WO2019134432A1 - 一种自携磨料式水力割缝钻头 - Google Patents

一种自携磨料式水力割缝钻头 Download PDF

Info

Publication number
WO2019134432A1
WO2019134432A1 PCT/CN2018/113602 CN2018113602W WO2019134432A1 WO 2019134432 A1 WO2019134432 A1 WO 2019134432A1 CN 2018113602 W CN2018113602 W CN 2018113602W WO 2019134432 A1 WO2019134432 A1 WO 2019134432A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure water
pressure
drill bit
sand
water flow
Prior art date
Application number
PCT/CN2018/113602
Other languages
English (en)
French (fr)
Inventor
黄炳香
陈树亮
李浩泽
Original Assignee
中国矿业大学
徐州佑学矿业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州佑学矿业科技有限公司 filed Critical 中国矿业大学
Priority to CA3064815A priority Critical patent/CA3064815C/en
Publication of WO2019134432A1 publication Critical patent/WO2019134432A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the invention relates to a hydraulic slotting drill bit, in particular to a self-carrying abrasive hydraulic slit bit, belonging to the technical field of mining engineering.
  • Hydraulic fracturing technology was first applied to petroleum engineering to increase the production of lean wells.
  • the hydraulic fracturing technology has been promoted and applied in the aspects of hard roof control of coal mines, subsea tunnel engineering, weak top coal weakening, rock fracturing and coalbed methane mining.
  • the crack initiation of hydraulic cracking is controlled by the in-situ stress field of the surrounding rock.
  • the crack initiation and expansion plane is parallel to the direction of the maximum principal stress.
  • the crack propagation direction required in many projects does not coincide with the crack direction controlled by the geostress field. It is necessary to control the directional crack initiation of the crack by manual measures to guide the crack propagation direction, that is, the directional hydraulic fracturing.
  • the most common use of directional hydraulic fracturing is to cut cracks in a specific direction with a high-pressure water jet on the borehole wall, and induce the hydraulic crack to expand in the direction of cutting to achieve the effect of directional cracking.
  • high-pressure water jets are widely used, and waterjets are a common cutting technique for applying high-pressure water jets.
  • the waterjet is a water-knife cutting tool. This technology originated in the United States and was used in the aerospace military industry. It is favored for its cold cutting without changing the physicochemical properties of the material. After continuous improvement of technology, garnet sand is mixed in high-pressure water, which greatly improves the cutting speed and cutting thickness of the waterjet.
  • the water knife on the ground has a wide range of applications for sand cutting, but it requires a lot of space.
  • the hydraulic cracking has been applied for a long time, since the internal space of the borehole is subject to the diameter of the borehole, drilling When hydraulic slashing is carried out inside the hole, almost no sand is carried.
  • the high-energy impact of high-pressure water is used to break the coal rock. The efficiency is low, the crack depth caused by the impact is insufficient, and the orientation effect of the directional hydraulic fracturing is poor.
  • the nozzles of the traditional hydraulic slotting drills are arranged on a concentric circle, resulting in a short nozzle.
  • the high-pressure water cannot accumulate enough energy in the nozzle, so that the high-pressure water is insufficient in energy when it is ejected from the drill bit, and the coal-rock mass is The degree of damage is limited, resulting in insufficient depth of kerf, poor directional cracking effect, and engineering problems such as directional cutting of hard roof cannot be fully solved.
  • the cutting speed and cutting radius of a water jet carrying sand is much higher than that of a sandless water jet.
  • the first one is pre-mixing. After mixing high-pressure water and abrasive (sand), the water-sand mixture passes through the high-pressure pipeline to the nozzle and is directly ejected through the nozzle.
  • the material to be cut; the second type is the post-mixing type, which uses the siphon phenomenon generated by the high-pressure water at the nozzle to suck the sand in the sandbox into the nozzle and mix it with the high-pressure water, and then spray it through the nozzle to cut the corresponding material.
  • the water-sand mixture produced by the premixing method has a large wear on the high-pressure pipeline along the path, and the sand nozzle is easily generated at the nozzle, so the conventional hydraulic slit bit is rarely used; and because the back-mixing requires a large space. This is done, so traditional hydraulic slot bits do not have such conditions and cannot be implemented.
  • the present invention provides a self-carrying abrasive type hydraulic slotting drill bit, which can greatly improve the cutting ability of the water jet, the cutting ability is remarkably improved, and the cutting speed is also greatly improved, and the high pressure water jet is obtained. More energy, the scope of the slit is increased, and the directional cracking effect of the drill hole is better, so that the number of drill holes arranged on the working surface is reduced, and the cost is reduced.
  • the technical solution adopted by the present invention is to include a drill bit and a cutting head mounted around the top of the drill bit.
  • the drill bit is composed of an outer wall of the drill bit and a drill cavity, and a low pressure cooling water flow system and a high pressure cutting water flow are arranged in the drill cavity.
  • a water flow channel is opened in the bottom center of the drill bit; two low-pressure water channels connected by the water flow channel to the top of the drill bit constitute a low-pressure cooling water flow system
  • the two low-pressure water channels are symmetrically arranged symmetrically with the center line of the water flow channel; the high-pressure water inlet channel and the high-pressure water buffer channel are sequentially connected to form an eccentric high-pressure water pipe, and the high-pressure water buffer channel is provided with a channel nozzle, and the two water flow channels are
  • the eccentric high-pressure water pipe connected to the outer wall of the drill bit constitutes a high-pressure cutting water flow system.
  • the eccentricity directions of the two eccentric high-pressure water pipes are opposite, the heights of the two high-pressure water inlets are the same, and the two high-pressure water outlets are high and low; the high-pressure water inlet is located at low-pressure water. Above the water inlet, the plane where the low pressure cooling water flow system is located is vertical. The plane where the high-pressure cutting water flow system is located; the high-pressure water-sand mixture production and adding abrasive system includes a high-pressure water suction channel and a sand storage box, and a sand storage box, a high-pressure water buffer channel and a sand storage box are arranged above the water flow channel.
  • the high and low pressure water flow control system includes a sealing baffle, a pressure-controlled steel ball, an inner control wall and a pressure-control spring.
