WO2019135656A1 - 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법 - Google Patents

무선 통신 시스템에서 물리 계층 기능을 분리하는 방법 Download PDF

Info

Publication number
WO2019135656A1
WO2019135656A1 PCT/KR2019/000224 KR2019000224W WO2019135656A1 WO 2019135656 A1 WO2019135656 A1 WO 2019135656A1 KR 2019000224 W KR2019000224 W KR 2019000224W WO 2019135656 A1 WO2019135656 A1 WO 2019135656A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
phy entity
physical layer
processing operation
layer processing
Prior art date
Application number
PCT/KR2019/000224
Other languages
English (en)
French (fr)
Inventor
문지철
권오진
전남열
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP22212975.1A priority Critical patent/EP4167538A1/en
Priority to KR1020207022215A priority patent/KR102648504B1/ko
Priority to CN202311189573.9A priority patent/CN117220763A/zh
Priority to CN201980007655.2A priority patent/CN111567018B/zh
Priority to EP19736191.8A priority patent/EP3723348B1/en
Priority to US16/960,179 priority patent/US11456833B2/en
Publication of WO2019135656A1 publication Critical patent/WO2019135656A1/ko
Priority to US17/890,501 priority patent/US11824626B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • This disclosure is generally directed to wireless communication systems. More particularly, this disclosure relates to a method and apparatus for separately implementing the functions of a physical layer in a wireless communication system.
  • a 5G communication system or a pre-5G communication system is referred to as a 4G network (Beyond 4G Network) communication system or a post-LTE (long term evolution) system (post LTE) system.
  • 4G network Beyond 4G Network
  • post-LTE long term evolution
  • 5G communication systems are being considered for implementation in very high frequency (mmWave) bands (e.g., 60 gigahertz (60GHz) bands).
  • mmWave very high frequency
  • 60GHz gigahertz
  • beamforming, massive MIMO, full-dimension MIMO (FD-MIMO ), Array antennas, analog beam-forming, and large scale antenna technologies are being discussed.
  • the 5G communication system has developed an advanced small cell, an advanced small cell, a cloud radio access network (cloud RAN), an ultra-dense network, (D2D), a wireless backhaul, a moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Have been developed.
  • cloud RAN cloud radio access network
  • D2D ultra-dense network
  • CoMP Coordinated Multi-Points
  • ACM Advanced Coding Modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Sliding Window Superposition Coding
  • FBMC Filter Bank Multi Carrier
  • SCMA subcarrier code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • the wireless protocol of the conventional LTE system includes a physical layer (PHY), a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer and a radio resource control (RRC) layer.
  • the PHY layer which is also called a physical layer, performs an operation of mapping a transmission channel to a physical channel. Specifically, the PHY layer generates a radio frequency (RF) signal, such as coding / decoding, modulation / demodulation, hybrid automatic request (HARQ) processing, and mapping of signals to time- And the like.
  • RF radio frequency
  • the hierarchical structure according to the protocols of the conventional LTE system can not efficiently support the number of antennas and the channel bandwidth which are rapidly increasing due to the development of communication systems, and therefore, there is a need for an improvement thereof.
  • a method for a first PHY entity to communicate with a second PHY entity in accordance with an embodiment for solving the above-mentioned problem comprises transmitting or receiving a message via a fronthaul interface with a second PHY entity, And performing communication with a second PHY entity, wherein the first PHY entity performs a lower physical layer processing operation of the base station, and the second PHY entity performs an upper physical layer processing operation of the base station.
  • a first PHY entity performs a lower physical layer processing operation and a radio frequency (RF) signal processing operation
  • a lower physical layer processing operation includes an FFT (Fast Fourier Transform)
  • the at least one physical layer processing operation includes at least one of CP (Cyclic Prefix) addition / removal, precoding, beamforming, or PRACH (Physical Random Access Channel) Resource Element) mapping, channel estimation, or PRACH detection.
  • CP Cyclic Prefix
  • PRACH Physical Random Access Channel
  • a message includes a user plane message and a control plane message
  • the user plane message includes a downlink IQ (in-phase / quadrature) message, an uplink IQ message, an SRS a sounding reference signal message, or a PRACH message
  • the control plane message may include at least one of an RE bitmap message, a physical resource block (PRB) bitmap message, a scheduling information message, or a terminal channel information message .
  • PRB physical resource block
  • a type of a user plane message is indicated by a subtype field value
  • a type of a control plane message is indicated by a control type field value and a subtype field value of a data field .
  • a first PHY entity communicating with a second PHY entity for solving the above-mentioned problems includes a transmitter / receiver section configured to transmit and receive signals, and a second PHY entity through a fronthaul interface with a second PHY entity Wherein the first PHY entity performs a lower physical layer processing operation of the base station and the second PHY entity performs an upper physical layer processing operation of the base station, .
  • a method for a second PHY entity to communicate with a first PHY entity for solving the above-mentioned problem includes transmitting or receiving a message through a fronthaul interface with a first PHY entity, And the first PHY entity performs a lower physical layer processing operation of the base station and the second PHY entity performs an upper physical layer processing operation of the base station.
  • a second PHY entity communicating with a first PHY entity includes a transceiver unit configured to transmit and receive signals and a second PHY entity through a fronthaul interface with a first PHY entity Wherein the first PHY entity performs a lower physical layer processing operation of the base station and the second PHY entity performs an upper physical layer processing operation of the base station by performing communication with a first PHY entity by transmitting or receiving a message do.
  • the communication efficiency can be increased by separately implementing the functions of the base station, but also the management burden can be lowered and the management can be facilitated.
  • Figure 1 is a diagram illustrating a wireless network architecture in connection with an embodiment of the present disclosure
  • FIG. 2 is a diagram illustrating the structure of a base station in connection with an embodiment of the present disclosure
  • FIG. 3 is a diagram showing the structure of a terminal related to the embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating the physical layer of a base station in connection with an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating a separate physical layer structure associated with one embodiment of the present disclosure.
  • 6A is a diagram illustrating a separate physical layer structure associated with another embodiment of the present disclosure.
  • 6B is a diagram illustrating a separate physical layer structure associated with another embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a separate physical layer structure in connection with another embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating a separate physical layer structure in connection with another embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a separate physical layer structure in connection with another embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a process of transmitting and receiving messages between PHY entities associated with an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a message structure associated with an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • 15 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • 16 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • 17 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • 19 is a diagram illustrating a message structure associated with another embodiment of the present disclosure.
  • 20 is a diagram showing a procedure of sending and receiving a physical layer message according to an embodiment of the present disclosure
  • FIG. 21 is a diagram showing a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure.
  • 22 is a diagram showing a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure.
  • FIG. 23 is a diagram showing a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure.
  • 24 is a diagram showing a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure.
  • Computer program instructions may also be stored on a computer or other programmable data processing equipment so that a series of operating steps may be performed on a computer or other programmable data processing equipment to create a computer- It is also possible for the instructions to perform the processing equipment to provide steps for executing the functions described in the flowchart block (s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing the specified logical function (s).
  • the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may actually be executed substantially concurrently, or the blocks may sometimes be performed in reverse order according to the corresponding function.
  • " part " used in the present embodiment means a hardware component such as software or an FPGA or an ASIC, and 'part' performs certain roles.
  • 'part' is not meant to be limited to software or hardware.
  • &Quot; to " may be configured to reside on an addressable storage medium and may be configured to play one or more processors.
  • 'parts' may refer to components such as software components, object-oriented software components, class components and task components, and processes, functions, , Subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • the functions provided in the components and components may be further combined with a smaller number of components and components or further components and components.
  • the components and components may be implemented to play back one or more CPUs in a device or a secure multimedia card.
  • couple and derivatives thereof refer to any direct or indirect communication between two or more elements, regardless of whether two or more elements are in physical contact with each other.
  • transmit and receive “and” communicate “as well as derivatives thereof encompass both direct and indirect communications.
  • the term “or” may mean in a generic sense and / or (and / or).
  • phrase "associated with” as well as its derivatives is included, included within, interconnected with, contained within, contained within, Communicable with, cooperate with, interleave with, with or to, with, with, with, with, or with, I have to juxtapose, be proximate to, be bound to or with, have a property of, with or in relation to, and a relationship to or with.
  • the phrase " at least one of ", when used with a list of items, may mean that a different combination of one or more of the listed items may be used and includes only one item in the list.
  • “at least one of A, B, or C” may be any of the following combinations: A alone, B alone, C alone, A and B, A and C, B and C, and A and B and C .
  • Figure 1 is a diagram illustrating a wireless network architecture in connection with an embodiment of the present disclosure
  • FIG. 1 illustrates an exemplary wireless network 100 in accordance with the present disclosure.
  • the wireless network 100 shown in FIG. 1 illustrates an example of network deployment, and other arrangements beyond the scope of this disclosure may be considered in any way.
  • the wireless network 100 includes base stations 101, 102, Base station 101 is in communication with base stations 102 and 103 and may communicate with at least one network 130.
  • Base stations 102 and 103 each provide a wireless connection to a plurality of terminals 111, 112, 113, 114, 115, and 116 located within their coverage 120 and 125, respectively.
  • the base stations 101, 102, and 103 and the terminals 111, 112, 113, 114, 115, and 116 are 5G, new radio, LTE, LTE-A, high speed packet access (HSPA) , WiFi, and the like, based on various types of radio access technologies (RATs).
  • RATs radio access technologies
  • the term “base station” includes a transmission point (TP), a transmission and reception point (TRP), an enhanced Node B (eNB), a gNB, a macrocell, a femtocell, a WiFi AP
  • TP transmission point
  • TRP transmission and reception point
  • eNB enhanced Node B
  • gNB gNode B
  • macrocell macrocell
  • femtocell a WiFi AP
  • terminal may refer to a user equipment (UE), a mobile station, a subscriber station, a wireless transmission reception unit (WTRU) User devices, and the like.
  • WTRU wireless transmission reception unit
  • the wireless network 100 may include any number of base stations and terminals, and each base station may communicate directly with one or more terminals and provide a connection of the terminal to the network 130.
  • FIG. 2 is a diagram illustrating the structure of a base station in connection with an embodiment of the present disclosure; 2 illustrates an example of the structure of the base station 102.
  • the base station 102 may be implemented to further include other configurations in addition to the configuration shown in FIG. 2, or may be implemented in various configurations Can be implemented. Further, the various configurations of the base station 102 shown in FIG. 2 may be integrated with each other, or each configuration may be further subdivided and separated.
  • base station 102 includes a plurality of antennas 205a-205n, a plurality of RF transceivers 210a-210n, a transmit (TX) processing circuit 215 and a receive (RX) 220).
  • Base station 102 also includes a controller / processor 225, a memory 230, and a backhaul / network interface 235.
  • RF transceivers 210a-210n receive RF signals transmitted by other devices (e.g., terminals, other base stations, etc.) via antennas 205a-205n.
  • the RF transceivers 210a-210n downconvert the RF signal to produce a baseband signal.
  • the downconverted signal is transmitted to RX processing circuitry 220 that generates a baseband signal through filtering, decoding, and / or digitization.
  • RX processing circuitry 220 sends the processed baseband signal to a controller / processor 225 for further processing.
  • the TX processing circuitry 215 receives analog or digital data from the controller / TX processing circuitry 215 encodes, multiplexes, and / or digitizes the baseband data to produce a baseband signal.
  • RF transceivers 210a-210n receive the processed baseband signals transmitted from TX processing circuitry 215 and upconvert the baseband signals to RF signals transmitted via antennas 205a-205n.
  • One or more of the RF transceivers 210a-210n, the TX processing circuit 215 and the RX processing circuit 220 described above may be integrated to be referred to as a transceiver.
  • the controller / processor 225 may include one or more processors that control the overall operation of the base station 102. For example, the controller / processor 225 may control to receive the forward channel signal and transmit the reverse channel signal by the RF transceiver 210a-210n, the RX processing circuit 220 and the TX processing circuit 215 .
  • the controller / processor 225 may also include circuitry, programming, or a combination thereof for processing uplink (UL) and / or downlink (DL) channels.
  • the controller / processor 225 may be configured to execute one or more instructions stored in the memory 230 that are configured to cause the controller / processor to process the signal.
  • the controller / processor 225 is coupled to a backhaul / network interface 235.
  • the backhaul / network interface 235 allows the base station 102 to communicate with other devices or systems via a backhaul connection or network.
  • the backhaul / network interface 235 may support communication over a wired or wireless connection.
  • the memory 230 is coupled to the controller / processor 225.
  • the memory 230 may store various information or data processed by the base station 102.
  • FIG. 3 is a diagram showing the structure of a terminal related to the embodiment of the present disclosure.
  • 3 illustrates an example of the structure of the terminal 116.
  • the terminal 116 may be implemented to include other configurations than the configuration shown in FIG. 3 or may be implemented in various configurations, such as being implemented to omit some of the configurations shown. Can be implemented. Further, the various configurations of the terminal 116 shown in FIG. 3 may be integrated with each other, or each configuration may be further subdivided and separated.
  • the terminal 116 includes one or more antennas 305a-305n, one or more RF transceivers 310a-310n, a transmit (TX) processing circuit 315, and a receive (RX) 325).
  • the terminal 116 also includes a microphone 320, a speaker 330, an in and out interface 345 processor 340, a touch screen 350, a display 355, and a memory 360
  • memory 360 includes an operating system (OS) 361 and one or more applications 362.
  • OS operating system
  • the RF transceivers 310a-310n receive the RF signals transmitted by the base stations of the network via the antennas 305a-305n.
  • the RF transceivers 310a-310n downconvert the RF signal to produce a baseband signal.
  • the downconverted signal is transmitted to RX processing circuit 325 which generates a baseband signal through filtering, decoding and / or digitization.
  • the RX processing circuitry 325 can send the processed baseband signal to the processor 340 for further processing or to the speaker 330 for output as an acoustic signal.
  • the TX processing circuit 325 may receive analog or digital data from the processor 340 or receive analog or acoustic data from the microphone 320.
  • the TX processing circuitry 325 encodes, multiplexes, and / or digitizes the baseband data to produce a baseband signal.
  • RF transceivers 310a-310n receive the processed baseband signals transmitted from TX processing circuit 325 and upconvert the baseband signals to RF signals transmitted via antennas 305a-305n.
  • One or more of the RF transceivers 310a-310n, the TX processing circuit 315, and the RX processing circuit 325 described above may be integrated to be referred to as a transceiver.
  • the processor 340 may include one or more processors that control the overall operation of the terminal 116.
  • the processor 340 may control to receive the forward channel signal and transmit the reverse channel signal by the RF transceiver 310a-310n, the RX processing circuit 325, and the TX processing circuit 315.
  • the processor 340 may include circuitry, programming, or a combination thereof for processing uplink (UL) and / or downlink (DL) channels.
  • processor 340 may be configured to execute one or more instructions stored in memory 360 configured to cause a processor to process a signal.
  • the processor 340 may execute other processes and programs recorded in the memory 360 and may write data to or extract data from the memory 360. [ The processor 340 may execute the application 362 based on the OS 361. [ The processor 340 is coupled to an I / O IF 345 that provides the ability to connect the terminal 116 to another device. The I / O IF 345 is a communication path between the other device and the processor 340.
  • Processor 340 is also coupled to touch screen 350 and display 355.
  • the user of the terminal 116 may input data to the terminal 116 using the touch screen 350.
  • the display 355 can visually output information and data processed by the terminal 116 by text and / or graphics processing.
  • the memory 360 is coupled to the processor 340.
  • the memory 360 may store various information or data processed by the terminal 116.
  • 4 is a diagram illustrating the physical layer of a base station in connection with an embodiment of the present disclosure. 4 shows a sequence of transmitting a downlink signal in the physical layer of the base station and a series of processes of processing the uplink signal received in the physical layer of the base station in the lower portion of FIG.
  • the physical layer of the base station includes an RU (RF unit) for performing an RF function and a DU (Digital unit) for performing a remaining function of a physical layer except an RF function.
  • RU RF unit
  • DU Digital unit
  • the DU of the base station performs channel coding, modulation, and layer mapping on a data channel, a control channel, and a physical broadcast channel (PBCH) for downlink signal transmission, And generates a UE-specific demodulation reference signal (DMRS) to perform layer mapping.
  • DU then performs resource element mapping per layer (RE) mapping, precoding and digital beamforming (BF), and inverse fast Fourier transform / cyclic prefix addition (iFFT) Receives the processed result, generates an RF signal, and transmits the downlink RF signal through the antenna.
  • RE resource element mapping per layer
  • BF precoding and digital beamforming
  • iFFT inverse fast Fourier transform / cyclic prefix addition
  • the RU of the base station receives the uplink signal from the UE, processes the received signal, and transmits the processed signal to the DU.
  • the DU then performs an FFT / CP removal, a digital BF (digital beamforming), an RE demapping (RE de-mapping), a channel estimation / equalization, an inverse discrete Fourier transform (iDFT) Demodulation and decoding to obtain a data channel and a control channel, performing uplink channel estimation based on a sounding reference signal (SRS) from FFT / CP removed data, or performing PRACH (physical random access channel filtering and pre-filtering to perform PRACH detection.
  • SRS sounding reference signal
  • the channel bandwidth used for wireless communication is increasing.
  • massive MIMO (multiple input multiple output ) Antenna structure is also being considered.
  • the bandwidth of the fronthaul between RU and DU rapidly increases.
  • the service provided in such a next generation communication system is characterized in that the amount and type of information to be processed increase exponentially while promptness of communication and promptness of signal processing are required.
  • a new proposal for the base station physical layer is needed to perform efficient communication reflecting the characteristics of the communication environment.
  • FIG. 5 is a diagram illustrating a separate physical layer structure in connection with one embodiment of the present disclosure. According to the embodiment shown in FIG. 5, the physical layer 500 of the base station is implemented as two entities through a functional split.
  • the physical layer 500 may be implemented separately by a first PHY entity 510 including at least one of a plurality of functions and a second PHY entity 520 including at least another one of the plurality of functions,
  • the interface between the PHY entity 510 and the second PHY entity 520 may be referred to as a fronthaul interface 530.
  • the first PHY entity 510 is an entity that is connected to an antenna and performs an RF function, and may be called a low PHY layer.
  • the second PHY entity 520 may be referred to as a high PHY layer as an entity that performs functions other than those performed by the first entity 510.
  • FIG. 6A is a diagram illustrating a separate physical layer structure in accordance with another embodiment of the present disclosure
  • FIG. 6B is a diagram illustrating a separate physical layer structure associated with another embodiment of the present disclosure.
  • the first PHY entity that performs one or more functions including the RF function among the physical layer functions of the base station may be referred to as an MMU (massive MIMO unit) 610, and the MMU 610 may be connected to the antenna 614 to perform RF processing
  • MMU massive MIMO unit
  • RF processing block 614 performs RF front end operations such as power amplification, low noise amplifier (LNA), ADC / DAC conversion, and up / down conversion.
  • LNA low noise amplifier
  • the first PHY entity 610 may perform operations such as FFT / iFFT, precoding, digital beamforming, PRACH filtering, and the like through the PHY-L processing block 616.
  • the first PHY entity (or MMU, 610) exchanges messages with the second PHY entity (or an LDU described later) through the front-hall interface block 618 and performs communication.
