WO2019136610A1 - 智能实时风道滤网堵塞程度判定系统及方法 - Google Patents

智能实时风道滤网堵塞程度判定系统及方法 Download PDF

Info

Publication number
WO2019136610A1
WO2019136610A1 PCT/CN2018/071978 CN2018071978W WO2019136610A1 WO 2019136610 A1 WO2019136610 A1 WO 2019136610A1 CN 2018071978 W CN2018071978 W CN 2018071978W WO 2019136610 A1 WO2019136610 A1 WO 2019136610A1
Authority
WO
WIPO (PCT)
Prior art keywords
state information
filter
fan
data processing
wind state
Prior art date
Application number
PCT/CN2018/071978
Other languages
English (en)
French (fr)
Inventor
林惠泉
王玉珏
丘明
彭彪
周龙生
欧小强
Original Assignee
深圳市飓风智云科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市飓风智云科技有限公司 filed Critical 深圳市飓风智云科技有限公司
Priority to PCT/CN2018/071978 priority Critical patent/WO2019136610A1/zh
Publication of WO2019136610A1 publication Critical patent/WO2019136610A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the invention relates to the field of air duct detection, and more particularly to an intelligent real-time air duct filter clogging degree determination system and method.
  • the heat dissipation capability of various devices, especially electronic devices is still an important evaluation index.
  • the heat dissipation capability often affects the stability of the system operation and the service life of the product.
  • the current heat dissipation generally sets the running path of the wind by setting a duct inside or outside the device.
  • a filter screen is usually arranged at the air inlet or the air outlet of the air duct. When the fan rotates, the wind of the duct passes through the screen, thereby filtering impurities in the air.
  • the filter In normal use of the device, the filter is usually dusty. When the filter is exposed to excessive dust, the airflow through the filter will be reduced, the ability of the entire air duct to provide wind is reduced, and the cooling function of the device is greatly reduced.
  • intelligent real-time judgment of the filter screen of the air duct cannot be automatically performed. When the filter is clogged, it cannot be identified by automatic real-time, so that the user can be cleaned or replaced in time.
  • the technical problem to be solved by the present invention is to provide an intelligent real-time air duct filter clogging degree determination system and method for the above-mentioned defects of the prior art.
  • an intelligent real-time airway filter clogging degree determination system comprising at least one fan and fan power driving unit, characterized in that it further comprises a filter screen and air channel information collection.
  • the fan and the filter screen constitute a air passage for setting a wind running path of the fan
  • the air channel information collecting unit is disposed on the air outlet side of the filter to collect the measured wind state information of the air outlet side of the filter;
  • the cloud server stores a corresponding relationship between the fan speed and the target wind state information on the air outlet side of the filter.
  • the data processing center is connected to the cloud server and can obtain a corresponding location according to the current rotational speed of the fan.
  • the target wind state information is connected; the data processing center is connected to the airway information collecting unit to receive the measured wind state information sent by the airway information collecting unit;
  • the data processing center further includes a comparison unit for comparing the measured wind state information and the target wind state information and determining the degree of clogging of the filter according to the comparison result, and for reporting the air duct filter The degree of congestion is to the information reporting unit of the cloud server.
  • the data processing center includes a setting unit configured to set a current set speed of the fan;
  • the data processing center further includes a first calculating unit, configured to acquire corresponding first target wind state information according to the current set rotational speed of the fan, and calculate the measured wind state information and the first target wind state information.
  • An error to indicate that the data processing center determines the degree of clogging of the duct filter according to the error.
  • the system of the present invention further includes a fan speed monitoring unit connected to the data processing center;
  • the data processing center further includes an information acquiring unit, wherein the information acquiring unit is connected to the fan speed monitoring unit, and configured to receive the current measured rotational speed of the fan sent by the fan speed monitoring unit;
  • the data processing center further includes a second calculating unit, configured to acquire corresponding second target wind state information according to the current measured rotational speed, and calculate an error between the measured wind state information and the second target wind state information, Instructing the data processing center to determine the degree of clogging of the air duct filter based on the error.
  • a second calculating unit configured to acquire corresponding second target wind state information according to the current measured rotational speed, and calculate an error between the measured wind state information and the second target wind state information, Instructing the data processing center to determine the degree of clogging of the air duct filter based on the error.
  • the air channel information collecting unit includes one or more of a wind speed sensor, an anemometer, and an air flow sensor, and respectively acquires wind state information corresponding to the air outlet side of the filter.
  • the screen comprises a first screen disposed at an air inlet of the air duct and a second screen disposed at an air outlet of the air duct;
  • the airway information collecting unit is disposed close to the first filter set, and/or
  • the air channel information collecting unit is disposed adjacent to the second screen.
  • the system of the present invention further includes a user terminal connected to the cloud server, configured to receive and display a determination result sent by the cloud server.
  • the invention also constructs a method for judging the degree of clogging of the intelligent real-time air duct filter, comprising the following steps:
  • the data processing center receives the measured wind state information on the air outlet side of the filter in the air duct;
  • the data processing center obtains a current fan speed and obtains corresponding target wind state information according to the current fan speed, compares the measured wind state information and the target wind state information, and confirms whether the measured wind state information is satisfied. If yes, go to step S4; if no, go to step S5;
  • the data processing center determines that the air duct filter is normal, and reports the air duct filter status to the cloud server.
  • the data processing center determines that the air duct filter is abnormal, and reports the air duct filter status to the cloud server.
  • the method includes:
  • the method further comprises the steps of:
  • the cloud server receives the air duct filter status, and sends the air duct filter status to a user terminal.
  • the method further comprises the steps of:
  • the cloud server receives the user terminal instruction, and instructs the data processing center to detect the state of the air duct filter.
  • the invention relates to an intelligent real-time airway filter clogging degree determination system and method, which has the following beneficial effects: capable of acquiring the clogging degree of the air duct filter in an intelligent real-time manner, facilitating the management and maintenance of the equipment air duct, and ensuring the wind of the equipment. The air is flowing smoothly.
  • FIG. 1 is a schematic structural view of a first embodiment of a smart real-time air duct filter clogging degree determination system according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the intelligent real-time air duct filter clogging degree determining system according to the present invention
  • FIG. 3 is a flow chart of a first embodiment of a method for determining a degree of clogging of an intelligent real-time air duct filter according to the present invention
  • FIG. 4 is a flow chart of a second embodiment of a method for determining a degree of clogging of an intelligent real-time air duct filter according to the present invention
  • FIG. 5 is a flow chart of a third embodiment of a method for determining a degree of clogging of an intelligent real-time air duct filter according to the present invention
  • Fig. 6 is a flow chart showing the fourth embodiment of the method for determining the degree of clogging of the intelligent real-time air duct filter of the present invention.
  • the intelligent real-time air damper clogging degree determining system of the present invention includes at least one fan 11 and a fan power driving unit. 40, further comprising a filter 12, a wind channel information collecting unit 20, a data processing center 30, and a cloud server 50.