  • the inner control wall is in contact with the inner wall of the bore of the water flow passage, and the inner control wall has a high pressure.
  • the water inlet and the low pressure water inlet have the same shape corresponding to the orifice, the sealing baffle is disposed on the inner control wall below the low pressure water inlet, the pressure control steel ball is located above the sealing baffle, and the pressure control spring is connected to the pressure control steel ball On the inner control wall with the top of the water flow channel.
  • the self-carrying abrasive hydraulic slotting drill bit of the invention has two high-pressure cutting water flow systems, which are composed of two eccentric high-pressure water pipes which are connected by the water flow passage to the outer wall of the drill bit, thereby providing a longer water jet channel and increasing
  • the high-pressure water reaches the energy of the water outlet, improves the effect of the slitting, and the eccentric high-pressure water pipe is dislocated up and down, and the left and right eccentric design provides the circumferential force for the drill bit, which can accelerate the circumferential grooving; by adding the sand storage box, the sand storage space is provided, thereby passing the high pressure
  • the sand in the water jet increases the cutting range and cutting speed of the water jet.
  • the sand suction channel allows the sand to be sucked into the high pressure water through the negative pressure generated by the high pressure water to achieve the effect of automatic sand absorbing; the high and low pressure water flow control system is set, and the pressure control
  • the components pressure-controlled steel ball and inner control wall
  • the components can be moved as a whole, and the movement of high-pressure water and low-pressure water can be controlled by the movement thereof, wherein the pressure-controlled steel ball can reduce the stress concentration of the high-pressure water entering the high-pressure water inlet and improve the stress
  • Figure 1 is a top perspective view of one embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line I-I of Figure 1.
  • Figure 3 is a cross-sectional view taken along line II-II of Figure 1.
  • a self-carrying abrasive hydraulic slit bit includes a drill bit and a cutting head 20 mounted around the top of the drill bit.
  • the cutting head 20 The utility model relates to a device for cutting a coal body or a rock body.
  • the drill bit is composed of a drill outer wall 1 and a drill cavity.
  • the outer wall 1 of the drill bit is supported as an overall shape of the drill bit.
  • the drill cavity provides a working space for each internal system, and the drill cavity is provided in the drill cavity.
  • a water flow passage 14 is formed in the center of the bottom of the drill bit, and the water flow passage 14 is formed by extending the total water inlet 16 at a position where the total water flows into the drill bit into the drill bit; and two low-pressure water passages communicating with the water flow passage 14 to the top of the drill bit 10 constitutes a low-pressure cooling water flow system, the low-pressure water passage 10 is a passage of low-pressure water from the inside of the drill bit to the outside, and the two low-pressure water passages 10 are arranged symmetrically about the center line of the water flow passage 14; the high-pressure water inlet passage and the high-pressure water buffer passage are in turn
  • the connection constitutes an eccentric high-pressure water pipe, and a channel nozzle is arranged on the high-pressure water buffer channel.
  • the high-pressure water buffer channel is a channel for accumulating energy of high-pressure water
  • the channel nozzle is a device for discharging high-pressure water
  • the two channels are connected to the outer wall 1 of the drill bit by the water flow channel 14.
  • the eccentric high-pressure water pipe constitutes a high-pressure cutting water flow system, and the eccentric directions of the two eccentric high-pressure water pipes are opposite.
  • the high-pressure water inlet is a position where the high-pressure water enters the passage of the high-pressure water
  • the high-pressure water outlet is a position where the high-pressure water is ejected from the drill bit, and the two high pressures
  • the height of the water inlet is the same, and the two high-pressure water outlets are high and low, that is, the upper high-pressure water outlet 71
  • the height is greater than the height of the lower high pressure water outlet 72;
  • the low pressure water inlet 17 is the position where the low pressure water enters the low pressure water passage, and the low pressure water outlet 18 is the position where the low pressure water contacts the outside through the low pressure water passage 10, and the high pressure water inlet is located at the low pressure water.
  • the plane where the low-pressure cooling water flow system is located is perpendicular to the plane where the high-pressure cutting water flow system is located; specifically, the two eccentric high-pressure water pipes constituting the high-pressure cutting water flow system are an upper eccentric high-pressure water pipe and a lower eccentric high-pressure water pipe, respectively.
  • the high-pressure water inlet passage 51, the upper high-pressure water buffer passage 61 and the upper passage nozzle 81 are sequentially connected to form an upper eccentric high-pressure water pipe, and the lower high-pressure water inlet passage 52, the lower high-pressure water buffer passage 62 and the lower passage nozzle 82 are sequentially connected to form a lower eccentric high-pressure water pipe.
  • the upper high pressure water inlet 191 and the lower high pressure water inlet 192 have the same height, and the upper high pressure water inlet 191 is higher than the lower high pressure water inlet 192, so that the upper eccentric high pressure water pipe and the lower eccentric high pressure water pipe are relatively up and down, left and right eccentric. , increasing the buffer length of the high pressure water jet and increasing the speed at which the water jet reaches the exit position, Increased penetration and destructive power;
  • the high-pressure water sand mixed liquid production and adding abrasive system comprises a high-pressure water suction sand passage and a sand storage tank 9, and a sand storage box 9 is arranged above the water flow passage 14, the sand storage box 9 provides a storage space for the sand, and the high-pressure water buffer
  • the road and the sand storage tank 9 are connected by a high-pressure water suction channel.
  • the upper high-pressure water buffer passage 61 and the sand storage tank 9 are connected by the upper high-pressure water suction passage 41, and the lower high-pressure water buffer passage 62 and the storage.
  • the sand boxes 9 are connected by a lower high pressure water suction channel 42; the high pressure water suction channel connects the passages of the high pressure water buffer channel and the sand storage tank 9, when the high pressure water passes through the high pressure water suction channel and the high pressure water buffer channel connection portion When the negative pressure is generated, the sand is sucked into the high-pressure water through the passage, so that the high-pressure water jet is mixed with the abrasive (sand) at the nozzle to form a water-sand mixture, which improves the penetration and destructive force of the high-pressure water and improves the water jet. Cutting ability.