  • the front-hall interface block 618 may transmit the processed signal to the second PHY entity when the first PHY entity 610 processes the RF signal, receive and process the transmitted signal from the second PHY entity, To the RF processing block 614 to generate the RF signal.
  • the front-hall interface block 618 of the first PHY entity 610 may packetize / de-packetize messages exchanged with the second PHY entity 620, It can transmit and receive using the Ethernet protocol.
  • FIG. 6B shows a specific configuration of the second PHY entity 520 described in FIG.
  • the second PHY entity that performs one or more functions of the physical layer function of the base station excluding the RF function may be called a light digital unit (LDU) 620, and the LDU 620 may communicate with the first PHY entity (or MMU) And a PHY-H processing block 624 that is responsible for some functions of the physical layer (i.e., functions of the upper physical layer).
  • the specific operations performed by the PHY-H processing block 624 have been described in detail in FIG. 2 and FIG.
  • the second PHY entity 620 may perform channel coding / decoding, modulation / demodulation, channel estimation / equalization, RE mapping / demapping, layer mapping, and the like through the PHY-H processing block 624 .
  • the second PHY entity (or LDU, 620) exchanges messages with the first PHY entity (or MMU) through the front-hall interface block 622 and performs communication.
  • the front-hall interface block 622 may receive and process a signal from the first PHY entity 610 or may forward the signal to be transmitted via the first PHY entity 610 to the first PHY entity 610.
  • the front-hall interface block 622 of the second PHY entity 620 may packetize / de-packetize messages to and from the first PHY entity 610, It can transmit and receive using the Ethernet protocol.
  • the first PHY entity i.e., the MMU
  • the second PHY entity i.e., the LDU
  • the first PHY entity and the second PHY entity may be separately implemented as physically independent devices.
  • each of the first PHY entity and the second PHY entity is implemented as a separate hardware device, and can communicate with each other via wired or wireless communication via the front-hall interface.
  • the first PHY entity and the second PHY entity may be implemented in a manner that is logically separated in one hardware.
  • FIGs 7, 8, and 9 are diagrams illustrating a separate physical layer structure in accordance with another embodiment of the present disclosure.
  • 7 and 8 show an example of the physical layer structure of the base station for the downlink transmission status
  • FIG. 9 shows an example of the physical layer structure of the base station for the uplink reception status.
  • FIG. 7 is a diagram showing an example in which the embodiment described in FIG. 6A and FIG. 6B is applied to an LTE / LTE-A communication system. That is, the separation structure 700 shown in FIG. 7 shows an embodiment in which the physical layer of the eNB that is the base station of the LTE / LTE-A communication system is separated. 7, the physical layer of the eNB may be divided into a first PHY entity (or MMU, 710) and a second PHY entity (or LDU, 720), and the first PHY entity 710 and the second PHY entity 720 And may be connected to the front hole 730.
  • the front hole 730 may be referred to as xRAN FH (xRAN fronthaul).
  • Fig. 8 is a diagram showing an example in which the embodiment described in Figs. 6A and 6B is applied to the NR communication system. That is, the separation structure 800 shown in FIG. 8 shows an embodiment in which the physical layer of the gNB that is the base station of the NR communication system is separated. 8, the physical layer of the gNB may be separated into a first PHY entity (or MMU, 810) and a second PHY entity (or LDU, 820) The PHY entity 820 may be connected through a front hole 830.
  • MMU MMU
  • LDU LDU
  • FIG. 9 is a flowchart illustrating a detailed physical layer operation (or operation) performed by the first PHY entity (or MMU, 910) and the second PHY entity (or LDU, 920) described in FIGS. 6A and 6B, Fig.
  • the first PHY entity responsible for the RF function and some physical layer operations and the second PHY entity responsible for the remaining physical layer operations have been described in detail above. Meanwhile, the names of the first PHY entity and the second PHY entity are described as MMU and LDU, respectively, but these names are merely examples.
  • the first PHY entity may be referred to as a distributed unit lower layer part (DU-L), a second PHY entity (DU-L) May be referred to as a distributed unit higher layer part (DU-H).
  • the first PHY entity may be referred to as a radio unit (RU)
  • the second PHY entity may be referred to as a lower layer split-central unit (LLS-CU) in association with a structure for separating the physical layer function into RU- .
  • the names of the respective entities can be named as first PHY entity and second PHY entity with any other name.
  • FIG. 10 is a diagram illustrating a process of transmitting and receiving messages between PHY entities associated with an embodiment of the present disclosure.
  • Messages exchanged between a first PHY entity (or MMU) 1010 and a second PHY entity (or LDU, 1020) can be broadly divided into user plane messages and radio specific control plane messages have.
  • the user plane message is a message for transmitting / receiving data to / from the terminal between the first PHY entity 1010 and the second PHY entity 1020.
  • the user plane message includes a downlink IQ (in-phase / quadrature) message 1032, an uplink IQ message 1034, a sounding reference signal (SRS) message 1036, a physical random access channel (PRACH) Message 1038. < / RTI >
  • the control plane message includes a resource element (RE) bitmap message 1040, a physical resource block (PRB) bitmap message 1042, a scheduling information message 1044, and a terminal channel information message 1046 can do.
  • RE resource element
  • PRB physical resource block
  • the user plane message is defined in the message format based on IEEE Standard 1914.3.
  • the type of the user plane message can be distinguished by the value of the subtype field of the radio over Ethernet (ROE) header.
  • ROE radio over Ethernet Table 1 below shows a concrete implementation example of the sub-type field value and the type of the user plane message.
  • Subtype field Mapping Explanation 0000 0000b RoE Control sub type Control packet between the RoE control node and the RoE controlled node. 0000 0001b Reserved Reserved 0000 0010b RoE Structure-agnostic data sub type Data payload packet with RoE common frame header and structure-agnostic payload. 0000 0011b RoE Structure-aware CPRI data sub type Data payload packet with RoE common frame header and structure-aware CPRI data payload. 0000 0100b RoE Slow C & M CPRI sub type C & M payload packet with common RoE frame header and structure-aware CPRI Slow C & M payload. 0000 0101b 0000 1111b Reserved Reserved for future sub types.
  • the subtype field values are 00010001b, 00010010b, 00010011b in Table 1, it can indicate that the user plane message is an IQ message, a PRACH message, or an SRS message, respectively.
  • control plane message is also defined in message format based on IEEE Standard 1914.3.
  • the type of the control plane message can be distinguished by the value of the sub type field of the radio over Ethernet (ROE) header and the value of the radio specific control header field in the radio specific (RS) control header in the data.
  • ROE radio over Ethernet
  • RS radio specific
  • Table 1 if the subtype field value is 00011000b, the message format may indicate that it is a control plane message, and the detailed types of the control plane messages may be classified according to the RS control type field value have.
  • RS control type field Mapping Explanation 0000 0000b RE bitmap Information about beam weights per RE 0000 0001b PRB bitmap Information for each RB is used for cell-specific beamforming or for UE-specific beamforming 0000 0010b Scheduling information Information for indicating which UE is allocated to each RB 0000 0011b UE channel information UE's channel information obtained from SRS data 0000 0100b 1111 1111b Reserved For future use
  • Table 1 and Table 2 are examples for distinguishing the message types between the first PHY entity and the second PHY entity.
  • a message transmitted and received through the front-hall interface between the first PHY entity and the second PHY entity may be distinguished by another method, another field, or another value.
  • FIG. 11 is a diagram showing an embodiment of the structure of a user plane message.
  • a user plane message may be included in the data field 1130 of the message.
  • the type of the user plane message may vary depending on the specific value indicated by the sub type field 1120.
  • the data field 1130 when the value of the subtype field 1120 indicates 17 (00010001b in Table 1), the data field 1130 includes an IQ message 1142 and indicates 18 (00010010b in Table 1) Data field 1130 includes PRACH message 1144 and data field 1130 may include SRS message 1146 if it represents 19 (00010011b in Table 1).
  • FIG. 12 is a diagram showing an embodiment of a structure of a control plane message.
  • a control plane message may be included in the data field 1230 of the message.
  • the subtype field 1220 indicates that it is a control plane message (e.g., 00011000b in Table 1)
  • the value of the RS control type field 1240 in the data field 1230 The type of data may also vary.
  • the messages included in the payload 1250 may be stored in the RE bitmap message 1262, the PRB bitmap message 1264 ), A scheduling information message 1266, and a terminal channel information message 1268.
  • the IQ message 1300 may be used to transmit the frequency domain IQ samples in either the downlink direction or the uplink direction.
  • the IQ message 1300 includes IQ values from the first subcarrier of the first RB (resource block) to the 12th subcarrier of the N-th RB, which are packetized and sequentially included in the data field 1310 of the IQ message 1300,
  • the number of bits can be less than 30 bits.
  • the number of bits representing the IQ value may be preset between the first PHY entity and the second PHY entity and may be set at the cell setup time.
  • the PRACH message 1400 may be used to convey the PRACH IQ samples in the time domain (or frequency domain) in the uplink direction.
  • the data field 1410 of the PRACH message 1400 may include packetized IQ samples in a time domain sampling order and the number of bits representing each IQ value may be less than 30 bits.
  • the number of bits representing the IQ value may be preset between the first PHY entity and the second PHY entity and may be set at the cell setup time.
  • SRS message 1500 may be used to carry the SRS IQ samples of the frequency domain in the uplink direction.
  • IQ values from the first subcarrier of the first RB to the 12th subcarrier of the Nth RB are packetized and sequentially included in the data field 1510 of the SRSR message 1500.
  • the number of bits representing each IQ value is Can be less than 30 bits.
  • the number of bits representing the IQ value may be preset between the first PHY entity and the second PHY entity and may be set at the cell setup time.
  • the RE bitmap message 1600 may include a weight index indicating the type of beam weight to be applied for each RE.
  • the payload 1615 in the data field 1610 of the RE bitmap message 1600 includes the weight of the packet from the weight index for the first RE of the first symbol of the first RB to the weight index for the twelfth RE of the 14th symbol of the N- And the size N of the RB can be preset between the first PHY entity and the second PHY entity and can be set at the cell setup time.
  • the PRB bitmap message 1700 may include information indicating whether each RB is used for cell-specific beamforming or UE-specific beamforming.
  • the payload 1715 in the data field 1710 of the PRB bitmap message 1700 is sequentially packetized from the cell-specific beamforming indicator for the first RB to the cell-specific beamforming indicator for the Nth RB .
  • the cell-specific indicator is 1 bit long, the value 0b indicates UE-specific beamforming, and the value 1b indicates cell-specific beamforming.
  • the size N of the RB may be preset between the first PHY entity and the second PHY entity and may be set at the cell setup time.
  • the scheduling information message 1800 may include information indicating which terminal is allocated to each RB.
  • the payload 1815 in the data field 1810 of the scheduling information message 1800 is encapsulated starting from the uplink / downlink indicator and the 0 value of the indicator indicates the downlink and the value 1 indicates the uplink .
  • the payload 1815 may be sequentially packetized from the terminal ID allocated to the first RB to the terminal ID allocated to the Nth RB from the Lth layer in the first layer.
  • the size N of the RB and the size L of the layer can be preset between the first PHY entity and the second PHY entity and can be set at the cell setup time.
  • the terminal channel information message 1900 may include channel information of a specific terminal.
  • the payload 1915 in the data field 1910 of the terminal channel information message 1900 is encrypted in order of the terminal ID, the RB position and the RB size, the terminal ID indicates a specific terminal with 12 bits, Indicates the SRS RB position of the UE, and the RB size indicates the SRS RB size of the specific UE with 10 bits.
  • the payload 1915 can sequentially include IQ values for the RB positions of the first antenna and RB sizes of the Mth antenna + IQ values for the RB positions.
  • the number of bits representing each IQ value may be less than 30 bits and the size of the bit representing the IQ value and the number of antennas M may be preset between the first PHY entity and the second PHY entity, Lt; / RTI >
  • 20 is a diagram showing a transmission / reception procedure of a physical layer message according to an embodiment of the present disclosure, and shows a transmission / reception procedure of the PRACH message described above.
  • 20 shows a transmission / reception procedure between the terminal 2010, the first PHY entity (i.e., the MMU 2022), the second PHY entity (i.e., the LDU 2024), and the CU 2026.
  • the CU 2026 may represent at least one entity that is responsible for at least one layer except for the physical layer of the base station 2020.
  • the CU 2026 may include at least one of MAC, RLC, PDCP, It may be the entity that is responsible.
  • the first PHY entity 2022 and the second PHY entity 2024 are each responsible for at least a part of the physical layer functions of the base station 2020 and the first PHY entity 2022 and the second PHY entity 2024,
  • the base station 2020 can implement the entire function of the physical layer.
  • the first PHY entity 2022, the second PHY entity 2024, and the CU 2026 may be connected to implement the overall layer function of the base station 2020.
  • the terminal 2010 transmits a random access preamble to the base station 2020 for initial connection with the base station 2020 (2030).
  • the random access preamble transmitted by the terminal 2010 to the base station 2020 can be transmitted on the selected PRACH according to a predetermined criterion.
  • the first PHY entity 2022 responsible for the RF function of the base station 2020 receives the random access preamble transmitted by the terminal 2010 and the PHY-L processing block 616 described in FIG. 6A is a random access pre- Performs PRACH filtering on the signal transmitted by the UE in order to detect the AMV.
  • the first PHY entity 2022 then sends the PRACH message 2040 to the second PHY entity 2024.
  • the PRACH message 2040 transmitted by the first PHY entity 2022 may have the format described in Fig.
  • the second PHY entity 2024 processes the received PRACH message 2040 to determine whether to allow the initial access of the terminal 2010 in step 2050. If the access of the terminal is allowed, the second PHY entity 2024 transmits a random access response (RAR) 2060) to the first PHY entity 2022 for delivery to the terminal 2010 (2060). The first PHY entity 2022 may then transmit a random access response (RAR) to the terminal 2010 (2070).
  • RAR random access response
  • FIG. 21 is a diagram showing a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure, and shows a transmission / reception procedure of the SRS message described above.
  • 21 shows a transmission / reception procedure between the terminal 2110, the first PHY entity (i.e., the MMU 2122), the second PHY entity (i.e., the LDU 2124), and the CU 2126.
  • the CU 2126 may be an entity that is responsible for at least one layer except the physical layer of the base station 2120.
  • the CU 2126 may include at least one of MAC, RLC, PDCP, and RRC layers. It may be the entity that is responsible.
  • the first PHY entity 2122 and the second PHY entity 2124 are each responsible for at least part of the physical layer functions of the base station 2120, and the first PHY entity 2122 and the second PHY entity 2124, The functions of the entire physical layer of the base station 2120 can be implemented.
  • the first PHY entity 2122, the second PHY entity 2124, and the CU 2126 may be connected to implement the entire hierarchical function of the base station 2120.
  • the UE 2110 transmits an SRS to the BS 2120 so that the BS 2120 can estimate the uplink channel (step 2130).
  • the first PHY entity 2122 receives the SRS transmitted by the terminal 2110 and the processing for the SRS is performed by the PHY-H processing block 624 of the second PHY entity 2124
  • the first PHY entity 2122 delivers the SRS it has received to the second PHY entity 2124.
  • the first PHY entity 2122 transmits the SRS message to the second PHY entity 2124 (2140).
  • the SRS message 2140 transmitted by the first PHY entity 2122 may have the format described in FIG.
  • the second PHY entity 2124 may estimate the uplink channel 2150 by processing the received SRS message 2140 and this process may be performed by the PHY-H processing block 2124 of the second PHY entity 2124 described in FIG. Gt; 624 < / RTI >
  • FIG. 22 is a diagram illustrating a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure, and shows transmission / reception procedures of the RE bitmap message, the PRB bitmap message, the scheduling information message, and the UE channel information message .
  • 22 shows a transmission / reception procedure between the terminal 2210, the first PHY entity (i.e., the MMU 2222), the second PHY entity (i.e., the LDU 2224), and the CU 2226.
  • the CU 2226 may be an entity that handles at least one layer excluding the physical layer of the base station 2220.
  • the CU 2226 may include at least one of MAC, RLC, PDCP, and RRC layers. It may be the entity that is responsible.
  • the first PHY entity 2222 and the second PHY entity 2224 are each responsible for at least part of the physical layer functions of the base station 2220 and the first PHY entity 2222 and the second PHY entity 2224, The functions of the entire physical layer of the base station 2220 can be implemented.
  • the first PHY entity 2222, the second PHY entity 2224, and the CU 2226 may be connected to implement the entire hierarchical function of the base station 2220.
  • the second PHY entity 2224 includes an RE bitmap message 2230, a PRB bitmap message 2240, a scheduling information message 2250, a terminal channel information message 2260 May be transmitted to the first PHY entity 2222.
  • the second PHY entity 2224 may transmit the messages shown in FIG. 22 to the first PHY entity 2222 together, and may independently transmit each of the messages at different points in time.
  • the second PHY entity 2224 may transmit the RE bitmap message 2230 and the PRB bitmap message 2240 of the message shown in FIG. 22 first to the first PHY entity 2222, and the scheduling information message 2250 ) And a UE channel information message 2260 to the first PHY entity 2222, and then transmit another message.
  • the first PHY entity 2222 may determine 2273 a beamforming / precoding weight for transmitting a signal to the terminal based on at least one of the messages received from the second PHY entity 2224, .
  • the first PHY entity 2222 transmits a scheduling information message It is possible to refer to which terminal is allocated to a certain radio resource. Also, the first PHY entity 2222 may consider the channel information of the UE in the process of determining the beamforming / precoding weight.
  • the RE bitmap message, the PRB bitmap message, the scheduling information message, and the UE channel information message transmitted by the second PHY entity 2224 may have the formats described in FIGS. 16 through 19, respectively.
  • FIG. 23 is a diagram illustrating a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure, and shows a transmission / reception procedure of the above-described downlink IQ message.
  • 23 shows a transmission / reception procedure between the terminal 2310, the first PHY entity (i.e., the MMU 2322), the second PHY entity (i.e., the LDU 2324), and the CU 2326.
  • the CU 2326 may be an entity for at least one layer other than the physical layer of the base station 2320.
  • the CU 2326 may include at least one of MAC, RLC, PDCP, and RRC layers. It may be the entity that is responsible.
  • the first PHY entity 2322 and the second PHY entity 2324 are each responsible for at least a portion of the physical layer functions of the base station 2320 and the first PHY entity 2322 and the second PHY entity 2324, The functions of the entire physical layer of the base station 2320 can be implemented.
  • the first PHY entity 2322, the second PHY entity 2324, and the CU 2326 may be connected to implement the entire hierarchical function of the base station 2320.
  • an interface may be referred to as an F1 interface, and may be referred to as a mid-haul interface with reference to an interface between a first PHY entity and a second PHY entity referred to as a front-hall interface.
  • the second PHY entity 2324 converts the received downlink user data into IQ data and transmits the IQ message to the first PHY entity 2322 to transmit the converted downlink IQ message to the mobile station 2340 ). 13, the first PHY entity 2322 generates an RF signal based on the received IQ data, and transmits a downlink signal to the terminal 2310 (Step 2350). At this time, it goes without saying that the first PHY entity 2322 can generate and transmit a signal by applying the beamforming / precoding weight determined according to the procedure described above with reference to FIG.
  • FIG. 24 is a diagram illustrating a transmission / reception procedure of a physical layer message according to another embodiment of the present disclosure, and shows a transmission / reception procedure of the uplink IQ message as described above.
  • 24 shows the transmission and reception procedures between the terminal 2410, the first PHY entity (i.e., the MMU 2422), the second PHY entity (i.e., the LDU 2424), and the CU 2426.
  • the CU 2426 may refer to an entity responsible for at least one layer excluding the physical layer of the base station 2420.
  • the CU 2426 may include at least one of MAC, RLC, PDCP, and RRC layers. It may be the entity that is responsible.
  • the first PHY entity 2422 and the second PHY entity 2424 are each responsible for at least a portion of the physical layer functions of the base station 2420 and the first PHY entity 2422 and the second PHY entity 2424, The functions of the entire physical layer of the base station 2420 can be implemented.
  • a first PHY entity 2422, a second PHY entity 2424, and a CU 2426 may be connected to implement the full layer functionality of the base station 2420.
  • the terminal 2420 generates an uplink signal and transmits it to the base station 2420 (2430).
  • the first PHY entity 2422 of the base station 2420 converts the received signal into IQ data, 2 < / RTI > PHY entity 2424.
  • the first PHY entity 2422 may transmit (2440) an IQ message to transmit IQ data to the second PHY entity 2424, and this uplink IQ message may follow the format described in FIG.
  • the first PHY entity 2422 can apply the beamforming / precoding weight determined in accordance with the procedure described above with reference to FIG. 22 in converting the signal received from the terminal 2410 into IQ data.
  • the second PHY entity 2424 processes the received IQ data and transmits the uplink user data to the CU 2426 in step 2450.
  • the uplink user data is transmitted to the CU 2426 ) And the second PHY entity 2424 via the interface.
  • an interface may be referred to as an F1 interface, and may be referred to as a mid-haul interface with reference to an interface between a first PHY entity and a second PHY entity referred to as a front-hall interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 기지국의 물리계층 기능을 분리하는 방법과 장치에 대한 것이다.

