WO2019136651A1 - 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统 - Google Patents

上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统 Download PDF

Info

Publication number
WO2019136651A1
WO2019136651A1 PCT/CN2018/072172 CN2018072172W WO2019136651A1 WO 2019136651 A1 WO2019136651 A1 WO 2019136651A1 CN 2018072172 W CN2018072172 W CN 2018072172W WO 2019136651 A1 WO2019136651 A1 WO 2019136651A1
Authority
WO
WIPO (PCT)
Prior art keywords
time alignment
alignment timer
uplink time
value
indication information
Prior art date
Application number
PCT/CN2018/072172
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
Original Assignee
富士通株式会社
蒋琴艳
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2018/072172 priority Critical patent/WO2019136651A1/zh
Publication of WO2019136651A1 publication Critical patent/WO2019136651A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a method for maintaining uplink time alignment, a method for configuring an uplink time alignment timer, a device thereof, and a communication system.
  • timing advance In a wireless communication system, timing advance (TA, Timing Advance) is used to maintain orthogonality of uplink transmissions to avoid intra-cell interference.
  • 1 is a schematic diagram of a timing advance technique. As shown in FIG. 1, from the perspective of a terminal device, the timing advance is essentially the start time t1 of receiving the downlink subframe 101 and the t2 time of transmitting the uplink subframe 102. A negative offset between t0.
  • the network device offsets the different transmission delays of the different terminal devices by appropriately controlling the offset of each terminal device, so that the time for the uplink signals from different terminal devices to reach the network device is substantially aligned. Generally, the time required for signals from different terminal devices to reach the network device falls within the Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • the initial timing advance is obtained through a random access procedure.
  • the network device can adjust the uplink timing of the terminal device by using a MAC Control Elements (MAC-CE) of the medium access control.
  • MAC-CE MAC Control Elements
  • the network device configures an uplink time alignment timer for the terminal device by using Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the MAC layer of the terminal device determines whether it is in an uplink synchronization state with the corresponding serving cell according to whether the uplink time alignment timer expires. If the timer expires, the terminal device needs to reacquire the initial timing advance through the random access procedure before transmitting the uplink data.
  • the network device configures an uplink time alignment timer based on a 15 kHz subcarrier spacing (SCS), that is, an uplink time alignment timer configured by the network device.
  • SCS subcarrier spacing
  • the value of (UL time alignment timer) is related to the subcarrier spacing of 15khz.
  • the minimum value of the uplink time alignment timer associated with the subcarrier spacing of 15khz is 500ms.
  • the setting of 500ms is based on the following considerations: Long Term Evolution In the (LTE) technology, the maximum moving speed of the terminal equipment is 500 km/h, and the variation of the propagation delay in the extreme case is 0.93 us/s, and the TA adjustment granularity required for the subcarrier spacing of 15 kHz is 0.52 us, so every 500 ms
  • the TA update is sufficient to support the scenario in this extreme case, that is, when the subcarrier spacing is 15khz, the minimum value of the uplink time alignment timer is 500ms to meet the most frequent timing advance update (TA). Update) requirements.
  • the inventors of the present application have found that with the advancement of technology, the communication system can not only support 15 SHz SCS, but also support a variety of other SCS, and different SCSs have different requirements for uplink synchronization accuracy/granularity, so existing The value of the uplink time alignment timer configured based on the 15 kHz SCS is difficult to meet the requirements of the SCS for uplink synchronization accuracy beyond 15 kHz.
  • the embodiment of the present application provides a method for maintaining uplink time alignment maintenance, a method for configuring an uplink time alignment timer, a device thereof, and a communication system, and the terminal device can set an uplink time alignment timer according to a reference SCS, thereby enabling The value of the uplink time alignment timer corresponding to the reference SCS is set so that the value of the set uplink time alignment timer satisfies the requirement of the reference SCS.
  • an apparatus for maintaining a UL time alignment comprising: a first receiving unit, which receives first indication information, where the first indication information is used for notification (inform) a configuration of an uplink time alignment timer; and a setting unit configured to set an uplink time alignment timer according to at least the second reference subcarrier spacing related information and the first indication information.
  • an apparatus for configuring an uplink time alignment timer includes: a first sending unit that transmits first indication information, where the first indication The information is used to notify the configuration of the uplink time alignment timer, that is, the first indication information is used to notify the absolute time of the value of the uplink time alignment timer associated with the first reference subcarrier interval; or The first indication information is used to notify the uplink time alignment timer to take a value, and the value is expressed as a number of time units; or the first indication information is used to indicate an uplink time alignment timer in the uplink time alignment timer value list.
  • the identification information of the value is used to notify the configuration of the uplink time alignment timer, that is, the first indication information is used to notify the absolute time of the value of the uplink time alignment timer associated with the first reference subcarrier interval; or The first indication information is used to notify the uplink time alignment timer to take a value, and the value is expressed as a number of time units; or the first indication information is used to indicate an uplink time alignment timer in
  • a communication system comprising a network device and a terminal device, the network device comprising the configuration uplink time alignment timer according to the second aspect of the above embodiment And a device comprising the uplink time alignment maintaining device according to the first aspect of the above embodiment.
  • An advantageous effect of the embodiment of the present application is that the value of the uplink time alignment timer corresponding to the reference SCS can be set, so that the value of the set uplink time alignment timer satisfies the requirement of the reference SCS.
  • Figure 1 is a schematic diagram of a timing advance technique
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3(A) is a schematic diagram of a method for maintaining uplink time alignment according to Embodiment 1 of the present application;
  • FIG. 3(B) is a schematic diagram showing a correlation between subcarrier spacing and time units in Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of a method for configuring an uplink time alignment timer in Embodiment 2 of the present application
  • FIG. 5 is a schematic diagram of an uplink time alignment maintaining apparatus according to Embodiment 3 of the present application.
  • FIG. 6 is a schematic diagram of an apparatus for configuring an uplink time alignment timer according to Embodiment 4 of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to Embodiment 5 of the present application.
  • FIG. 8 is a schematic structural diagram of a network device according to Embodiment 6 of the present application.
  • FIG. 9 is a schematic diagram of a timeout control method according to Embodiment 8 of the present application.
  • FIG. 10 is another schematic diagram of a timeout control method according to Embodiment 8 of the present application.
  • FIG. 11 is another schematic diagram of a timeout control method according to Embodiment 8 of the present application.
  • FIG. 12 is a schematic diagram of a timeout control apparatus according to Embodiment 9 of the present application.
  • FIG. 13 is another schematic diagram of a timeout control apparatus according to Embodiment 9 of the present application.
  • FIG. 14 is another schematic diagram of a timeout control apparatus according to Embodiment 9 of the present application.
  • Figure 15 is a block diagram showing the structure of a terminal device according to Embodiment 10 of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, a device in a communication system that accesses a terminal device to a communication network and provides a service for the terminal device.
  • the network device may include, but is not limited to, a device: a base station (BS, a base station), an access point (AP, an Access Point), a transmission and reception point (TRP), a broadcast transmitter, and a mobility management entity (MME, Mobile). Management Entity), gateway, server, Radio Network Controller (RNC), Base Station Controller (BSC), and so on.
  • BS base station
  • AP access point
  • TRP transmission and reception point
  • MME mobility management entity
  • Management Entity gateway
  • server Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE) or “terminal equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives a network service.
  • the terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal device may include but is not limited to the following devices: a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem Wireless Fidelity
  • a wireless communication device a handheld device
  • a machine type communication device a laptop computer
  • Cordless phones smart phones, smart watches, digital cameras, and more.
  • the terminal device may be a device or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal.
  • MTC Machine Type Communication
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as an example.
  • the communication system 200 may include a network device 201 and a terminal device 202 (for simplicity)
  • FIG. 2 only takes one terminal device as an example for explanation).
  • the existing service or the service that can be implemented in the future can be performed between the network device 201 and the terminal device 202.
  • these services include, but are not limited to, enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and high reliability low latency communication (URLLC, Ultra-Reliable and Low- Latency Communication), and more.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the terminal device 202 can transmit data to the network device 201, for example, using an authorized or unauthorized transfer mode.
  • the terminal device 201 can receive data sent by one or more terminal devices 202, and feed back information to the terminal device 202, for example, confirm ACK/non-acknowledgement NACK information, etc., and the terminal device 202 can confirm the end of the transmission process according to the feedback information, or can further Perform new data transfer or data retransmission.
  • the network device 201 may send information related to system information to the terminal device 202, and the terminal device 202 detects the received information to implement downlink synchronization, and the network device 201 establish connection.
  • a network device in a communication system is used as a transmitting end and a terminal device is used as a receiving end.
  • the present application is not limited thereto, and the transmitting end and/or the receiving end may be other devices.
  • the present application is applicable not only to signal transmission between a network device and a terminal device but also to signal transmission between two terminal devices.
  • Embodiment 1 of the present application provides a method for maintaining a maintenance of UL time alignment, which is performed by a terminal device.
  • FIG. 3(A) is a schematic diagram of a method for maintaining uplink time alignment in this embodiment. As shown in FIG. 3(A), the method includes:
  • Step 301 The terminal device receives first indication information, where the first indication information is used to notify a configuration of an uplink time alignment timer;
  • Step 302 The terminal device sets the value of the uplink time alignment timer according to the second reference subcarrier spacing related information and the first indication information.
  • the terminal device can set the value of the uplink time alignment timer according to the second reference subcarrier spacing (SCS) related information, thereby being able to set the uplink time alignment timing corresponding to the second reference SCS.