  • the high and low pressure water flow control system comprises a sealing baffle 15, a pressure control steel ball 13, an inner control wall 12 and a pressure control spring 11, and the pressure control spring 11 controls the water pressure to make the low water pressure and the high water pressure work in coordination.
  • the inner control wall 12 is in contact with the inner wall of the bore of the water flow passage 14, and the inner control wall 12 has an orifice corresponding to the same shape as the high pressure water inlet and the low pressure water inlet. When the pressure reaches a certain level, the orifices respectively correspond to the passages thereof.
  • the inlets are connected so that the water of different pressures enters the respective passages through the inner control wall 12; the pressure-controlled steel ball 13 can control the flow direction of the high-pressure water, reduce the stress concentration, and increase the service life of the device; the sealing baffle 15 is set in the low-pressure water inlet On the inner control wall 12 below the nozzle 17, the pressure-control steel ball 13 is located above the sealing baffle 15, and the pressure-control spring 11 is connected to the inner control wall 12 at the top end of the pressure-control steel ball 13 and the water flow channel 14, when the pressure reaches a certain level
  • the pressure-controlled steel ball 13, the inner control wall 12 and the pressure-control spring 11 rise, the baffle blocks part of the water flow channel 14, controls the position of the water entering the passage, and adjusts the inlet of the water flow by different water pressure, thereby achieving a high And a low pressure water flow to play a role in the control.
  • the low-pressure cooling water flow system is composed of a horizontal section and a vertical section, the other end of the horizontal section is connected to the low-pressure water inlet port 17, and the other end of the vertical section is connected to the low-pressure water outlet port 18.
  • the high pressure water inlet passage is a curved eccentric pipeline, and the high pressure water buffer passage is a horizontally contracted pipeline having a smaller diameter than the high pressure water inlet passage and the passage nozzle.
  • the high-pressure water sand mixed liquid production and additive abrasive system further includes a sand supply passage 2, and a sand supply hole 3 is provided on the upper end surface of the sand storage box 9, and the sand supply passage is provided. 2 From the sand supply hole 3 to the top of the drill bit.
  • the sand replenishing hole 3 serves as a position for the sand to enter the device, and the sand replenishing channel 2 is a channel for replenishing the sand. Because of the presence of the sand replenishing passage 2, the abrasive (sand) can be added multiple times, so that the drill bit can be reused many times.
  • High and low pressure water flow control system During the cooling process, the low pressure water channel passes through the water, and the high pressure water enters the channel to assist the cooling. The water reaches the inside of the drill through the total water inlet 16 and cannot control the pressure component due to the low water pressure.
  • the rising and pressure-control spring 11 is compressed, so the water is cooled from the low-pressure water inlet 17 to the low-pressure passage, and then reaches the position of the drill bit, and the low-pressure water also reaches the high-pressure water inlet passage from the high-pressure water inlet, passing through the passage nozzle;
  • the high-pressure water inlet reaches the high-pressure water inlet passage, passes through the high-pressure water buffer passage, passes through the passage nozzle, reaches the outer wall of the drill bit, and cools it. More importantly, during the drilling of the drill bit, there is always pressure water from the high-pressure water.
  • the passage nozzle flows out to prevent the drill cuttings generated during the drilling process from blocking the nozzles of the two passages; when the water pressure is high pressure water, the high pressure water flows from the total water inlet 16 to the high pressure water inlet, and then reaches the high pressure water inlet passage through the high pressure water. After the buffer channel is buffered, the high-energy water jet is ejected from the high-pressure water outlet through the passage nozzle to perform hydraulic slitting.
  • the device is designed with an eccentric spray pipe (ie eccentric high pressure water pipe) to provide a longer water jet channel.
  • the high pressure water jet obtains more energy, the range of the slit is increased, and the directional cracking effect of the borehole is better.
  • the directional cracking range of a single drill hole is larger, so that the number of drill holes arranged on the working surface is reduced, the cost is reduced, and the directional cracking effect of the hard top plate is better, and the fracture position of the top plate is ensured when the hard top plate is directionally cracked.
  • the broken line is broken, so that better engineering results can be achieved, such as directional topping pressure relief in the roadway.
  • the sand trap 9 is designed in the drill bit, and the negative pressure generated by the high-pressure water jet nozzle sucks the sand into the water jet, so that the cutting ability and the cutting speed of the water jet are increased, and the pure high-pressure water jet (no abrasive such as sand is added) In this case, it is difficult to cut hard rock in the limited space of the borehole. Only a few soft rock layers and coal seams can be cut in a small range, the cutting ability is very limited, and the cutting speed is slow.
  • the abrasive (sand) can be added in the high-pressure water, which can greatly improve the cutting ability of the water jet, can cut hard rock or even steel plate, and the cutting ability is remarkably improved, and the cutting speed is also greatly improved. .
  • the sand of the sand storage box 9 is supplied with sand through a special supply hole.
  • the capacity of the sand storage box 9 is sufficient for a hydraulic slit of a drill hole.
  • Pressure control is carried out through a pressure control system.
  • the pressure control component (the inner control wall 12 and the pressure control steel ball 13) compresses the pressure control spring 11 due to the pressure increase, so that the control is performed.
  • the component rises the lower low-pressure water inlet 17 is blocked by the inner control wall 12 of the control component, so that the water only enters the high-pressure water passage from the high-pressure water inlet, reaches the high-pressure water nozzle, and the high-pressure water is ejected from the high-pressure water outlet through the buffer passage.
  • the pressure-controlled steel ball 13 can change the flow direction of the water to reduce the stress concentration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