Description

무선 통신 시스템에서 물리 계층 기능을 분리하는 방법
본 개시는 일반적으로 무선 통신 시스템에 대한 것이다. 보다 구체적으로, 본 개시는 무선 통신 시스템에서 물리 계층의 기능을 분리하여 구현하는 방법과 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE(long term evolution) 시스템 이후 (post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단 의료 서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
한편, 통신 시스템이 진화함에 따라 기지국을 분리하여 구현하는 방안에 대한 요구가 날로 증대되고 있다.
종래의 LTE 시스템의 무선 프로토콜은 PHY(physical) 계층, MAC(medium access control) 계층, RLC(radio link control) 계층, PDCP(packet data convergence protocol) 계층, RRC(radio resource control) 계층 등으로 이루어진다. 이 중 PHY 계층은 물리 계층이라고도 불리며, 전송채널을 물리채널로 매핑하는 동작을 수행한다. 구체적으로, PHY 계층은 정보 비트에 대한 코딩/디코딩, 변조(modulation)/복조(demodulation), HARQ(hybrid automatic request) 처리, 신호의 시간-주파수 자원으로의 매핑 등 RF(radio frequency) 신호를 생성하고 전송하기 위한 일련의 과정을 담당한다.
이러한 종래 LTE 시스템의 프로토콜에 따른 계층 구조는 통신 시스템의 발전에 따라 급속도로 증가하는 안테나 개수와 채널 대역폭을 효율적으로 지원할 수 없는 문제가 있어, 이에 대한 개선방안이 필요한 실정이다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 문제점들을 해결하기 위한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상술한 과제를 해결하기 위한 일 실시 예에 따른 제1 PHY(physical) 엔티티가 제2 PHY 엔티티와 통신하는 방법은, 제2 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 제2 PHY 엔티티와 통신을 수행하는 단계를 포함하고, 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 제2 PHY 엔티티는 기지국의 상위 물리계층 처리 동작을 수행한다.
상술한 과제를 해결하기 위한 또 다른 실시 예에 따르면, 제1 PHY 엔티티는 하위 물리계층 처리 동작 및 RF(radio frequency) 신호 처리 동작을 수행하고, 하위 물리계층 처리 동작은 FFT(Fast Fourier Transform), CP(Cyclic Prefix) 추가/제거, 프리코딩, 빔포밍 또는 PRACH(Physical Random Access Channel) 필터링 중 적어도 하나를 포함하고, 상위 물리계층 처리 동작은 채널 코딩/디코딩, 변조/복조, 레이어 매핑, RE(Resource Element) 매핑, 채널 추정 또는 PRACH 검출 중 적어도 하나를 포함할 수 잇다.
상술한 과제를 해결하기 위한 또 다른 실시 예에 따르면, 메시지는 사용자 평면 메시지 및 제어 평면 메시지를 포함하고, 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지, 상향링크 IQ 메시지, SRS(sounding reference signal) 메시지 또는 PRACH 메시지 중 적어도 하나를 포함하고, 제어 평면 메시지는 RE 비트맵 메시지, PRB(physical resource block) 비트맵 메시지, 스케쥴링 정보 메시지 또는 단말 채널 정보 메시지 중 적어도 하나를 포함할 수 있다.
상술한 과제를 해결하기 위한 또 다른 실시 예에 따르면, 사용자 평면 메시지의 종류는 서브타입 필드 값에 의해 지시되고, 제어 평면 메시지의 종류는 데이터 필드의 제어타입 필드 값과 서브타입 필드 값에 의해 지시될 수 있다.
상술한 과제를 해결하기 위한 일 실시 예에 따른 제2 PHY 엔티티와 통신하는 제1 PHY 엔티티는, 신호를 송신 및 수신하도록 설정되는 송수신부 및 제2 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 제2 PHY 엔티티와 통신을 수행하도록 설정되는 제어부를 포함하고, 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 제2 PHY 엔티티는 기지국의 상위 물리계층 처리 동작을 수행한다.
상술한 과제를 해결하기 위한 일 실시 예에 따른 제2 PHY 엔티티가 제1 PHY 엔티티와 통신하는 방법은, 제1 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 제1 PHY 엔티티와 통신을 수행하는 단계를 포함하고, 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 제2 PHY 엔티티는 기지국의 상위 물리계층 처리 동작을 수행한다.
상술한 과제를 해결하기 위한 일 실시 예에 따른 제1 PHY 엔티티와 통신하는 제2 PHY 엔티티는, 신호를 송신 및 수신하도록 설정되는 송수신부 및 제1 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 제1 PHY 엔티티와 통신을 수행하는 단계를 포함하고, 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 제2 PHY 엔티티는 기지국의 상위 물리계층 처리 동작을 수행한다.
제안된 실시 예에 따르면, 기지국의 기능을 분리 구현함으로써 통신 효율을 증대시킬 수 있게 됨은 물론이고, 기지국의 구현 부담을 낮추면서 관리 또한 용이하게 할 수 있는 효과를 얻을 수 있다.
도 1은 본 개시의 실시 예와 관련된 무선 네트워크 구조를 도시하는 도면이다.
도 2는 본 개시의 실시 예와 관련된 기지국의 구조를 도시하는 도면이다.
도 3은 본 개시의 실시 예와 관련된 단말의 구조를 도시하는 도면이다.
도 4는 본 개시의 실시 예와 관련된 기지국의 물리 계층을 도시하는 도면이다.
도 5는 본 개시의 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 6A는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 6B는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 7은 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 8은 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 9는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 10은 본 개시의 일 실시 예와 관련된 PHY 엔티티들 간의 메시지 송수신 과정을 도시하는 도면이다.
도 11은 본 개시의 일 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 12는 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 13은 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 14는 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 15는 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 16은 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 17은 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 18은 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 19는 본 개시의 또 다른 실시 예와 관련된 메시지 구조를 도시하는 도면이다.
도 20은 본 개시의 일 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면이다.
도 21은 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면이다.
도 22는 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면이다.
도 23은 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면이다.
도 24는 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면이다.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 개시의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
본 개시에서 실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 개시 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
또한, 본 개시 전체에 걸쳐 사용된 특정 단어 및 문구를 정의한다. 용어 "결합(couple)" 및 이의 파생어는 둘 이상의 요소가 서로 물리적으로 접촉하는지의 여부와 관계없이 둘 이상의 요소 간의 어떤 직접 또는 간접 통신을 지칭한다. 용어 "송신한다", "수신한다" 및 "통신한다" 뿐만 아니라 이의 파생어는 직접 및 간접 통신 모두를 포함한다. 용어 "또는"은 포괄적인 의미로, 및/또는(and/or)을 의미할 수 있다. 문구 "와 관련된(associated with)" 뿐만 아니라 이의 파생어는 포함하고(include), 내에 포함되고(included within), 와 상호 연결하고(interconnect with), 함유하고(contain), 내에 함유되고(be contained within), 에 또는 와 연결하고(connect to or with), 에 또는 와 결합하고(couple to or with), 와 통신 가능하고(be communicable with), 와 협력하고(cooperate with), 인터리브하고(interleave), 병치하고(juxtapose), 에 가까이 있고(be proximate to), 에 또는 와 바운딩되고(be bound to or with), 가지고(have), 소유하고 있고(have a property of), 에 또는 와 관계를 가지고(have a relationship to or with) 등을 의미할 수 있다. 문구 "적어도 하나(at least one of)"는, 항목의 리스트와 함께 사용될 때, 나열된 항목 중 하나 이상의 상이한 조합이 사용될 수 있고, 리스트 내에는 하나의 항목만을 포함하는 경우를 의미할 수도 있다. 예를 들어, "A, B 또는 C 중 적어도 하나"는 다음의 조합: A만, B만, C만, A 및 B, A 및 C, B 및 C, 및 A 및 B 및 C 중 어느 하나를 포함할 수 있다.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시 예들을 상세히 설명한다.
도 1은 본 개시의 실시 예와 관련된 무선 네트워크 구조를 도시하는 도면이다.
도 1은 본 개시에 따른 예시적인 무선 네트워크(100)를 도시한다. 도 1에 도시된 무선 네트워크(100)는 네트워크 배치(deployment)의 일 예를 도시하며, 본 개시의 범위를 벗어나는 다른 방식의 배치 또한 얼마든지 고려될 수 있다.
도 1에서, 무선 네트워크(100)는 기지국(101, 102, 103)을 포함한다. 기지국 101은 기지국 102 및 103과 통신을 수행하며, 적어도 하나의 네트워크(130)와 통신할 수 있다. 기지국 102, 103은 각각 자신의 커버리지(120, 125) 내에 위치한 복수의 단말(111, 112, 113, 114, 115, 116)에 대한 무선 접속을 제공한다. 도 1에서 기지국(101, 102, 103)과 단말(111, 112, 113, 114, 115, 116)은 5G, NR(new radio), LTE, LTE-A, HSPA(high speed packet access), WiMAX, WiFi를 포함하는 다양한 종류의 무선 접속 방식(RAT: Radio Access Technology)에 기반하여 서로 통신을 수행할 수 있다.
이하에서, 용어 "기지국"은 송신 포인트(TP: transmission point), 송수신 포인트(TRP: transmission and reception point), 강화된 기지국(enhanced Node B: eNB), gNB, 매크로 셀, 펨토 셀, WiFi AP(Access Point) 등 다양한 객체를 의미할 수 있으며, 용어 "단말"은 사용자 장치(UE: user equipment), 이동국(mobile station), 가입자국(subscriber station), 무선 송수신기(WTRU: wireless transmission reception unit), 사용자 디바이스 등 다양한 객체를 의미할 수 있다.
도 1에 도시된 무선 네트워크(100)의 구성에 다양한 변경이 이루어질 수 있음은 앞서 설명한 바 있다. 예를 들어, 무선 네트워크(100)는 임의의 수의 기지국 및 단말을 포함할 수 있으며, 각 기지국은 하나 이상의 단말과 직접 통신하며 네트워크(130)에 대한 단말의 접속을 제공할 수 있다.
도 2는 본 개시의 실시 예와 관련된 기지국의 구조를 도시하는 도면이다. 도 2는 기지국(102)의 구조의 일 예를 도시하며, 기지국(102)은 도 2에 도시된 구성 외에 다른 구성을 더 포함하도록 구현되거나 도시된 구성 중 일부를 생략하도록 구현되는 등 다양한 구성으로 구현될 수 있다. 또한, 도 2에 도시된 기지국(102)의 다양한 구성은 서로 통합되거나, 각각의 구성이 더 세분화되어 분리될 수도 있다.
도 2에 도시된 실시 예에서, 기지국(102)은 다수의 안테나(205a-205n), 다수의 RF 송수신기(210a-210n), 송신(TX) 처리 회로(215) 및 수신(RX) 처리 회로(220)를 포함한다. 기지국(102)은 또한 제어기/프로세서(225), 메모리(230) 및 백홀/네트워크 인터페이스(235)를 포함한다.
RF 송수신기(210a-210n)는 안테나(205a-205n)를 통해서 다른 디바이스(예를 들어, 단말, 다른 기지국 등)에 의해 송신된 RF 신호를 수신한다. RF 송수신기(210a-210n)는 기저 대역 신호를 생성하기 위해서 RF 신호를 하향 변환시킨다. 하향 변환된 신호는 필터링, 디코딩 및/또는 디지털화를 통해 기저 대역 신호를 생성하는 RX 처리 회로(220)로 송신된다. RX 처리 회로(220)는 처리된 기저 대역 신호를 추가적으로 처리하기 위한 제어기/프로세서(225)로 송신한다.
TX 처리 회로(215)는 제어기/프로세서(225)로부터 아날로그 또는 디지털 데이터를 수신한다. TX 처리 회로(215)는 기저 대역 신호를 생성하기 위해 기저 대역 데이터를 인코딩, 다중화 및/또는 디지털화한다. RF 송수신기(210a-210n)는 TX 처리 회로(215)로부터 전송된 처리된 기저 대역 신호를 수신하고, 기저 대역 신호를 안테나(205a-205n)를 통해 송신되는 RF 신호로 상향 변환한다.
