WO2019134260A1 - 色轮组件、光源装置及投影系统 - Google Patents

色轮组件、光源装置及投影系统 Download PDF

Info

Publication number
WO2019134260A1
WO2019134260A1 PCT/CN2018/080868 CN2018080868W WO2019134260A1 WO 2019134260 A1 WO2019134260 A1 WO 2019134260A1 CN 2018080868 W CN2018080868 W CN 2018080868W WO 2019134260 A1 WO2019134260 A1 WO 2019134260A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation light
region
light source
carrier
Prior art date
Application number
PCT/CN2018/080868
Other languages
English (en)
French (fr)
Inventor
杜鹏
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019134260A1 publication Critical patent/WO2019134260A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a color wheel assembly, a light source device, and a projection system.
  • spatial light modulators are widely used in the field of projection display.
  • Space light modulators generally include LCD, LCOS, DMD, etc.
  • the monolithic spatial light modulator projection system realizes color projection display based on the base light of timing switching. Simple structure, low cost, etc., widely used in the low-end market. Since the laser-excited phosphor is subjected to a wide spectral bandwidth of the laser, a filter is usually added to the light source to intercept the desired wavelength band, such as intercepting green or red light from the yellow light.
  • the phosphor spectrum is generally filtered by a two-color wheel or a monochrome wheel structure.
  • the two-color wheel structure refers to the two-color wheel system of the fluorescent wheel + filter wheel.
  • the fluorescent wheel and the filter wheel need to be synchronously controlled, which increases the complexity of the light source.
  • the color wheel in the monochrome wheel structure includes an inner ring as a fluorescent region and an outer ring as a filter region. In this structure, it is not necessary to consider the synchronization problem between the fluorescent region and the filter region, but the width of the fluorescent region and the width of the filter region are in color. The superposition of the radial direction of the wheel results in a large outer diameter of the color wheel, making it difficult to achieve miniaturization of the light source.
  • the present invention provides a color wheel assembly including a first carrier; a wavelength conversion element fixed around a peripheral wall of the first carrier for receiving excitation light of a light source and generating a laser beam; a second carrier, One end of the first carrier is fixedly connected; and a filter element is fixed on the second carrier for receiving and filtering the laser.
  • the present invention also provides a light source device comprising an excitation light source for generating excitation light and a color wheel assembly, the color wheel assembly comprising: a first carrier; a wavelength conversion element fixed around a peripheral wall of the first carrier and arranged In the transmission path of the excitation light, the laser light and the excitation light are sequentially outputted under the illumination of the excitation light source; the second carrier is fixedly connected to one end of the first carrier; and the filter element is fixed to The second carrier is configured to receive and filter the laser received.
  • the present invention also provides a projection system including the above light source device.
  • the color wheel assembly provided by the invention provides the filter element on the end surface of the carrier and surrounds the wavelength conversion element on the peripheral wall of the carrier, so that the radial dimension of the color wheel assembly is greatly reduced, and the miniaturization is realized.
  • the filter element and the wavelength conversion element are driven along with the driving of the first carrier, regardless of the synchronous control problem of the filter wheel and the fluorescent wheel, and the driving control of the color wheel assembly is simpler. .
  • FIG. 1 is a schematic structural view of a light source device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the color wheel assembly shown in FIG. 1.
  • FIG. 3 is a top plan view of the color wheel assembly of FIG. 2.
  • FIG. 4 is a schematic structural view of a light source device according to a second embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of the color wheel assembly shown in Figure 4.
  • FIG. 6 is a schematic structural diagram of a light source device according to a third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an excitation light source, a breaking timing of a compensation light source, and a distribution of segmented regions of a wavelength conversion element according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a light source device according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a light source device according to a fifth embodiment of the present invention.
  • Figure 10 is a top plan view of the second reflective element of Figure 9.
  • FIG. 11 is a schematic structural diagram of a light source device according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a light source device according to a seventh embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a light source device according to an eighth embodiment of the present invention.
  • Figure 14 is a schematic view showing the structure of the color wheel assembly shown in Figure 13.
  • FIG. 15 is a schematic structural diagram of a light source device according to a ninth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a light source device 100 according to a first embodiment of the present invention.
  • the light source device 100 is applied to a projection device.
  • the light source device 100 includes an excitation light source 120, an adjustment device, a color wheel assembly 160, and a first light homogenizing device 180.
  • the excitation light source 120 is for generating excitation light of at least one color.
  • the color wheel assembly 160 is configured to perform wavelength conversion on the excitation light and to sequentially emit laser light and excitation light.