一种自携磨料式水力割缝钻头,包括钻头和安装在钻头顶部四周的切割头(20),钻头由钻头外壁(1)和钻头腔体构成,在所述钻头腔体内设有低压冷却水流系统和高压切割水流系统、高压水砂混合液产生与添加磨料系统、高低压水分流控制系统,该钻头能够提高水射流的切割能力和切割速度,高压水射流获得的能量更多,割缝的范围加大,钻孔的定向致裂效果更好,从而使工作面布置的钻孔数目减少,费用降低。

Description

一种自携磨料式水力割缝钻头 技术领域
本发明涉及一种水力割缝钻头,尤其是一种自携磨料式水力割缝钻头,属于采矿工程技术领域。
背景技术
水力致裂技术最早应用于石油工程来提高贫油井的产量。目前水力致裂技术在煤矿坚硬顶板控制方面、海底隧道工程、坚硬顶煤弱化、岩石压裂、煤层气开采等方面开始推广应用。一般水力致裂裂缝的起裂扩展受控于钻孔围岩的地应力场,裂缝的起裂和扩展平面平行于最大主应力方向。但很多工程中需要的裂缝扩展方向与地应力场控制的裂缝方向并不吻合,需要通过人工措施去控制裂缝的定向起裂,引导裂缝的扩展方向,即定向水力致裂。
定向水力致裂最常用的是在钻孔壁上用高压水射流切割特定方向的裂缝,诱导水压裂缝沿切割的方向扩展,达到定向致裂的效果。在地面上,高压水射流应用广泛,其中水刀是一种常见的应用高压水射流的切割技术。水刀是以水为刀的切割工具,这项技术最早起源于美国,用于航空航天军事工业。以其冷切割不会改变材料的物理化学性质而备受青睐。后经技术不断改进,在高压水中混入石榴砂,极大的提高了水刀的切割速度和切割厚度。
目前,地面上水刀携砂切割应用非常广泛,但是其需要的空间比较大,然而在矿井中,虽然水力致裂已应用很长时间,但由于钻孔内部空间受制于钻孔直径,在钻孔内部进行水力割缝时,几乎都是不携砂的,只利用高压水的高能量冲击破碎煤岩,其效率低,冲击产生的裂缝深度不足,定向水力致裂的定向效果较差;其次,传统的水力割缝钻头的喷嘴均布置在一个同心圆 上,导致其喷嘴较短,高压水在喷嘴内不能蓄积足够的能量,致使高压水从钻头喷出时能量不足,其对煤岩体的破坏程度有限,导致其割缝深度不足,定向致裂效果较差,定向切断坚硬顶板等工程问题不能得到充分解决。
公知的,携砂的水射流的切割速度和切割半径较无砂的水射流高很多。携砂的高压水射流的产生有两种方式,第一种是前混式,即将高压水和磨料(砂子)混合后,水砂混合液经过高压管路到喷嘴,经喷嘴直接喷出,切割需要切割的材料;第二种是后混式,利用高压水在喷嘴处产生的虹吸现象,将沙箱里的砂子吸入到喷嘴中与高压水混合后,经喷嘴喷出,切割相应的材料。因前混式产生的水砂混合液对沿程的高压管路磨损巨大,且喷嘴处容易产生沙堵,因而传统的水力割缝钻头很少采用;又因为后混式需要较大的空间才能完成,因而传统的水力割缝钻头不具备这样的条件,无法实现这样的功能。
发明内容
为了克服现有的上述不足,本发明提供一种自携磨料式水力割缝钻头,该钻头能够大大提高水射流的切割能力,切割能力显著提高,同时切割速度也大大提高,高压水射流获得的能量更多,割缝的范围加大,钻孔的定向致裂效果更好,从而使工作面布置的钻孔数目减少,费用降低。
本发明解决其技术问题采用的技术方案是:包括钻头和安装在钻头顶部四周的切割头,钻头由钻头外壁和钻头腔体构成,在所述钻头腔体内设有低压冷却水流系统和高压切割水流系统、高压水砂混合液产生与添加磨料系统、高低压水分流控制系统三大系统;在钻头的底部中心开设一个水流通道;两条由水流通道向钻头顶部连通的低压水道构成低压冷却水流系统,两个低压 水道以水流通道的中心线为对称轴对称排布;高压水进入通道和高压水缓冲道依次连接构成偏心高压水管,在高压水缓冲道上设有通道喷嘴,两条由水流通道向钻头外壁连通的偏心高压水管构成高压切割水流系统,两个偏心高压水管的偏心方向相反,两个高压水进水口的高度一致,两个高压水出口一高一低;高压水进水口位于低压水进水口的上方,低压冷却水流系统所在的平面垂直于高压切割水流系统所在的平面;高压水砂混合液产生与添加磨料系统包括高压水吸砂通道和储砂箱,在水流通道的上方设有储砂箱,高压水缓冲道和储砂箱之间通过高压水吸砂通道连接;高低压水分流控制系统包括封孔挡板、控压钢球、内控壁和控压弹簧,内控壁与水流通道的钻孔内壁接触,内控壁上有与高压水进口、低压水进口形状相同位置对应的孔口,封孔挡板设置于低压水进水口下方的内控壁上,控压钢球位于封孔挡板上方,控压弹簧连接在控压钢球与水流通道顶端的内控壁上。
