WO2019135469A1 - Procédé de surveillance de défaillance dans un détecteur de neutrons de haute énergie - Google Patents

Procédé de surveillance de défaillance dans un détecteur de neutrons de haute énergie Download PDF

Info

Publication number
WO2019135469A1
WO2019135469A1 PCT/KR2018/011880 KR2018011880W WO2019135469A1 WO 2019135469 A1 WO2019135469 A1 WO 2019135469A1 KR 2018011880 W KR2018011880 W KR 2018011880W WO 2019135469 A1 WO2019135469 A1 WO 2019135469A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
failure
power detector
neutron high
neutron
Prior art date
Application number
PCT/KR2018/011880
Other languages
English (en)
Korean (ko)
Inventor
김성민
김영애
박동환
박중우
김광수
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to CN201880085228.1A priority Critical patent/CN111566515B/zh
Publication of WO2019135469A1 publication Critical patent/WO2019135469A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/14Covers for manholes or the like; Frames for covers
    • E02D29/1445Tools for positioning or removing cover frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/04Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • B66D3/26Other details, e.g. housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a neutron high power detector fault monitoring method.
  • the RNFN operates three trip channels and generates a channel trip signal when a fault occurs in the neutron high power (ROP) detector, which is composed of 58 total of 34 neutrally and 24 horizontally. , The power plant is stopped when a trip signal is generated in two of the three channels.
  • ROP neutron high power
  • Korean Patent Laid-Open Publication No. 10-2012-0086830 Method of Applying Pressure Pipe Creep Penalty for Neutron High Power Protection Detector Calibration
  • the object of the present invention is to confirm the output state of a neutron high-power detector when a failure occurs in a neutron high-power detector, to prevent the shutdown of a heavy water nuclear power plant in response to a single failure of a neutron high- Thereby improving reliability.
  • a neutron high output detector failure monitoring method comprising the steps of: (a) detecting a failure of a neutron high output detector; (B) correcting an output value of the failed neutron high-power detector by applying a penalty according to the hand switch position to a failed neutron high-power detector as the failure of the neutron high-power detector is detected in the step (a); And a control unit.
  • step (a-1) if it is determined in step (a) whether or not the neutron high power detector detected as a failure is a differential signal providing instrument, and if the detected neutron high power detector is a differential signal providing instrument, And a differential signal compensator, which is paired with the neutron high-power detector, and the neutron high-power detector, which detects whether the failure is detected, as a failure.
  • the step (b) corrects the output value of the neutron high-power detector, which has failed through the following equation (1).
  • DC (CPPF + D TC + D TILT + D P + D TAP ) ⁇ F PHT ⁇ F C ⁇ F F + P TR + P CR + P SDF + P FPHT + P TRIH
  • DC is the corrected output value of the neutron high power detector
  • CPPF is the maximum value of the channel output ripple (channel output peak coefficient)
  • D TC temperature correction factor of detector
  • D TILT is the flux tilt correction value
  • D P moderator poison correction factor of detector
  • TAP moderator
  • F PHT PHTS parameter correction factor
  • F C is a correction factor of abnormal reactivity rod configuration
  • F F correction factor of different fuel type
  • P TR correctionion factor of reactivity rod withdrawal
  • reactor power response A correction value corresponding to the control mechanism variation
  • P CR correctionion factor of creep rate
  • P SDF correctionion factor of single detector
  • step (b) a penalty according to a first hand switch position and a second hand switch position is applied to 58 neutron high power detectors formed in a heavy water nuclear power plant,
  • the maximum penalty given to the detector is given as -10.08%, and the maximum penalty given to the neutron high-power detector at the second hand switch position is given as -16.1%.
  • step (b) a value obtained by subtracting the pressure pipe creep penalty from the corrected output value of the neutron high-power detector is 107% or more.
  • the output state of the neutron high-power detector can be confirmed when a single failure of the neutron high-power detector is detected by applying the failure monitoring method of the neutron high-power detector according to an embodiment of the present invention.
  • the stoppage of the power plant can be prevented, and thus the operating efficiency of the heavy water nuclear power plant can be improved.
  • FIG. 1 is a diagram illustrating a neutron high-power detector distributed in a core of a heavy water nuclear power plant to which a neutron high-power detector fault monitoring method according to an embodiment of the present invention is applied.
  • FIG. 2 is a flowchart illustrating a method of monitoring a failure of a neutron high-power detector according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a schematic structure of a recording medium on which a method for monitoring a neutron high-power detector failure according to an embodiment of the present invention is recorded.
  • FIG. 1 is a diagram illustrating a neutron high-power detector distributed in a core of a heavy water nuclear power plant to which a neutron high-power detector fault monitoring method according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram of a neutron high- And a flow chart of the monitoring method.