  • the adjusting device is configured to guide the received laser light and the excitation light incident along the overlapping optical path, and adjust the received laser light to a first divergence angle to be emitted from the color wheel assembly 160, and the excitation light is A divergence angle matching second divergence angle emerges from the color wheel assembly 160.
  • the overlapping optical path means that the transmission optical path of the laser light and the transmission optical path of the excitation light are at least partially overlapped.
  • the first light homogenizing device 180 homogenizes the laser light and the excitation light that are emitted at mutually matching divergence angles.
  • the excitation light source 120 includes an illuminant 121 for generating the excitation light and a second shimming device 122 for multiplexing the excitation light.
  • the excitation light source 120 may be a blue light source that emits blue excitation light. It can be understood that the excitation light source 120 is not limited to a blue light source, and the excitation light source 120 may also be a purple light source, a red light source, or a green light source.
  • the illuminator 121 is a blue laser for emitting blue laser light as the excitation light. It can be understood that the illuminant 121 can include one, two or more blue lasers, and the number of lasers can be selected according to actual needs.
  • the second light homogenizing device 122 is located on the outgoing light path of the illuminant 121 for aligning the excitation light.
  • the second light homogenizing device 122 is a light homogenizing rod. It can be understood that in other embodiments, the second light homogenizing device 122 may include a fly-eye lens, a light beam, a diffuser or a scattering. Wheels, etc., are not limited to this.
  • FIG. 2 is a schematic structural view of the color wheel assembly 160 shown in FIG.
  • the color wheel assembly 160 includes a first carrier 161, a wavelength conversion element 165, a second carrier 163, and a filter element 167.
  • the wavelength conversion element 165 is configured to receive the excitation light emitted by the excitation light source 120 and generate a laser beam that is fixed around the peripheral wall of the first carrier 161 to form a drum-type wavelength conversion structure.
  • the second carrier 163 is fixedly connected to the first carrier 161 .
  • the filter element 167 is fixed to an end surface of the second carrier 163 away from the first carrier 161 and extends around the circumference of the second carrier 163 for receiving and filtering the laser light.
  • the first carrier 161 is substantially columnar
  • the second carrier 163 is substantially plate-shaped
  • the width of the second carrier 163 is greater than the width of the first carrier 161.
  • the second carrier 163 is fixedly connected to the first carrier 161 via a connecting member.
  • the central axis of the first carrier 161 coincides with the central axis of the second carrier 163 and serves as a central axis of the color wheel assembly 160. It can be understood that the second carrier 163 can be directly fixed to the first carrier 161, or the first carrier 161 and the second carrier 163 can be integrally formed, or can be separately formed and connected.
  • the wavelength conversion element 165 is disposed in the transmission path of the excitation light, and sequentially outputs the received laser light and the excitation light under the illumination of the excitation light source 120.
  • the wavelength conversion element 165 includes a transition region 164 and a non-conversion region 166 that are circumferentially disposed.
  • the conversion region 164 and the non-conversion region 166 are alternately located on the optical path of the excitation light under the driving of the driving device, so that the color wheel assembly 160 emits laser light with wavelength conversion and excitation without wavelength conversion. Light.
  • the conversion zone 164 and the non-conversion zone 166 are respectively distributed in a square curved surface, and the outer surfaces of the conversion zone 164 and the non-conversion zone 166 are parallel to the central axis of the color wheel assembly 160.
  • the wavelength conversion element 165 is a reflective wavelength conversion element.
  • the reflective wavelength conversion element means that the direction of propagation of the outgoing light of the wavelength conversion element 165 is opposite to the direction of propagation of the incident light.
  • the conversion region 164 is provided with a wavelength converting material to generate a laser light in the form of Lambertian light of at least one color under excitation of the excitation light.
  • the conversion area 164 is divided into a red area (R), a green area (G), and a yellow area (Y).
  • the red region is provided with a red phosphor to generate a red laser under the excitation of the excitation light;
  • the green region is provided with a green phosphor to generate a green laser under the excitation of the excitation light;
  • the yellow area is provided with a yellow phosphor to generate a yellow laser light under excitation of the excitation light.
  • the conversion region 164 can also set phosphors of other colors than red, green, and yellow to generate laser light of other colors.
  • the non-conversion zone 166 is provided with a mirror or a small angle diffuser, such as a Gaussian reflector, for reflecting the excitation light.
  • the non-conversion region 166 is set to a blue region (B-mirror) for reflecting blue excitation light.
  • the red laser, the green laser, the yellow laser, and the blue excitation light are homogenized in the first light homogenizing device 180 to form white light.
  • the filter element 167 is generally annular in shape and includes a hollow region 162 and a filter region 168 disposed around the hollow region 162 and a non-filter region 169.
