,所述处理器具体用于:
    根据所述M个物理上行共享信道的重复等级和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数;
    或者,
    所述M2个第二参数指示M个第二参考系数,所述第二参考系数大于或者等于0且小于或者等于1,所述处理器具体用于:
    根据所述M个第二参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述M个第二参考系数和所述物理上行共享信道的最大重复次数的乘积对应;
    或者,
    所述M2个第二参数指示M个第四参考系数,所述第四参考系数大于或者等于1,所述处理器具体用于:
    根据所述M个第四参考系数和所述物理上行共享信道的最大重复次数,确定所述M个第二时间参数,所述M个第二时间参数分别与所述物理上行共享信道的最大重复次数和所述M个第四参考系数的商对应。
  27. 根据权利要求22至26中任一项所述的网络设备,其特征在于,所述处理器具体用于:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj和所述第一搜索空间的起始子帧索引n,确定所述L个反馈时刻包括索引为n+Pi+Qj的下行子帧或索引为n+Pi+Qj的带宽降低/覆盖增强下行子帧;
    其中,i和j为整数,0≤i≤N-1,0≤j≤M-1。
  28. 根据权利要求22至26中任一项所述的网络设备,其特征在于,所述处理器具体用于:
    根据第i+1个第一时间参数Pi、第j+1个第二时间参数Qj、所述第一搜索空间的起始子帧索引n和第一间隔O,确定所述L个反馈时刻包括索引为n+Pi+Qj+O的下行子帧或索引为n+Pi+Qj+O的带宽降低/覆盖增强下行子帧;
    其中,i、j和O为整数,0≤i≤N-1,0≤j≤M-1,O≥4;所述第一间隔为所述通信设备从结束接收所述下行控制信道到开始发送所述上行数据之间的时间间隔。
  29. 根据权利要求1至14中任一项所述的方法,或者根据权利要求15至21中任一项所述的通信设备,或者根据权利要求22至28中任一项所述的网络设备,其特征在于,所述第二搜索空间为所述至少一个反馈时刻所在的公共搜索空间,或者,所述第二搜索空间为所述至少一个反馈时刻后的首个公共搜索空间,或者,所述第二搜索空间为根据所述至少一个反馈时刻确定的搜索空间。
  30. 一种计算机可读存储介质,其上存储有计算机执行指令,当所述计算机执行指令被至少一个处理器执行时,实现如权利要求1至7及29中任一项所述的反馈信息的传输方法,或者实现如权利要求8至14及29中任一项所述的反馈信息的传输方法。
PCT/CN2018/072497 2018-01-12 2018-01-12 反馈信息的传输方法和设备 WO2019136722A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/072497 WO2019136722A1 (zh) 2018-01-12 2018-01-12 反馈信息的传输方法和设备
CN201880075670.6A CN111373680B (zh) 2018-01-12 2018-01-12 反馈信息的传输方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072497 WO2019136722A1 (zh) 2018-01-12 2018-01-12 反馈信息的传输方法和设备

Publications (1)

Publication Number Publication Date
WO2019136722A1 true WO2019136722A1 (zh) 2019-07-18

Family

ID=67219246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072497 WO2019136722A1 (zh) 2018-01-12 2018-01-12 反馈信息的传输方法和设备

Country Status (2)

Country Link
CN (1) CN111373680B (zh)
WO (1) WO2019136722A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175352A (zh) * 2021-04-01 2022-10-11 中兴通讯股份有限公司 反馈信息传输方法、装置、基站、终端和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233794A (zh) * 2014-01-29 2016-12-14 交互数字专利控股公司 用于覆盖增强无线传输的接入和链路自适应的方法
CN107371257A (zh) * 2016-05-12 2017-11-21 华硕电脑股份有限公司 改善短传输时间间隔的控制信道结构的方法及装置
WO2018004268A1 (ko) * 2016-06-29 2018-01-04 엘지전자(주) 무선 통신 시스템에서의 피드백 신호 수신 방법 및 이를 위한 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142064B2 (en) * 2013-09-17 2018-11-27 Intel IP Corporation Techniques and configurations associated with machine type communication in enhanced coverage mode
CN106559188B (zh) * 2015-09-25 2019-11-26 华为技术有限公司 一种数据传输的方法及基站
US10405266B2 (en) * 2016-04-04 2019-09-03 Lg Electronics Inc. Method and user equipment for receiving downlink control channel, and method and base station for transmitting downlink control channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233794A (zh) * 2014-01-29 2016-12-14 交互数字专利控股公司 用于覆盖增强无线传输的接入和链路自适应的方法
CN107371257A (zh) * 2016-05-12 2017-11-21 华硕电脑股份有限公司 改善短传输时间间隔的控制信道结构的方法及装置
WO2018004268A1 (ko) * 2016-06-29 2018-01-04 엘지전자(주) 무선 통신 시스템에서의 피드백 신호 수신 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "HARQ feedback timing for NR", 3GPP TSG RAN WG1 MEETING #90 RL-1712203, 25 August 2017 (2017-08-25), XP051315020 *

Also Published As

Publication number Publication date
CN111373680A (zh) 2020-07-03
CN111373680B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
JP7119100B2 (ja) 通信方法およびデバイス
WO2019214596A1 (zh) 参数确定的方法、监控方法、通信装置
WO2019174486A1 (zh) 资源指示、确定方法及装置
WO2020143608A1 (zh) 信息传输方法、终端及网络设备
TWI830716B (zh) 資訊處理方法、裝置及設備
JP2020523888A (ja) 無線通信方法およびデバイス
WO2019095271A1 (zh) 资源确定方法、装置、网元及系统
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2019153896A1 (zh) 一种确定dci中信息域取值的方法及装置
WO2018228363A1 (zh) 资源配置方法、基站、终端及计算机可读存储介质
WO2019237928A1 (zh) 数据处理方法、用户设备和网络侧设备
WO2020143478A1 (zh) 混合自动重传反馈信息的传输方法、网络设备及终端
WO2020011109A1 (zh) 信息传输方法、终端及基站
WO2020143490A1 (zh) 通信方法及装置
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
US20230189287A1 (en) Method for determining feedback information transmission location and device
TW202019214A (zh) Pdcch的監聽方法、裝置、設備及系統
WO2019144345A1 (zh) 数据传输方法及相关装置
WO2018141281A1 (zh) 数据传输的方法和装置
WO2019136722A1 (zh) 反馈信息的传输方法和设备
WO2020143529A1 (zh) 一种调度处理方法、装置及设备
WO2020199032A1 (zh) 一种通信方法及设备
WO2020087528A1 (zh) 无线通信方法、终端设备和网络设备
WO2019149073A1 (zh) 信息指示方法、终端设备、网络设备和系统
TW201632013A (zh) 方法、裝置及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900329

Country of ref document: EP

Kind code of ref document: A1