  • the heavy water nuclear power plant has 58 neutron high- And a monitoring device capable of confirming the value of the monitoring device.
  • a safety shutdown system (hereinafter referred to as SDS or safety system) formed in the core is connected to the first safety system (SDS # 1) or the second safety system (SDS # 2) And a monitoring device detects a trip signal detected by the first or second safety system.
  • FIG. 1 a method for monitoring a failure of a neutron high-power detector, which is formed in a heavy water nuclear power plant and can monitor an output state of the monitoring apparatus, will be described.
  • a neutron high-power detector which is formed in a heavy water nuclear power plant and can monitor an output state of the monitoring apparatus.
  • Q100 neutron high-power detector
  • step Q100 If it is determined in step Q100 that a single failure occurs in the neutron high output detector, it is determined whether a detector having a failure along the arrow direction of 'Yes' is a differential signal providing instrument (Q200) (Q100) whether or not a single failure occurs in the neutron high-power detector without performing a separate step along the direction of the 'No' arrow.
  • Q200 differential signal providing instrument
  • the step of determining whether a faulty detector is a differential signal providing instrument determines whether a faulty high-output detector with a fault is a differential signal providing instrument by referring to Table 1 below.
  • the failed neutron high-power detector is one of 3G, 4G, 5H, 8H, 3J and 7J classified as an upper differential signal providing instrument in the left column in Table 1,
  • a step of considering the faulty detector and its compensation detector as a fault (S200) is performed to regard the upper differential signal providing meter and the lower differential compensation meter as a fault (S200).
  • the step (Q100) of determining the occurrence of a single fault in the neutron high- In the step of determining whether the faulty detector is a differential signal providing instrument (Q200), it is judged whether or not the 3G neutron high output detector is classified as the upper differential signal providing instrument in the left column of Table 1 above.
  • the 3G neutron high-power detector which is the fault detector
  • the differential signal compensation meter which is the 7G detector classified as the compensation detector of the 3G neutron high- It is treated as failure.
  • the upper differential signal providing instrument also affects the lower differential compensator As it goes proficient, it treats all of the pair of instruments as faulty.
  • step Q200 if the faulty detector in step Q200 is not a differential signal provisioning instrument, it moves along the 'no' arrow direction and assigns a penalty set according to the hand switch position to the faulty high-power neutron detector, And performs an output value correction (S100) step of the neutron high-power detector.
  • S100 output value correction
  • DC (CPPF + D TC + D TILT + D P + D TAP ) ⁇ F PHT ⁇ F C ⁇ F F + P TR + P CR + P SDF + P FPHT + P TRIH
  • (detector calibration) DC is a maximum value (channel output peak factor) of the channel output pulsation (ripple) and the corrected output value of the neutron high-power detector, (channel power peaking factor) CPPF, D TC ( temperature correction factor of detector) the instrument temperature non-linearity of the correction values and, D tILT (correction factor of flux tilt) is the neutron flux deviation (flux tilt) correction value, D P (moderator poison correction factor of detector) the poison in the moderator substance correction value and, D tAP (correction factor of tap ) is a correction value corresponding to perform tAP (time average performance), F PHT (PHTS parameter correction factor) is a coolant system variable correctors, F C (correction factor of abnormal reactivity rod configuration) is a modified non-standard response control mechanism arrangement factor, F F (correction factor of different fuel type) is a correction factor for the fuel type, P TR (correction factor of reactivity rod
  • PCR is calculated to be 107% or more.
  • the detector output value receiving unit 110 receives the output value of the neutron high-power detector and the failure signal of the neutron high-power detector
  • the output value correcting unit 120 corrects the output value of the neutron high output power detector, which has received the failure signal from the detector output value receiving unit 110, on the basis of Equations 1 and 2.
  • a method of monitoring a failure of a neutron high-output detector including a detector output value receiving unit 110, a detector output value correcting unit 120, a detector output value comparing unit 130 and a detector output value setting unit 140
  • the output value of the neutron high-power detector can be corrected as a failure occurs in the neutron high-power detector, and when the failure occurs in the neutron high-power detector, the channel is immediately tripped Thus, it is possible to reduce the cost loss due to stopping the nuclear power plant.
  • the detector output value display unit 200 may further include a detector output value display unit 200 that is a display device for outputting output values of 58 neutron high output detectors received by the detector output value receiving unit 110.
  • the detector output value receiving unit 110 may include a neutron high- And a detector output value storage unit 300, which is a storage device that receives and stores the correction value calculated by the detector output value correction unit 120.
  • detector output value storage unit 200 detector output value display unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