  • the filter region 168 and the non-filter region 169 are respectively disposed in a fan shape. It can be understood that in other embodiments, the filter element 167 can also be designed in the shape of a disk, and the filter region 168 and the non-filter region 169 are respectively disposed in a fan shape.
  • the filter region 168 corresponds to the conversion region 164 for filtering the laser light to improve the color purity of the primary color of the light source.
  • the non-filtering region 169 corresponds to the non-conversion region 166 for scattering the excitation light to expand the divergence angle of the excitation light, and the excitation light emitted by the non-filter region 169 is distributed.
  • the filter region 168 is provided with a filter material to filter the laser light in the form of Lambertian light having at least one color.
  • the filter region 168 is divided into a red region (R), a green region (G), and a yellow region (Y), and the red region, the green region, and the yellow region of the filter region 168 are respectively The red area, the green area, and the yellow area of the conversion area 164 are in one-to-one correspondence.
  • the red region is provided with a red filter for filtering the red laser light; the green region is provided with a green filter for filtering the green laser light; and the yellow region is provided with a yellow filter for The yellow is filtered by the laser.
  • the conversion region 164 can also set filters of other colors than red, green, and yellow to filter laser light of other colors.
  • the non-filtering region 169 is provided with a transmissive diffusing sheet or a single compound eye for enlarging the divergence angle of the excitation light emitted by the non-converting region 166.
  • the non-filtering region 169 is set to a blue region (B-diffuser) for expanding the divergence angle of the blue excitation light.
  • the first carrier 161 and the second carrier 163 are driven by the same driving device.
  • the driving device can be partially accommodated in the hollow region 162 and connected to the carrier.
  • the carrier rotates, the primary color lights of the respective colors emitted by the conversion region 164 and the excitation light emitted from the non-conversion region 166 are incident on the filter region 168 of the corresponding color on the filter element 167 in time and the non-filtered light.
  • the area 169 is such that each of the primary colors of light combines white light in time.
  • FIG. 3 is a schematic top view of the color wheel assembly 160 of FIG.
  • Each of the segmented regions (eg, the G filter region) of the filter element 167 corresponds to an angle of the axis of the color wheel assembly 160 and a corresponding color of each of the corresponding segment regions (eg, G conversion regions) of the wavelength conversion element 165.
  • the angles of the axes of the wheel assemblies 160 are equal and coincident such that upon exit of the color wheel assembly 160, laser or excitation light emitted by each of the segmented regions of the wavelength conversion element 165 can be incident upon the filter elements 167.
  • the corresponding area in is a schematic top view of the color wheel assembly 160 of FIG.
  • Each of the segmented regions (eg, the G filter region) of the filter element 167 corresponds to an angle of the axis of the color wheel assembly 160 and a corresponding color of each of the corresponding segment regions (eg, G conversion regions) of the wavelength conversion element 165.
  • the adjusting device includes a collecting lens 141, a beam splitting light element 142, a first relay lens 143, and a first reflecting element 144.
  • the collecting lens 141 is configured to condense the excitation light emitted by the excitation light source 120 on the surface of the wavelength conversion element 165 and collimate the emitted light of the wavelength conversion element 165.
  • the beam splitting light element 142 is for transmitting the excitation light and reflecting the received laser light.
  • the first reflective element 144 is for reflecting excitation light emitted by the wavelength conversion element 165.
  • the first relay lens 143 is configured to converge the excitation light emitted by the wavelength conversion element 165 and the laser light.
  • the main optical axis of the excitation light source 120 is parallel to, but not coincident with, the main optical axis of the collecting lens 141 to distinguish the incident optical path and the outgoing optical path of the excitation light on the non-converting region 166.
  • the excitation light emitted from the excitation light source 120 is concentrated by the collecting lens 141, it is obliquely incident at a predetermined angle and condensed on the surface of the wavelength conversion element 165, and is reflected by the non-conversion area 166 to be emitted.
  • the incident optical path of the excitation light incident on the non-conversion region 166 does not overlap with the outgoing optical path of the excitation light reflected by the non-conversion region 166, and is symmetrically disposed along the main optical axis of the collecting lens 141.
  • the optical splitting unit 142 may employ an optical structure of wavelength splitting, that is, combining light according to different wavelength ranges of incident light.
  • the beam splitting light element 142 is configured to transmit the excitation light and reflect the received laser light.
  • the light combining and combining light element 142 includes a first surface and a second surface disposed opposite to each other, and the excitation light emitted by the excitation light source 120 is incident on the light separating and combining light element 142 by the first surface and is transmitted through the The second surface is emitted to the collection lens 141.