  • the value of the device is such that the set value of the uplink time alignment timer satisfies the requirements of the second reference SCS.
  • the second reference subcarrier spacing may be predefined or preconfigured.
  • the second reference subcarrier interval may be: a timing advance group (TAG) associated with the uplink time alignment timer.
  • TAG timing advance group
  • the terminal device may set an uplink time alignment timer value associated with the timing advance group for a timing advance group.
  • the uplink time alignment timer is associated with a timing advance group (TAG), which means that the terminal device maintains an uplink time alignment timer for the timing advance group for a timing advance group (TAG).
  • the terminal device determines, according to whether the uplink time alignment timer expires, whether all serving cells or uplink carriers or ULBWPs in the TAG are in an uplink synchronization state (uplink time aligned.), if timeout, all serving cells in the TAG Or the uplink carrier or the UL BWP is in the non-uplink synchronization state (uplink time aligned.), and the uplink synchronization needs to be re-acquired before the uplink transmission; otherwise, if it does not time out, it is in the synchronization state.
  • the second reference subcarrier interval may be: the uplink time alignment timer association The SCS in the UL BWP of each semi-statically configured TAG; or the SCS in each activated UL BWP (active UL BWP) in the TAG associated with the uplink time alignment timer.
  • the terminal device may separately set an uplink associated with the semi-statically configured UL BWP or the activated UL BWP for each semi-statically configured UL BWP or each activated UL BWP in the TAG.
  • the time alignment timer takes a value.
  • the uplink time timer is associated with the semi-statically configured UL BWP or the activated UL BWP in the TAG, and refers to the UL BWP or the activated UL BWP that are configured by the terminal device for each semi-static in the TAG. Maintaining an uplink time alignment timer for the semi-statically configured UL BWP or the activated UL BWP, respectively.
  • the MAC layer of the terminal device determines whether the UL BWP is in an uplink synchronization state according to whether the uplink time alignment timer expires. If the timeout occurs, the UL BWP is in a non-uplink synchronization state (uplink time aligned.
  • the terminal device may deactivate the UL BWP, and re-acquire the uplink synchronization before the uplink transmission; otherwise, if it does not time out, it is in the synchronization state.
  • the portion of the upstream time alignment timer can be associated with a timing advance group (TAG) and another portion of the uplink time alignment timer can be associated with an activated UL BWP in the TAG
  • the portion The second reference subcarrier interval corresponding to the uplink time alignment timer may be the maximum SCS or the minimum SCS in the semi-statically configured uplink carrier bandwidth (UL BWP) in the timing advance group (TAG) associated with the uplink time alignment timer
  • the second reference subcarrier spacing corresponding to each of the other uplink time timers may be the SCS of each activated UL BWP in the TAG associated with the uplink time timer.
  • the terminal device sets the value of the uplink time alignment timer associated with the timing advance group for both the timing advance group, and also for each activated UL BWP in the TAG.
  • the value of the uplink time alignment timer associated with the ULBWP In this embodiment, a part of the uplink time alignment timer is associated with a timing advance group (TAG), and another part of the uplink time alignment timer is associated with the activated UL BWP in the TAG, that is, the terminal device advances for one timing.
  • TAG timing advance group
  • the group maintains an uplink time alignment timer for the timing advance group, and the terminal device maintains a UL BWP for the semi-static configuration or the activated UL for each activated UL BWP in the TAG, respectively.
  • Upstream time alignment timer for BWP For BWP.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and may be: the first indication information is used to notify the uplink time alignment timer related to the first reference subcarrier interval. The absolute time of the value.
  • the absolute time may be configured by the network device based on the first reference subcarrier spacing.
  • the absolute time that the network device can be configured for example, may be expressed as The network device can select an absolute time from the absolute times listed in equation (1) and be notified by the first indication information.
  • the first reference subcarrier spacing may be a pre-defined or pre-configured subcarrier spacing, where: the predefined or pre-configured subcarrier spacing may be a fixed value, such as 15 kHz, or 30 kHz, etc., especially The fixed value may be a fixed value specified by the communication standard; or the pre-defined or pre-configured sub-carrier spacing is a semi-statically configured uplink carrier in a Timing Advance Group (TAG) associated with the uplink time alignment timer.
  • TAG Timing Advance Group
  • the terminal device may receive indication information for indicating the interval of the first reference subcarrier, and determine the first reference subcarrier interval according to the indication information, for example, the terminal device may pass a system message or a control message. Order to receive the indication information.
  • the second reference subcarrier spacing related information may be a ratio of the second reference subcarrier spacing to the first reference subcarrier spacing.
  • the terminal device may adjust the absolute time notified by the first indication information according to the ratio.
  • the terminal device can adjust the absolute time in proportion to the ratio.
  • the first reference SCS is The second reference SCS is The ratio of the first reference SCS to the second reference SCS
  • the absolute time notified by the first indication information is N [ms]
  • the terminal device can be compared with the ratio Proportionally adjust the absolute time N[ms] to or or
  • A is an adjustment coefficient and can be a constant, for example, 1; ⁇ 1 , ⁇ 2 ⁇ ⁇ 0, 1 , 2, 3, 4, ... ⁇ .
  • the terminal device may adjust the absolute time in a manner other than the ratio, for example, in a power relationship with the ratio.
  • the terminal device sets the value of the time alignment timer to the adjusted absolute time.
  • the present embodiment is not limited thereto.
  • the terminal device sets the value of the time alignment timer according to the adjusted absolute time based on the time unit associated with the second reference subcarrier interval, where The value may be expressed as the number of time units, which may be, for example, a slot, or a sub-slot, or a symbol, etc., for example, the terminal device may divide the adjusted absolute time by The second reference subcarrier interval is related to the time unit, and the number of the time units is obtained, and the number of the time units is used as the value of the uplink time alignment timer.
  • FIG. 3(B) is a schematic diagram showing the correlation between the subcarrier spacing and the time unit in the present embodiment.
  • the time lengths of time units related to different subcarrier spacing (SCS) sizes are different.
  • SCS subcarrier spacing
  • one slot 31 contains 14 symbols ( Symbol)
  • the time slot of the slot 31 is 1 ms
  • the subcarrier spacing (SCS) is 30 khz
  • one slot 32 contains 14 symbols, and the time of the slot 32
  • the length is 0.5 ms
  • the subcarrier spacing (SCS) is 60 khz
  • one slot 33 contains 14 symbols, and the time length of the slot 33 is 0.25 ms
  • the subcarrier spacing (SCS) At 120 khz, a slot 34 contains 14 symbols, and the length of the slot 34 is 0.125 ms.
  • FIG. 3(B) is only an example, and specific numerical values are not limited thereto.
  • the terminal device may determine a time unit related to the second reference subcarrier interval according to the correlation between the subcarrier spacing and the time unit, and calculate the time according to the adjusted absolute time and the determined time unit.
  • the number of units The number of time units related to different subcarrier spacing (SCS) sizes under the same adjusted absolute time is different.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer to take a value.
  • the value may be expressed as a number of time units, and the time unit may be, for example, a slot, or a sub-slot, or a symbol or the like.
  • the time unit may be related to the second reference subcarrier spacing, wherein the description of the correlation may refer to the above description of FIG. 3(B).
  • the second reference subcarrier spacing related information may be a time occupied by a time unit related to the second reference subcarrier spacing, for example, a slot related to the second reference subcarrier spacing, The time taken by a subslot or symbol.
  • step 302 of the embodiment the number of time units that the terminal device can notify according to the first indication information and the time unit corresponding to the time unit corresponding to the second reference subcarrier interval (for example, a time slot, a subslot or a symbol) The time taken to set the value of the upstream time alignment timer.
  • the terminal device may multiply the time unit number notified by the first indication information by the time occupied by the time unit corresponding to the second reference subcarrier interval, thereby calculating the total time, where the total time may be used as the uplink set by the terminal device.
  • the time alignment timer takes the absolute time of the value; or the terminal device may use the number of time units notified by the first indication information as the total number of counts, and count the time occupied by the time unit corresponding to the second reference subcarrier interval as the count The time interval is counted by the time interval until the number of times of counting reaches the total number of times of counting. Therefore, the terminal device can set the value of the uplink time alignment timer by counting.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to indicate the uplink time alignment timer in the uplink time alignment timer value list.
  • the identifier information may be used to indicate the value of the uplink time alignment timer in the uplink time alignment timer value list.
  • the first indication information as the identifier information may have, for example, 3 bits.
  • the second reference subcarrier spacing related information may be an uplink time alignment timer value set corresponding to the second reference subcarrier spacing.
  • step 302 the terminal device sets the uplink time alignment timer to be the value of the uplink time alignment timer corresponding to the second reference subcarrier interval in the uplink time alignment timer value list.
  • the indicated uplink time alignment timer takes a value.
  • an example of the uplink time alignment timer value list may be as shown in the following Table 1.
  • the identifier information may be used to indicate the value in the uplink time alignment counter value set corresponding to each second reference SCS, for example, as The first indication information of the identifier information is 000, and may indicate the first value in the set of the uplink time alignment counter corresponding to each second reference SCS. Specifically, when the second reference SCS is 15khz, the identifier information is 000.
  • the terminal device selects the value indicated by the indication information 000 from the set of uplink time alignment timers corresponding to 15khz in Table 1, for example, 500ms, and sets the value of the uplink time alignment counter to 500ms;
  • the terminal device selects the value indicated by the indication information 000 from the set of uplink time alignment timers corresponding to 30 khz of Table 1, for example, 250 ms, and aligns the uplink time counter.
  • the value is set to 250ms.
  • Second reference SCS The second reference SCS corresponding uplink time alignment timer value set 15khz ⁇ ms500, ms750, ms1280, ms1920, ms2560, ms5120, ms10240, infinity ⁇ 30khz ⁇ ms250, ms500, ms 640, ms1280, ms2560, ms5120, ms10240, infinity ⁇ 60khz ⁇ ms125, ms250, ms500, ms 640, ms1280, ms2560, ms5120, infinity ⁇ 120khz ⁇ ms75, ms125, ms250, ms500, ms 640, ms1280, ms2560, infinity ⁇
  • the value of the value of the uplink time alignment counter corresponding to each second reference SCS is time (unit: millisecond ms), but the embodiment may not be limited thereto, and the value may also be time.