La présente invention concerne un procédé de surveillance d'une défaillance dans un détecteur de de neutrons de haute énergie, le procédé comprenant les étapes consistant à : (a) détecter une défaillance ou non dans un détecteur de neutrons de haute énergie; et (b) en fonction de la détection, à l'étape (a), d'une défaillance dans le détecteur de neutrons de haute énergie, corriger une valeur de sortie du détecteur de neutrons de haute énergie dans lequel la défaillance s'est produite en donnant, au détecteur de neutrons de haute énergie dans lequel la défaillance s'est produite, une pénalité correspondant à une position du commutateur à main. En conséquence, la valeur de sortie du détecteur de neutrons de haute énergie dans lequel la défaillance s'est produite peut être corrigée, et ainsi, il est possible d'obtenir un effet permettant la réduction de la perte monétaire si on devait arrêter une centrale nucléaire suite à un déclenchement immédiat d'un canal lorsqu'une défaillance se produit dans le détecteur de neutrons de haute énergie.
PCT/KR2018/011880 2018-01-05 2018-10-10 Procédé de surveillance de défaillance dans un détecteur de neutrons de haute énergie WO2019135469A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880085228.1A CN111566515B (zh) 2018-01-05 2018-10-10 中子高功率探测器的故障监测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0001854 2018-01-05
KR1020180001854A KR102034830B1 (ko) 2018-01-05 2018-01-05 중성자 고출력 검출기 고장 모니터링 방법

Publications (1)

Publication Number Publication Date
WO2019135469A1 true WO2019135469A1 (fr) 2019-07-11

Family

ID=67144440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011880 WO2019135469A1 (fr) 2018-01-05 2018-10-10 Procédé de surveillance de défaillance dans un détecteur de neutrons de haute énergie

Country Status (3)