  • the excitation light emitted by the wavelength conversion element 165 and the laser light are collimated by the collecting lens 141 and then incident on the second surface of the light combining and combining light element 142, wherein the laser light is reflected by the second surface of the light combining and combining light element 142.
  • the excitation light is sequentially transmitted through the second surface of the light combining and combining light element 142 and the first surface to the first reflective element 144.
  • the spectroscopic light combining element 142 includes a blue anti-yellow dichroic film layer.
  • the first reflective element 144 is configured to reflect excitation light emitted by the first surface of the beam splitting light element 142.
  • the excitation light reflected by the first reflective element 144 is sequentially transmitted through the first surface and the second surface of the spectral light combining element 142.
  • the received laser light and the excitation light emitted from the wavelength conversion element 165 are combined in one path on the second surface of the spectral light combining element 142.
  • the optical expansion amount of the excitation light is smaller than the optical expansion amount of the laser light, and the angular distribution of the laser light and the excitation light does not match.
  • the first reflective element 144 is a planar mirror. It can be understood that the first reflective element 144 can also be a convex mirror.
  • the laser light and the excitation light emitted from the light combining and combining light element 142 are concentrated by the first relay lens 143, and then incident on the filter element 167, and the excitation light and the laser light emitted from the filter element 167 are matched with each other.
  • the divergence angle is coupled into the first light homogenizing device 180. Specifically, when the excitation light passes through the non-filtering region 169, the excitation light is scattered, so that the divergence angle of the excitation light is expanded, and the excitation light is incident on the second divergence angle matching the first divergence angle of the laser light.
  • the first light homogenizing device 180 that is, the excitation light and the laser light having a matching angular distribution at the entrance face of the first light homogenizing device 180, the excitation light and the laser light are carried out inside the first light homogenizing device 180
  • the multiple reflections cause the excitation light emitted by the first light homogenizing device 180 to be more uniformly mixed with the laser light, thereby improving the uniformity of the light source.
  • the color wheel assembly 160 of the present embodiment extends the width of the filter element 167 in the radial direction of the color wheel assembly 160 by arranging the filter element 167 at one end of the second carrier 163, and surrounds the wavelength conversion element 165.
  • the width of the wavelength conversion element 165 is extended in the axial direction of the color wheel assembly 160 such that the overall width of the color wheel assembly 160 is only contributed by the width of the filter element 167, thereby causing the color wheel
  • the radial dimension of the assembly 160 is greatly reduced, achieving miniaturization.
  • the filter element 167 is disposed at one end of the second carrier 163, and the width of the second carrier 163 is adjusted so that the excitation light and the laser received by the beam splitting unit 142 pass only the first relay. After the lens 143 is concentrated, it can be emitted to the filter element 167, reducing the number of optical components and simplifying the structure.
  • the filter element 167 and the wavelength conversion element 165 are driven along with the driving of the carrier, and the driving of the color wheel assembly 160 is eliminated regardless of the synchronization control problem of the filter wheel and the fluorescent wheel. Control is much simpler.
  • the color purity of the primary color of the light source is improved; the excitation light has no loss in the light source device 100, the angular distribution is continuous, and the angular distribution is after the scattering through the non-filtering region 169.
  • the angular distribution of the laser is matched to achieve better uniformity.
  • FIG. 4 is a schematic structural view of a light source device 200 according to a second embodiment of the present invention
  • FIG. 5 is a schematic structural view of the color wheel assembly 260 of FIG.
  • the light source device 300 of the present embodiment is different from the light source device of the first embodiment in the positional relationship between the collecting lens and the excitation light source and the structure of the switching region of the wavelength converting element.
  • the excitation light source 220 is disposed coaxially with the collection lens 241; an outer surface of the non-conversion zone 266 is disposed obliquely with respect to a central axis of the color wheel assembly 260.
  • the excitation light emitted from the excitation light source 220 is incident on the non-conversion region 266 along the main optical axis of the collection lens 241, and is obliquely reflected back to the collection lens 241 at a predetermined angle to cause excitation on the non-conversion region 266.
  • the incident light path of the light does not overlap with the exit light path.
  • the incident optical path and the outgoing optical path are symmetrically disposed along the normal line of the slope of the non-converting region 264.
  • the light source device 200 of the present embodiment has the excitation light source 220 and the collecting lens 241 disposed coaxially, so that the excitation light is incident to the wavelength conversion along the main optical axis of the collecting lens 241, in addition to the efficiency in the first embodiment.