상술한 RF 송수신기(210a-210n), TX 처리 회로(215) 및 RX 처리 회로(220) 중 하나 이상이 통합되어 송수신부(transceiver)로 불릴 수도 있다.
제어기/프로세서(225)는 기지국(102)의 전체 동작을 제어하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 제어기/프로세서(225)는 RF 송수신기(210a-210n), RX 처리 회로(220) 및 TX 처리 회로(215)에 의해 순방향 채널 신호를 수신하고 역방향 채널 신호를 송신하도록 제어할 수 있다. 또한, 제어기/프로세서(225)는 업링크(UL: uplink) 채널 및/또는 다운링크(DL: downlink) 채널의 처리를 위한 회로, 프로그래밍 또는 이의 조합을 포함할 수 있다. 예를 들어, 제어기/프로세서(225)는 제어기/프로세서로 하여금 신호를 처리하게 하도록 구성되는 메모리(230)에 저장된 하나 이상의 명령어(instructions)를 실행하도록 구성될 수 있다.
제어기/프로세서(225)는 백홀(backhaul)/네트워크 인터페이스(235)와 연결된다. 백홀/네트워크 인터페이스(235)는 기지국(102)이 백홀 연결 또는 네트워크를 통해 다른 디바이스 또는 시스템과 통신하도록 허용한다. 백홀/네트워크 인터페이스(235)는 유선 또는 무선 연결을 통한 통신을 지원할 수 있다.
메모리(230)는 제어기/프로세서(225)에 결합된다. 메모리(230)는 기지국(102)에서 처리되는 다양한 정보나 데이터를 저장할 수 있다.
도 3은 본 개시의 실시 예와 관련된 단말의 구조를 도시하는 도면이다. 도 3은 단말(116)의 구조의 일 예를 도시하며, 단말(116)은 도 3에 도시된 구성 외에 다른 구성을 더 포함하도록 구현되거나 도시된 구성 중 일부를 생략하도록 구현되는 등 다양한 구성으로 구현될 수 있다. 또한, 도 3에 도시된 단말(116)의 다양한 구성은 서로 통합되거나, 각각의 구성이 더 세분화되어 분리될 수도 있다.
도 3에 도시된 실시 예에서, 단말(116)은 하나 이상의 안테나(305a-305n), 하나 이상의 RF 송수신기(310a-310n), 송신(TX) 처리 회로(315) 및 수신(RX) 처리 회로(325)를 포함한다. 단말(116)은 또한 마이크로폰(320), 스피커(330), I/O IF(In and Out Interface, 345) 프로세서(340), 터치스크린(350), 디스플레이(355), 및 메모리(360)를 포함하며, 메모리(360)는 운영 체제(OS: operating system, 361) 및 하나 이상의 애플리케이션(362)을 포함한다.
RF 송수신기(310a-310n)는 안테나(305a-305n)를 통해서 네트워크의 기지국에 의해 송신된 RF 신호를 수신한다. RF 송수신기(310a-310n)는 기저 대역 신호를 생성하기 위해서 RF 신호를 하향 변환시킨다. 하향 변환된 신호는 필터링, 디코딩 및/또는 디지털화를 통해 기저 대역 신호를 생성하는 RX 처리 회로(325)로 송신된다. RX 처리 회로(325)는 처리된 기저 대역 신호를 추가적으로 처리하기 위한 프로세서(340)로 송신하거나 스피커(330)로 전송하여 음향 신호로 출력할 수 있다.
TX 처리 회로(325)는 프로세서(340)로부터 아날로그 또는 디지털 데이터를 수신하거나 마이크로폰(320)으로부터 아날로그 또는 음향 데이터를 입력받을 수 있다. TX 처리 회로(325)는 기저 대역 신호를 생성하기 위해 기저 대역 데이터를 인코딩, 다중화 및/또는 디지털화한다. RF 송수신기(310a-310n)는 TX 처리 회로(325)로부터 전송된 처리된 기저 대역 신호를 수신하고, 기저 대역 신호를 안테나(305a-305n)를 통해 송신되는 RF 신호로 상향 변환한다.
상술한 RF 송수신기(310a-310n), TX 처리 회로(315) 및 RX 처리 회로(325) 중 하나 이상이 통합되어 송수신부(transceiver)로 불릴 수도 있다.
프로세서(340)는 단말(116)의 전체 동작을 제어하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 프로세서(340)는 RF 송수신기(310a-310n), RX 처리 회로(325) 및 TX 처리 회로(315)에 의해 순방향 채널 신호를 수신하고 역방향 채널 신호를 송신하도록 제어할 수 있다. 또한, 프로세서(340)는 업링크(UL: uplink) 채널 및/또는 다운링크(DL: downlink) 채널의 처리를 위한 회로, 프로그래밍 또는 이의 조합을 포함할 수 있다. 예를 들어, 프로세서(340)는 프로세서로 하여금 신호를 처리하게 하도록 구성되는 메모리(360)에 저장된 하나 이상의 명령어(instructions)를 실행하도록 구성될 수 있다.
프로세서(340)는 메모리(360)에 기록된 다른 프로세스나 및 프로그램을 실행할 수 있으며, 메모리(360)로 데이터를 기록하거나 메모리(360)로부터 데이터를 추출할 수 있다. 프로세서(340)는 OS(361)에 기초하여 애플리케이션(362)을 실행할 수 있다. 프로세서(340)는 단말(116)을 다른 디바이스에 연결하는 능력을 제공하는 I/O IF(345)에 결합된다. I/O IF(345)는 다른 디바이스와 프로세서(340) 간의 통신 경로이다.
프로세서(340)는 또한 터치스크린(350) 및 디스플레이(355)에 결합된다. 단말(116)의 사용자는 터치스크린(350)을 이용하여 데이터를 단말(116)에 입력할 수 있다. 디스플레이(355)는 단말(116)이 처리한 정보와 데이터를 텍스트 및/또는 그래픽 처리하여 시각적으로 출력할 수 있다.
메모리(360)는 프로세서(340)에 결합된다. 메모리(360)는 단말(116)에서 처리되는 다양한 정보나 데이터를 저장할 수 있다.
도 4는 본 개시의 실시 예와 관련된 기지국의 물리 계층을 도시하는 도면이다. 도 4의 위쪽에는 기지국의 물리 계층에서 하향링크 신호를 전송하는 일련의 과정을 도시하며, 도 4의 아래쪽에는 기지국의 물리 계층에서 수신된 상향링크 신호를 처리하는 일련의 과정을 도시한다.
도 4에서 기지국의 물리 계층은 RF 기능을 담당하는 RU(RF unit)와 RF 기능을 제외한 물리 계층의 나머지 기능을 담당하는 DU(Digital unit)를 포함한다.
도 4에서, 기지국의 DU는 하향링크 신호 전송을 위해 데이터 채널, 제어 채널, PBCH(physical broadcast channel)에 대해 채널 코딩(channel coding), 변조(modulation), 레이어 매핑(layer mapping)을 수행하며, 단말 특정 DMRS(UE-specific demodulation reference signal)를 생성하여 레이어 매핑을 수행한다. 이어서, DU는 레이어 당 RE 매핑(resource element mapping per layer), 프리코딩& 디지털 BF(precoding & digital beamforming), iFFT/CP 부가(inverse fast Fourier transform / cyclic prefix addition)를 수행하며, RU는 DU로부터 처리된 결과를 전달받아 RF 신호를 생성하고 안테나를 통해 하향링크 RF 신호를 전송한다.
도 4에서, 기지국의 RU는 단말로부터 상향링크 신호를 수신하며, 수신된 신호를 처리하여 DU로 전송한다. 이어서, DU는 수신된 신호에 대하여 FFT/CP 제거, 디지털 BF(digital beamforming), RE 디매핑(RE de-mapping), 채널추정/등화(channel estimation/equalization), iDFT(inverse discrete Fourier transform), 복조(demodulation), 디코딩을 거쳐 데이터 채널과 제어 채널을 획득하거나, FFT/CP 제거된 데이터로부터 SRS(sounding reference signal)에 기반한 상향링크 채널 추정을 수행하거나, RU로부터 수신된 신호에 PRACH(physical random access channel) 필터링과 프리 필터링(pre-filtering)를 거쳐 PRACH 검출을 수행한다.
3GPP(3rd generation partnership project) 표준이 발전함에 따라 무선 통신에 사용되는 채널 대역폭이 점차 증가하고 있을 뿐 아니라, 6GHz 를 넘는 초고주파 대역을 이용하는 NR(new radio) 통신 시스템에서 massive MIMO(multiple input multiple output) 안테나 구조 또한 고려되고 있다. 이에 따라, 상술한 기지국 물리 계층의 RU-DU 구조에 따르면 RU와 DU 간의 프론트홀(fronthaul) 대역폭이 급속히 증가하게 된다. 특히 이러한 차세대 통신 시스템에서 제공되는 서비스는 처리해야 할 정보의 양과 종류가 기하급수적으로 증가하면서도 통신의 응답성과 신호처리의 신속성을 요구하는 특징이 있다. 이러한 통신 환경의 특성을 반영하여 효율적인 통신을 수행하기 위하여, 기지국 물리 계층에 대한 새로운 제안이 필요하다.
도 5는 본 개시의 일 실시 예와 관련하여 분리된 물리 계층 구조를 도시하는 도면이다. 도 5에 도시된 실시 예에 따르면, 기지국의 물리 계층(500)이 기능 분리(functional split)를 통해 2개의 엔티티로써 구현된다.
물리 계층(500)이 수행하는 다양한 기능에 대해서 도 4에서 설명한 바 있듯이, 물리 계층(500)에서 기능을 분리하기 위한 다양한 방안이 고려될 수 있다. 물리 계층(500)은 복수의 기능 중 적어도 하나를 포함하는 제1 PHY 엔티티(510)와 복수의 기능 중 또 다른 적어도 하나를 포함하는 제2 PHY 엔티티(520)로써 분리 구현될 수 있으며, 제1 PHY 엔티티(510)와 제2 PHY 엔티티(520) 간의 인터페이스를 프론트홀(fronthaul) 인터페이스(530)라 부를 수 있다.
도 5에 도시된 바와 같이, 제1 PHY 엔티티(510)는 안테나와 연결되어 RF 기능을 담당하는 엔티티로써, 하위 물리 계층(low PHY layer)라 불릴 수 있다. 제2 PHY 엔티티(520)는 제1 엔티티(510)가 담당하는 기능을 제외한 나머지 기능을 담당하는 엔티티로써, 상위 물리 계층(high PHY layer)이라 불릴 수 있다.
이하에서는 구체적으로 제1 PHY 엔티티(510)와 제2 PHY 엔티티(520)가 어떻게 구성되는지에 대해 설명한다.
도 6A는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이고, 도 6B는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다.
도 6A은 도 5에서 설명한 제1 PHY 엔티티(510)의 구체적인 구성을 도시한다. 기지국의 물리계층 기능 중 RF 기능을 포함한 하나 이상의 기능을 담당하는 제1 PHY 엔티티는 MMU(massive MIMO unit, 610)라 불릴 수 있으며, MMU(610)는 안테나(614)와 연결되어 RF 처리를 수행하는 RF 처리 블록(614), 물리 계층의 일부 기능(즉, 하위 물리 계층의 기능)을 담당하는 PHY-L 처리 블록(616), 제2 PHY 엔티티와 통신하기 위한 프론트홀 인터페이스 블록(618)을 포함한다.
RF 처리 블록(614)과 PHY-L 처리 블록(616)이 수행하는 각각의 동작에 대해서는 앞서 도 2, 도 4에서 상세히 기술한 바 있다. 예를 들어, RF 처리 블록(614)은 전력 증폭, LNA(low noise amplifier), ADC/DAC 변환, 상향/하향 변환 등 RF 프론트엔드(frontend) 동작을 수행한다. 예를 들어, 제1 PHY 엔티티(610)는 PHY-L 처리 블록(616)을 통해 FFT/iFFT, 프리코딩, 디지털 빔포밍, PRACH 필터링 등의 동작을 수행할 수 있다.
한편, 제1 PHY 엔티티(또는 MMU, 610)는 프론트홀 인터페이스 블록(618)을 통해 제2 PHY 엔티티(또는 후술할 LDU)와 메시지를 주고받으며 통신을 수행한다. 프론트홀 인터페이스 블록(618)은 제1 PHY 엔티티(610)가 RF 신호를 처리하면 처리된 신호를 제2 PHY 엔티티로 전송할 수 있으며, 제2 PHY 엔티티가 전송한 신호를 수신하고 처리하여 RF 신호를 생성하도록 RF 처리 블록(614)으로 전송할 수도 있다. 예를 들어, 제1 PHY 엔티티(610)의 프론트홀 인터페이스 블록(618)은 제2 PHY 엔티티(620)와 주고받는 메시지를 패킷화(packetization)/역패킷화(de-packetization)할 수 있으며, 이더넷(Ethernet) 프로토콜로써 송수신할 수 있다.
도 6B는 도 5에서 설명한 제2 PHY 엔티티(520)의 구체적인 구성을 도시한다. 기지국의 물리계층 기능 중 RF 기능을 제외한 하나 이상의 기능을 담당하는 제2 PHY 엔티티는 LDU(light digital unit, 620)라 불릴 수 있으며, LDU(620)는 제1 PHY 엔티티(또는, MMU)와 통신하기 위한 프론트홀 인터페이스 블록(622) 및 물리 계층의 일부 기능(즉, 상위 물리 계층의 기능)을 담당하는 PHY-H 처리 블록(624)을 포함한다. PHY-H 처리 블록(624)이 수행하는 구체적인 동작은 도 2 및 도 4에서 상세히 기술한 바 있다. 예를 들어, 제2 PHY 엔티티(620)는 PHY-H 처리 블록(624)을 통해 채널 코딩/디코딩, 변조/복조, 채널 추정/등화, RE 매핑/디매핑, 레이어 매핑 등의 동작을 수행할 수 있다.
한편, 제2 PHY 엔티티(또는 LDU, 620)는 프론트홀 인터페이스 블록(622)을 통해 제1 PHY 엔티티(또는 MMU)와 메시지를 주고받으며 통신을 수행한다. 프론트홀 인터페이스 블록(622)은 제1 PHY 엔티티(610)로부터 신호를 수신하여 처리하거나, 제1 PHY 엔티티(610)를 통해 전송할 신호를 제1 PHY 엔티티(610)로 전달할 수 있다. 예를 들어, 제2 PHY 엔티티(620)의 프론트홀 인터페이스 블록(622)은 제1 PHY 엔티티(610)와 주고받는 메시지를 패킷화(packetization)/역패킷화(de-packetization)할 수 있으며, 이더넷(Ethernet) 프로토콜로써 송수신할 수 있다.
도 6A 및 도 6B에서 설명한 바에 따라 기지국의 물리 계층 기능을 분리함으로써 제1 PHY 엔티티(또는 MMU) 및 제2 PHY 엔티티(또는 LDU)로 구현하는 경우, 도 4에서 설명한 RU-DU 구조에 비하여 제1 PHY 엔티티와 제2 PHY 엔티티 간의 프론트홀 대역폭의 부담이 줄 수 있다. 뿐만 아니라, MMU가 일정 수준의 물리 계층 기능을 담당하므로, MMU가 실제로 건물의 옥상이나 전신주 등에 배치(deploy)되었을 때 표준규격의 발전에 따른 동작을 지원하기 위해서 MMU를 빈번하게 교체하는 부담 또한 덜 수 있다.
한편, 도 6A 및 도 6B에서 설명했듯이 제1 PHY 엔티티(즉, MMU) 및 제2 PHY 엔티티(즉, LDU)는 각각 기지국의 물리 계층 중 적어도 일부를 담당하는데, 제1 PHY 엔티티와 제2 PHY 엔티티는 각각 물리적으로 독립된 장치로써 분리 구현될 수 있다. 다시 말해서, 제1 PHY 엔티티와 제2 PHY 엔티티 각각은 별도의 하드웨어 디바이스로써 구현되고, 프론트홀 인터페이스를 통해 서로 간에 유선 또는 무선으로 통신할 수 있다. 물론, 제1 PHY 엔티티와 제2 PHY 엔티티가 하나의 하드웨어 내에서 논리적으로 구분되는 방식으로 구현될 수 있음은 물론이다.