  • the fan 11 and the screen 12 constitute an air duct 10 for setting a wind running path of the fan 11.
  • the air channel information collecting unit 20 is disposed on the air outlet side of the screen 12 to collect the measured wind state information on the air outlet side of the screen 12.
  • the cloud server 50 stores the corresponding relationship between the rotational speed of the fan 11 and the target wind state information on the air outlet side of the filter 12, and the data processing center 30 is connected to the cloud server 50 and can acquire a corresponding target wind state according to the current rotational speed of the fan 11.
  • the data processing center 30 is connected to the air channel information collecting unit 20 and can receive the measured wind state information sent by the air channel information collecting unit 20.
  • the data processing center 30 further includes a comparison unit for comparing the measured wind state information and the target wind state information and determining the degree of clogging of the filter 12 according to the comparison result, and for reporting the degree of clogging of the air duct 12 to the cloud server 50. Information reporting unit.
  • a duct 10 for setting a wind running path is provided, wherein the fan 11 in the single duct 10 may be one or more.
  • the fans 11 in the same duct 10 be of the same specification and can be uniformly controlled.
  • the measured wind state information on the air outlet side of the screen 12 is acquired by the air channel information collecting unit 20 disposed on the air outlet side of the screen 12.
  • Correspondence between the rotational speed of the fan 11 pre-stored on the cloud server 50 and the wind state information on the air outlet side of the filter screen 12 may be set up in a database or by using a formula, a table, or the like.
  • a correspondence relationship between a plurality of different fan 11 rotational speeds and different wind state information is stored.
  • the wind state information here is also related to the specific situation of the air duct 10.
  • the premise is also considering the actual situation of the air duct 10, such as the number of the fans 11 in the air duct 10, the distance between the fan 11 and the screen 12 in the air duct 10, and the like. And other elements.
  • the air channel 10 can be classified, and the cloud server 50 can store the correspondence between the fan 11 rotational speed of the plurality of different types of air channels 10 and the target wind state information.
  • the wind state information acquired by the airway information collecting unit 20 includes a wind flow rate.
  • the cloud server 50 controls the fan 11 to operate at a specified speed. If the screen 12 on the air duct 10 is clean and is not affected by any debris, then the wind state obtained by the air channel information collecting unit 20 is obtained. The data should be in the range of a peer-to-peer error with the fan 11 speed. If the air inlet and outlet filter 12 on the air duct 10 is blocked, the data about the wind state obtained by the air channel information collecting unit 20 is within a range of the error of the fan 11 At this time, it can be judged that the filter 12 is blocked, and it is necessary to send someone to clean or replace it.
  • the data processing center 30 includes a setting unit for setting a current set rotation speed of the fan 11;
  • the data processing center 30 further includes a first calculating unit, configured to acquire corresponding first target wind state information according to the current set rotational speed of the fan 11, and calculate an error between the measured wind state information and the first target wind state information to indicate data processing.
  • the center 30 determines the degree of clogging of the duct filter 12 based on the error.
  • the corresponding target wind state information can be acquired from the cloud server 50 by the set rotation speed of the fan 11.
  • the set rotation speed of the fan 11 can be set by the data processing center 30, or can be set by the cloud server 50 by sending a control command to the data processing center 30.
  • the error between the measured wind state information and the target wind state information may be calculated, and the degree of clogging of the filter 12 may be determined by the error.
  • the error value is relatively small, it can be determined that the filter screen 12 is only slightly blocked. At this time, the entire system is not affected, and the cleaning may not be performed.
  • the error value deviates greatly, it is determined that the filter 12 is clogged very seriously, and the use of the filter 12 can not meet the cooling demand, and may even damage the device.
  • the filter 12 needs to be cleaned immediately.
  • a fan 11 rotation speed monitoring unit connected to the data processing center 30 is further included.
  • the data processing center 30 further includes an information acquisition unit, and the information acquisition unit is connected to the fan 11 rotation speed monitoring unit for receiving the current measured rotation speed of the fan 11 sent by the fan rotation speed monitoring unit 70.
  • the data processing center 30 further includes a second calculating unit, configured to acquire corresponding second target wind state information according to the current measured rotational speed, and calculate an error between the measured wind state information and the second target wind state information to indicate that the data processing center 30 is based on the error. The degree of clogging of the duct filter 12 is determined.
  • the set speed and the actual speed may be deviated.
  • the target wind state information at the current wind speed of the air duct 10 obtained by setting the speed may not truly reflect the blockage of the filter 12.
  • the actual rotational speed of the fan 11 can be obtained, the corresponding target wind state information is obtained by the actual rotational speed of the fan 11, and the error of the measured wind state information is calculated by the target wind state information, and the degree of clogging of the filter 12 by the error is obtained.
  • Make a decision For example, when the error value is relatively small, it can be determined that the filter screen 12 is only slightly blocked. At this time, the entire system is not affected, and the cleaning may not be performed.
  • the error value deviates greatly, it is determined that the filter 12 is clogged very seriously, and the use of the filter 12 can not meet the cooling demand, and may even damage the device.
  • the filter 12 needs to be cleaned immediately.
  • the airway information collecting unit 20 includes one or more of a wind speed sensor, an anemometer, and an air flow sensor, and respectively acquires wind state information corresponding to the air outlet side of the filter screen 12.
  • the wind speed sensor, the anemometer, and the air flow sensor are currently the main means for monitoring the wind flow, and one or more of the wind speed sensor, the anemometer, and the air flow sensor may be disposed on the air outlet side of the filter screen 12 to obtain the air passage. 10 wind flow.
  • the corresponding relation table or database is set in the cloud server 50 to implement.
  • the cloud server 50 controls the fan 11 to operate at a specified rotational speed.
  • the air inlet and outlet filter 12 on the air duct 10 is clean and is not affected by any debris, and then the wind speed sensor or the anemometer or the air flow sensor
  • the data obtained should be within a peer-to-peer error range with the fan 11 speed. If the air inlet and outlet filter 12 on the air duct 10 is clogged, then the wind speed sensor or an anemometer or air flow sensor is obtained. The data will be within the range of a peer's error with the fan 11 speed. At this time, it can be judged that the filter 12 is blocked, and it is necessary to send someone to clean or replace it.
  • the air volume of the fan 11 at 4200 revolutions (RPM) is 161 CFM (cubic feet per minute).
  • RPM revolutions
  • the impeller of the anemometer is placed behind the filter 12. If the speed of the fan 11 is set to 4200 rpm, then if the filter 12 is not blocked, then the anemometer should be directly read.
  • the CFM value in the positive and negative error range of 161CFM indicates that the filter 12 has a blockage phenomenon.
  • the wind speed is read directly (note: the wind speed unit m/s refers to how many meters per second).
  • the model is converted into RPM (Revolutions Per minute) according to the algorithm, and then the RPM value is compared with the RPM value of the fan 11, and the proof filter 12 in the error range is Without clogging, the proof filter 12 outside the error range is blocked.
  • the filter screen 12 includes a first filter screen 12 disposed at an air inlet of the air duct 10 and a second screen 12 disposed at an air outlet of the air duct 10; the air passage information collecting unit 20 is disposed adjacent to the first filter Network 12 settings.