  • the on-axis ray (zero field of view) imaging aberration is smaller than the aberration of the off-axis ray (large field of view). Therefore, the excitation light is incident along the main optical axis of the collecting lens 241, and a light spot with good imaging quality and uniform illumination can be formed on the outer surface of the wavelength conversion element 265, thereby improving the wavelength conversion material on the conversion region 264 (for example, , phosphor) excitation efficiency.
  • FIG. 6 is a schematic structural diagram of a light source device 300 according to a third embodiment of the present invention.
  • the light source device 300 of the present embodiment is different from the light source device of the second embodiment in that a compensation light source 330 for emitting compensation light having a spectral range different from that of the excitation light and a light combining member 345 for guiding the compensation light are added. .
  • the compensation light source 330 may be a red or green light source, and emit red or green compensation light. It can be understood that the compensation light source 330 is not limited to a red or green light source, and may also be a purple light source or the like.
  • the compensation light source 330 includes an illuminant 331, a scattering element 332, a first lens 333, and a second lens 334.
  • the illuminant 331 is used to emit red or green compensation light, wherein the red compensation light and the green compensation light can be combined in parallel by the dichroic color. It will be appreciated that the illuminant 331 may comprise one, two or more red or green lasers.
  • the compensation light converges on the surface of the scattering element 332 via the first lens 333 and then diverge, and the diverged compensation light is concentrated on the light combining element 345 via the second lens 334.
  • the scattering element 332 is for homogenizing, decohering, and expanding the divergence angle of the compensation light.
  • the scattering element 332 includes a scattering wheel 335 and a second driving member 336.
  • the second driving member 336 is coupled to the scattering wheel 335 for driving the scattering wheel 335 to rotate about a predetermined rotation axis.
  • the scattering wheel 335 is rotated by the driving of the second driving member 336, which can eliminate the speckle phenomenon of the compensation light.
  • the light combining element 345 includes a transmissive area and a reflective area.
  • the transmissive area is for transmitting excitation light and laser light emitted by the filter element 367, and the reflective area is for reflecting the compensation light.
  • the transmissive area is provided with a full-band anti-reflection film, and the reflective area is provided with a red or green light reflecting film.
  • the compensation light is concentrated on the reflective region, and is coupled to the first light homogenizing device 380 after being combined with the laser and the excitation light after passing through the reflective region. Since the compensation light converges on the reflection area, the spot on which the compensation light is irradiated on the reflection area is small, so that the area of the reflection area can be reduced, and the loss of the laser light can be reduced.
  • the loss of the angular distribution of the laser in the reflective region is compensated by the compensation light such that the angular distribution of the laser is still continuous, so that the laser and the excitation light can still be uniformly mixed in the first homogenizing device
  • FIG. 7 is a schematic diagram of the excitation light source, the breaking timing of the compensation light source, and the distribution of the segmentation regions of the wavelength conversion element according to an embodiment of the present invention.
  • the conversion region of the wavelength conversion element is provided with a first wavelength conversion layer, and the first wavelength conversion layer emits a first received laser light under illumination of the excitation light.
  • the first wavelength conversion layer refers to a wavelength conversion layer capable of converting excitation light into a laser-receiving layer overlapping the spectrum of the compensation light.
  • the first wavelength conversion layer may be a segmented region of a red region (R), a green region (G), and/or a yellow region (Y), and the first laser beam may be a red laser beam. , green laser and/or yellow laser.
  • the excitation light source When the light source is driven, the excitation light source is always in an on state, and the compensation light source is turned on when the segmentation region of the conversion region provided with the first wavelength conversion layer is located in the transmission path of the excitation light source, and other segmentation regions in the conversion region And the non-conversion area is closed.
  • the excitation light source emits blue excitation light
  • the compensation light source is a red laser light source
  • the compensation light source is turned on.
  • the compensation light source When the excitation light source is irradiated to the green region (G) or the non-conversion region (B-mirror) of the conversion region, the compensation light source is turned off.
  • the compensation light source is a green laser light source
  • the compensation light source when the excitation light source is irradiated to the green region (G) or the yellow region (Y) of the conversion region, the compensation light source is turned on; when the excitation light source is irradiated to the conversion
  • the compensation light source is turned off when the red area (R) or the non-conversion area (B-mirror) of the area.
  • the light source device 300 of the present embodiment increases the brightness of the light source and the color purity of the primary color (red or green) by adding the compensation light source 330.
  • FIG. 8 is a schematic structural diagram of a light source device 400 according to a fourth embodiment of the present invention.
  • the light source device 400 of the present embodiment is different from the light source device of the third embodiment in that the arrangement position of the compensation light source 430 is different, the structure and position of the light combining element 444 for guiding the compensation light, and the The structure of the optical splitting light element 442 is different.