  • the number of units for example, the number of slots or the number of symbols, etc.
  • the terminal device may further determine the value and the second reference subcarrier according to the value.
  • the time taken by the time unit corresponding to the interval, and the absolute time of the value of the uplink time alignment timer is set.
  • the terminal device may receive the first indication information by using control signaling or a system message.
  • the terminal device may receive the first indication information by using control signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device can set the value of the uplink time alignment timer according to the second reference subcarrier spacing (SCS) related information, thereby being able to set the uplink time alignment timing corresponding to the second reference SCS.
  • the value of the device is such that the set value of the uplink time alignment timer satisfies the requirement of the reference SCS.
  • the second embodiment provides a method for configuring an uplink time alignment timer, which is applied to a network device side.
  • FIG. 4 is a schematic diagram of a method for configuring an uplink time alignment timer in the second embodiment. As shown in FIG. 4, the method includes:
  • Step 401 The network device sends first indication information, where the first indication information is used to notify the configuration of the uplink time alignment timer.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer related to the first reference subcarrier interval.
  • the absolute time of the value for example, when the first reference SCS is 15khz, the value of the uplink time alignment timer associated with the first reference subcarrier interval can be expressed as the above equation (1).
  • the first reference subcarrier spacing may be: a fixed value, such as 15 khz, in particular, the fixed value may be a fixed value specified by the protocol; or a semi-static configuration in the TAG associated with the uplink time alignment timer Maximum subcarrier spacing or minimum subcarrier spacing in the UL BWP.
  • the network device may send indication information for indicating the interval of the first reference subcarrier, so that the terminal device determines the first reference subcarrier spacing according to the indication information, for example, the network device may pass the system.
  • the indication information is sent by message or control signaling.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer to take a value, where the value indicates It is a number of time units, which may be, for example, a slot or a symbol.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to indicate the uplink time alignment timing in the uplink time alignment timer value list. Identification information of the value.
  • the network device may send the first indication information by using control signaling or a system message.
  • the network device may send the first indication information used to indicate the value of the uplink time alignment timer by using control signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the network device may inform the configuration of the uplink time alignment timer by using the first indication information, thereby configuring the uplink time alignment timer in a more flexible manner.
  • the third embodiment provides an apparatus for maintaining a maintenance of UL time alignment. Since the principle of solving the problem is similar to the method of Embodiment 1, the specific implementation may refer to the implementation of the method of Embodiment 1, and the description of the same portions is not repeated.
  • Fig. 5 is a schematic diagram of the uplink time alignment maintaining apparatus of the third embodiment. As shown in FIG. 5, the apparatus 500 includes:
  • a first receiving unit 501 which receives first indication information, where the first indication information is used to notify a configuration of an uplink time alignment timer;
  • the setting unit 502 sets the value of the UL time alignment timer according to at least the second reference subcarrier interval and the first indication information.
  • the second reference subcarrier interval may be: a half of a timing advance group (TAG) associated with the uplink time alignment timer.
  • TAG timing advance group
  • the maximum SCS or minimum SCS in the statically configured uplink carrier bandwidth (UL BWP), or the maximum SCS or minimum SCS in the activated UL BWP in the TAG associated with the uplink time alignment timer, or the TAG associated with the uplink time alignment timer Initial or default SCS for UL BWP.
  • the second reference subcarrier interval may be: an uplink time alignment timing
  • the SCS in the semi-statically configured uplink carrier bandwidth (UL BWP) in the associated timing advance group (TAG), or the second reference subcarrier spacing is in each activated UL BWP in the TAG associated with the uplink time alignment timer.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment related to the first reference subcarrier interval.
  • the second reference subcarrier spacing related information is a ratio of the second reference subcarrier spacing to the first reference subcarrier spacing.
  • the setting unit 502 adjusts the absolute time according to the ratio. For example, the setting unit 502 can adjust the absolute time in proportion to the ratio.
  • the first reference subcarrier spacing is a pre-defined or pre-configured subcarrier spacing.
  • the pre-defined or pre-configured sub-carrier spacing is a fixed value, for example, 15 khz.
  • the fixed value may be a fixed value specified by the protocol; or the pre-defined or pre-configured sub-carrier spacing is an uplink time aligned timing.
  • UL BWP semi-statically configured uplink carrier bandwidth
  • TAG Timing Advance Group
  • the apparatus 500 may further include: a second receiving unit 503, which receives indication information for indicating the first reference subcarrier spacing.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer to take a value, and the value is expressed as a time unit.
  • the number of units of time can be, for example. A slot or symbol.
  • the second reference subcarrier spacing related information is a time occupied by the time unit related to the second reference subcarrier spacing.
  • the setting unit 502 can set the value of the uplink time alignment timer according to the number of time units of the first information only notification and the time occupied by the time unit associated with the second reference subcarrier interval.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to indicate the uplink time alignment timer in the uplink time alignment timer value list.
  • the second reference subcarrier interval related information may be an uplink time alignment timer value set corresponding to the second reference subcarrier interval.
  • the setting unit 502 may set the value of the uplink time alignment timer to be the value of the uplink time alignment timer corresponding to the second reference subcarrier interval in the uplink time alignment timer value list.
  • the indicated upstream time alignment timer takes a value.
  • the terminal device can set the value of the uplink time alignment timer according to the second reference subcarrier spacing (SCS) related information, thereby being able to set the uplink time alignment timing corresponding to the second reference SCS.
  • the value of the device is such that the set value of the uplink time alignment timer satisfies the requirement of the reference SCS.
  • the fourth embodiment provides an apparatus for configuring an uplink time alignment timer. Since the principle of solving the problem is similar to the method of the second embodiment, the specific implementation may refer to the implementation of the method of the second embodiment, and the description of the same portions is not repeated.
  • FIG. 6 is a schematic diagram of an apparatus for configuring an uplink time alignment timer according to the fourth embodiment. As shown in FIG. 6, the apparatus 600 includes:
  • the first sending unit 601 sends the first indication information, where the first indication information is used to inform the configuration of the uplink time alignment timer.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer related to the first reference subcarrier interval.
  • the absolute time of the value for example, when the first reference SCS is 15khz, the value of the uplink time alignment timer associated with the first reference subcarrier interval can be expressed as the above equation (1).
  • the first reference subcarrier spacing may be: a fixed value, such as 15 khz, in particular, the fixed value may be a fixed value specified by the protocol; or a semi-static configuration in the TAG associated with the uplink time alignment timer Maximum subcarrier spacing or minimum subcarrier spacing in the UL BWP.
  • the apparatus 600 may further include: a second sending unit 602, configured to send indication information indicating the first reference subcarrier spacing.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to notify the uplink time alignment timer to take a value, where the value indicates It is a number of time units, which may be, for example, a slot or a symbol.
  • the first indication information is used to notify the configuration of the uplink time alignment timer, and the first indication information is used to indicate the uplink time alignment timing in the uplink time alignment timer value list. Identification information of the value.
  • the network device may send the first indication information by using control signaling or a system message.
  • the network device may send the first indication information by control signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the network device may indicate, by using the first indication information, how the terminal device configures the uplink time alignment timer, thereby configuring the uplink time alignment timer in a more flexible manner.
  • the embodiment 5 provides a terminal device.
  • the method for solving the problem is similar to the method of the first embodiment. Therefore, the specific implementation may be implemented by referring to the method in the first embodiment.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 700 may include a central processing unit (CPU) 701 and a memory 702; the memory 702 is coupled to the central processing unit 701.
  • the memory 702 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 701 to set an uplink time alignment timer (UL time alignment timer) value.
  • UL time alignment timer uplink time alignment timer
  • apparatus 500 of embodiment 3 may be integrated into central processor 701.
  • the central processing unit 701 can be configured to implement the method of uplink time alignment maintenance described in Embodiment 1.
  • the central processing unit 701 can be configured to perform control so that the terminal device 700 performs the method of Embodiment 1.
  • the foregoing apparatus 700 may be configured separately from the central processing unit 701.
  • the apparatus 500 may be configured as a chip connected to the central processing unit 701, such as the unit shown in FIG. 7, through the central processing unit 701. Control is implemented to implement the functionality of device 500.
  • the terminal device 700 may further include a communication module 703, an input unit 704, a display 706, an audio processor 705, an antenna 709, a power source 708, and the like.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the terminal device 700 does not have to include all the components shown in FIG. 7; in addition, the terminal device 700 may further include components not shown in FIG. 7, and reference may be made to the prior art.
  • the terminal device can set the value of the uplink time alignment timer according to the second reference subcarrier spacing (SCS) related information, thereby being able to set the uplink time alignment timing corresponding to the second reference SCS.
  • the value of the device is such that the set value of the uplink time alignment timer satisfies the requirement of the reference SCS.
  • the present embodiment provides a network device.
  • the principle of the device is similar to that of the second embodiment. Therefore, the specific implementation may be implemented by referring to the method in the second embodiment.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • network device 800 can include a central processing unit (CPU) 801 and memory 802; and memory 802 is coupled to central processor 801.
  • the memory 802 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 801 to configure an uplink time alignment timer.
  • the functionality of device 600 can be integrated into central processor 801.