  • the airway information collection unit 20 is disposed proximate to the second screen 12.
  • a wind information collecting unit is disposed on both sides of the air outlets of the two screens 12.
  • a user terminal 60 connected to the cloud server 50 is further included for receiving and displaying the determination result sent by the cloud server 50.
  • the user terminal 60 accesses the cloud server 50 in a wired or wireless manner, acquires a state determination result of the air duct filter 12 acquired by the cloud server 50, and prompts the user to perform any operation according to the result.
  • the cloud server 50 stores a correspondence between the rotation speed of the fan 11 and the target wind state information on the air outlet side of the screen 12 in the air duct 10;
  • the correspondence between the rotational speed of the fan 11 pre-stored on the cloud server 50 and the wind state information on the air outlet side of the filter 12 may be set up by using a database, or by using a formula, a table, or the like.
  • a correspondence relationship between a plurality of different fan 11 rotational speeds and different wind state information is stored.
  • the wind state information here is also related to the specific situation of the air duct 10.
  • the premise is also considering the actual situation of the air duct 10, such as the number of the fans 11 in the air duct 10, the distance between the fan 11 and the screen 12 in the air duct 10, and the like. And other elements.
  • the air duct 10 can be classified, and the cloud service can store the correspondence relationship between the fan 11 speed and the target wind state information of the plurality of different types of air ducts 10.
  • the data processing center 30 receives the measured wind state information on the air outlet side of the screen 12 in the air duct 10;
  • the wind state information acquired by the data processing center 30 through the air channel information collecting unit 20 includes a wind flow rate.
  • the current wind speed sensor, the anemometer, and the air flow sensor are currently the main means for monitoring the wind flow.
  • One or more of the wind speed sensor, the anemometer, and the air flow sensor may be disposed on the air outlet side of the filter screen 12 to obtain the air duct 10 Wind flow.
  • other air volume indicators can also be included.
  • the data processing center 30 obtains the current rotational speed of the fan 11 and obtains the corresponding target wind state information according to the current rotational speed of the fan 11, compares the measured wind state information with the target wind state information, and confirms whether the measured wind state information satisfies the requirement; if yes, performs the steps. S4; if not, proceed to step S5;
  • the data processing center 30 determines that the air duct filter is normal, and reports the air duct filter status to the cloud server 50;
  • the data processing center 30 determines that the air duct filter is abnormal, and reports the air duct filter status to the cloud server 50.
  • the cloud server 50 controls the fan 11 to operate at a specified rotational speed. If the filter 12 on the air duct 10 is clean and is not affected by any debris, then the airway information collecting unit 20 obtains The data on the wind state should be within a peer-to-peer error range with the fan 11 speed. If the air inlet and outlet filter 12 on the air duct 10 is blocked, then the wind state information obtained by the air channel information collecting unit 20 will be within a peer error range with the fan 11 speed. At this time, it can be judged that the filter 12 is blocked, and it is necessary to send someone to clean or replace it.
  • the congestion information can be sent to the cloud server 50 for the user to perform the next processing action.
  • the step S3 includes: the data processing center 30 acquires the current set speed of the fan 11. And the corresponding first target wind state information is obtained according to the current set speed of the fan 11, and the data processing center 30 calculates an error between the measured wind state information and the first target wind state information, and confirms whether the measured wind state information satisfies the requirement.
  • the corresponding target wind state information can be acquired from the cloud server 50 by the set rotation speed of the fan 11.
  • the set rotation speed of the fan 11 can be set by the data processing center 30, or can be set by the cloud server 50 by sending a control command to the data processing center 30.
  • the error between the measured wind state information and the target wind state information may be calculated, and the degree of clogging of the filter 12 may be determined by the error.
  • the error value is relatively small, it can be determined that the filter screen 12 is only slightly blocked. At this time, the entire system is not affected, and the cleaning may not be performed.
  • the error value deviates greatly, it is determined that the filter 12 is clogged very seriously, and the use of the filter 12 can not meet the cooling demand, and may even damage the device.
  • the filter 12 needs to be cleaned immediately.
  • the step S3 further includes: the data processing center 30 acquires the current measured state of the fan 11.
  • the rotational speed acquires corresponding second target wind state information according to the current measured rotational speed of the fan 11; the data processing center 30 calculates an error between the measured wind state information and the second target wind state information, and confirms whether the measured wind state information satisfies the requirement.
  • the set speed and the actual speed may be deviated.
  • the target wind state information at the current wind speed of the air duct 10 obtained by setting the speed may not truly reflect the blockage of the filter 12.
  • the actual rotational speed of the fan 11 can be obtained, the corresponding target wind state information is obtained by the actual rotational speed of the fan 11, and the error of the measured wind state information is calculated by the target wind state information, and the degree of clogging of the filter 12 by the error is obtained.
  • Make a decision For example, when the error value is relatively small, it can be determined that the filter screen 12 is only slightly blocked. At this time, the entire system is not affected, and the cleaning may not be performed.
  • the error value deviates greatly, it is determined that the filter 12 is clogged very seriously, and the use of the filter 12 can not meet the cooling demand, and may even damage the device.
  • the filter 12 needs to be cleaned immediately.
  • the method further includes the following steps:
  • the cloud server 50 receives the state of the air duct filter 12 and transmits the state of the air duct filter 12 to the user terminal 60.
  • the user terminal 60 connects to the cloud server 50 by wire or wirelessly, and can remotely receive the state of the air duct filter and the determination result thereof. Realize remote monitoring of the status of the duct filter.
  • the prompt information for further operation may be transmitted to notify the user terminal 60 of the next step operation.
  • the method further includes the following steps:
  • the cloud server 50 receives the command from the user terminal 60 and instructs the data processing center 30 to detect the state of the air duct 12.
  • the detection of the air duct filter 12 can be performed in real time and intelligently.
  • the user terminal 60 issues a control command, triggering the data processing center 30 to start detecting the state of the air duct 12, and realizing remote control of the air duct state detection process.
  • the air duct filter can be detected according to the actual working condition of the device. For example, when the device is just activated, it can be determined that there is less obstruction on the air duct filter 12, and the air duct filter 12 can be tentatively determined when the device is used. After a relatively long period of time, the detection determination process of the degree of clogging of the duct filter 12 is initiated by the user terminal 60. In order to save computing resources.
  • the determination process of the degree of clogging of the entire duct filter 12 can be set to operate periodically. For example, testing is performed at a fixed time each day. Or the decision process is violated by a trigger condition. For example, it is detected that the wind information of the air duct 10 changes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种智能实时风道滤网(12)堵塞程度判定系统及方法,本系统包括至少一个风扇(11)和风扇功率驱动单元(40),还包括滤网(12)、风道信息采集单元(20)、数据处理中心(30)、以及云服务器(50)。风扇(11)及滤网(12)组成用于设定风扇(11)风运行路径的风道(10)。风道信息采集单元(20)设置在滤网(12)出风侧以收集滤网(12)出风侧的实测风状态信息。其中,云服务器(50)中存储有风扇(11)转速与滤网(12)出风侧的目标风状态信息的对应关系,数据处理中心(30)根据风扇(11)的当前转速获取对应的目标风状态信息并接收实测风状态信息。比较实测风状态信息和目标风状态信息,并根据比较结果对滤网(12)堵塞程度进行判定的比较单元,上报风道滤网(12)堵塞程度至云服务器(50)。通过该系统能够智能实时的获取风道滤网(12)的堵塞程度,方便设备风道(10)的管理和维护,保障设备的风道(10)空气畅顺流通。