도 7, 도 8, 도 9는 본 개시의 또 다른 일 실시 예와 관련된 분리된 물리 계층 구조를 도시하는 도면이다. 도 7 및 도 8은 하향링크 전송 상황에 대한 기지국의 물리 계층 구조의 일 예를 도시하며, 도 9는 상향링크 수신 상황에 대한 기지국의 물리 계층 구조의 일 예를 도시한다.
도 7은 도 6A 및 도 6B에서 설명한 실시 예가 LTE/LTE-A 통신 시스템에 적용되는 예시를 도시하는 도면이다. 즉, 도 7에 도시된 분리 구조(700)는 LTE/LTE-A 통신 시스템의 기지국인 eNB의 물리 계층이 분리되는 실시 예를 도시한다. 도 7에서 eNB의 물리 계층은 제1 PHY 엔티티(또는 MMU, 710)와 제2 PHY 엔티티(또는 LDU, 720)로 분리될 수 있으며, 제1 PHY 엔티티(710)와 제2 PHY 엔티티(720) 간에는 프론트홀(730)로 연결될 수 있다. 프론트홀(730)은 xRAN FH(xRAN fronthaul)로 불릴 수도 있다.
도 8은 도 6A 및 도 6B에서 설명한 실시 예가 NR 통신 시스템에 적용되는 예시를 도시하는 도면이다. 즉, 도 8에 도시된 분리 구조(800)는 NR 통신 시스템의 기지국인 gNB의 물리 계층이 분리되는 실시 예를 도시한다. 도 8에서 gNB의 물리 계층은 제1 PHY 엔티티(또는 MMU, 810)와 제2 PHY 엔티티(또는 LDU, 820)로 분리될 수 있으며, 도 7과 유사하게 제1 PHY 엔티티(810)와 제2 PHY 엔티티(820)는 프론트홀(830)을 통해 연결될 수 있다.
도 9는 도 6A 및 도 6B에서 설명한 제1 PHY 엔티티(또는 MMU, 910)와 제2 PHY 엔티티(또는 LDU, 920)가 프론트홀(930)을 통해 시그널링을 주고받으며 수행하는 세부적인 물리계층 동작들을 도시하는 또 다른 도면이다.
이상에서 물리 계층 동작 중에서 RF 기능과 일부 물리계층 동작을 담당하는 제1 PHY 엔티티와 나머지 물리계층 동작을 담당하는 제2 PHY 엔티티에 대해 구체적으로 설명하였다. 한편, 제1 PHY 엔티티와 제2 PHY 엔티티의 명칭을 각각 MMU, LDU 로 예로 들어 설명하였는데, 이러한 명칭은 단순한 예시에 불과하다. 또 다른 예를 들면, 기지국의 전체 계층이 분리되는 CU-DU split(central unit - distributed unit split) 구조와 관련지어서, 제1 PHY 엔티티를 DU-L(distributed unit lower layer part), 제2 PHY 엔티티를 DU-H(distributed unit higher layer part)로 명명할 수도 있다. 또 다른 예를 들면, 물리계층 기능을 RU-DU 로 분리하여 설명하는 구조와 관련지어서, 제1 PHY 엔티티를 RU(radio unit), 제2 PHY 엔티티를 LLS-CU(lower layer split - central unit)로 명명할 수도 있다. 그 외에도 각 엔티티의 명칭은 얼마든지 다른 이름으로 제1 PHY 엔티티와 제2 PHY 엔티티를 명명될 수 있다.
이상에서는 기지국의 물리계층 기능을 분리 구현하는 실시 예를 구체적으로 설명한 바 있다. 이하에서는 제1 PHY 엔티티와 제2 PHY 엔티티가 분리 구현될 때 두 엔티티 간에 주고받는 메시지와 시그널링 절차에 대해 구체적인 실시 예를 설명한다.
도 10은 본 개시의 일 실시 예와 관련된 PHY 엔티티들 간의 메시지 송수신 과정을 도시하는 도면이다. 제1 PHY 엔티티(또는 MMU, 1010)와 제2 PHY 엔티티(또는 LDU, 1020) 간에 송수신하는 메시지는 크게 사용자 평면(user plane) 메시지와 무선 특정 제어 평면(radio specific control plane) 메시지로 구분될 수 있다.
사용자 평면 메시지는 단말로 전송하거나 단말로부터 수신하는 데이터를 제1 PHY 엔티티(1010)와 제2 PHY 엔티티(1020) 간에 주고받기 위한 메시지이다. 일 실시 예에 의하면 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지(1032), 상향링크 IQ 메시지(1034), SRS(sounding reference signal) 메시지(1036), PRACH(physical random access channel) 메시지(1038)를 포함할 수 있다. 일 실시 예에 의한 제어 평면 메시지는 RE(resource element) 비트맵 메시지(1040), PRB(physical resource block) 비트맵 메시지(1042), 스케쥴링 정보 메시지(1044), 단말 채널 정보 메시지(1046)를 포함할 수 있다.
이하에서는 상술한 메시지 각각에 대해 구체적으로 설명한다.
먼저, 사용자 평면 메시지는 IEEE 표준규격 1914.3을 기반으로 메시지 포맷이 정의된다. 사용자 평면 메시지의 종류는 ROE(radio over Ethernet) 헤더의 서브타입 필드 값에 의해 구분될 수 있다. 아래의 표 1은 이와 같은 서브타입 필드 값과 사용자 평면 메시지의 종류에 대한 구체적인 구현 예를 나타낸다.
서브타입 필드 매핑 설명
0000 0000b RoE Control sub type Control packet between the RoE control node and RoE controlled node.
0000 0001b Reserved Reserved
0000 0010b RoE Structure-agnostic data sub type Data payload packet with RoE common frame header and structure-agnostic payload.
0000 0011b RoE Structure-aware CPRI data sub type Data payload packet with RoE common frame header and structure-aware CPRI data payload.
0000 0100b RoE Slow C&M CPRI sub type C&M payload packet with common RoE frame header and structure-aware CPRI Slow C&M payload.
0000 0101b 0000 1111b Reserved Reserved for future sub types.
0001 0000b RoE Native time domain data sub type Time domain data payload packet with RoE common frame header.
0001 0001b RoE Native frequency domain data sub type Frequency domain data payload packet with RoE common frame header.
0001 0010b RoE Native PRACH data sub type PRACH IQ data payload with common frame header
0001 0011b SRS subtype SRS IQ data payload
0001 0100b 0001 0111b Reserved Reserved for future sub types.
0001 1000b Radio specific control subtype Radio specific control information
0001 0101b 1111 1011b Reserved Reserved for future sub types.
1111 1100b - 1111 1111b Experimental Reserved for experimental types.
위 표 1에서 서브타입 필드 값이 00010001b, 00010010b, 00010011b 인 경우, 각각 사용자 평면 메시지 중에서 IQ 메시지, PRACH 메시지, SRS 메시지임을 나타낼 수 있다.
다음으로, 제어 평면 메시지 또한 IEEE 표준규격 1914.3을 기반으로 메시지 포맷이 정의된다. 제어 평면 메시지의 종류는 ROE(radio over Ethernet) 헤더의 서브타입 필드 값과 함께 데이터 내의 RS(radio specific) 제어헤더 내의 RS 제어타입 (radio specific control header) 필드 값에 의해 구분될 수 있다. 예를 들어, 표 1에서 서브타입 필드 값이 00011000b인 경우 메시지 포맷이 제어 평면 메시지임을 나타낼 수 있으며, 제어 평면 메시지 중에서 세부적인 종류는 아래의 표 2에 따라 RS 제어타입 필드 값에 의해 구분될 수 있다.
RS 제어 타입 필드 매핑 설명
0000 0000b RE bitmap Information about beam weights per RE
0000 0001b PRB bitmap Information for indicating whether each RB is used for cell-specific beamforming or for UE-specific beamforming
0000 0010b Scheduling information Information for indicating which UE is allocated to each RB
0000 0011b UE channel information UE뭩 channel information obtained from SRS data
0000 0100b 1111 1111b Reserved For future use
위 표 1 및 표 2는 제1 PHY 엔티티와 제2 PHY 엔티티 간의 메시지 종류를 구분하기 위한 일 실시 예이다. 다시 말해서, 제1 PHY 엔티티와 제2 PHY 엔티티 간의 프론트홀 인터페이스를 통해 송수신되는 메시지는 다른 방식, 다른 필드, 다른 값에 의해 구분될 수도 있다.
이하에서는 도 11 내지 도 19를 통해 상술한 실시 예에 따른 구체적인 메시지 구조를 설명한다.
도 11은 사용자 평면 메시지의 구조에 대한 일 실시 예를 도시하는 도면이다. 도 11에 도시된 메시지 구조에서 ROE 헤더의 서브타입 필드(1120) 값이 소정의 값을 나타내는 경우, 메시지의 데이터 필드(1130)에는 사용자 평면 메시지가 포함될 수 있다. 또한, 서브타입필드(1120)가 지시하는 구체적인 값에 따라 사용자 평면 메시지의 종류 또한 달라질 수 있다.
도 11에 도시된 예에서 서브타입 필드(1120) 값이 17(표 1에서 00010001b)을 나타내는 경우 데이터 필드(1130)는 IQ 메시지(1142)를 포함하고, 18(표 1에서 00010010b)을 나타내는 경우 데이터 필드(1130)는 PRACH 메시지(1144)를 포함하고, 19(표 1에서 00010011b)을 나타내는 경우 데이터 필드(1130)는 SRS 메시지(1146)를 포함할 수 있다.
도 12는 제어 평면 메시지의 구조에 대한 일 실시 예를 도시하는 도면이다. 도 12에 도시된 메시지 구조에서 ROE 헤더의 서브타입 필드(1220) 값이 소정의 값을 나타내는 경우, 메시지의 데이터 필드(1230)에는 제어 평면 메시지가 포함될 수 있다. 또한, 서브타입 필드(1220)가 제어평면 메시지임을 지시하면(예를 들어, 표 1에서 00011000b), 데이터필드(1230) 내의 RS 제어타입 필드(1240) 값에 따라 페이로드(1250) 내에 포함된 데이터의 종류 또한 달라질 수 있다.
예를 들어, RS 제어타입 필드(1240)가 표 2에 기재된 값을 가지는 경우, 각각의 값에 따라 페이로드(1250)에 포함된 메시지가 RE 비트맵 메시지(1262), PRB 비트맵 메시지(1264), 스케쥴링 정보 메시지(1266), 단말 채널 정보 메시지(1268)임을 나타낼 수 있다.
도 13은 IQ 메시지의 구체적인 포맷을 도시하는 도면이다. IQ 메시지(1300)는 주파수 도메인 IQ 샘플을 하향링크 방향 또는 상향링크 방향으로 전달하기 위해 사용될 수 있다. IQ 메시지(1300)의 데이터 필드(1310)에는 첫번째 RB(resource block)의 첫번째 서브캐리어로부터 N번째 RB의 12번째 서브캐리어까지의 IQ 값이 패킷화되어 순차적으로 포함되며, 각각의 IQ 값을 나타내는 비트의 수는 30 비트 미만이 될 수 있다. IQ 값을 나타내는 비트의 수는 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 14는 PRACH 메시지의 구체적인 포맷을 도시하는 도면이다. PRACH 메시지(1400)는 상향링크 방향으로의 시간 도메인(또는 주파수 도메인)의 PRACH IQ 샘플을 전달하기 위해 사용될 수 있다. PRACH 메시지(1400)의 데이터 필드(1410)에는 시간 도메인 샘플링 순서로 IQ 샘플이 패킷화되어 포함될 수 있으며, 각각의 IQ 값을 나타내는 비트의 수는 30 비트 미만이 될 수 있다. IQ 값을 나타내는 비트의 수는 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 15는 SRS 메시지의 구체적인 포맷을 도시하는 도면이다. SRS 메시지(1500)는 상향링크 방향으로의 주파수 도메인의 SRS IQ 샘플을 전달하기 위해 사용될 수 있다. SRSR 메시지(1500)의 데이터 필드(1510)에는 첫번째 RB의 첫번째 서브캐리어로부터 N 번째 RB의 12번재 서브캐리어까지의 IQ 값이 패킷화되어 순차적으로 포함되며, 각각의 IQ 값을 나타내는 비트의 수는 30 비트 미만이 될 수 있다. IQ 값을 나타내는 비트의 수는 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 16은 RE 비트맵 메시지의 구체적인 포맷을 도시하는 도면이다. RE 비트맵 메시지(1600)는 각각의 RE에 대해 적용될 빔 가중치(beam weight)의 종류를 지시하는 가중치 인덱스를 포함할 수 있다. RE 비트맵 메시지(1600)의 데이터 필드(1610) 내의 페이로드(1615)는 첫번째 RB의 첫번째 심볼의 첫번째 RE에 대한 가중치 인덱스로부터 N 번째 RB의 14번째 심볼의 12번째 RE에 대한 가중치 인덱스까지 패킷화되어 순차적으로 포함될 수 있으며, RB의 크기 N은 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 17은 PRB 비트맵 메시지의 구체적인 포맷을 도시하는 도면이다. PRB 비트맵 메시지(1700)는 각각의 RB가 셀 특정적 빔포밍(cell-specific beamforming) 또는 단말 특정적 빔포밍(UE-specific beamforming)을 위해 사용되는지 지시하는 정보를 포함할 수 있다. PRB 비트맵 메시지(1700)의 데이터 필드(1710) 내의 페이로드(1715)는 첫번째 RB를 위한 셀-특정적 빔포밍 지시자로부터 N 번째 RB를 위한 셀-특정적 빔포밍 지시자까지 순차적으로 패킷화되어 포함될 수 있다. 셀-특정적 지시자는 1비트 길이로 0b 값은 단말-특정적 빔포밍을 지시하며 1b 값은 셀-특정적 빔포밍을 지시한다. RB의 크기 N은 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 18은 스케쥴링 정보 메시지의 구체적인 포맷을 도시하는 도면이다. 스케쥴링 정보 메시지(1800)는 각각의 RB에 어떠한 단말이 할당되는지 지시하는 정보를 포함할 수 있다. 스케쥴링 정보 메시지(1800)의 데이터 필드(1810) 내의 페이로드(1815)는 상향링크/하향링크 지시자로부터 시작되어 암호화(encapsulated)되며, 지시자의 0값은 하향링크를 나타내고 1 값은 상향링크를 나타낸다. 상향링크/하향링크 지시자에 이어서, 페이로드(1815)에는 첫번째 레이어에서 첫번째 RB에 할당된 단말 ID로부터 L번째 레이어에서 N 번째 RB에 할당된 단말 ID까지 순차적으로 패킷화되어 포함될 수 있다. RB의 크기 N과 레이어의 크기 L은 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