  • the central processing unit 801 can be configured to implement the method for configuring the uplink time alignment timer of Embodiment 2.
  • central processor 801 can be configured to control such that network device 800 performs the method of embodiment 2.
  • the device 600 may be configured separately from the central processing unit 801.
  • the device 600 may be configured as a chip connected to the central processing unit 801, such as the unit shown in FIG. Controls to implement the functionality of device 600.
  • the network device 800 may further include: a transceiver 803, an antenna 804, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the network device 800 does not have to include all the components shown in FIG. 8; in addition, the network device 800 may also include components not shown in FIG. 8, and reference may be made to the prior art.
  • the network device may indicate, by using the first indication information, how the terminal device configures the uplink time alignment timer, thereby configuring the uplink time alignment timer in a more flexible manner.
  • the embodiment 7 provides a communication system, which includes at least the terminal device in the embodiment 5 and the network device in the embodiment 6, and the content thereof is incorporated herein, and details are not described herein again.
  • the terminal device can set the value of the uplink time alignment timer according to the second reference subcarrier spacing (SCS) related information, thereby being able to set the uplink time alignment timing corresponding to the second reference SCS.
  • the value of the device is such that the set value of the uplink time alignment timer satisfies the requirement of the reference SCS.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the uplink time alignment maintaining device or the terminal device to perform the uplink time alignment maintenance method described in Embodiment 1.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in an uplink time alignment maintained device or a terminal device, the program causes the uplink time alignment maintenance device or the terminal device to perform implementation The method of uplink time alignment maintenance as described in Example 1.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a device or a network device configured with an uplink time alignment timer to execute the configured uplink time alignment timer described in Embodiment 2 Methods.
  • Embodiment 8 of the present application provides a timeout control method, which is performed by a terminal device.
  • FIG. 9 is a schematic diagram of a timeout control method according to this embodiment. As shown in FIG. 9, the method includes:
  • Step 901 When the uplink time alignment timer is associated with a primary timing advance group (PTAG), when the uplink time alignment timer expires, the terminal device notifies the radio resource control through a medium access control (MAC) layer.
  • the (RRC) layer releases all Random Access Channel (RACH) resources configured through the Radio Resource Control (RRC) layer.
  • RACH Radio Resource Control
  • the terminal device can prevent the terminal device from performing random access on the RRC configured Random Access Channel (RACH) resource after the uplink time alignment timer expires. It is ensured that the terminal device can acquire an appropriate initial uplink timing through a random access response (RAR) in the random access procedure.
  • RACH Random Access Channel
  • RAR random access response
  • the method may further include:
  • Step 902 When the uplink time alignment timer expires, the terminal device further informs, by using a medium access control (MAC) layer, that the radio resource control (RRC) layer releases the initial carrier bandwidth (initial BWP) or the default carrier. RACH resources on the bandwidth (default BWP).
  • MAC medium access control
  • RRC radio resource control
  • FIG. 10 is another schematic diagram of the timeout control method of the embodiment. As shown in FIG. 10, the method includes:
  • Step 1001 When the uplink time alignment timer is associated with a secondary timing advance group (STAG), when the uplink time alignment timer expires, the terminal device notifies the radio resource control through a medium access control (MAC) layer.
  • the (RRC) layer releases the RACH resources in the secondary timing advance group (STAG).
  • the terminal device can prevent the terminal device from performing random access on the RRC configured RACH resource after the uplink time alignment timer expires, and ensure that the terminal device can obtain an appropriate initial uplink timing by using the RAR in the random access procedure.
  • the method may further include:
  • Step 1002 When the uplink time alignment timer expires, the terminal device further informs, by the medium access control (MAC) layer, that the radio resource control (RRC) layer releases the initial carrier bandwidth (initial BWP) or the default carrier. RACH resources on the bandwidth (default BWP).
  • MAC medium access control
  • RRC radio resource control
  • FIG. 11 is a schematic diagram of a timeout control method according to this embodiment. As shown in FIG. 11, the method includes:
  • Step 1101 If the uplink time timer is associated with a semi-statically configured or activated uplink carrier bandwidth (UL BWP) in a timing advance group (TAG), if the associated UL BWP is an activated UL BWP When the uplink time alignment timer expires, the terminal device deactivates the uplink carrier bandwidth associated with the uplink time alignment timer.
  • UL BWP semi-statically configured or activated uplink carrier bandwidth
  • TAG timing advance group
  • the terminal device can prevent the terminal device from performing random access on the associated UL BWP RACH resource after the uplink time alignment timer expires, and ensure that the terminal device can obtain an appropriate initial uplink timing through the RAR in the random access procedure.
  • the terminal device can perform control in the case where the uplink time alignment timer expires.
  • Embodiment 9 of the present application provides a timeout control device, which is installed in a terminal device.
  • FIG. 12 is a schematic diagram of the timeout control apparatus of the embodiment. As shown in FIG. 12, the apparatus package 1200 includes:
  • the first control unit 1201 when the uplink time alignment timer is associated with the primary timing advance group (PTAG), notifies the radio resource through the medium access control (MAC) layer when the uplink time alignment timer expires
  • the Control (RRC) layer releases all RACH resources configured through the Radio Resource Control (RRC) layer.
  • FIG. 13 is another schematic diagram of the timeout control apparatus of the embodiment. As shown in FIG. 13, the apparatus 1300 includes:
  • the second control unit 1301 when the uplink time alignment timer is associated with the secondary timing advance group (STAG), notifies the radio resource through the medium access control (MAC) layer when the uplink time alignment timer expires
  • the Control (RRC) layer releases the RACH resources in the Secondary Timing Advance Group (STAG).
  • the first control unit 1201 or the second control unit 1301 further informs that the radio resource control (RRC) layer release is not initial through the medium access control (MAC) layer.
  • RRC radio resource control
  • MAC medium access control
  • FIG. 14 is another schematic diagram of the timeout control apparatus of the embodiment. As shown in FIG. 14, the apparatus 1400 includes:
  • a third control unit 1401 if the uplink time timer is associated with a semi-statically configured or activated uplink carrier bandwidth (UL BWP) in a timing advance group (TAG), if the associated UL BWP is active.
  • UL BWP uplink carrier bandwidth
  • TAG timing advance group
  • the terminal device can perform control in the case where the uplink time alignment timer expires.
  • the embodiment 10 provides a terminal device.
  • the principle of the device is similar to that of the embodiment 8. Therefore, the specific implementation may be implemented by referring to the method in the embodiment 8.
  • FIG. 15 is a schematic diagram showing the structure of a terminal device according to an embodiment of the present invention.
  • the terminal device 1500 may include a central processing unit (CPU) 1501 and a memory 1502; the memory 1502 is coupled to the central processing unit 1501.
  • the memory 1502 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processor 1501 to generate a cache status report.
  • the functionality of the apparatus 1200, 1300 or 1400 of Embodiment 9 may be integrated into the central processor 1501.
  • the central processing unit 1501 may be configured to implement the timeout control method described in Embodiment 8.
  • the central processing unit 1501 may be configured to perform control such that the terminal device 1500 performs the method of the eighth embodiment.
  • the foregoing apparatus 1500 may be configured separately from the central processing unit 1501.
  • the apparatus 1300 may be configured as a chip connected to the central processing unit 1501, such as the unit shown in FIG. 15, through the central processing unit 1501. Controls to implement the functionality of device 1200, 1300 or 1400.
  • the terminal device 1500 may further include a communication module 1503, an input unit 1504, a display 1506, an audio processor 1505, an antenna 1509, a power source 1508, and the like.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It is to be noted that the terminal device 1500 does not necessarily have to include all of the components shown in FIG. 15; further, the terminal device 1500 may further include components not shown in FIG. 15, and reference may be made to the related art.
  • the terminal device can perform control in the case where the uplink time alignment timer expires.
  • the embodiment 18 provides a communication system, which includes at least the network device and the terminal device in the embodiment 10, and the content thereof is incorporated herein, and details are not described herein again.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the timeout control device or the terminal device to execute the timeout control method described in Embodiment 8.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the timeout control device or the terminal device to perform the timeout control described in Embodiment 8 when the program is executed in a timeout control device or a terminal device method.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • Each processing method in each device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional blocks shown in Figures 5, 6, 12, 13, 14 and/or one or more combinations of functional blocks may correspond to various software modules of a computer program flow, or Corresponds to each hardware module.
  • These software modules may correspond to the respective steps shown in Figures 3, 4, 9, 10, and 11, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described with respect to Figures 5, 6, 12, 13, 14 and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital for performing the functions described herein.
  • Signal processor DSP
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to Figures 5, 6, 12, 13, 14 and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, such as a DSP and a microprocessor. Combination, multiple microprocessors, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a timeout control device comprising:
  • a first control unit that notifies the radio resource through a medium access control (MAC) layer when the uplink time alignment timer expires when the uplink time alignment timer is associated with a primary timing advance group (PTAG)
  • MAC medium access control
  • PTAG primary timing advance group
  • RRC Radio Resource Control
  • a timeout control device comprising:
  • a second control unit that notifies the radio resource through a medium access control (MAC) layer when the uplink time alignment timer expires when the uplink time alignment timer is associated with a secondary timing advance group (STAG)
  • the Control (RRC) layer releases the RACH resources in the Secondary Timing Advance Group (STAG).
  • the first control unit or the second control unit further informs, by the medium access control (MAC) layer, that the radio resource control (RRC) layer releases not in the initial carrier bandwidth (initial BWP) or RACH resources on the default carrier bandwidth (default BWP).
  • MAC medium access control
  • RRC radio resource control
  • a timeout control device comprising:
  • a third control unit if the uplink time timer is associated with a semi-statically configured or activated uplink carrier bandwidth (UL BWP) in a Timing Advance Group (TAG), if the associated UL BWP is active
  • UL BWP uplink carrier bandwidth
  • TAG Timing Advance Group