Description

智能实时风道滤网堵塞程度判定系统及方法 技术领域
本发明涉及风道检测领域,更具体地说,涉及一种智能实时风道滤网堵塞程度判定系统及方法。
背景技术
在科技快速发展现至现在,各种设备尤其是电子设备的散热能力依然是一个重要的评价指标,其散热能力的优劣往往影响到系统运作的稳定性及产品的使用年限。随着技术的发展,现在的散热一般通过在设备内部或外部设置风道,来设定风的运行路径。为了保证风道的干净畅通,通常在风道的进风口或出风口处设置有一滤网。当风扇转动时,风道的风经过该滤网,从而过滤空气中的杂质。
在设备的正常使用中,滤网通常都会沾粘灰尘。当滤网沾粘过多的灰尘时,能够通过滤网的气流将会变少,整个风道提供风的能力降低,对设备的降温功能也大打折扣。而在现有技术中,不能自动的对风道的滤网情况进行智能实时判断。当滤网堵塞时,不能通过自动实时的识别出来,以便知会用户及时的进行清洗或更换。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种智能实时风道滤网堵塞程度判定系统及方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种智能实时风道滤网堵塞程度判定系统,包括至少一个风扇和风扇功率驱动单元,其特征在于,还包括滤网、风道信息采集单元、数据处理中心、以及云服务器;
所述风扇及滤网组成用于设定所述风扇风运行路径的风道;
所述风道信息采集单元设置在所述滤网出风侧以收集所述滤网出风侧的实测风状态信息;
其中,所述云服务器中存储有风扇转速与滤网出风侧的目标风状态信息的对应关系,所述数据处理中心与所述云服务器连接并可根据所述风扇的当前转速获取对应的所述目标风状态信息;所述数据处理中心与所述风道信息采集单元连接可接收所述风道信息采集单元发送的所述实测风状态信息;
所述数据处理中心还包括用于比较所述实测风状态信息和所述目标风状态信息并根据比较结果对所述滤网堵塞程度进行判定的比较单元,以及用于上报所述风道滤网堵塞程度至所述云服务器的信息上报单元。
优选地,所述数据处理中心包括设置单元,用于设置风扇的当前设定转速;
所述数据处理中心还包括第一计算单元,用于根据所述风扇的当前设定转速获取对应的第一目标风状态信息,计算所述实测风状态信息与所述第一目标风状态信息的误差,以指示所述数据处理中心根据所述误差对所述风道滤网堵塞程度进行判定。
优选地,本发明的系统还包括连接所述数据处理中心的风扇转速监测单元;
所述数据处理中心还包括信息获取单元,所述信息获取单元连接所述风扇转速监测单元,用于接收所述风扇转速监控单元发送的所述风扇的当前实测转速;
所述数据处理中心还包括第二计算单元,用于根据所述当前实测转速获取对应的第二目标风状态信息,计算所述实测风状态信息与所述第二目标风状态信息的误差,以指示所述数据处理中心根据所述误差对所述风道滤网堵塞程度进行判定。
优选地,所述风道信息采集单元包括风速传感器、风速计、空气流量传感器中的一个或者多个,分别获取所述滤网出风侧对应的风状态信息。
优选地,所述滤网包括设置在所述风道的进风口的第一滤网和设置在所述风道的出风口的第二滤网;
所述风道信息采集单元设置靠近所述第一滤网设置,和/或
所述风道信息采集单元设置靠近所述第二滤网设置。
优选地,本发明的系统还包括连接所述云服务器的用户终端,用于接收并显示所述云服务器发送的判定结果。
本发明还构造一种智能实时风道滤网堵塞程度判定方法,包括以下步骤:
S1、云服务器存储风扇转速与风道内滤网出风侧的目标风状态信息的对应关系;
S2、数据处理中心接收风道内滤网出风侧的实测风状态信息;
S3、所述数据处理中心获取风扇当前转速并根据所述风扇当前转速获取对应的目标风状态信息,比较所述实测风状态信息和所述目标风状态信息,确认所述实测风状态信息是否满足要求;若是,则执行步骤S4;若否,则执行步骤S5;
S4、所述数据处理中心判定风道滤网正常,上报风道滤网状态至所述云服务器;
S5、所述数据处理中心判定风道滤网异常,上报所述风道滤网状态至所述云服务器。
优选地,在所述步骤S3中包括:
所述数据处理中心获取风扇当前设定转速并根据所述风扇当前设定转速获取对应的第一目标风状态信息,所述数据处理中心计算所述实测风状态信息与所述第一目标风状态信息的误差,确认所述实测风状态信息是否满足要求;和/或
所述数据处理中心获取风扇当前实测转速并根据所述风扇当前实测转速获取对应的第二目标风状态信息;所述数据处理中心计算所述实测风状态信息与所述第二目标风状态信息的误差,确认所述实测风状态信息是否满足要求。
优选地,还包括以下步骤:
S6、所述云服务器接收所述风道滤网状态,发送所述风道滤网状态至用户终端。
优选地,还包括以下步骤:
S0、所述云服务器接收所述用户终端指令、指示所述数据处理中心对所述风道滤网状态进行检测。
有益效果
实施本发明的一种智能实时风道滤网堵塞程度判定系统及方法,具有以下有益效果:能够智能实时的获取风道滤网的堵塞程度,方便设备风道的管理和维护,保障设备的风道空气畅顺流通。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明智能实时风道滤网堵塞程度判定系统第一实施例的结构示意图;
图2是本发明智能实时风道滤网堵塞程度判定系统第二实施例的结构示意图;
图3是本发明智能实时风道滤网堵塞程度判定方法第一实施例的程序流程图;
图4是本发明智能实时风道滤网堵塞程度判定方法第二实施例的程序流程图;
图5是本发明智能实时风道滤网堵塞程度判定方法第三实施例的程序流程图;