  • the compensation light source 430 is disposed adjacent to the beam splitting light combining element 442, and the light combining element 444 is disposed at a position of the first reflective element instead of the first reflective element.
  • the compensation light emitted by the compensation light source 430 is transmitted through the light combining element 444 and then concentrated on the light combining and combining light element 442, and is combined with the excitation light and the laser light on the second surface of the light combining and combining light element 442.
  • the light combining element 444 is for transmitting compensation light and reflecting the excitation light.
  • the light combining element 444 includes an anti-blue transparent yellow dichroic film layer.
  • the light combining and combining light element 442 includes a transmissive area for transmitting the compensation light and a light combining area for reflecting the laser light and transmitting the excitation light.
  • the transmissive area is provided with a full-band antireflection film
  • the light combining area is provided with a blue anti-yellow dichroic film.
  • the light source device 400 of the present embodiment is provided with the compensation light source 430 adjacent to the light splitting and combining light element 442, so that the compensation light is combined with the laser light at the beam splitting and light combining element 442.
  • the light combining elements for combining the compensation light and the fluorescence alone are omitted, and the number of optical elements is reduced.
  • FIG. 9 is a schematic structural diagram of a light source device 500 according to a fifth embodiment of the present invention.
  • the light source device 500 of the present embodiment differs from the light source device of the first embodiment mainly in the difference in the filter structure, and an optical element for guiding light to be incident on the filter structure and emitted from the filter structure.
  • the second carrier 563 is substantially hollow cylindrical.
  • the filter element 567 is fixed around the peripheral wall of the second carrier 563 to form a drum-type filter structure.
  • the filter element 567 includes a filter region and a non-filter region distributed in the circumferential direction. Wherein, the filter area and the non-filter area are respectively distributed in a square curved surface.
  • the adjustment device also includes a third reflective element 545 and a second reflective element 546.
  • the third reflective element 545 and the second reflective element 546 are all full-band reflective elements.
  • the third reflective element 545 is configured to reflect the excitation light emitted by the beam splitting light element 542 and the laser light to the first relay lens 543 such that the excitation light and the laser light collected by the first relay lens 543 are concentrated.
  • the filter element 567 which is in the shape of a circular cylinder.
  • the second reflective element 546 is received in the second carrier 563 for correcting the divergence angle of the excitation light emitted by the filter element 567 and the received laser light.
  • the second reflective element 546 is a cylindrical mirror, and the incident surface is a concave surface for correcting the excitation light and the laser light which are diverged after the filtered light element 567, so that the excitation light and the laser light have matching divergence. angle.
  • the incident surface of the second reflective element 546 is disposed as a concave surface in the Y direction of FIG. 10 .
  • the width of the filter element 567 also extends along the axial direction of the color wheel assembly instead of along the color wheel.
  • the radial extension of the assembly allows the radial dimension of the color wheel assembly to be further reduced, resulting in a more compact size of the color wheel assembly and light source device 500.
  • FIG. 11 is a schematic structural diagram of a light source device 600 according to a sixth embodiment of the present invention.
  • the light source device 600 of the present embodiment is different from the light source device of the fifth embodiment in that a compensation light source 630 for emitting compensation light having a spectral range different from that of the excitation light and a light combining for guiding the compensation light are added.
  • Element 645 omits the third reflective element.
  • the structure of the compensation light source 630 is the same as that of the compensation light source in the third embodiment, and details are not described herein.
  • the light combining element 645 replaces the third reflective element and is disposed at a position of the third reflective element.
  • the compensation light emitted by the compensation light source 630 is incident on the first relay lens 643 through the light combining element 645.
  • the light combining element 645 includes a transmissive area for transmitting the compensation light and a reflective area for reflecting the excitation light and the laser light. Wherein the compensation light converges in the transmission area.
  • the transmissive area is provided with a red or green anti-reflection film
  • the reflective area is provided with a full-band reflection film.
  • the light source device 600 of the embodiment further increases the brightness of the light source and the color purity of the primary color (red or green) by adding the compensation light source 630.
  • FIG. 12 is a schematic structural diagram of a light source device 700 according to a seventh embodiment of the present invention.
  • the light source device 700 of the present embodiment is different from the light source device of the second embodiment in the difference in the structure of the wavelength conversion element 765, the positional setting of the first reflective element 744 is different, and the addition is used to guide the conversion by the wavelength.
  • the optical element of the excitation light emitted by element 765 is different from the light source device of the second embodiment in the difference in the structure of the wavelength conversion element 765, the positional setting of the first reflective element 744 is different, and the addition is used to guide the conversion by the wavelength.