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行时间对齐维持上行时间设定的方法、配置上行时间对齐计时器的方法及其装置、通信系统。该上行时间对齐维持(maintenance of UL time alignment)装置,包括:第一接收单元,其接收第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置;以及设置单元,其至少根据第二参考子载波间隔相关信息和所述第一指示信息,设置上行时间对齐计时器(UL time alignment timer)取值。根据本申请,能够设定与参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。

Description

上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统 技术领域
本申请涉及通信领域,特别涉及一种上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统。
背景技术
在无线通信系统中,采用定时提前(TA,Timing Advance)来维持上行传输的正交性,避免小区内干扰。图1是定时提前技术的一个示意图,如图1所示,从终端设备的角度来说,定时提前本质上是接收到下行子帧101的起始时间t1与传输上行子帧102的t2时间之间的一个负偏移t0。网络设备通过适当地控制每个终端设备的偏移抵消不同终端设备的不同传输时延,从而使得来自不同终端设备的上行信号到达网络设备的时间基本上是对齐。一般地,要求来自不同终端设备的信号到达网络设备的时间都落在循环前缀(Cyclic Prefix,CP)之内。
终端设备初次与接收到的下行传输同步后,通过随机接入过程获取初始定时提前量。终端设备初始上行同步后,网络设备可以通过介质访问控制的控制元素(MAC Control Elements,MAC-CE)对终端设备上行定时进行调整。同时,网络设备通过无线资源控制(Radio Resource Control,RRC)信令为终端设备配置上行时间对齐计时器(UL time alignment timer)。终端设备的MAC层根据该上行时间对齐计时器是否超时判断是否与相应服务小区处于上行同步状态(uplink time aligned.)。若该计时器超时,该终端设备在发送上行数据前需通过随机接入过程重新获取初始定时提前量。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在现有技术中,网络设备基于15kHz的子载波间隔(SCS,subcarrier spacing)来配置上行时间对齐计时器(UL time alignment timer)取值,也就是说,网络设备所 配置的上行时间对齐计时器(UL time alignment timer)取值与15khz的子载波间隔相关,例如,15khz的子载波间隔相关的上行时间对齐计时器取值的最小值为500ms,该500ms的设定基于如下的考虑:长期演进(LTE)技术中终端设备的最大移动速度为500km/h,极端情况下传播时延的变化为0.93us/s,而15kHz的子载波间隔所需的TA调整粒度为0.52us,所以每500ms一次的定时提前更新(TA update)足以支持这种极端情况下的场景,即,当子载波间隔为15khz时,上行时间对齐计时器取值的最小值为500ms能够满足最频繁的定时提前更新(TA update)需求。
然而,本申请的发明人发现,随着技术的进步,通信系统不仅能支持15KHz的SCS,也能支持多种其它的SCS,而不同SCS对上行同步精度/粒度的要求不同,所以,现有的基于15kHz的SCS来配置的上行时间对齐计时器取值难以满足15kHz以外的SCS对上行同步精度的要求。
本申请实施例提供一种上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统,终端设备能够根据参考SCS来设置上行时间对齐计时器取值,由此,能够设定与参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。
根据本申请实施例的第一方面,提供了一种上行时间对齐维持(maintenance of UL time alignment)装置,包括:第一接收单元,其接收第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置;以及设置单元,其至少根据第二参考子载波间隔相关信息和所述第一指示信息,设置上行时间对齐计时器(UL time alignment timer)取值。
根据本申请实施例的第二方面,提供了一种配置上行时间对齐计时器(UL time alignment timer)的装置,包括:第一发送单元,其发送第一指示信息,其中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,是指:所述第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间;或者所述第一指示信息用于通知上行时间对齐计时器取值,所述取值表示为时间单位个数;或者所述第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时器取值的标识信息。。
根据本申请实施例的第三方面,提供了一种通信系统,所述通信系统包括网络设备和终端设备,所述网络设备包括如上述实施例的第二方面所述的配置上行时间对齐 计时器的装置,所述终端设备包括如上述实施例的第一方面所述的上行时间对齐维持装置。
本申请实施例的有益效果在于:能够设定与参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是定时提前技术的一个示意图;
图2是本申请实施例的通信系统的一示意图;
图3(A)是本申请实施例1的上行时间对齐维持的方法的一个示意图;
图3(B)是本申请实施例1子载波间隔与时间单位的相关关系的一个示意图;
图4是本申请实施例2中配置上行时间对齐计时器的方法的一个示意图;
图5是本申请实施例3的上行时间对齐维持装置的一个示意图;
图6是本申请实施例4的配置上行时间对齐计时器的装置的一个示意图;
图7是本申请实施例5的终端设备构成示意图;
图8是本申请实施例6的网络设备构成示意图;
图9是本申请实施例8的超时控制方法的一个示意图;
图10是本申请实施例8的超时控制方法的另一个示意图;
图11是本申请实施例8的超时控制方法的另一个示意图;
图12是本申请实施例9的超时控制装置的一个示意图;
图13是本申请实施例9的超时控制装置的另一个示意图;
图14是本申请实施例9的超时控制装置的另一个示意图;
图15是本申请实施例10的终端设备构成示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据......”,术语“基于”应理解为“至少部分基于......”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以 包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图2是本申请实施例的通信系统的一示意图,示意性说明了以终端设备和网络设备为例的情况,如图2所示,通信系统200可以包括网络设备201和终端设备202(为简单起见,图2仅以一个终端设备为例进行说明)。
在本申请实施例中,网络设备201和终端设备202之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备202可以向网络设备201发送数据,例如使用授权或免授权传输方式。终端设备201可以接收一个或多个终端设备202发送的数据,并向终端设备202反馈信息,例如确认ACK/非确认NACK信息等,终端设备202根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
此外,在终端设备202接入网络设备201之前,网络设备201可以向终端设备202发送与系统信息有关的信息,终端设备202对接收到的信息进行检测,以实现下行同步,并与网络设备201建立连接。
以下以将通信系统中的网络设备作为发送端、将终端设备作为接收端为例进行说明,但本申请不限于此,发送端和/或接收端还可以是其他的设备。例如,本申请不仅适用于网络设备和终端设备之间的信号传输,还可以适用于两个终端设备之间的信号传输。
实施例1
本申请实施例1提供一种上行时间对齐维持(maintenance of UL time alignment)的方法,该方法由终端设备执行。
图3(A)是本实施例的上行时间对齐维持的方法的一个示意图,如图3(A)所示,该方法包括:
步骤301、终端设备接收第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置;以及
步骤302、该终端设备至少根据第二参考子载波间隔相关信息和该第一指示信息,设置上行时间对齐计时器(UL time alignment timer)取值。
根据本实施例,终端设备能够根据第二参考子载波间隔(subcarrier spacing,SCS)相关信息来设置上行时间对齐计时器取值,由此,能够设定与第二参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足第二参考SCS的要求。
在本实施例中,第二参考子载波间隔可以是预定义的或预配置的。
在一个实施方式中,在上行时间对齐计时器与定时提前组(TAG)相关联的情况下,该第二参考子载波间隔可以是:该上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大SCS或最小SCS;或者,该上行时间对齐计时器关联的TAG中激活的UL BWP中的SCS,例如,该激活的UL BWP中的最大SCS或最小SCS;或者,该上行时间对齐计时器关联的TAG中初始或缺省的UL BWP的SCS。在该情况下,在步骤302中,终端设备针对一个定时提前组可以设置一个与该定时提前组关联的上行时间对齐计时器取值。在本实施例中,上行时间对齐计时器与定时提前组(TAG)相关联,是指,终端设备针对一个定时提前组(TAG)维护一个用于该定时提前组的上行时间对齐计时器。具体地,终端设备根据该上行时间对齐计时器是否超时判断该TAG中的所有服务小区或上行载波或ULBWP是否处于上行同步状态(uplink time aligned.),若超时,则该TAG中的所有服务小区或上行载波或UL BWP处于非上行同步状态(uplink time aligned.),上行传输前需重新获取上行同步;反之,若不超时,则处于同步状态。
在另一个实施方式中,在上行时间计时器与TAG中的半静态配置的UL BWP或激活的UL BWP相关联的情况下,该第二参考子载波间隔可以是:该上行时间对齐计时器关联的TAG中各半静态配置的UL BWP中的SCS;或者,上行时间对齐计时器关联的TAG中各激活的UL BWP(active UL BWP)中的SCS。在该情况下,在步骤302中,终端设备针对TAG中的各半静态配置的UL BWP或各激活的UL BWP,可以分别设置与该半静态配置的UL BWP或该激活的UL BWP关联的上行时间对齐计时器取值。在本实施例中,上行时间计时器与TAG中的半静态配置的UL BWP或激活的UL BWP相关联,是指,终端设备针对TAG中的各半静态配置的UL BWP或各激活的UL BWP,分别维护一个用于该半静态配置的UL BWP或该激活的UL BWP的上行时间对齐计时器。具体地,终端设备的MAC层根据该上行时间对齐计时器是否超时判断该UL BWP是否处于上行同步状态(uplink time aligned.),若超时,则该 UL BWP处于非上行同步状态(uplink time aligned.),若该UL BWP为激活的UL BWP,终端设备可以去激活该UL BWP,上行传输前需重新获取上行同步;反之,若不超时,则处于同步状态。
在又一个实施方式中,在一部分上行时间对齐计时器可以与定时提前组(TAG)相关联,并且,另一部分上行时间对齐计时器可以与TAG中激活的UL BWP相关联的情况下,该一部分上行时间对齐计时器对应的第二参考子载波间隔可以是,该上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大SCS或最小SCS;该另一部分上行时间计时器各自对应的第二参考子载波间隔可以是,该上行时间计时器关联的TAG中的各激活的UL BWP的SCS。在该情况下,在步骤302中,终端设备既针对定时提前组设置与该定时提前组关联的上行时间对齐计时器取值,也针对TAG中的各激活的UL BWP,分别设置与该激活的ULBWP关联的上行时间对齐计时器取值。在本实施例中,一部分上行时间对齐计时器与定时提前组(TAG)相关联,并且,另一部分上行时间对齐计时器与TAG中激活的UL BWP相关联,是指,终端设备针对一个定时提前组(TAG)维护一个用于该定时提前组的上行时间对齐计时器,并且,终端设备针对TAG中的各激活的UL BWP,分别维护一个用于该半静态配置的UL BWP或该激活的UL BWP的上行时间对齐计时器。
在本实施例中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,可以指:第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间。
在本实施例中,该绝对时间可以由网络设备基于第一参考子载波间隔而配置,例如,当第一参考SCS为15KHZ时,网络设备可以配置的该绝对时间例如可以被表示为式(1),该网络设备可以从式(1)中列举的绝对时间中选取一个绝对时间,并由第一指示信息进行通知。
TimeAlignmentTimer::=ENUMERATED{ms500,ms750,ms1280,ms1920,ms2560,ms5120,ms10240,infinity}                 (1)
在本实施例中,第一参考子载波间隔可以是预先定义或预先配置的子载波间隔,其中:该预定义或预配置的子载波间隔可以是固定值,例如15KHz,或30KHZ等,尤其是,该固定值可以是通信标准规定的固定值;或者,该预先定义或预配置的子载 波间隔为上行时间对齐计时器关联的定时提前组(Timing Advance Group,TAG)中半静态配置的上行载波带宽(Uplink Bandwith Part,UL BWP)中的最大子载波间隔或最小子载波间隔。
在本实施例中,终端设备可以接收用于指示该第一参考子载波间隔的指示信息,根据该指示信息来确定该第一参考子载波间隔,例如,该终端设备可以通过系统消息或控制信令来接收该指示信息。