图6是本发明智能实时风道滤网堵塞程度判定方法第四实施例的程序流程图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,在本发明的智能实时风道滤网堵塞程度判定系统第一实施例中,本发明的智能实时风道滤网堵塞程度判定系统,包括至少一个风扇11和风扇功率驱动单元40,还包括滤网12、风道信息采集单元20、数据处理中心30、以及云服务器50。风扇11及滤网12组成用于设定风扇11风运行路径的风道10。风道信息采集单元20设置在滤网12出风侧以收集滤网12出风侧的实测风状态信息。其中,云服务器50中存储有风扇11转速与滤网12出风侧的目标风状态信息的对应关系,数据处理中心30与云服务器50连接并可根据风扇11的当前转速获取对应的目标风状态信息;数据处理中心30与风道信息采集单元20连接可接收风道信息采集单元20发送的实测风状态信息。数据处理中心30还包括用于比较实测风状态信息和目标风状态信息并根据比较结果对滤网12堵塞程度进行判定的比较单元,以及用于上报风道滤网12堵塞程度至云服务器50的信息上报单元。
具体的,在设备中例如电子设备中,设有设定风运行路径的风道10,其中单个风道10中的风扇11可以为一个,也可以为多个。当为多个风扇11时,建议同一个风道10里的风扇11是相同规格的并且可以统一控制。通过设置在滤网12出风侧的风道信息采集单元20获取滤网12出风侧的实测风状态信息。云服务器50上预存的风扇11转速与滤网12出风侧的风状态信息的对应关系,存储方式可以为设立数据库,或者利用公式、表格等方式。存储多个不同风扇11转速与不同的风状态信息的对应关系。当然这里的风状态信息与风道10的具体情况也是相关的。在通过风扇11转速获取对应的目标风状态信息的过程中,前提也是考虑到风道10的实际情况,例如风道10内风扇11的数量,风道10内风扇11与滤网12的距离等等要素。可以对风道10进行分类,云服务器50可以存储多个不同类别风道10的风扇11转速与目标风状态信息的对应关系。
风道信息采集单元20获取的风状态信息包括风流量。理论上云服务器50控制风扇11按指定的转速运转,如风道10上的滤网12是干净的,没有受到任何的杂物影响,那这时风道信息采集单元20所获得的有关风状态的数据应该是跟风扇11转速是在一个对等的误差范围内的。假如如风道10上的进出风口过滤网12是有堵塞的,这时风道信息采集单元20所获得的有关风状态的数据就会是跟风扇11转速是有在一个对等的误差范围内,这时就可以判断滤网12有堵塞了,要派人去清洗或更换了。
进一步的,数据处理中心30包括设置单元,用于设置风扇11的当前设定转速;
数据处理中心30还包括第一计算单元,用于根据风扇11的当前设定转速获取对应的第一目标风状态信息,计算实测风状态信息与第一目标风状态信息的误差,以指示数据处理中心30根据误差对风道滤网12堵塞程度进行判定。
具体的,可以通过风扇11的设定转速来从云服务器50上获取对应的目标风状态信息。风扇11的设定转速可以通过数据处理中心30自行设置,也可以通过云服务器50发送控制命令至数据处理中心30进行设置。当通过设定转速从服务器上获取到了目标风状态信息后,可以计算实测风状态信息与该目标风状态信息的误差,可以通过该误差对滤网12的堵塞程度进行判定。例如,误差值比较小的时候,可以判定滤网12只是轻微堵塞,这个时候不影响整个系统,则可以不进行清洗。当误差值偏离很大,判定滤网12堵塞很严重,继续用下去也不能满足降温需求,甚至可能会损坏设备。则需要立即进行滤网12清洗。
进一步的,如图2所示,在本发明的智能实时风道滤网12堵塞程度判定系统第二实施例中,还包括连接数据处理中心30的风扇11转速监测单元。数据处理中心30还包括信息获取单元,信息获取单元连接风扇11转速监测单元,用于接收风扇转速监控单元70发送的风扇11的当前实测转速。数据处理中心30还包括第二计算单元,用于根据当前实测转速获取对应的第二目标风状态信息,计算实测风状态信息与第二目标风状态信息的误差,以指示数据处理中心30根据误差对风道滤网12堵塞程度进行判定。
具体的,风扇11运行过程中,其设定转速和实际转速可能会存在偏差,通过设定转速获取的风道10当前风速下的目标风状态信息可能不能真实的反应滤网12的堵塞情况。这里可以获取风扇11的实际转速,通过风扇11的实际转速来获取对应的目标风状态信息,并通过该目标风状态信息计算实测风状态信息的误差,通过该误差来对滤网12的堵塞程度进行判定。例如,误差值比较小的时候,可以判定滤网12只是轻微堵塞,这个时候不影响整个系统,则可以不进行清洗。当误差值偏离很大,判定滤网12堵塞很严重,继续用下去也不能满足降温需求,甚至可能会损坏设备。则需要立即进行滤网12清洗。
进一步的,风道信息采集单元20包括风速传感器、风速计、空气流量传感器中的一个或者多个,分别获取滤网12出风侧对应的风状态信息。
具体的,风速传感器、风速计、空气流量传感器是目前监测风流量主要手段,在滤网12的出风侧可以设置风速传感器、风速计、空气流量传感器中的一个或多个,来获取风道10的风流量。当然也可以包括其它的风量指标。然后在云服务器50里设定对应的关系表或数据库来实现。理论上云服务器50控制风扇11按指定的转速运转,如风道10上的进出风口过滤网12是干净的,没有受到任何的杂物影响,那这时风速传感器 或风速计或空气流量传感器所获得的数据应该是跟风扇11转速是在一个对等的误差范围内的,假如风道10上的进出风口过滤网12是有堵塞的,那这时风速传感器或风速计或空气流量传感器所获得的数据就会是跟风扇11转速是有在一个对等的误差范围内,这时就可以判断滤网12有堵塞了,要派人去清洗或更换了。
例如,在某一情况下风道10的风扇11转速与风量关系对应表中,风扇11在4200转(RPM)时风量是161CFM(立方英尺每分钟)。则用风速仪时,将风速仪的叶轮放在过滤网12之后,假设当设定风扇11转速在4200转,那么如果过滤网12是没有堵塞的,那这时风速仪上应该直接读取到161CFM正负误差范围内的CFM值 ,如果不在范围内,则说明过滤网12存在堵塞现像了。