相比现有技术,本发明的一种自携磨料式水力割缝钻头,其高压切割水流系统两条由水流通道向钻头外壁连通的偏心高压水管构成,提供了更长的水射流通道,增加高压水到达出水口的能量,提高割缝效果,并且偏心高压水管上下错位、左右偏心设计,为钻头提供周向力,可以加速环向切槽;通过添加储砂箱,提供储砂空间,从而通过高压水射流中携砂提高水射流的切割范围和切割速度,吸砂通道使砂子通过高压水产生的负压吸入高压水中,达到自动吸砂的效果;设置高低压水分流控制系统,其中的控压部件(控压钢球和内控壁),部件可以整体移动,通过其移动控制高压水和低压水的转换,其中的控压钢球,可以降低高压水进入高压水入口时的应力集中,提高其使用寿命,控压弹簧通过与控压部件的连接,控制压力与控压部件位移之 间的关系,从而控制高压水和低压水的转换;高压水水道、低压水水道在空间上的联合布置,提高装置的整体效率,对钻头腔体空间的合理利用。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明一个实施例的俯视透视图。
图2是图1中Ⅰ-Ⅰ处的剖视图。
图3是图1中Ⅱ-Ⅱ处的剖视图。
图中,1、钻头外壁,2、砂料补给通道,3、砂料补给孔,41、上高压水吸砂通道,42、下高压水吸砂通道,51、上高压水进入通道,52、下高压水进入通道,61、上高压水缓冲道,62、下高压水缓冲道,71、上高压水出口,72、下高压水出口,81、上通道喷嘴,82、下通道喷嘴,9、储砂箱,10、低压水道,11、控压弹簧,12、内控壁,13、控压钢球,14、水流通道,15、封孔挡板,16、总进水口,17、低压水进水口,18、低压水出水口,191、上高压水进水口,192、下高压水进水口,20、切割头。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
图1至图3示出了本发明一个较佳的实施例的结构示意图,图中的一种自携磨料式水力割缝钻头,包括钻头和安装在钻头顶部四周的切割头20,切 割头20是切割煤体或者岩体的装置,钻头由钻头外壁1和钻头腔体构成,钻头外壁1作为钻头的整体形状支撑,钻头腔体为内部各个系统提供工作空间,在所述钻头腔体内设有低压冷却水流系统和高压切割水流系统、高压水砂混合液产生与添加磨料系统、高低压水分流控制系统三大系统;
其中,在钻头的底部中心开设一个水流通道14,水流通道14由作为总水流进入钻头的位置的总进水口16向钻头内延伸一段距离形成;两条由水流通道14向钻头顶部连通的低压水道10构成低压冷却水流系统,低压水道10是低压水从钻头内部到外界的通道,两个低压水道10以水流通道14的中心线为对称轴对称排布;高压水进入通道和高压水缓冲道依次连接构成偏心高压水管,在高压水缓冲道上设有通道喷嘴,高压水缓冲道是高压水积聚能量的通道,通道喷嘴是喷出高压水的装置,两条由水流通道14向钻头外壁1连通的偏心高压水管构成高压切割水流系统,两个偏心高压水管的偏心方向相反,高压水进水口是高压水进入高压水进入通道的位置,高压水出口是高压水从钻头喷射出的位置,两个高压水进水口的高度一致,两个高压水出口一高一低,即上高压水出口71的高度大于下高压水出口72的高度;低压水进水口17是低压水进入低压水通道的位置,低压水出水口18是低压水通过低压水道10与外界接触的位置,高压水进水口位于低压水进水口17的上方,低压冷却水流系统所在的平面垂直于高压切割水流系统所在的平面;具体地,构成高压切割水流系统的两个偏心高压水管分别为上偏心高压水管和下偏心高压水管,上高压水进入通道51、上高压水缓冲道61和上通道喷嘴81依次连接构成上偏心高压水管,下高压水进入通道52、下高压水缓冲道62和下通道喷嘴82依次连接构成下偏心高压水管,上高压水进水口191和下 高压水进水口192的高度一致,上高压水进水口191高于下高压水进水口192,这样上偏心高压水管与下偏心高压水管相对呈上下错位、左右偏心,提高了高压水射流的缓冲长度,提高了水射流到达出口位置时的速度,提高了其穿透力和破坏力;
其中,高压水砂混合液产生与添加磨料系统包括高压水吸砂通道和储砂箱9,在水流通道14的上方设有储砂箱9,储砂箱9为砂子提供储存空间,高压水缓冲道和储砂箱9之间通过高压水吸砂通道连接,具体是,上高压水缓冲道61和储砂箱9之间通过上高压水吸砂通道41连接,下高压水缓冲道62和储砂箱9之间通过下高压水吸砂通道42连接;高压水吸砂通道连接了高压水缓冲道和储砂箱9的通道,当高压水通过高压水吸砂通道与高压水缓冲道连接部位时,产生的负压将砂子通过此通道吸入高压水中,使高压水射流在喷嘴处与磨料(砂子)混合形成水砂混合液,提高了高压水的穿透力和破坏力,提高了水射流的切割能力。