在本实施例中,第二参考子载波间隔相关信息可以为第二参考子载波间隔与第一参考子载波间隔的比值。在步骤302中,该终端设备可以根据该比值,调整由该第一指示信息通知的该绝对时间。
在一个实施方式中,终端设备可以与该比值成比例地调整该绝对时间。例如,第一参考SCS为
Figure PCTCN2018072172-appb-000001
第二参考SCS为
Figure PCTCN2018072172-appb-000002
第一参考SCS和第二参考SCS的比值为
Figure PCTCN2018072172-appb-000003
由该第一指示信息通知的绝对时间为N[ms],该终端设备可以与该比值
Figure PCTCN2018072172-appb-000004
成比例地将该绝对时间N[ms]调整为
Figure PCTCN2018072172-appb-000005
Figure PCTCN2018072172-appb-000006
Figure PCTCN2018072172-appb-000007
其中,A为调整系数,可以是常量,例如可以是1;μ 1,μ 2∈{0,1,2,3,4,...}。此外,在本实施例中,终端设备也可以采用与该比值成其它关系的方式来调整该绝对时间,例如,与该比值成幂次关系等。
在本实施例中,该终端设备设置上行时间对齐计时器(time alignment timer)的取值为调整后的绝对时间。本实施例可以不限于此,例如,该终端设备基于该第二参考子载波间隔相关的时间单位,根据该调整后的绝对时间设置上行时间对齐计时器(time alignment timer)的取值,其中,该取值可以表现为时间单位的个数,该时间单位例如可以是时隙(slot),或者子时隙,或者符号(symbol)等,例如,终端设备可以将该调整后的绝对时间除以该第二参考子载波间隔相关的时间单位,得到该时间单位的个数,将该时间单位的个数作为上行时间对齐计时器(time alignment timer)的取值。
图3(B)是本实施例中子载波间隔与时间单位的相关关系的一个示意图。如图3(B)所示,不同子载波间隔(SCS)大小相关的时间单位的时间长度不同,例如,子载波间隔(SCS)为15khz时,一个时隙(slot)31包含14个符号(symbol),该时隙(slot)31的时间长度为1ms;子载波间隔(SCS)为30khz时,一个时隙(slot) 32包含14个符号(symbol),该时隙(slot)32的时间长度为0.5ms;子载波间隔(SCS)为60khz时,一个时隙(slot)33包含14个符号(symbol),该时隙(slot)33的时间长度为0.25ms;子载波间隔(SCS)为120khz时,一个时隙(slot)34包含14个符号(symbol),该时隙(slot)34的时间长度为0.125ms。需要说明的是,图3(B)仅是举例,具体数值可以不限于此。
在本实施例中,终端设备可以根据子载波间隔与时间单位的相关关系,确定与第二参考子载波间隔相关的时间单位,并根据该调整后的绝对时间和该确定的时间单位,计算时间单位的个数。其中,,相同调整后的绝对时间下不同子载波间隔(SCS)大小相关的时间单位个数不同。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:该第一指示信息用于通知上行时间对齐计时器取值。其中,该取值可以表示为时间单位个数,该时间单位例如可以是时隙(slot),或者子时隙,或者符号(symbol)等。
在本实施例中,该时间单位可以与该第二参考子载波间隔相关,其中,关于相关的说明可以参考上述对图3(B)的说明。
在本实施例中,该第二参考子载波间隔相关信息,可以是与第二参考子载波间隔相关的时间单位占用的时间,例如,与第二参考子载波间隔相关的时隙(slot),子时隙或符号(symbol)占用的时间。
在本实施例的步骤302中,终端设备可以根据第一指示信息所通知的时间单位个数,以及第二参考子载波间隔对应的时间单位占用的时间(例如,时隙,子时隙或符号占用的时间),来设置该上行时间对齐计时器取值。
例如,终端设备可以将第一指示信息所通知的时间单位个数与第二参考子载波间隔对应的时间单位占用的时间相乘,从而计算总时间,该总时间可以作为该终端设备设置的上行时间对齐计时器取值的绝对时间;或者,终端设备可以将第一指示信息所通知的时间单位个数作为总计数次数,将与第二参考子载波间隔对应的时间单位占用的时间作为计数的时间间隔,并以该时间间隔进行计数,直到计数的次数达到上述总计数次数,由此,终端设备可以通过计数的方式来设置该上行时间对齐计时器取值。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时 器取值的标识信息。其中,该标识信息可以指示该上行时间对齐计时器取值列表中的某一个上行时间对齐计时器取值,例如,作为该标识信息的第一指示信息例如可以具有3比特。
在本实施例中,第二参考子载波间隔相关信息可以是第二参考子载波间隔对应的上行时间对齐计时器取值集合。
在步骤302中,终端设备设置上行时间对齐计时器取值为该上行时间对齐计时器取值列表中的该第二参考子载波间隔对应的上行时间对齐计时器取值集合中由该标识信息所指示的上行时间对齐计时器取值。
例如,上行时间对齐计时器取值列表的示例可以如下表1所示,其中,该标识信息可以用来指示各第二参考SCS对应的上行时间对齐计数器取值集合中的取值,例如,作为该标识信息的第一指示信息为000,可以指示各第二参考SCS对应的上行时间对齐计数器取值集合中的第一个取值,具体地,当第二参考SCS为15khz,标识信息为000时,终端设备从表1的15khz所对应的上行时间对齐计时器取值集合中选取表示信息000所指示的取值,例如,500ms,并将上行时间对齐计数器取值设置为500ms;当第二参考SCS为30khz,标识信息为000s时,终端设备从表1的30khz所对应的上行时间对齐计时器取值集合中选取表示信息000所指示的取值,例如,250ms,并将上行时间对齐计数器取值设置为250ms。
表1:
第二参考SCS 第二参考SCS对应的上行时间对齐计时器取值集合
15khz {ms500,ms750,ms1280,ms1920,ms2560,ms5120,ms10240,infinity}
30khz {ms250,ms500,ms 640,ms1280,ms2560,ms5120,ms10240,infinity}
60khz {ms125,ms250,ms500,ms 640,ms1280,ms2560,ms5120,infinity}
120khz {ms75,ms125,ms250,ms500,ms 640,ms1280,ms2560,infinity}
在表1的示例中,各第二参考SCS对应的上行时间对齐计数器取值集合中的取值为时间(单位:毫秒ms),但本实施例可以不限于此,该取值也可以是时间单位个数(例如,时隙(slot)数或符号(symbol)数等),并且,当该取值是时间单位个数的情况下,终端设备还可以根据该取值以及第二参考子载波间隔对应的时间单位所占用的时间,设置上行时间对齐计时器的取值的绝对时间。
在本实施例中,终端设备可以通过控制信令或系统消息来接收该第一指示信息。 例如,终端设备可以通过控制信令,例如无线资源控制(RRC)信令,来接收该第一指示信息。
根据本实施例,终端设备能够根据第二参考子载波间隔(subcarrier spacing,SCS)相关信息来设置上行时间对齐计时器取值,由此,能够设定与第二参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。
实施例2
本实施例2提供一种配置上行时间对齐计时器(UL time alignment timer)的方法,应用于网络设备侧。
图4是本实施例2中配置上行时间对齐计时器(UL time alignment timer)的方法的一个示意图,如图4所示,其包括:
步骤401、网络设备发送第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,可以指:该第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间,例如,当第一参考SCS为15khz时,与该第一参考子载波间隔相关的上行时间对齐计时器取值可以被表示为上式(1)。
在本实施例中,该第一参考子载波间隔可以是:固定值,例如15khz,特别地,该固定值可以是协议规定的固定值;或者,上行时间对齐计时器关联的TAG中半静态配置的UL BWP中的最大子载波间隔或最小子载波间隔。
在本实施例中,网络设备可以发送用于指示该第一参考子载波间隔的指示信息,从而便于终端设备根据该指示信息来确定该第一参考子载波间隔,例如,该网络设备可以通过系统消息或控制信令来发送该指示信息。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:该第一指示信息用于通知上行时间对齐计时器取值,所述取值表示为时间单位个数,该时间单位例如可以是时隙(slot)或符号(symbol)等。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:该第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计 时器取值的标识信息。
关于第一指示信息的详细说明,可以参考实施例1,本实施例不再赘述。
在本实施例中,网络设备可以通过控制信令或系统消息来发送该第一指示信息。例如,网络设备可以通过控制信令,例如无线资源控制(RRC)信令,来发送用来指示上行时间对齐计时器(UL time alignment timer)取值的该第一指示信息。
在本实施例中,网络设备可以通过第一指示信息来通知(inform)上行时间对齐计时器的配置,由此,能够以更加灵活的方式来配置上行时间对齐计时器。
实施例3
本实施例3提供一种上行时间对齐维持(maintenance of UL time alignment)装置。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参考实施例1的方法的实施,内容相同之处不再重复说明。
图5是本实施例3的上行时间对齐维持装置的一个示意图。如图5所示,装置500包括:
第一接收单元501,其接收第一指示信息,该第一指示信息用于通知(inform)上行时间对齐计时器的配置;以及
设置单元502,其至少根据第二参考子载波间隔和该第一指示信息,设置上行时间对齐计时器(UL time alignment timer)取值。
在本实施例中,在上行时间对齐计时器与定时提前组(TAG)相关联的情况下,该第二参考子载波间隔可以是:上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大SCS或最小SCS,或者上行时间对齐计时器关联的TAG中激活的UL BWP中的最大SCS或最小SCS,或者上行时间对齐计时器关联的TAG中初始或缺省的UL BWP的SCS。
在本实施例中,在上行时间计时器与定时提前组(TAG)中的半静态配置的UL BWP或激活的UL BWP相关联的情况下,第二参考子载波间隔可以是:上行时间对齐计时器关联的定时提前组(TAG)中各半静态配置的上行载波带宽(UL BWP)中的SCS,或者,第二参考子载波间隔是上行时间对齐计时器关联的TAG中各激活的UL BWP中的SCS。
在本实施例中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置, 可以指:所述第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间。。第二参考子载波间隔相关信息为所述第二参考子载波间隔与所述第一参考子载波间隔的比值。该设置单元502根据该比值,调整该绝对时间,例如,设置单元502可以与该比值成比例地调整该绝对时间。
在本实施例中,该第一参考子载波间隔为预先定义或预先配置的子载波间隔。其中,该预定义或预配置的子载波间隔为固定值,例如15khz,特别地,该固定值可以是协议规定的固定值;或者,该预先定义或预配置的子载波间隔为上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大子载波间隔或最小子载波间隔。
在本实施例中,如图5所示,该装置500还可以包括:第二接收单元503,其接收用于指示该第一参考子载波间隔的指示信息。
在本实施例中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,可以指:第一指示信息用于通知上行时间对齐计时器取值,取值表示为时间单位个数,该时间单位例如可以是。时隙(slot)或符号(symbol)。所述第二参考子载波间隔相关信息为所述与第二参考子载波间隔相关的时间单位占用的时间。该设置单元502可以根据第一只是信息通知的时间单位个数,以及该第二参考子载波间隔相关的时间单位占用的时间,设置该上行时间对齐计时器取值。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时器取值的标识信息。第二参考子载波间隔相关信息可以是第二参考子载波间隔对应的上行时间对齐计时器取值集合。该设置单元502可以设置上行时间对齐计时器取值为所述上行时间对齐计时器取值列表中的所述第二参考子载波间隔对应的上行时间对齐计时器取值集合中由所述标识信息所指示的上行时间对齐计时器取值。
在本实施例中,关于装置500中各单元的详细说明,可以参考实施例1对相应方法的说明。
根据本实施例,终端设备能够根据第二参考子载波间隔(subcarrier spacing,SCS)相关信息来设置上行时间对齐计时器取值,由此,能够设定与第二参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。
实施例4
本实施例4提供一种配置上行时间对齐计时器(UL time alignment timer)的装置。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参考实施例2的方法的实施,内容相同之处不再重复说明。
图6是本实施例4的配置上行时间对齐计时器的装置的一个示意图。如图6所示,装置600包括:
第一发送单元601,其发送第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,可以指:该第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间,例如,当第一参考SCS为15khz时,与该第一参考子载波间隔相关的上行时间对齐计时器取值可以被表示为上式(1)。