在一些使用风速传感器的实施例中,直接读取风速(注:风速单位m/s指的是每秒多少米)。风速传感器读取当前风速后,然后再根据算法进行模型转换为RPM(Revolutions Per minute,转/分钟),再将此RPM值与风扇11的RPM值进行比较,误差范围内的证明过滤网12是无堵塞的,误差范围外的证明过滤网12是堵塞的。
进一步的,滤网12包括设置在风道10的进风口的第一滤网12和设置在风道10的出风口的第二滤网12;风道信息采集单元20设置靠近所述第一滤网12设置。在一些实施例中,风道信息采集单元20设置靠近所述第二滤网12设置。或者在两个滤网12的出风侧均设置风信息收集单元。
进一步的,如图2所示的,在一些实例中,还包括连接云服务器50的用户终端60,用于接收并显示云服务器50发送的判定结果。
具体的,用户终端60通过有线或者无线的方式接入云服务器50,获取云服务器50获取的风道滤网12的状态判定结果,并根据结果提示用户该执行何种操作。
另外,如图3所示,在本发明的一种智能实时风道滤网堵塞程度判定方法的第一实施例中,包括以下步骤:
S1、云服务器50存储风扇11转速与风道10内滤网12出风侧的目标风状态信息的对应关系;
具体的,云服务器50上预存的风扇11转速与滤网12出风侧的风状态信息的对应关系,存储方式可以为设立数据库,或者利用公式、表格等方式。存储多个不同风扇11转速与不同的风状态信息的对应关系。当然这里的风状态信息与风道10的具体情况也是相关的。在通过风扇11转速获取对应的目标风状态信息的过程中,前提也是考虑到风道10的实际情况,例如风道10内风扇11的数量,风道10内风扇11与滤网12的距离等等要素。可以对风道10进行分类,云服务起可以存储多个不同类别风道10的风扇11转速与目标风状态信息的对应关系。
S2、数据处理中心30接收风道10内滤网12出风侧的实测风状态信息;
具体的,数据处理中心30通过风道信息采集单元20获取的风状态信息包括风流量。当前风速传感器、风速计、空气流量传感器是目前监测风流量主要手段,在滤网12的出风侧可以设置风速传感器、风速计、空气流量传感器中的一个或多个,来获取风道10的风流量。当然也可以包括其它的风量指标。
S3、数据处理中心30获取风扇11当前转速并根据风扇11当前转速获取对应的目标风状态信息,比较实测风状态信息和目标风状态信息,确认实测风状态信息是否满足要求;若是,则执行步骤S4;若否,则执行步骤S5;
S4、数据处理中心30判定风道滤网正常,上报风道滤网状态至云服务器50;
S5、数据处理中心30判定风道滤网异常,上报风道滤网状态至所述云服务器50。
具体的,理论上云服务器50控制风扇11按指定的转速运转,如风道10上的滤网12是干净的,没有受到任何的杂物影响,那这时风道信息采集单元20所获得的有关风状态的数据应该是跟风扇11转速是在一个对等的误差范围内的。假如风道10上的进出风口过滤网12是有堵塞的,那这时风道信息采集单元20所获得的有关风状态的数据就会是跟风扇11转速是有在一个对等的误差范围内,这时就可以判断滤网12有堵塞了,要派人去清洗或更换了。
数据处理中心30判定风道滤网12堵塞情况后,可以将该堵塞信息发送至云服务器50,以便用户做下一步处理动作。
进一步的,如图4所示,在本发明的一种智能实时风道滤网12堵塞程度判定方法的第二实施例中,在步骤S3中包括:数据处理中心30获取风扇11当前设定转速并根据风扇11当前设定转速获取对应的第一目标风状态信息,数据处理中心30计算实测风状态信息与第一目标风状态信息的误差,确认实测风状态信息是否满足要求。
具体的,可以通过风扇11的设定转速来从云服务器50上获取对应的目标风状态信息。风扇11的设定转速可以通过数据处理中心30自行设置,也可以通过云服务器50发送控制命令至数据处理中心30进行设置。当通过设定转速从服务器上获取到了目标风状态信息后,可以计算实测风状态信息与该目标风状态信息的误差,可以通过该误差对滤网12的堵塞程度进行判定。例如,误差值比较小的时候,可以判定滤网12只是轻微堵塞,这个时候不影响整个系统,则可以不进行清洗。当误差值偏离很大,判定滤网12堵塞很严重,继续用下去也不能满足降温需求,甚至可能会损坏设备。则需要立即进行滤网12清洗。
还有一些实施例中,如图5所示,本发明的一种智能实时风道滤网12堵塞程度判定方法的第三实施例中,步骤S3还包括:数据处理中心30获取风扇11当前实测转速并根据风扇11当前实测转速获取对应的第二目标风状态信息;数据处理中心30计算实测风状态信息与第二目标风状态信息的误差,确认实测风状态信息是否满足要求。
具体的,风扇11运行过程中,其设定转速和实际转速可能会存在偏差,通过设定转速获取的风道10当前风速下的目标风状态信息可能不能真实的反应滤网12的堵塞情况。这里可以获取风扇11的实际转速,通过风扇11的实际转速来获取对应的目标风状态信息,并通过该目标风状态信息计算实测风状态信息的误差,通过该误差来对滤网12的堵塞程度进行判定。例如,误差值比较小的时候,可以判定滤网12只是轻微堵塞,这个时候不影响整个系统,则可以不进行清洗。当误差值偏离很大,判定滤网12堵塞很严重,继续用下去也不能满足降温需求,甚至可能会损坏设备。则需要立即进行滤网12清洗。
进一步的,在一些实施例中,如图6所示,还包括以下步骤:
S6、云服务器50接收风道滤网12状态,发送风道滤网12状态至用户终端60。
具体的,用户终端60通过有线或者无线的方式连接云服务器50,可以实现远程接收风道滤网状态及其判定结果。实现对风道滤网状态的远程监控。同时也可根据风道10状态的堵塞程度的判定,发送进一步操作的提示信息,以知会用户终端60进行一下步操作。
进一步的,在一些实施例中,还包括以下步骤:
S0、云服务器50接收用户终端60指令、指示数据处理中心30对风道滤网12状态进行检测。