其中,高低压水分流控制系统包括封孔挡板15、控压钢球13、内控壁12和控压弹簧11,控压弹簧11是控制水压,使低水压与高水压协调运行的部件,内控壁12与水流通道14的钻孔内壁接触,内控壁12上有与高压水进口、低压水进口形状相同位置对应的孔口,当压力达到一定程度,这些孔口分别与其对应的通道进口相连,使不同压力的水流经过内控壁12进入各自的通道;控压钢球13能控制高压水的流向,减小应力集中,增加装置的使用寿命;封孔挡板15设置于低压水进水口17下方的内控壁12上,控压钢球13位于封孔挡板15上方,控压弹簧11连接在控压钢球13与水流通道14顶端的内控壁12上,当压力达到一定程度时,控压钢球13、内控壁12 及控压弹簧11上升,挡板堵住部分水流通道14,控制水进入的通道位置,通过水压的不同,对水流的入口进行调整,从而达到对高压水和低压水流向起到控制作用。
本实施例中,所述的低压冷却水流系统由水平段和垂直段连接构成,水平段的另一端连接低压水进水口17,垂直段的另一端连接低压水出水口18。所述的高压水进入通道为弯曲偏心管道,高压水缓冲道为管径小于高压水进入通道和通道喷嘴的水平收缩管道。
作为本实施例的进一步优化设计是,所述高压水砂混合液产生与添加磨料系统还包括砂料补给通道2,在储砂箱9的上端面开设有砂料补给孔3,砂料补给通道2由砂料补给孔3向钻头顶端。砂料补给孔3作为砂子进入装置的位置,砂料补给通道2是补给砂子的通道,因为砂料补给通道2的存在,可以多次添加磨料(砂子),使钻头可以多次重复利用。
本发明实施例三大系统的工作过程如下:
1)低压冷却水流系统和高压切割水流系统:由于水压是逐渐增加的,起初注入的水压是低压水并且由于初始阶段是钻孔阶段,多以低压水道10和高压水进入通道都会通过部分水对钻头进行降温,这时由于压力低控压部件不上升和控压弹簧11不压缩;当钻孔钻到一定位置时,这时需要用高压水进行水力割缝,因此,这时水压不断升高,控压部件随着控压弹簧11受到的压力增加而不断上升,当达到一定压力后,高压水冲击控压钢球13使水向两个高压水进入通道进行分流。
2)高低压水分流控制系统:在降温过程中,以低压水水道通过水为主,高压水进入通道辅助降温,水通过总进水口16到达钻头内部,由于水压较 低无法使控压部件上升和控压弹簧11压缩,所以水从低压水进水口17到低压通道,再到达钻头位置对其进行降温,同时低压水也从高压水入口到达高压水进入通道,经过通道喷嘴;高压水从高压水入口到达高压水进入通道,经过高压水缓冲道,再经过通道喷嘴,到达钻头外壁1,对其进行降温,更重要的是在钻头钻进的过程中,始终有压力水从高压水的通道喷嘴流出,防止钻进过程中产生的钻屑将两个通道喷嘴堵塞;当水压为高压水时,高压水从总进水口16到高压水入口,之后到达高压水进入通道,经过高压水缓冲道缓冲后,再经过通道喷嘴,将高能量的水射流从高压水出口射出,进行水力割缝。
3)高压水砂混合液产生与添加磨料系统:初始时,将砂子通过砂料补给孔3进行注砂,砂子通过砂料补给通道2进入储砂箱9,当高压水经过时,由于高压水产生的负压将砂子吸入高压水中,使砂子随着高压水一起切割煤(岩)体;当储砂箱9中的砂子使用完毕之后,通过砂料补给孔3进行砂子补给,使装置可以多次利用。
本发明的有益效果如下:
1.本装置设计偏心的喷射管(即偏心高压水管),提供更长的水射流通道,高压水射流获得的能量更多,割缝的范围加大,钻孔的定向致裂效果更好,单个钻孔的定向致裂范围更大,从而使工作面布置的钻孔数目减少,费用降低,同时坚硬顶板的定向致裂效果更好,确保坚硬顶板定向致裂时,顶板的断裂位置沿设计的断裂线断开,从而能够达到更好的工程效果,如临空巷道的定向切顶卸压等。
2.本钻头中设计有储砂箱9,通过高压水射流喷嘴产生的负压吸取砂进 入水射流,使水射流的切割能力和切割速度增加,单纯的高压水射流(不添加砂子等磨料的情况下)在钻孔的有限空间内是很难将坚硬岩石切开的,只能在小范围内切割一些松软的岩层和煤层,切割能力十分有限,而且切割速度缓慢。但是在钻头中集成了储砂箱9后,高压水中能够添加磨料(砂子),能够大大提高水射流的切割能力,能够切开坚硬的岩石甚至钢板,切割能力显著提高,同时切割速度也大大提高。
3.储砂箱9的砂子通过专用补给孔进行砂子补给,储砂箱9的容量足够一个钻孔的水力割缝使用,当一个钻孔钻进到预定位置,进行水力割缝后,将钻头退出,通过专用的砂子补给通道向钻头内部加满砂子,以备下一个钻孔水力割缝使用。设计专用的砂子补给通道后,水力割缝钻头可以重复多次使用,提高了割缝钻头的实用价值。
4.通过一个控压系统进行压力控制,当低压时,只进行降温工作;高压时,由于压力提高,致使控压部件(内控壁12和控压钢球13)压缩控压弹簧11,致使控制部件上升,下部低压水进水口17被控制部件的内控壁12堵住,使水只从高压水进水口进入高压水通道,到达高压水喷嘴处,使高压水通过缓冲道从高压水出口喷射出,其中控压钢球13可以改变水的流向减小应力集中。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质,对以上实施例所做出任何简单修改和同等变化,均落入本发明的保护范围之内。