在本实施例中,该第一参考子载波间隔可以是:固定值,例如15khz,特别地,该固定值可以是协议规定的固定值;或者,上行时间对齐计时器关联的TAG中半静态配置的UL BWP中的最大子载波间隔或最小子载波间隔。
在本实施例中,如图6所示,该装置600还可以包括:第二发送单元602,其发送用于指示该第一参考子载波间隔的指示信息。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:该第一指示信息用于通知上行时间对齐计时器取值,所述取值表示为时间单位个数,该时间单位例如可以是时隙(slot)或符号(symbol)等。
在本实施例中,该第一指示信息用于通知(inform)上行时间对齐计时器的配置,也可以指:该第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时器取值的标识信息。
关于第一指示信息的详细说明,可以参考实施例1,本实施例不再赘述。
在本实施例中,网络设备可以通过控制信令或系统消息来发送该第一指示信息。例如,网络设备可以通过控制信令,例如无线资源控制(RRC)信令,来发送该第一指示信息。
在本实施例中,网络设备可以通过第一指示信息来指示终端设备如何配置上行时间对齐计时器,由此,能够以更加灵活的方式来配置上行时间对齐计时器。
实施例5
本实施例5提供一种终端设备,由于该设备解决问题的原理于实施例1的方法类似,因此其具体的实施可以参考实施例1的方法实施,内容相同之处不再重复说明。
图7是本发明实施例的终端设备构成示意图。如图7所示,终端设备700可以包括:中央处理器(CPU)701和存储器702;存储器702耦合到中央处理器701。其中该存储器702可存储各种数据;此外还存储数据处理的程序,并且在中央处理器701的控制下执行该程序,以设置上行时间对齐计时器(UL time alignment timer)取值。
在一个实施方式中,实施例3的装置500的功能可以被集成到中央处理器701中。其中,中央处理器701可以被配置为实现实施例1所述的上行时间对齐维持的方法。
例如,中央处理器701可以被配置为进行控制,以使终端设备700执行实施例1的方法。
另外,该中央处理器701的其他配置方式可以参考实施例1,此处不再赘述。
在另一个实施方式中,上述装置700可以与中央处理器701分开配置,例如,可以将装置500配置为与中央处理器701连接的芯片,如图7所示的单元,通过中央处理器701的控制来实现装置500的功能。
此外,如图7所示,终端设备700还可以包括通信模块703、输入单元704、显示器706、音频处理器705、天线709和电源708等。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备700也并不是必须要包括图7中所示的所有部件;此外,终端设备700还可以包括图7中没有示出的部件,可以参考现有技术。
根据本实施例,终端设备能够根据第二参考子载波间隔(subcarrier spacing,SCS)相关信息来设置上行时间对齐计时器取值,由此,能够设定与第二参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要求。
实施例6
本实施例6提供一种网络设备,由于该设备解决问题的原理与实施例2的方法类似,因此其具体的实施可以参考实施例2的方法实施,内容相同之处不再重复说明。
图8是本发明实施例的网络设备构成示意图。如图8所示,网络设备800可以包括:中央处理器(CPU)801和存储器802;存储器802耦合到中央处理器801。其中该存储器802可存储各种数据;此外还存储数据处理的程序,并且在中央处理器801的控制下执行该程序,以配置上行时间对齐计时器。
在一个实施方式中,装置600的功能可以被集成到中央处理器801中。其中,中央处理器801可以被配置为实现实施例2的配置上行时间对齐计时器的方法。
例如,中央处理器801可以被配置为进行控制,以使网络设备800执行实施例2的方法。
另外,该中央处理器801的其他配置方式可以参考实施例2,此处不再赘述。
在另一个实施方式中,上述装置600可以与中央处理器801分开配置,例如,可以将装置600配置为与中央处理器801连接的芯片,如图8所示的单元,通过中央处理器801的控制来实现装置600的功能。
此外,如图8所示,网络设备800还可以包括:收发机803和天线804等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备800也并不是必须要包括图8中所示的所有部件;此外,网络设备800还可以包括图8中没有示出的部件,可以参考现有技术。
在本实施例中,网络设备可以通过第一指示信息来指示终端设备如何配置上行时间对齐计时器,由此,能够以更加灵活的方式来配置上行时间对齐计时器。
实施例7
本实施例7提供一种通信系统,其至少包括实施例5中的终端设备和实施例6中的网络设备,将其内容合并于此,此处不再赘述。
根据本实施例,终端设备能够根据第二参考子载波间隔(subcarrier spacing,SCS)相关信息来设置上行时间对齐计时器取值,由此,能够设定与第二参考SCS对应的上行时间对齐计时器取值,使得设定的上行时间对齐计时器取值满足参考SCS的要 求。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得上行时间对齐维持的装置或终端设备执行实施例1所述的上行时间对齐维持的方法。
本发明实施例还提供一种计算机可读程序,其中当在上行时间对齐维持的装置或终端设备中执行所述程序时,所述程序使得所述上行时间对齐维持告的装置或终端设备执行实施例1所述的上行时间对齐维持的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得配置上行时间对齐计时器的装置或网络设备执行实施例2所述的配置上行时间对齐计时器的方法。
实施例8
本申请实施例8提供一种超时控制方法,该方法由终端设备执行。
图9是本实施例的超时控制方法的一个示意图,如图9所示,该方法包括:
步骤901、在上行时间对齐计时器与主定时提前组(PTAG)关联的情况下,当所述上行时间对齐计时器超时时,终端设备通过介质访问控制(MAC)层通知(notify)无线资源控制(RRC)层释放通过所述无线资源控制(RRC)层配置的所有随机接入信道(Random Access Channel,RACH)资源。
根据本实施例,可避免终端设备在上行时间对齐计时器超时后在RRC配置的随机接入信道(Random Access Channel,RACH)资源上进行随机接入。保证终端设备能够通过随机接入过程中的随机接入响应(RAR)获取适当的初始上行定时。如图9所示,该方法还可以包括:
步骤902、当所述上行时间对齐计时器超时时,所述终端设备还通过介质访问控制(MAC)层通知所述无线资源控制(RRC)层释放不在初始载波带宽(initial BWP)或缺省载波带宽(default BWP)上的RACH资源。
图10是本实施例的超时控制方法的另一个示意图,如图10所示,该方法包括:
步骤1001、在上行时间对齐计时器与副定时提前组(STAG)关联的情况下,当所述上行时间对齐计时器超时时,终端设备通过介质访问控制(MAC)层通知(notify)无线资源控制(RRC)层释放所述副定时提前组(STAG)中的RACH资源。
根据本实施例,可避免终端设备在上行时间对齐计时器超时后在RRC配置的RACH资源上进行随机接入,保证终端设备在能够通过随机接入过程中的RAR获取适当的初始上行定时。
如图10所示,该方法还可以包括:
步骤1002、当所述上行时间对齐计时器超时时,所述终端设备还通过介质访问控制(MAC)层通知所述无线资源控制(RRC)层释放不在初始载波带宽(initial BWP)或缺省载波带宽(default BWP)上的RACH资源。
图11是本实施例的超时控制方法的一个示意图,如图11所示,该方法包括:
步骤1101、在上行时间计时器与定时提前组(TAG)中的半静态配置的或激活的上行链路载波带宽(UL BWP)关联的情况下,若所述关联的UL BWP为激活的UL BWP,当上行时间对齐计时器超时时,终端设备去激活所述上行时间对齐计时器关联的该上行链路载波带宽。
根据本实施例,可避免终端设备在上行时间对齐计时器超时后在该关联的UL BWP RACH资源上进行随机接入,保证终端设备能够通过随机接入过程中的RAR获取适当的初始上行定时。
根据本实施例,终端设备能够在上行时间对齐计时器超时的情况下进行控制。
实施例9
本申请实施例9提供一种超时控制装置,该装置设置于终端设备。
图12是本实施例的超时控制装置的一个示意图,如图12所示,该装置包1200括:
第一控制单元1201、在上行时间对齐计时器与主定时提前组(PTAG)关联的情况下,当所述上行时间对齐计时器超时时,通过介质访问控制(MAC)层通知(notify)无线资源控制(RRC)层释放通过所述无线资源控制(RRC)层配置的所有RACH资源。
图13是本实施例的超时控制装置的另一个示意图,如图13所示,该装置1300包括:
第二控制单元1301、在上行时间对齐计时器与副定时提前组(STAG)关联的情况下,当所述上行时间对齐计时器超时时,通过介质访问控制(MAC)层通知(notify) 无线资源控制(RRC)层释放所述副定时提前组(STAG)中的RACH资源。
在本实施例中,当所述上行时间对齐计时器超时时,第一控制单元1201或第二控制单元1301还通过介质访问控制(MAC)层通知所述无线资源控制(RRC)层释放不在初始载波带宽(initial BWP)或缺省载波带宽(default BWP)上的RACH资源。
图14是本实施例的超时控制装置的另一个示意图,如图14所示,该装置1400包括:
第三控制单元1401、在上行时间计时器与定时提前组(TAG)中的半静态配置的或激活的上行链路载波带宽(UL BWP)关联的情况下,若所述关联的UL BWP为激活的UL BWP,当上行时间对齐计时器超时时,去激活所述上行时间对齐计时器关联的该上行链路载波带宽。
根据本实施例,终端设备能够在上行时间对齐计时器超时的情况下进行控制。
实施例10
本实施例10提供一种终端设备,由于该设备解决问题的原理与实施例8的方法类似,因此其具体的实施可以参考实施例8的方法实施,内容相同之处不再重复说明。
图15是本发明实施例的终端设备构成示意图。如图15所示,终端设备1500可以包括:中央处理器(CPU)1501和存储器1502;存储器1502耦合到中央处理器1501。其中该存储器1502可存储各种数据;此外还存储数据处理的程序,并且在中央处理器1501的控制下执行该程序,以生成缓存状态报告。
在一个实施方式中,实施例9的装置1200、1300或1400的功能可以被集成到中央处理器1501中。其中,中央处理器1501可以被配置为实现实施例8所述的超时控制方法。
例如,中央处理器1501可以被配置为进行控制,以使终端设备1500执行实施例8的方法。
另外,该中央处理器1501的其他配置方式可以参考实施例8,此处不再赘述。
在另一个实施方式中,上述装置1500可以与中央处理器1501分开配置,例如,可以将装置1300配置为与中央处理器1501连接的芯片,如图15所示的单元,通过中央处理器1501的控制来实现装置1200、1300或1400的功能。
此外,如图15所示,终端设备1500还可以包括通信模块1503、输入单元1504、显示器1506、音频处理器1505、天线1509和电源1508等。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件;此外,终端设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
根据本实施例,终端设备能够在上行时间对齐计时器超时的情况下进行控制。
实施例11
本实施例18提供一种通信系统,其至少包括网络设备和实施例10中的终端设备,将其内容合并于此,此处不再赘述。
根据本实施例,能够在上行时间对齐计时器超时的情况下进行控制。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得超时控制装置或终端设备执行实施例8所述的超时控制方法。
本发明实施例还提供一种计算机可读程序,其中当在超时控制装置或终端设备中执行所述程序时,所述程序使得所述超时控制装置或终端设备执行实施例8所述的超时控制方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在各装置中的各处理方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图5、6、12、13、14中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图3、4、9、10、11所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存 储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图5、6、12、13、14描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图5、6、12、13、14描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
本申请还提供如下的附记:
1.一种超时控制装置,包括:
第一控制单元,其在上行时间对齐计时器与主定时提前组(PTAG)关联的情况下,当所述上行时间对齐计时器超时时,通过介质访问控制(MAC)层通知(notify)无线资源控制(RRC)层释放通过所述无线资源控制(RRC)层配置的所有RACH资源。
2.一种超时控制装置,包括:
第二控制单元,其在上行时间对齐计时器与副定时提前组(STAG)关联的情况下,当所述上行时间对齐计时器超时时,通过介质访问控制(MAC)层通知(notify)无线资源控制(RRC)层释放所述副定时提前组(STAG)中的RACH资源。
3.如权利要求1或2所述的装置,其中,
当所述上行时间对齐计时器超时时,所述第一控制单元或所述第二控制单元还通过介质访问控制(MAC)层通知所述无线资源控制(RRC)层释放不在初始载波带 宽(initial BWP)或缺省载波带宽(default BWP)上的RACH资源。
4.一种超时控制装置,包括:
第三控制单元,其在上行时间计时器与定时提前组(TAG)中的半静态配置的或激活的上行链路载波带宽(UL BWP)关联的情况下,若所述关联的UL BWP为激活的UL BWP,当上行时间对齐计时器超时时,去激活所述上行时间对齐计时器关联的该上行链路载波带宽。