  • the optical element of the excitation light emitted by element 765 is used to guide the conversion by the wavelength.
  • the wavelength conversion element 765 is a wavelength conversion element including a reflective portion and a transmissive portion.
  • the wavelength conversion element including the reflective portion and the transmissive portion refers to a direction in which a part of the emitted light of the wavelength conversion element propagates in the same direction as the direction in which the incident light is transmitted, and a part of the emitted light has a direction of propagation opposite to the direction in which the incident light is transmitted.
  • the conversion region is located at a reflective portion of the wavelength conversion element 765, and the non-conversion region is located at a transmissive portion of the wavelength conversion element 765.
  • the first reflective element 744 is received in the first carrier 761 for reflecting excitation light transmitted through the non-conversion region.
  • the adjustment device further includes a second relay lens 747, a third reflective element 745, and a second reflective element 746.
  • the second relay lens 747 is configured to collect and collimate the excitation light emitted by the first reflective element 744.
  • the third reflective element 745 is configured to reflect the excitation light emitted by the second relay lens 747.
  • the second reflective element 746 is configured to reflect the excitation light emitted by the third reflective element 745 to the spectroscopic light combining element 742 such that the excitation light emitted by the wavelength conversion element 765 is combined with the laser light.
  • the outer surface of the non-conversion region in this embodiment need not be provided as a slope.
  • the second reflective element 746 or the third reflective element 745 can be omitted, that is, by adjusting the position of the reflective element, the excitation light emitted by the first reflective element 744 can pass through only one reflective element. Reflected to the beam splitting light element 742. It can be understood that the second relay lens 747 can also be omitted.
  • FIG. 13 is a schematic structural diagram of a light source device 800 according to an eighth embodiment of the present invention.
  • the light source device 800 of the present embodiment is different from the light source device of the seventh embodiment in that the structure of the filter element 867 is different, and the second carrier member 863 is directly fixed to the first carrier member 861, the second The position of the lens 847 and the third reflecting element 845 is different, and the excitation light for emitting the wavelength conversion element and the light combining element 846 which is combined by the laser light are added, and the second reflection element is omitted.
  • FIG. 14 is a schematic structural view of the color wheel assembly shown in FIG. Specifically, the non-filtering region 869 is disposed at a central region of the filter element 867, and the filter region 868 is disposed at a periphery of the non-filtering region 869, and the non-filtering region 869 is Circular distribution. Since the non-filtering region 869 corresponding to the non-conversion region is disposed in the central region of the filter element 867, the region of the filter element 867 having an equal and coincident axial angle with the non-conversion region is a vacant region.
  • the filter element 867 further includes a weight region 880, the weight region 880 is located in the vacant region and is surrounded by the filter region 868 to form a ring, the ring surrounding the non-filter The periphery of the light zone 869 is disposed.
  • the material of the weight region 880 may be the same as the material of the filter region 868.
  • the excitation light emitted by the first reflective element 844 passes through the non-filtering region 869 located in the central region, and then passes through the second relay lens 847, the third reflective element 845, and the light combining element 846, and then exits to the center.
  • the first relay lens 843 is described.
  • the laser light emitted from the spectroscopic light combining element 842 passes through the filter region 868, enters the light combining element 846, and is combined with the excitation light through the light combining element 846.
  • the light combining element 846 is configured to transmit the laser light and reflect the excitation light.
  • the light combining element 846 is an anti-blue transparent yellow dichroic color patch.
  • the third reflective element 845 and the second relay lens 847 can be omitted, by adjusting the position of the light combining element 846, so that the excitation light emitted by the first reflective element 844 and The laser light emitted from the light combining and combining element 842 can be combined at the light combining element 846.
  • FIG. 15 is a schematic structural diagram of a light source device 900 according to a ninth embodiment of the present invention.
  • the difference between the light source device 900 of the present embodiment and the light source device of the fifth embodiment lies mainly in the difference in the structure of the wavelength conversion element 965.
  • the arrangement position of the first reflection element 944 is different, and the structure of the filter element 967 is different.
  • the arrangement position of a relay lens 943 is different, an optical element for guiding the excitation light emitted by the wavelength conversion element 965 and correcting the divergence angle thereof is added, and the excitation light for emitting the wavelength conversion element and the excitation light are increased.
  • the laser combines all of the light combining elements 946, omitting the second reflective elements.
  • the wavelength conversion element 965 is a wavelength conversion element including a reflective portion and a transmissive portion. Wherein the conversion region is located at a reflective portion of the wavelength conversion element 965, and the non-conversion region is located at a transmissive portion of the wavelength conversion element 965.