Claims (4)

  1. 一种自携磨料式水力割缝钻头,包括钻头和安装在钻头顶部四周的切割头(20),钻头由钻头外壁(1)和钻头腔体构成,其特征是:在所述钻头腔体内设有低压冷却水流系统和高压切割水流系统、高压水砂混合液产生与添加磨料系统、高低压水分流控制系统三大系统;
    在钻头的底部中心开设一个水流通道(14);两条由水流通道(14)向钻头顶部连通的低压水道(10)构成低压冷却水流系统,两个低压水道(10)以水流通道(14)的中心线为对称轴对称排布;高压水进入通道和高压水缓冲道依次连接构成偏心高压水管,在高压水缓冲道上设有通道喷嘴,两条由水流通道(14)向钻头外壁(1)连通的偏心高压水管构成高压切割水流系统,两个偏心高压水管的偏心方向相反,两个高压水进水口的高度一致,两个高压水出口一高一低;高压水进水口位于低压水进水口(17)的上方,低压冷却水流系统所在的平面垂直于高压切割水流系统所在的平面;
    高压水砂混合液产生与添加磨料系统包括高压水吸砂通道和储砂箱(9),在水流通道(14)的上方设有储砂箱(9),两个偏心高压水管的高压水缓冲道和储砂箱(9)之间分别通过上高压水吸砂通道(41)、下高压水吸砂通道(42)连接;
    高低压水分流控制系统包括封孔挡板(15)、控压钢球(13)、内控壁(12)和控压弹簧(11),内控壁(12)与水流通道(14)的钻孔内壁接触,内控壁(12)上有与高压水进口、低压水进口形状相同位置对应的孔口,封孔挡板(15)设置于低压水进水口(17)下方的内控壁(12)上,控压钢球(13)位于封孔挡板(15)上方,控压弹簧(11)连接在控压钢球(13)与水流通道(14)顶端的内控壁(12)上。
  2. 根据权利要求1所述的一种自携磨料式水力割缝钻头,其特征是:所述高压水砂混合液产生与添加磨料系统还包括砂料补给通道(2),在储砂箱(9)的上端面开设有砂料补给孔(3),砂料补给通道(2)由砂料补给孔(3)向钻头顶端。
  3. 根据权利要求1或2所述的一种自携磨料式水力割缝钻头,其特征是:所述的低压冷却水流系统由水平段和垂直段连接构成,水平段的另一端连接低压水进水口(17),垂直段的另一端连接低压水出水口(18)。
  4. 根据权利要求1或2所述的一种自携磨料式水力割缝钻头,其特征是:所述的高压水进入通道为弯曲偏心管道,高压水缓冲道为管径小于高压水进入通道和通道喷嘴的水平收缩管道。
PCT/CN2018/113602 2018-01-08 2018-11-02 一种自携磨料式水力割缝钻头 WO2019134432A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3064815A CA3064815C (en) 2018-01-08 2018-11-02 Self-carrying abrasive type hydraulic slotting drill bit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810014452.3A CN108316907B (zh) 2018-01-08 2018-01-08 一种自携磨料式水力割缝钻头
CN201810014452.3 2018-01-08

Publications (1)

Publication Number Publication Date
WO2019134432A1 true WO2019134432A1 (zh) 2019-07-11

Family

ID=62893112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113602 WO2019134432A1 (zh) 2018-01-08 2018-11-02 一种自携磨料式水力割缝钻头

Country Status (3)