具体的,风道滤网12的检测可以是实时的,智能进行的。也可以是通过用户终端60下发控制命令,触发数据处理中心30对风道滤网12状态开始检测,实现对风道滤网状态检测过程的远程控制。可以根据设备的实际工作情况发起风道滤网检测,例如在设备刚启用时,能够确定风道滤网12上堵塞物比较少,则可以暂定该风道滤网12检测过程,当设备使用比较长一段时间后,通过用户终端60发起风道滤网12堵塞程度的检测判定过程。以便节约计算资源。
当然整个风道滤网12堵塞程度的判定过程可以设定为周期运行。例如在每天固定的时间进行检测。或者通过某个触发条件触犯判定过程。例如检测到风道10的风信息发生变化。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种智能实时风道滤网堵塞程度判定系统,包括至少一个风扇和风扇功率驱动单元,其特征在于,还包括滤网、风道信息采集单元、数据处理中心、以及云服务器;
    所述风扇及滤网组成用于设定所述风扇风运行路径的风道;
    所述风道信息采集单元设置在所述滤网出风侧以收集所述滤网出风侧的实测风状态信息;
    其中,所述云服务器中存储有风扇转速与滤网出风侧的目标风状态信息的对应关系,所述数据处理中心与所述云服务器连接并可根据所述风扇的当前转速获取对应的所述目标风状态信息;所述数据处理中心与所述风道信息采集单元连接可接收所述风道信息采集单元发送的所述实测风状态信息;
    所述数据处理中心还包括用于比较所述实测风状态信息和所述目标风状态信息并根据比较结果对所述滤网堵塞程度进行判定的比较单元,以及用于上报所述风道滤网堵塞程度至所述云服务器的信息上报单元。
  2. 根据权利要求1所述的智能实时风道滤网堵塞程度判定系统,其特征在于;
    所述数据处理中心包括设置单元,用于设置风扇的当前设定转速;
    所述数据处理中心还包括第一计算单元,用于根据所述风扇的当前设定转速获取对应的第一目标风状态信息,计算所述实测风状态信息与所述第一目标风状态信息的误差,以指示所述数据处理中心根据所述误差对所述风道滤网堵塞程度进行判定。
  3. 根据权利要求1所述的智能实时风道滤网堵塞程度判定系统,其特征在于,还包括连接所述数据处理中心的风扇转速监测单元;
    所述数据处理中心还包括信息获取单元,所述信息获取单元连接所述风扇转速监测单元,用于接收所述风扇转速监控单元发送的所述风扇的当前实测转速;
    所述数据处理中心还包括第二计算单元,用于根据所述当前实测转速获取对应的第二目标风状态信息,计算所述实测风状态信息与所述第二目标风状态信息的误差,以指示所述数据处理中心根据所述误差对所述风道滤网堵塞程度进行判定。
  4. 根据权利要求1所述的智能实时风道滤网堵塞程度判定系统,其特征在于,所述风道信息采集单元包括风速传感器、风速计、空气流量传感器中的一个或者多个,分别获取所述滤网出风侧对应的风状态信息。
  5. 根据权利要求1所述的智能实时风道滤网堵塞程度判定系统,其特征在于,所述滤网包括设置在所述风道的进风口的第一滤网和设置在所述风道的出风口的第二滤网;
    所述风道信息采集单元设置靠近所述第一滤网设置,和/或
    所述风道信息采集单元设置靠近所述第二滤网设置。
  6. 根据权利要求1所述的智能实时风道滤网堵塞程度判定系统,其特征在于,还包括连接所述云服务器的用户终端,用于接收并显示所述云服务器发送的判定结果。
  7. 一种智能实时风道滤网堵塞程度判定方法,其特征在于,包括以下步骤:
    S1、云服务器存储风扇转速与风道内滤网出风侧的目标风状态信息的对应关系;
    S2、数据处理中心接收风道内滤网出风侧的实测风状态信息;
    S3、所述数据处理中心获取风扇当前转速并根据所述风扇当前转速获取对应的目标风状态信息,比较所述实测风状态信息和所述目标风状态信息,确认所述实测风状态信息是否满足要求;若是,则执行步骤S4;若否,则执行步骤S5;
    S4、所述数据处理中心判定风道滤网正常,上报风道滤网状态至所述云服务器;
    S5、所述数据处理中心判定风道滤网异常,上报所述风道滤网状态至所述云服务器。
  8. 根据权利要求7所述的智能实时风道滤网堵塞程度判定方法,其特征在于,在所述步骤S3中包括:
    所述数据处理中心获取风扇当前设定转速并根据所述风扇当前设定转速获取对应的第一目标风状态信息,所述数据处理中心计算所述实测风状态信息与所述第一目标风状态信息的误差,确认所述实测风状态信息是否满足要求;和/或
    所述数据处理中心获取风扇当前实测转速并根据所述风扇当前实测转速获取对应的第二目标风状态信息;所述数据处理中心计算所述实测风状态信息与所述第二目标风状态信息的误差,确认所述实测风状态信息是否满足要求。
  9. 根据权利要求7所述的智能实时风道滤网堵塞程度判定方法,其特征在于,还包括以下步骤:
    S6、所述云服务器接收所述风道滤网状态,发送所述风道滤网状态至用户终端。
  10. 根据权利要求7所述的智能实时风道滤网堵塞程度判定方法,其特征在于,还包括以下步骤:
    S0、所述云服务器接收所述用户终端指令、指示所述数据处理中心对所述风道滤网状态进行检测。
PCT/CN2018/071978 2018-01-09 2018-01-09 智能实时风道滤网堵塞程度判定系统及方法 WO2019136610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071978 WO2019136610A1 (zh) 2018-01-09 2018-01-09 智能实时风道滤网堵塞程度判定系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071978 WO2019136610A1 (zh) 2018-01-09 2018-01-09 智能实时风道滤网堵塞程度判定系统及方法