도 19는 단말 채널 정보 메시지의 구체적인 포맷을 도시하는 도면이다. 단말 채널 정보 메시지(1900)는 특정한 단말의 채널 정보를 포함할 수 있다. 단말 채널 정보 메시지(1900)의 데이터 필드(1910) 내의 페이로드(1915)는 단말 ID, RB 위치, RB 크기 순서로 암호화되며, 단말 ID는 12비트로 특정 단말을 지시하고, RB 위치는 10 비트로 특정 단말의 SRS RB 위치를 지시하고, RB 크기는 10 비트로 특정 단말의 SRS RB 크기를 지시한다. 단말 ID, RB 위치, RB 크기에 이어서, 페이로드(1915)에는 첫번째 안테나의 RB 위치에 대한 IQ 값으로부터 M번째 안테나의 RB크기+RB위치에 대한 IQ 값까지 순차적으로 포함될 수 있다. 각각의 IQ 값을 나타내는 비트의 수는 30 비트 미만이 될 수 있고, IQ 값을 나타내는 비트의 크기와 안테나의 수 M은 제1 PHY 엔티티와 제2 PHY 엔티티 간에 미리 설정될 수 있으며, 셀 셋업 시점에 설정될 수 있다.
이하에서는 앞서 도 11 내지 도 19에서 설명한 실시예에 따른 메시지가 제1 PHY 엔티티와 제2 PHY 엔티티 간에 전달되는 과정을 도면을 참조하여 구체적으로 설명한다.
도 20은 본 개시의 일 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면으로, 앞서 설명한 PRACH 메시지의 송수신 절차를 도시한다. 도 20에는 단말(2010), 제1 PHY 엔티티(즉, MMU, 2022), 제 2 PHY 엔티티(즉, LDU, 2024), CU(2026) 간의 송수신 절차가 도시된다. CU(2026)는 기지국(2020)의 물리계층을 제외한 적어도 하나의 계층을 담당하는 엔티티를 의미할 수 있으며, 예를 들어 CU(2026)는 MAC, RLC, PDCP, RRC 계층 중 적어도 하나의 기능을 담당하는 엔티티일 수 있다. 도 20에서 제1 PHY 엔티티(2022)와 제2 PHY 엔티티(2024)는 각각 기지국(2020)의 물리 계층 기능 중 적어도 일부를 담당하며, 제1 PHY 엔티티(2022)와 제2 PHY 엔티티(2024)가 함께 기지국(2020)의 물리계층 전체의 기능을 구현할 수 있다. 제1 PHY 엔티티(2022), 제2 PHY 엔티티(2024), CU(2026)가 연결되어 기지국(2020)의 전체 계층 기능을 구현할 수 있다.
도 20에서 단말(2010)은 기지국(2020)과의 초기접속을 위해 기지국(2020)으로 랜덤 액세스 프리엠블을 전송한다(2030). 단말(2010)이 기지국(2020)으로 전송하는 랜덤 액세스 프리엠블은 소정의 기준에 따라 선택된 PRACH 상에서 전송될 수 있다. 기지국(2020)의 RF 기능을 담당하는 제1 PHY 엔티티(2022)는 단말이(2010)이 전송한 랜덤 액세스 프리엠블을 수신하며, 도 6A에서 설명한 PHY-L 처리 블록(616)은 랜덤 액세스 프리엠블을 검출하기 위해 단말이 전송한 신호에 대해 PRACH 필터링을 수행한다. 이어서, 제1 PHY 엔티티(2022)는 제2 PHY 엔티티(2024)로 PRACH 메시지(2040)를 전송한다. 제1 PHY 엔티티(2022)가 전송하는 PRACH 메시지(2040)는 도 14에서 설명한 포맷을 가질 수 있다.
제2 PHY 엔티티(2024)는 수신한 PRACH 메시지(2040)를 처리하여 단말(2010)의 초기접속을 허용할 것인지 결정하며(2050), 단말의 접속이 허용되는 경우 RAR(random access response) 메시지(2060)를 단말(2010)로 전달하기 위해 제1 PHY 엔티티(2022)로 전송한다(2060). 이어서, 제1 PHY 엔티티(2022)는 랜덤 액세스 응답(RAR)을 단말(2010)로 전송할 수 있다(2070).
도 21은 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면으로, 앞서 설명한 SRS 메시지의 송수신 절차를 도시한다. 도 21에는 단말(2110), 제1 PHY 엔티티(즉, MMU, 2122), 제 2 PHY 엔티티(즉, LDU, 2124), CU(2126) 간의 송수신 절차가 도시된다. CU(2126)는 기지국(2120)의 물리계층을 제외한 적어도 하나의 계층을 담당하는 엔티티를 의미할 수 있으며, 예를 들어 CU(2126)는 MAC, RLC, PDCP, RRC 계층 중 적어도 하나의 기능을 담당하는 엔티티일 수 있다. 도 21에서 제1 PHY 엔티티(2122)와 제2 PHY 엔티티(2124)는 각각 기지국(2120)의 물리 계층 기능 중 적어도 일부를 담당하며, 제1 PHY 엔티티(2122)와 제2 PHY 엔티티(2124)가 함께 기지국(2120)의 물리계층 전체의 기능을 구현할 수 있다. 제1 PHY 엔티티(2122), 제2 PHY 엔티티(2124), CU(2126)가 연결되어 기지국(2120)의 전체 계층 기능을 구현할 수 있다.
도 21에서 단말(2110)은 기지국(2120)이 상향링크 채널을 추정할 수 있도록 기지국(2120)으로 SRS를 전송한다(2130). 제1 PHY 엔티티(2122)는 단말(2110)이 전송한 SRS를 수신하며, 도 6B에서 설명한 바와 같이 SRS에 대한 처리는 제2 PHY 엔티티(2124)의 PHY-H 처리 블록(624)에 의해 수행되기 때문에, 제1 PHY 엔티티(2122)는 제2 PHY 엔티티(2124)로 자신이 수신한 SRS를 전달한다. 즉, 제1 PHY 엔티티(2122)는 제2 PHY 엔티티(2124)로 SRS 메시지를 전송한다(2140). 제1 PHY 엔티티(2122)가 전송하는 SRS 메시지(2140)는 도 15에서 설명한 포맷을 가질 수 있다.
제2 PHY 엔티티(2124)는 수신한 SRS 메시지(2140)를 처리함으로써 상향링크 채널을 추정할 수 있으며(2150), 이러한 과정은 도 6B에서 설명한 제2 PHY 엔티티(2124)의 PHY-H 처리 블록(624)에 의해 수행될 수 있다.
도 22는 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면으로, 앞서 설명한 RE 비트맵 메시지, PRB 비트맵 메시지, 스케쥴링 정보 메시지, UE 채널 정보 메시지의 송수신 절차를 도시한다. 도 22에는 단말(2210), 제1 PHY 엔티티(즉, MMU, 2222), 제 2 PHY 엔티티(즉, LDU, 2224), CU(2226) 간의 송수신 절차가 도시된다. CU(2226)는 기지국(2220)의 물리계층을 제외한 적어도 하나의 계층을 담당하는 엔티티를 의미할 수 있으며, 예를 들어 CU(2226)는 MAC, RLC, PDCP, RRC 계층 중 적어도 하나의 기능을 담당하는 엔티티일 수 있다. 도 22에서 제1 PHY 엔티티(2222)와 제2 PHY 엔티티(2224)는 각각 기지국(2220)의 물리 계층 기능 중 적어도 일부를 담당하며, 제1 PHY 엔티티(2222)와 제2 PHY 엔티티(2224)가 함께 기지국(2220)의 물리계층 전체의 기능을 구현할 수 있다. 제1 PHY 엔티티(2222), 제2 PHY 엔티티(2224), CU(2226)가 연결되어 기지국(2220)의 전체 계층 기능을 구현할 수 있다.
도 22에서 제2 PHY 엔티티(2224)는 네트워크와 접속한 단말에 대한 제어 정보로써 RE 비트맵 메시지(2230), PRB 비트맵 메시지(2240), 스케쥴링 정보 메시지(2250), 단말 채널 정보 메시지(2260)를 제1 PHY 엔티티(2222)로 전송할 수 있다. 제2 PHY 엔티티(2224)는 도 22에 도시된 메시지들을 제1 PHY 엔티티(2222)로 함께 전송할 수 있으며, 각각의 메시지들을 독립적으로 다른 시점에 전송할 수도 있다. 또는, 제2 PHY 엔티티(2224)는 도 22에 도시된 메시지 중 RE 비트맵 메시지(2230)와 PRB 비트맵 메시지(2240)를 먼저 제1 PHY 엔티티(2222)로 전송하고, 스케쥴링 정보 메시지(2250)와 UE 채널 정보 메시지(2260)를 이어서 제1 PHY 엔티티(2222)로 전송하는 등 둘 이상의 일부 메시지를 먼저 전송하고 다른 메시지를 이어서 전송할 수도 있다.
한편, 제1 PHY 엔티티(2222)는 제2 PHY 엔티티(2224)로부터 수신한 메시지 중 적어도 하나에 기초하여 단말로 신호를 전송하기 위한 빔포밍/프리코딩 웨이트(weight)를 결정할 수 있다(2270). 제1 PHY 엔티티(2222)는 제2 PHY 엔티티(2224)로부터 수신한 메시지 중 예를 들어 RE 비트맵 메시지와 PRB 비트맵 메시지에 기초하여 빔포밍/프리코딩 웨이트를 결정할 때, 스케쥴링 정보 메시지를 함께 고려하여 어떠한 무선 자원에 어떠한 단말이 할당되는지 참조할 수 있다. 또한, 제1 PHY 엔티티(2222)는 빔포밍/프리코딩 웨이트를 결정하는 과정에서 단말의 채널 정보 또한 함께 고려할 수 있다.
도 22의 실시 예에서, 제2 PHY 엔티티(2224)가 전송하는 RE 비트맵 메시지, PRB 비트맵 메시지, 스케쥴링 정보 메시지, UE 채널 정보 메시지는 각각 도 16 내지 도 19에서 설명한 포맷을 가질 수 있다.
도 23은 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면으로, 앞서 설명한 하향링크 IQ 메시지의 송수신 절차를 도시한다. 도 23에는 단말(2310), 제1 PHY 엔티티(즉, MMU, 2322), 제 2 PHY 엔티티(즉, LDU, 2324), CU(2326) 간의 송수신 절차가 도시된다. CU(2326)는 기지국(2320)의 물리계층을 제외한 적어도 하나의 계층을 담당하는 엔티티를 의미할 수 있으며, 예를 들어 CU(2326)는 MAC, RLC, PDCP, RRC 계층 중 적어도 하나의 기능을 담당하는 엔티티일 수 있다. 도 23에서 제1 PHY 엔티티(2322)와 제2 PHY 엔티티(2324)는 각각 기지국(2320)의 물리 계층 기능 중 적어도 일부를 담당하며, 제1 PHY 엔티티(2322)와 제2 PHY 엔티티(2324)가 함께 기지국(2320)의 물리계층 전체의 기능을 구현할 수 있다. 제1 PHY 엔티티(2322), 제2 PHY 엔티티(2324), CU(2326)가 연결되어 기지국(2320)의 전체 계층 기능을 구현할 수 있다.
도 23에서 CU(2326)는 상위 계층으로부터 처리된 하향링크 사용자 데이터를 제2 PHY 엔티티(2324)로 전송하며(2330), 이러한 하향링크 사용자 데이터는 상위계층 기능을 담당하는 엔티티인 CU(2326)와 제2 PHY 엔티티(2324) 간의 인터페이스를 통해 전송될 수 있다. 예를 들어, 이러한 인터페이스는 F1 인터페이스라 불릴 수 있으며, 앞서 제1 PHY 엔티티와 제2 PHY 엔티티 간의 인터페이스를 프론트홀 인터페이스라 명명한 것을 참고하여 미드홀(mid-haul) 인터페이스라 불릴 수도 있다.
제2 PHY 엔티티(2324)는 수신한 하향링크 사용자 데이터를 IQ 데이터로 변환처리하고, 변환된 하향링크 IQ 메시지를 단말로 전송하기 위해 IQ 메시지를 제1 PHY 엔티티(2322)로 전송할 수 있다(2340). 제2 PHY 엔티티(2324)가 전송하는 IQ 메시지는 도 13에서 설명한 포맷을 가질 수 있으며, 제1 PHY 엔티티(2322)는 수신한 IQ 데이터에 기초하여 RF 신호를 생성하여 하향링크 신호를 단말(2310)로 전송할 수 있다(2350). 이때, 제1 PHY 엔티티(2322)는 앞서 도 22에서 설명한 절차에 따라 결정된 빔포밍/프리코딩 웨이트를 적용하여 신호를 생성하고 전송할 수 있음은 물론이다.
도 24는 본 개시의 또 다른 실시 예와 관련된 물리 계층 메시지의 송수신 절차를 도시하는 도면으로, 앞서 설명한 상향링크 IQ 메시지의 송수신 절차를 도시한다. 도 24에는 단말(2410), 제1 PHY 엔티티(즉, MMU, 2422), 제 2 PHY 엔티티(즉, LDU, 2424), CU(2426) 간의 송수신 절차가 도시된다. CU(2426)는 기지국(2420)의 물리계층을 제외한 적어도 하나의 계층을 담당하는 엔티티를 의미할 수 있으며, 예를 들어 CU(2426)는 MAC, RLC, PDCP, RRC 계층 중 적어도 하나의 기능을 담당하는 엔티티일 수 있다. 도 24에서 제1 PHY 엔티티(2422)와 제2 PHY 엔티티(2424)는 각각 기지국(2420)의 물리 계층 기능 중 적어도 일부를 담당하며, 제1 PHY 엔티티(2422)와 제2 PHY 엔티티(2424)가 함께 기지국(2420)의 물리계층 전체의 기능을 구현할 수 있다. 제1 PHY 엔티티(2422), 제2 PHY 엔티티(2424), CU(2426)가 연결되어 기지국(2420)의 전체 계층 기능을 구현할 수 있다.
도 24에서 단말(2420)은 상향링크 신호를 생성하고 기지국(2420)으로 전송하며(2430), 기지국(2420)의 제1 PHY 엔티티(2422)는 수신한 신호를 IQ 데이터로 변환 처리한 후 제2 PHY 엔티티(2424)로 전송한다. 제1 PHY 엔티티(2422)는 IQ 데이터를 제2 PHY 엔티티(2424)로 전송하기 위해 IQ 메시지를 전송할 수 있으며(2440), 이러한 상향링크 IQ 메시지는 도 13에서 설명한 포맷을 따를 수 있다. 또한, 제1 PHY 엔티티(2422)는 단말(2410)로부터 수신한 신호를 IQ 데이터로 변환하는 과정에서 앞서 도 22에서 설명한 절차에 따라 결정된 빔포밍/프리코딩 웨이트를 적용할 수 있음은 물론이다.
제2 PHY 엔티티(2424)는 수신한 IQ 데이터를 처리한 뒤, 상향링크 사용자 데이터를 CU(2426)로 전송하며(2450), 이러한 상향링크 사용자 데이터는 상위계층 기능을 담당하는 엔티티인 CU(2426)와 제2 PHY 엔티티(2424) 간의 인터페이스를 통해 전송될 수 있다. 예를 들어, 이러한 인터페이스는 F1 인터페이스라 불릴 수 있으며, 앞서 제1 PHY 엔티티와 제2 PHY 엔티티 간의 인터페이스를 프론트홀 인터페이스라 명명한 것을 참고하여 미드홀(mid-haul) 인터페이스라 불릴 수도 있다.
한편, 본 개시와 도면에는 본 개시의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나 이는 단지 본 개시의 기술 내용을 쉽게 설명하고 그 내용의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 개시의 범위를 한정하고자 하는 것은 아니다. 이상에서 설명한 실시 예 외에도 본 개시에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (15)