Claims (20)

  1. 一种上行时间对齐维持(maintenance of UL time alignment)装置,包括:
    第一接收单元,其接收第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置;以及
    设置单元,其至少根据第二参考子载波间隔相关信息和所述第一指示信息,设置上行时间对齐计时器(UL time alignment timer)取值。
  2. 根据权利要求1所述的装置,其中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,是指,
    所述第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器取值的绝对时间。
  3. 如权利要求2所述的装置,其中,包括:
    所述第二参考子载波间隔相关信息为所述第二参考子载波间隔与所述第一参考子载波间隔的比值。
  4. 如权利要求1所述的装置,其中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,是指,
    所述第一指示信息用于通知上行时间对齐计时器取值,所述取值表示为时间单位个数。
  5. 如权利要求4所述的装置,其中,
    所述时间单位与所述第二参考子载波间隔相关。
  6. 如权利要求5所述的装置,其中,
    所述第二参考子载波间隔相关信息为所述与第二参考子载波间隔相关的时间单位占用的时间。
  7. 根据权利要求1所述的装置,其中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,是指,
    所述第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时器取值的标识信息。
  8. 根据权利要求7所述的装置,其中,
    所述设置单元设置所述上行时间对齐计时器取值为所述上行时间对齐计时器取 值列表中的所述第二参考子载波间隔对应的上行时间对齐计时器取值集合中由所述标识信息所指示的上行时间对齐计时器取值。
  9. 如权利要求2所述的装置,其中,
    所述第一参考子载波间隔为预先定义或预先配置的子载波间隔。
  10. 根据权利要求9所述的装置,其中,
    所述预定义或预配置的子载波间隔为固定值,或者,所述预先定义或预配置的子载波间隔为所述上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大子载波间隔或最小子载波间隔。
  11. 如权利要求10所述的装置,其中,所述装置还包括:
    第二接收单元,其接收用于指示该第一参考子载波间隔的指示信息。
  12. 如权利要求1所述的装置,其中,所述上行时间对齐计时器与定时提前组(TAG)相关联。
  13. 根据权利要求12所述的装置,其中,
    所述第二参考子载波间隔是上行时间对齐计时器关联的定时提前组(TAG)中半静态配置的上行载波带宽(UL BWP)中的最大SCS或最小SCS,或者所述上行时间对齐计时器关联的TAG中激活的UL BWP中的最大SCS或最小SCS,或者所述上行时间对齐计时器关联的TAG中初始或缺省的UL BWP的SCS。
  14. 如权利要求1所述的装置,其中,
    所述上行时间计时器与定时提前组(TAG)中的半静态配置的UL BWP或激活的UL BWP相关联。
  15. 根据权利要求14所述的装置,其中,
    其中,所述第二参考子载波间隔是所述上行时间对齐计时器关联的定时提前组(TAG)中各半静态配置的上行载波带宽(UL BWP)中的SCS,或者,所述第二参考子载波间隔是上行时间对齐计时器关联的TAG中各激活的UL BWP中的SCS。
  16. 一种配置上行时间对齐计时器(UL time alignment timer)的装置,包括:
    第一发送单元,其发送第一指示信息,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,
    其中,所述第一指示信息用于通知(inform)上行时间对齐计时器的配置,是指:
    所述第一指示信息用于通知与第一参考子载波间隔相关的上行时间对齐计时器 取值的绝对时间;或者
    所述第一指示信息用于通知上行时间对齐计时器取值,所述取值表示为时间单位个数;或者
    所述第一指示信息用于指示上行时间对齐计时器取值列表中上行时间对齐计时器取值的标识信息。
  17. 如权利要求16所述的装置,其中,所述第一参考子载波间隔为:
    固定值,或者,所述上行时间对齐计时器关联的TAG中半静态配置的UL BWP中的最大子载波间隔或最小子载波间隔。
  18. 如权利要求17所述的装置,其中,
    所述固定值是15KHZ。
  19. 如权利要求16所述的装置,其中,所述装置还包括:
    第二发送单元,其发送用于指示该第一参考子载波间隔的指示信息。
  20. 一种通信系统,所述通信系统包括网络设备和用户设备,
    所述网络设备包括如权利要求1-15中任一项所述的上行时间对齐维持装置,
    所述用户设备包括如权利要求16-19中任一项所述的配置上行时间对齐计时器的装置。
PCT/CN2018/072172 2018-01-10 2018-01-10 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统 WO2019136651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072172 WO2019136651A1 (zh) 2018-01-10 2018-01-10 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072172 WO2019136651A1 (zh) 2018-01-10 2018-01-10 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统

Publications (1)

Publication Number Publication Date
WO2019136651A1 true WO2019136651A1 (zh) 2019-07-18

Family

ID=67219259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072172 WO2019136651A1 (zh) 2018-01-10 2018-01-10 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统

Country Status (1)

Country Link
WO (1) WO2019136651A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014477A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步的方法、装置和系统
CN102761953A (zh) * 2011-04-29 2012-10-31 普天信息技术研究院有限公司 上行定时提前量的配置方法
WO2013013385A1 (en) * 2011-07-26 2013-01-31 Nokia Siemens Networks Oy eNB ENFORCED TAT EXPIRY / TA VALIDITY
US20130272235A1 (en) * 2012-04-16 2013-10-17 Innovative Sonic Corporation Method and apparatus for reducing signaling and delay for uplink scheduling in a wireless communication network
CN106664739A (zh) * 2014-07-11 2017-05-10 联发科技(新加坡)私人有限公司 Enb以及ue ul发送以及接收的方法
CN107295652A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 信息的传输方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014477A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步的方法、装置和系统
CN102761953A (zh) * 2011-04-29 2012-10-31 普天信息技术研究院有限公司 上行定时提前量的配置方法
WO2013013385A1 (en) * 2011-07-26 2013-01-31 Nokia Siemens Networks Oy eNB ENFORCED TAT EXPIRY / TA VALIDITY
US20130272235A1 (en) * 2012-04-16 2013-10-17 Innovative Sonic Corporation Method and apparatus for reducing signaling and delay for uplink scheduling in a wireless communication network
CN106664739A (zh) * 2014-07-11 2017-05-10 联发科技(新加坡)私人有限公司 Enb以及ue ul发送以及接收的方法
CN107295652A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 信息的传输方法及设备

Similar Documents

Publication Publication Date Title
US9681406B2 (en) Method and apparatus for applying a time alignment timer in a wireless communication system using a carrier aggregation technique
EP2797355B1 (en) Wireless communication method and apparatus
CN114845378B (zh) 上行传输定时提前量的获取方法、装置以及通信系统
RU2726641C1 (ru) Сигнализация о местоположении опорных сигналов в слотах и минислотах
US12010697B2 (en) Method and apparatus for supporting multiple configuration grants for sidelink data transmission
WO2020199000A1 (zh) 随机接入方法以及装置
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
WO2013159304A1 (en) Switching between downlink and uplink
WO2019061074A1 (zh) 信息传输方法以及装置、随机接入方法以及装置、通信系统
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
JP2021533603A (ja) コンテンションウィンドウの調整方法、装置及び通信システム
WO2021030967A1 (zh) 两步随机接入中接收和发送随机接入响应的方法及装置
JP2024069386A (ja) アップリンク伝送方法及び装置
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2022077322A1 (zh) 探测参考信号的发送和接收方法以及装置
CN114342535B (zh) 上行信号的发送和接收方法以及装置
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
WO2019136651A1 (zh) 上行时间对齐维持的方法、配置上行时间对齐计时器的方法及其装置、通信系统
WO2022027527A1 (zh) 信号的发送和接收方法、装置和通信系统
WO2023065129A1 (zh) 维护上行时间同步的方法以及装置
WO2022213293A1 (zh) 随机接入前导序列的发送和配置方法以及装置
WO2023077387A1 (zh) 信号发送方法、信号接收方法和装置
WO2022067783A1 (zh) 收发数据的方法、装置和通信系统
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信系统
CN117751656A (zh) 数据调度方法、数据发送方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899463

Country of ref document: EP

Kind code of ref document: A1