Country Link
KR (1) KR102034830B1 (fr)
CN (1) CN111566515B (fr)
WO (1) WO2019135469A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091139A (en) * 1989-06-26 1992-02-25 General Electric Company Automated thermal limit monitor
US20070063839A1 (en) * 2005-07-29 2007-03-22 Kabushiki Kaisha Toshiba Rod block monitor
KR101191361B1 (ko) * 2011-01-27 2012-10-15 한국수력원자력 주식회사 중성자고출력 보호검출기 보정을 위한 압력관 크립페널티 적용방법
JP5574943B2 (ja) * 2010-12-21 2014-08-20 株式会社東芝 原子炉の核熱水力安定性監視装置、方法及びプログラム
KR20150080811A (ko) * 2014-01-02 2015-07-10 한국수력원자력 주식회사 자가 진단 기능을 갖는 bf3 중성자 계측시스템 및 그 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197463A (en) * 1978-05-25 1980-04-08 Westinghouse Electric Corp. Compensated self-powered neutron detector
KR101642083B1 (ko) 2015-01-05 2016-07-22 한국수력원자력 주식회사 중수로의 영역별 축방향 출력편차 감시방법 및 장치
CN104793234B (zh) * 2015-03-30 2018-02-27 中广核核电运营有限公司 中子探测器状态监测装置及系统
CN104898155B (zh) * 2015-05-26 2018-03-27 中国科学院合肥物质科学研究院 一种基于中子平均能量的次临界系统次临界度测量方法
CN106024078B (zh) * 2016-06-24 2017-08-25 西安交通大学 一种诊断反应堆中子探测器失效的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091139A (en) * 1989-06-26 1992-02-25 General Electric Company Automated thermal limit monitor
US20070063839A1 (en) * 2005-07-29 2007-03-22 Kabushiki Kaisha Toshiba Rod block monitor
JP5574943B2 (ja) * 2010-12-21 2014-08-20 株式会社東芝 原子炉の核熱水力安定性監視装置、方法及びプログラム
KR101191361B1 (ko) * 2011-01-27 2012-10-15 한국수력원자력 주식회사 중성자고출력 보호검출기 보정을 위한 압력관 크립페널티 적용방법
KR20150080811A (ko) * 2014-01-02 2015-07-10 한국수력원자력 주식회사 자가 진단 기능을 갖는 bf3 중성자 계측시스템 및 그 방법

Also Published As

Publication number Publication date
CN111566515A (zh) 2020-08-21
KR20190083881A (ko) 2019-07-15
CN111566515B (zh) 2023-10-13
KR102034830B1 (ko) 2019-10-21

Similar Documents

Publication Publication Date Title
WO2011111942A2 (fr) Procédé pour commander de manière précise et fiable le niveau de liquide d'un accumulateur de pression avec des capteurs multiples
US5737166A (en) Protective equipment in a bipolar HVDC station
WO2019135469A1 (fr) Procédé de surveillance de défaillance dans un détecteur de neutrons de haute énergie
WO2015093838A1 (fr) Disjoncteur de fuite de courant numérique
CN112599264A (zh) 一种控制棒位置精确定位方法
US10679760B2 (en) Nuclear instrumentation system and method for locating the same
SE522686C2 (sv) Apparat för mätning av neutronflöde
JP5034100B2 (ja) 原子炉出力監視システム
JP2005061951A (ja) 制御棒引抜監視装置
KR20110104730A (ko) 오결선 보상 기능을 갖는 선택지락 계전기
CN107924726B (zh) 堆芯核仪表装置
JP2007312552A (ja) 電流差動保護システム
KR100600971B1 (ko) 노심보호연산기계통
CN113260869B (zh) 用于监测电容器组的装置和方法
US11393600B2 (en) Control rod motion monitoring system and control rod motion monitoring method
JP4846656B2 (ja) 固定式炉心内計測装置
Mackie et al. Summary paper for C37. 243 IEEE guide for application of digital line current differential relays using digital communication
CN114447894B (zh) 一种直流输电系统双重化配置的保护测量异常处理方法
JPS60133395A (ja) 原子炉中性子モニタ装置
JP2003092825A (ja) 地絡保護継電器
JPH06253448A (ja) 調相設備分路リアクトル保護リレー
KR19990088010A (ko) 모선보호계전장치
JPS62237377A (ja) 中性子束計測装置
WO2014208933A1 (fr) Appareil et procédé de protection d'un onduleur relié au réseau contre la survenue d'une faible tension du réseau
JPS6165191A (ja) 原子炉出力監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898407

Country of ref document: EP

Kind code of ref document: A1