Publications (1)

Publication Number Publication Date
WO2019136610A1 true WO2019136610A1 (zh) 2019-07-18

Family

ID=67218819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071978 WO2019136610A1 (zh) 2018-01-09 2018-01-09 智能实时风道滤网堵塞程度判定系统及方法

Country Status (1)

Country Link
WO (1) WO2019136610A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368938A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种防尘网堵塞程度检测装置和方法、及电子设备
US20150077737A1 (en) * 2013-08-09 2015-03-19 Cnry Inc. System and methods for monitoring an environment
CN104568698A (zh) * 2014-12-26 2015-04-29 广东美的制冷设备有限公司 空调器中滤网状态的检测装置和方法
CN104833050A (zh) * 2015-04-28 2015-08-12 广东美的制冷设备有限公司 空气调节器及其过滤网积尘程度的检测装置、方法
CN105627494A (zh) * 2014-10-28 2016-06-01 Tcl集团股份有限公司 一种控制空调运行的方法和系统
CN106016516A (zh) * 2016-06-27 2016-10-12 珠海格力电器股份有限公司 新风机及其控制方法和装置
CN106440080A (zh) * 2016-10-10 2017-02-22 山西桐鑫宇环保设备有限公司 云智能空气净化器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368938A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种防尘网堵塞程度检测装置和方法、及电子设备
US20150077737A1 (en) * 2013-08-09 2015-03-19 Cnry Inc. System and methods for monitoring an environment
CN105627494A (zh) * 2014-10-28 2016-06-01 Tcl集团股份有限公司 一种控制空调运行的方法和系统
CN104568698A (zh) * 2014-12-26 2015-04-29 广东美的制冷设备有限公司 空调器中滤网状态的检测装置和方法
CN104833050A (zh) * 2015-04-28 2015-08-12 广东美的制冷设备有限公司 空气调节器及其过滤网积尘程度的检测装置、方法
CN106016516A (zh) * 2016-06-27 2016-10-12 珠海格力电器股份有限公司 新风机及其控制方法和装置
CN106440080A (zh) * 2016-10-10 2017-02-22 山西桐鑫宇环保设备有限公司 云智能空气净化器

Similar Documents

Publication Publication Date Title
CN108361916B (zh) 智能实时风道滤网堵塞程度判定系统及方法
WO2009024052A1 (fr) Dispositif de mesure, procédé et dispositif électronique pour mesurer un degré d'encrassement d'un écran anti-poussière
CN206709321U (zh) 一种中央空调冷却水系统能效在线测试控制系统
CN106931603A (zh) 基于物联网技术的中央空调冷却水系统能效监测系统
CN109916049B (zh) 空调器自清洁控制方法
CN109990441B (zh) 空调器自清洁控制方法
CN104236056B (zh) 智能型全热交换器
WO2020059378A1 (ja) 空気調和装置および送風ファンの回転速度調整方法
CN109489215B (zh) 一种风速自适应控制方法、控制装置和组合式空调机组
EP3489592A1 (en) Filter contamination detection method
US20130158719A1 (en) Controller employing feedback data for a multi-strike method of operating an hvac system and monitoring components thereof and an hvac system employing the controller
CN111111342B (zh) 过滤组件及过滤网脏堵检测方法
JP6944962B2 (ja) 汚れ情報推定システム
JP7141687B2 (ja) レンジフードおよびレンジフードシステム
CN109916040A (zh) 空调器自清洁控制方法和空调器
CN111089406A (zh) 风机盘管出风控制方法、装置及控制器和空调机组
WO2020192597A1 (zh) 一种空调自动清洗的控制方法及装置
CN106016516A (zh) 新风机及其控制方法和装置
JP6710030B2 (ja) 空調機、及び空調システム
WO2019136610A1 (zh) 智能实时风道滤网堵塞程度判定系统及方法
WO2021042793A1 (zh) 制冷量确定方法、制冷能效比确定方法和故障提醒方法
CN108397864A (zh) 用于空调器的自清洁控制方法
JP2009036461A (ja) 電子機器およびフィルタ管理装置
WO2023005243A1 (zh) 室内机的滤网检测方法、室内机、空调器和可读存储介质
TW201416568A (zh) 智慧型風壓管路濾網感測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899450

Country of ref document: EP

Kind code of ref document: A1