Country Link
CN (1) CN108316907B (zh)
CA (1) CA3064815C (zh)
WO (1) WO2019134432A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217099A (zh) * 2021-06-08 2021-08-06 国能神东煤炭集团有限责任公司 水力定向顶板切割装置
CN113818812A (zh) * 2021-08-11 2021-12-21 沧州格锐特钻头有限公司 具有温度监测和降温功能的牙轮钻头
CN116532204A (zh) * 2023-04-07 2023-08-04 江苏东南环保科技有限公司 超临界水氧化垃圾处理消融装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108316907B (zh) * 2018-01-08 2020-05-05 中国矿业大学 一种自携磨料式水力割缝钻头
CN109098657A (zh) * 2018-10-24 2018-12-28 云南建投基础工程有限责任公司 一种与旋挖桩机结合的处理漂石的高压水射流装置及方法
CN109113675B (zh) * 2018-11-03 2023-12-19 山东祥德机电有限公司 高低压转换割缝器
CN110145305B (zh) * 2019-04-18 2021-01-19 天地科技股份有限公司 一种水力切顶留巷防治巷道冲击地压的方法
CN112196574B (zh) * 2020-10-13 2022-04-22 中铁隧道局集团有限公司 一种用于辅助掘进机破岩的高压水射流装置
CN113217008A (zh) * 2021-06-18 2021-08-06 中铁工程装备集团有限公司 隧道掘进过程中原岩磨料水射流的施工方法
CN113417639B (zh) * 2021-07-28 2023-10-20 西安科技大学 一种坚硬煤层注水防冲方法与系统
CN115256239B (zh) * 2022-08-04 2024-03-22 王宇辰 印刷电路板数控水刀铣边机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899835A (en) * 1989-05-08 1990-02-13 Cherrington Martin D Jet bit with onboard deviation means
KR20100080662A (ko) * 2009-01-02 2010-07-12 구영회 고압 분사 굴착 공법 및 이를 위한 고압수 분사기능을 구비한 지반개량용 굴착장치
CN202380976U (zh) * 2011-09-19 2012-08-15 中国矿业大学 一种机械自切换式高压水射流割缝钻头
CN203499569U (zh) * 2013-10-18 2014-03-26 永城煤电控股集团有限公司 水压控钻冲割一体高效钻头
CN107435519A (zh) * 2016-05-27 2017-12-05 徐州博安科技发展有限责任公司 低流量钻进高流量割缝钻头
CN108316907A (zh) * 2018-01-08 2018-07-24 中国矿业大学 一种自携磨料式水力割缝钻头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387803C (zh) * 2005-06-08 2008-05-14 阮花 磨料水射流井下多辐射孔超深钻孔装置
RU2486330C1 (ru) * 2012-02-24 2013-06-27 Николай Митрофанович Панин Гидравлический калибратор
CN202520224U (zh) * 2012-04-13 2012-11-07 辽宁工程技术大学 煤层钻孔割缝卸压装置
CN103334723B (zh) * 2013-07-09 2015-10-14 重庆大学 一种煤矿井下水力割缝自吸式磨料射流发生装置及方法
CN104373044A (zh) * 2014-11-03 2015-02-25 中国石油大学(北京) 一种水平井切向注入式旋流射流磨钻头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899835A (en) * 1989-05-08 1990-02-13 Cherrington Martin D Jet bit with onboard deviation means
KR20100080662A (ko) * 2009-01-02 2010-07-12 구영회 고압 분사 굴착 공법 및 이를 위한 고압수 분사기능을 구비한 지반개량용 굴착장치
CN202380976U (zh) * 2011-09-19 2012-08-15 中国矿业大学 一种机械自切换式高压水射流割缝钻头
CN203499569U (zh) * 2013-10-18 2014-03-26 永城煤电控股集团有限公司 水压控钻冲割一体高效钻头
CN107435519A (zh) * 2016-05-27 2017-12-05 徐州博安科技发展有限责任公司 低流量钻进高流量割缝钻头
CN108316907A (zh) * 2018-01-08 2018-07-24 中国矿业大学 一种自携磨料式水力割缝钻头

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217099A (zh) * 2021-06-08 2021-08-06 国能神东煤炭集团有限责任公司 水力定向顶板切割装置
CN113217099B (zh) * 2021-06-08 2024-04-05 国能神东煤炭集团有限责任公司 水力定向顶板切割装置
CN113818812A (zh) * 2021-08-11 2021-12-21 沧州格锐特钻头有限公司 具有温度监测和降温功能的牙轮钻头
CN113818812B (zh) * 2021-08-11 2024-01-26 沧州格锐特钻头有限公司 具有温度监测和降温功能的牙轮钻头
CN116532204A (zh) * 2023-04-07 2023-08-04 江苏东南环保科技有限公司 超临界水氧化垃圾处理消融装置
CN116532204B (zh) * 2023-04-07 2024-01-26 江苏东南环保科技有限公司 超临界水氧化垃圾处理消融装置

Also Published As

Publication number Publication date
CA3064815A1 (en) 2019-07-11
CA3064815C (en) 2020-09-08
CN108316907A (zh) 2018-07-24
CN108316907B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2019134432A1 (zh) 一种自携磨料式水力割缝钻头
CN105971663B (zh) 一种煤层高压水力割缝压裂的钻孔布置结构及增透方法
CN101586441B (zh) 高压水射流煤层钻扩孔系统和方法
CN108547604B (zh) 一种钻冲压一体化装置与方法
CN201090139Y (zh) 压控钻割一体化钻头
CN202157747U (zh) 直接泵钢颗粒浆的颗粒冲击钻井装置
CN102493794A (zh) 气水混合液喷射钻井梅花形径向水平井煤层气开采方法
CN102926730A (zh) 支撑管跟进气液喷射钻进径向井煤层气开采方法
CN103527092A (zh) 水平定向钻孔内射吸排屑扩孔方法
CN102686820A (zh) 用于钻孔机的气锤
CN204782970U (zh) 一种低透气性煤层水力割缝系统
CN101942986A (zh) 磨料射流喷射分层压裂装置
CN108425661A (zh) 连续油管钢粒射流射孔装置
CN103256025A (zh) 一种复合井网式煤层气开采方法
CN105089500A (zh) 煤矿井下水力喷射树状钻孔组合钻具
CN102966372A (zh) 一种复杂煤层割缝诱喷卸压增透方法
CN104481577A (zh) 一种钻割排分一体化煤层物理化学联合增透系统及方法
CN102748065A (zh) 一种针对大采长工作面空白带瓦斯抽采方法
CN206397485U (zh) 井下粒子射流射孔装置
CN105328574A (zh) 高压旋转磨料射流钻扩孔装置
CN101377124B (zh) 水平裸眼导流槽井和糖葫芦井煤层气开采方法
CN101975023B (zh) 一种顺层钻进松软煤层深长瓦斯抽采孔的方法及装置
CN105569620A (zh) 用于裸眼井的完井中的深穿透射孔方法及装置
CN102966310A (zh) 一种钻孔内水射流割缝诱喷装置及方法
CN109441353B (zh) 一种后混合磨料气体射流破煤装置及其破煤方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064815

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897916

Country of ref document: EP

Kind code of ref document: A1