  1. 무선 통신 시스템에서 제1 PHY(physical) 엔티티가 제2 PHY 엔티티와 통신하는 방법에 있어서,
    제2 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 상기 제2 PHY 엔티티와 통신을 수행하는 단계를 포함하고,
    상기 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 상기 제2 PHY 엔티티는 상기 기지국의 상위 물리계층 처리 동작을 수행하는 것인, 방법.
  2. 제1항에 있어서,
    상기 제1 PHY 엔티티는 상기 하위 물리계층 처리 동작 및 RF(radio frequency) 신호 처리 동작을 수행하고,
    상기 하위 물리계층 처리 동작은 FFT(Fast Fourier Transform), CP(Cyclic Prefix) 추가/제거, 프리코딩, 빔포밍 또는 PRACH(Physical Random Access Channel) 필터링 중 적어도 하나를 포함하고,
    상기 상위 물리계층 처리 동작은 채널 코딩/디코딩, 변조/복조, 레이어 매핑, RE(Resource Element) 매핑, 채널 추정 또는 PRACH 검출 중 적어도 하나를 포함하는 것인, 방법.
  3. 제1항에 있어서,
    상기 메시지는 사용자 평면 메시지 및 제어 평면 메시지를 포함하고,
    상기 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지, 상향링크 IQ 메시지, SRS(sounding reference signal) 메시지 또는 PRACH 메시지 중 적어도 하나를 포함하고,
    상기 제어 평면 메시지는 RE 비트맵 메시지, PRB(physical resource block) 비트맵 메시지, 스케쥴링 정보 메시지 또는 단말 채널 정보 메시지 중 적어도 하나를 포함하는 것인, 방법.
  4. 제3항에 있어서,
    상기 사용자 평면 메시지의 종류는 서브타입 필드 값에 의해 지시되고,
    상기 제어 평면 메시지의 종류는 데이터 필드의 제어타입 필드 값과 상기 서브타입 필드 값에 의해 지시되는 것인, 방법.
  5. 무선 통신 시스템에서 제2 PHY 엔티티와 통신하는 제1 PHY 엔티티에 있어서,
    신호를 송신 및 수신하도록 설정되는 송수신부; 및
    제2 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 상기 제2 PHY 엔티티와 통신을 수행하도록 설정되는 제어부를 포함하고,
    상기 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 상기 제2 PHY 엔티티는 상기 기지국의 상위 물리계층 처리 동작을 수행하는 것인, 제1 PHY 엔티티.
  6. 제5항에 있어서,
    상기 제1 PHY 엔티티는 상기 하위 물리계층 처리 동작 및 RF(radio frequency) 신호 처리 동작을 수행하고,
    상기 하위 물리계층 처리 동작은 FFT(Fast Fourier Transform), CP(Cyclic Prefix) 추가/제거, 프리코딩, 빔포밍 또는 PRACH(Physical Random Access Channel) 필터링 중 적어도 하나를 포함하고,
    상기 상위 물리계층 처리 동작은 채널 코딩/디코딩, 변조/복조, 레이어 매핑, RE(Resource Element) 매핑, 채널 추정 또는 PRACH 검출 중 적어도 하나를 포함하는 것인, 제1 PHY 엔티티.
  7. 제5항에 있어서,
    상기 메시지는 사용자 평면 메시지 및 제어 평면 메시지를 포함하고,
    상기 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지, 상향링크 IQ 메시지, SRS(sounding reference signal) 메시지 또는 PRACH 메시지 중 적어도 하나를 포함하고,
    상기 제어 평면 메시지는 RE 비트맵 메시지, PRB(physical resource block) 비트맵 메시지, 스케쥴링 정보 메시지 또는 단말 채널 정보 메시지 중 적어도 하나를 포함하는 것인, 제1 PHY 엔티티.
  8. 제7항에 있어서,
    상기 사용자 평면 메시지의 종류는 서브타입 필드 값에 의해 지시되고,
    상기 제어 평면 메시지의 종류는 데이터 필드의 제어타입 필드 값과 상기 서브타입 필드 값에 의해 지시되는 것인, 제1 PHY 엔티티.
  9. 무선 통신 시스템에서 제2 PHY 엔티티가 제1 PHY 엔티티와 통신하는 방법에 있어서,
    제1 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 상기 제1 PHY 엔티티와 통신을 수행하는 단계를 포함하고,
    상기 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 상기 제2 PHY 엔티티는 상기 기지국의 상위 물리계층 처리 동작을 수행하는 것인, 방법.
  10. 제9항에 있어서,
    상기 제1 PHY 엔티티는 상기 하위 물리계층 처리 동작 및 RF(radio frequency) 신호 처리 동작을 수행하고,
    상기 하위 물리계층 처리 동작은 FFT(Fast Fourier Transform), CP(Cyclic Prefix) 추가/제거, 프리코딩, 빔포밍 또는 PRACH(Physical Random Access Channel) 필터링 중 적어도 하나를 포함하고,
    상기 상위 물리계층 처리 동작은 채널 코딩/디코딩, 변조/복조, 레이어 매핑, RE(Resource Element) 매핑, 채널 추정 또는 PRACH 검출 중 적어도 하나를 포함하는 것인, 방법.
  11. 제9항에 있어서,
    상기 메시지는 사용자 평면 메시지 및 제어 평면 메시지를 포함하고,
    상기 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지, 상향링크 IQ 메시지, SRS(sounding reference signal) 메시지 또는 PRACH 메시지 중 적어도 하나를 포함하고,
    상기 제어 평면 메시지는 RE 비트맵 메시지, PRB(physical resource block) 비트맵 메시지, 스케쥴링 정보 메시지 또는 단말 채널 정보 메시지 중 적어도 하나를 포함하며,
    상기 사용자 평면 메시지의 종류는 서브타입 필드 값에 의해 지시되고,
    상기 제어 평면 메시지의 종류는 데이터 필드의 제어타입 필드 값과 상기 서브타입 필드 값에 의해 지시되는 것인, 방법.
  12. 무선 통신 시스템에서 제1 PHY 엔티티와 통신하는 제2 PHY 엔티티에 있어서,
    신호를 송신 및 수신하도록 설정되는 송수신부; 및
    제1 PHY 엔티티와의 프론트홀(fronthaul) 인터페이스를 통해 메시지를 송신 또는 수신함으로써 상기 제1 PHY 엔티티와 통신을 수행하는 단계를 포함하고,
    상기 제1 PHY 엔티티는 기지국의 하위 물리계층 처리 동작을 수행하고, 상기 제2 PHY 엔티티는 상기 기지국의 상위 물리계층 처리 동작을 수행하는 것인, 제2 PHY 엔티티.
  13. 제12항에 있어서,
    상기 제1 PHY 엔티티는 상기 하위 물리계층 처리 동작 및 RF(radio frequency) 신호 처리 동작을 수행하고,
    상기 하위 물리계층 처리 동작은 FFT(Fast Fourier Transform), CP(Cyclic Prefix) 추가/제거, 프리코딩, 빔포밍 또는 PRACH(Physical Random Access Channel) 필터링 중 적어도 하나를 포함하고,
    상기 상위 물리계층 처리 동작은 채널 코딩/디코딩, 변조/복조, 레이어 매핑, RE(Resource Element) 매핑, 채널 추정 또는 PRACH 검출 중 적어도 하나를 포함하는 것인, 제2 PHY 엔티티.
  14. 제12항에 있어서,
    상기 메시지는 사용자 평면 메시지 및 제어 평면 메시지를 포함하고,
    상기 사용자 평면 메시지는 하향링크 IQ(in-phase/quadrature) 메시지, 상향링크 IQ 메시지, SRS(sounding reference signal) 메시지 또는 PRACH 메시지 중 적어도 하나를 포함하고,
    상기 제어 평면 메시지는 RE 비트맵 메시지, PRB(physical resource block) 비트맵 메시지, 스케쥴링 정보 메시지 또는 단말 채널 정보 메시지 중 적어도 하나를 포함하는 것인, 제2 PHY 엔티티.
  15. 제14항에 있어서,
    상기 사용자 평면 메시지의 종류는 서브타입 필드 값에 의해 지시되고,
    상기 제어 평면 메시지의 종류는 데이터 필드의 제어타입 필드 값과 상기 서브타입 필드 값에 의해 지시되는 것인, 제2 PHY 엔티티.
PCT/KR2019/000224 2018-01-08 2019-01-07 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법 WO2019135656A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22212975.1A EP4167538A1 (en) 2018-01-08 2019-01-07 Method for separating physical layer functions in wireless communication system
KR1020207022215A KR102648504B1 (ko) 2018-01-08 2019-01-07 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법
CN202311189573.9A CN117220763A (zh) 2018-01-08 2019-01-07 无线通信系统中用于分离物理层功能的方法和设备
CN201980007655.2A CN111567018B (zh) 2018-01-08 2019-01-07 无线通信系统中用于分离物理层功能的方法
EP19736191.8A EP3723348B1 (en) 2018-01-08 2019-01-07 Method for separating physical layer functions in wireless communication system
US16/960,179 US11456833B2 (en) 2018-01-08 2019-01-07 Method for separating physical layer functions in wireless communication system
US17/890,501 US11824626B2 (en) 2018-01-08 2022-08-18 Method for separating physical layer functions in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862614711P 2018-01-08 2018-01-08
US62/614,711 2018-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/960,179 A-371-Of-International US11456833B2 (en) 2018-01-08 2019-01-07 Method for separating physical layer functions in wireless communication system
US17/890,501 Continuation US11824626B2 (en) 2018-01-08 2022-08-18 Method for separating physical layer functions in wireless communication system

Publications (1)

Publication Number Publication Date
WO2019135656A1 true WO2019135656A1 (ko) 2019-07-11

Family

ID=67143669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000224 WO2019135656A1 (ko) 2018-01-08 2019-01-07 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법

Country Status (5)

Country Link
US (2) US11456833B2 (ko)
EP (2) EP3723348B1 (ko)
KR (1) KR102648504B1 (ko)
CN (2) CN111567018B (ko)
WO (1) WO2019135656A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070652A1 (en) * 2018-10-03 2020-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Compressing user data transmitted between a lower layer split central unit and a radio unit using bitmap representations
US11546124B2 (en) 2019-10-11 2023-01-03 Electronics And Telecommunications Research Institute Method and apparatus for communication using fronthaul interface
WO2024025172A1 (ko) * 2022-07-24 2024-02-01 삼성전자주식회사 프론트홀 인터페이스에서 srs 설정을 제공하기 위한 전자 장치 및 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3791690A4 (en) * 2018-05-07 2022-01-19 Mavenir Networks, Inc. METHOD AND APPARATUS FOR FRONT LINK COMPRESSION IN A CLOUD RAN
US20220116087A1 (en) * 2018-11-30 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Communicating using beamforming weights determined at a radio unit
EP3888281A1 (en) * 2018-11-30 2021-10-06 Telefonaktiebolaget LM Ericsson (publ) Methods for separating reference symbols and user data in a lower layer split
KR102469181B1 (ko) * 2020-09-01 2022-11-18 주식회사 엘지유플러스 무선 엑세스 네트워크 시스템
CN112203306B (zh) * 2020-10-09 2023-01-17 哲库科技(北京)有限公司 终端、通信方法、装置及存储介质
CN112636807B (zh) * 2020-12-29 2023-02-28 京信网络系统股份有限公司 基带拉远传输装置、基站、拉远覆盖单元及无线覆盖系统
WO2023164480A1 (en) * 2022-02-22 2023-08-31 Commscope Technologies Llc Fronthaul bandwidth reduction in radio access network
WO2023249356A1 (ko) * 2022-06-23 2023-12-28 삼성전자 주식회사 무선 통신 시스템에서 프론트홀 전송을 위한 장치 및 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074239A (ko) * 2011-12-26 2013-07-04 한국전자통신연구원 직교 주파수 분할 다중 방식의 신호 송신 방법 및 이에 적용되는 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197052B1 (en) * 2001-06-11 2007-03-27 Cisco Technology, Inc. Technique for interfacing MAC and physical layers of access networks
KR101674209B1 (ko) * 2010-01-27 2016-11-08 삼성전자주식회사 디지털 장치와 rf 장치간에 이더넷 데이터를 송수신하는 방법 및 그 장치
US10499409B2 (en) * 2012-02-02 2019-12-03 Genghiscomm Holdings, LLC Cooperative and parasitic radio access networks
EP3531775A1 (en) * 2013-09-24 2019-08-28 Andrew Wireless Systems GmbH Distributed processing in a centralized radio access network
US9596707B2 (en) 2014-03-13 2017-03-14 Intel Corporation Bearer mobility and splitting in a radio access network-based, 3rd generation partnership project network having an integrated wireless local area network
KR102263688B1 (ko) 2014-10-07 2021-06-10 삼성전자주식회사 무선 통신 시스템에서 다른 무선 접속 기술을 이용한 다중 연결을 제공하기 위한 장치 및 방법
US10313208B2 (en) 2014-12-17 2019-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Flexible assignment of network functions for radio access
MX2017007785A (es) * 2014-12-17 2017-09-19 ERICSSON TELEFON AB L M (publ) Asignacion flexible de funciones de red para acceso por radio.
CN106134272B (zh) 2015-01-30 2020-01-31 华为技术有限公司 通信方法、网络设备、用户设备和通信系统
EP3072351B1 (en) * 2015-02-13 2017-07-19 Telefonaktiebolaget LM Ericsson (publ) Establishment of dual connectivity
US10383024B2 (en) * 2015-03-10 2019-08-13 Analog Devices, Inc. System and method for efficient fronthaul communication for wireless communication
US10355895B2 (en) * 2015-03-11 2019-07-16 Phluido, Inc. Baseband unit with adaptive fronthaul link for a distributed radio access network
US10007634B2 (en) 2015-12-07 2018-06-26 Intel Corporation Method to enable intel mini-mezz open compute project (OCP) plug-and-play network phy cards
JP6556320B2 (ja) * 2015-12-17 2019-08-07 ホアウェイ・テクノロジーズ・カンパニー・リミテッド プロトコル変換方法および装置
CN107615877A (zh) * 2015-12-21 2018-01-19 华为技术有限公司 传输数据的方法、射频拉远单元rru和基带单元bbu
EP3442307A4 (en) * 2016-04-08 2019-10-30 NTT DoCoMo, Inc. INTERFACE METHOD BETWEEN A CENTRAL AGGREGATION DEVICE AND AN EXTENSION DEVICE, AND A WIRELESS NETWORK CONTROL SYSTEM
EP4236570A3 (en) 2016-05-12 2023-11-15 Samsung Electronics Co., Ltd. Light connection method and apparatus for use in wireless communication system
CN107426776B (zh) * 2016-05-24 2024-06-04 华为技术有限公司 QoS控制方法及设备
TWI660610B (zh) * 2016-09-01 2019-05-21 鴻海精密工業股份有限公司 無線通訊系統的資源分配方法及其設備和系統
US10831760B2 (en) * 2016-09-13 2020-11-10 Viavi Solutions Inc. Data stream monitoring
WO2019027711A1 (en) * 2017-07-31 2019-02-07 Mavenir Networks, Inc. METHOD AND APPARATUS FOR FLEXIBLE FRONTHAUL PHYSICAL LAYER DIVISION OF CLOUD RADIO ACCESS NETWORKS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074239A (ko) * 2011-12-26 2013-07-04 한국전자통신연구원 직교 주파수 분할 다중 방식의 신호 송신 방법 및 이에 적용되는 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP; Technical Specification Group Radio Access Network: Study on New Radio Access Technology; Radio Access Architecture and Interfaces (Release 14)", 3GPP TR 38.801, no. V14.0.0, 3 April 2017 (2017-04-03), XP051298041 *
"xRAN FORUM, Fronthaul Working Group", WHITE PAPER, October 2017 (2017-10-01), pages 1 - 7, XP055620277 *
ANONYMOUS: "5G Open Fronthaul Interface", TTA STANDARD, vol. TrAK.KO-06.0461., 13 December 2017 (2017-12-13), pages 1 - 73, XP009521608 *
OH, DON SEONG ET AL.: "Fronthaul Technology Trends for 5G Mobile Communications", 2017 ELECTRONICS AND TELECOMMUNICATIONS TRENDS, vol. 32, no. 5, 1 October 2017 (2017-10-01), pages 97 - 106, XP055620275 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070652A1 (en) * 2018-10-03 2020-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Compressing user data transmitted between a lower layer split central unit and a radio unit using bitmap representations
US11722269B2 (en) 2018-10-03 2023-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Compressing user data transmitted between a lower layer split central unit and a radio unit using bitmap representations
US11546124B2 (en) 2019-10-11 2023-01-03 Electronics And Telecommunications Research Institute Method and apparatus for communication using fronthaul interface
WO2024025172A1 (ko) * 2022-07-24 2024-02-01 삼성전자주식회사 프론트홀 인터페이스에서 srs 설정을 제공하기 위한 전자 장치 및 방법

Also Published As

Publication number Publication date
US11824626B2 (en) 2023-11-21
EP3723348A1 (en) 2020-10-14
CN111567018A (zh) 2020-08-21
US20200358575A1 (en) 2020-11-12
KR20200098700A (ko) 2020-08-20
US11456833B2 (en) 2022-09-27
EP3723348B1 (en) 2022-12-28
EP4167538A1 (en) 2023-04-19
US20220407593A1 (en) 2022-12-22
EP3723348A4 (en) 2020-12-09
CN117220763A (zh) 2023-12-12
CN111567018B (zh) 2023-10-10
KR102648504B1 (ko) 2024-03-18

Similar Documents

Publication Publication Date Title
WO2019135656A1 (ko) 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법
WO2020197308A1 (en) Method and apparatus for transmitting and receiving signal by using multiple beams in wireless communication system
WO2017034272A1 (en) Method and apparatus for communication in wireless communication system
WO2019045514A1 (en) METHOD AND APPARATUS FOR REMAPPING AND FLOW MATCHING FOR AN ADVANCED RADIO SYSTEM
WO2020091355A1 (en) Method and apparatus for allocating dynamic resources of integrated access and backhaul nodes in wireless communication system
WO2021261893A1 (en) Method and apparatus for ue assistance information report for sidelink drx in a wireless communication system
WO2022010233A1 (en) Method and apparatus for sidelink drx operations in a wireless communication system
WO2017018783A1 (ko) 무선 통신 시스템에서 랭크 관련 정보를 결정하는 방법 및 장치
WO2021091192A1 (en) Method and apparatus for allocating dynamic resources of integrated access and backhaul nodes in wireless communication system
WO2021154003A1 (en) Method and apparatus for reporting information of frequency affected by in-device coexistence interference in wireless communication system
WO2017200326A1 (ko) 이동 통신 시스템에서 효율적인 레이어 2 기능을 수행하는 방법 및 장치
WO2021172888A1 (en) Method and apparatus for sidelink tx resource pool selection in a wireless communication system
WO2020080838A1 (en) Apparatus for signaling of control messages for fronthaul interface
WO2022080988A1 (en) Method and apparatus for random access in ntn
WO2017164603A1 (en) Method and device for transmitting data unit, and method and device for receiving data unit
WO2018231012A1 (ko) 차세대 이동 통신 시스템에서 망혼잡을 제어하는 방법 및 장치
WO2022050736A1 (en) Method and apparatus for doppler shift indication and handling in a wireless communication system
WO2020067693A1 (en) Method and apparatus for transmitting buffer status report in wireless communication system
WO2021230595A1 (ko) 무선 통신 시스템에서 mbs 서비스 연속성을 위한 bwp 설정 방법 및 장치
WO2019031863A1 (en) APPARATUS AND METHOD FOR TRANSMITTING AND RECEIVING SYSTEM INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
WO2021162476A1 (en) User equipment and method for performing sidelink measurements in v2x communication
WO2022065929A1 (en) Method and apparatus for sib based cell changes in a wireless communication system
WO2022108415A1 (en) Method and apparatus for enhanced resource allocation in sl communication
WO2021187811A1 (ko) 무선 통신 시스템에서 방송서비스 설정 정보를 처리하기 위한 장치 및 방법
WO2020032694A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019736191

Country of ref document: EP

Effective date: 20200707

ENP Entry into the national phase

Ref document number: 20207022215

Country of ref document: KR

Kind code of ref document: A