  • the first reflective element 944 is received in the first carrier.
  • the excitation light emitted from the non-conversion region passes through the non-conversion region, and is reflected and emitted through the first reflective element 944.
  • the filter element 967 includes a filter region 968 and a non-filter region 969, wherein the filter region 968 is fixed around a peripheral wall of the second carrier, and the non-filter region 969 is fixed to the second carrier.
  • One end of the member is such that excitation light emitted from the first reflective member 944 housed in the first carrier can be diverged through the non-filtering region 969 to expand its divergence angle.
  • the adjustment device further includes a second relay lens 947 that is received in the second carrier for collimating the excitation light transmitted through the non-filtering region 969.
  • the light combining element 946 replaces the second reflective element and is disposed at a position of the second reflective element.
  • the collimated excitation light is emitted through the light combining element 946, wherein the light combining element 946 is for transmitting the excitation light and reflecting the received laser light.
  • the laser light emitted by the beam splitting light element 942 is reflected by the third reflecting element 945 and then transmitted through the filter region 968 to the light combining element 946, and is combined with the excitation light at the light combining element 946. All the way to the first relay lens 943.
  • the light combining element 946 includes a blue anti-yellow dichroic film layer.
  • the first carrier member and the second carrier member may be integrated.
  • the non-filtering region 969 is also accommodated in the cavity of the color wheel assembly, and can be simultaneously driven by a driving device.
  • the first carrier and the second carrier; or the first carrier and the second carrier may be separately disposed, and the first carrier and the second carrier may be respectively driven by two driving devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮组件、光源装置和投影系统,包括第一承载件(161);波长转换元件(165),环绕第一承载件(161)的周壁固定,用于接收光源(120)的激发光并产生受激光;第二承载件(163),与第一承载件(161)的一端固定连接;以及滤光元件(167),固定于所述第二承载件(163)上,用于接收并过滤受激光。色轮组件的转动控制简单,且尺寸较小。

Description

色轮组件、光源装置及投影系统 技术领域
本发明涉及光学技术领域,尤其涉及一种色轮组件、光源装置及投影系统。
背景技术
目前,空间光调制器在投影显示领域获得广泛应用,空间光调制器一般包括LCD、LCOS、DMD等,单片式空间光调制器投影系统基于时序切换的基色光来实现彩色投影显示,以其结构简单,成本较低等特点,在中低端市场广泛应用。由于激光激发荧光粉的受激光光谱带宽较宽,因此在光源中通常加入滤光片去截取需要的波段,如从黄光荧光中截取绿光或红光。
在实际光源中,一般采用双色轮或单色轮结构对荧光粉光谱进行滤光。双色轮结构指的是荧光轮+滤光轮的双色轮系统,然而需对荧光轮和滤光轮进行同步控制,增加了光源的复杂度。单色轮结构中色轮包括作为荧光区的内圈以及作为滤光区的外圈,该种结构中无需考虑荧光区与滤光区的同步问题,然而荧光区宽度和滤光区宽度在色轮的半径方向上叠加,导致色轮外径大,使得光源难以实现小型化。
发明内容
鉴于上述状况,有必要提供一种小型化的色轮组件的光源装置与投影系统。
本发明提供一种色轮组件,包括第一承载件;波长转换元 件,环绕所述第一承载件的周壁固定,用于接收光源的激发光并产生受激光;第二承载件,与所述第一承载件的一端固定连接;以及滤光元件,固定于所述第二承载件上,用于接收并过滤所述受激光。
本发明还提供一种光源装置,包括用于产生激发光的激发光源以及色轮组件,色轮组件包括:第一承载件;波长转换元件,环绕所述第一承载件的周壁固定,并设置于所述激发光的传输路径中,在所述激发光源的照射下时序输出受激光和激发光;第二承载件,与所述第一承载件的一端固定连接;以及滤光元件,固定于所述第二承载件上,用于接收并过滤所述受激光。
本发明还提供包括上述光源装置的投影系统。
本发明提供的色轮组件,通过将滤光元件设置于承载件的端面,并将波长转换元件环绕设置于承载件的周壁上,使得色轮组件的径向尺寸大大减小,实现了小型化,且色轮组件进行转动控制时,滤光元件以及波长转换元件随同第一承载件的驱动而被驱动,无需考虑滤光轮以及荧光轮的同步控制问题,使色轮组件的驱动控制更加简单。
附图说明
图1是本发明第一实施例提供的光源装置的结构示意图。
图2是图1所示的色轮组件的结构示意图。
图3是图2所示色轮组件的俯视示意图。
图4是本发明第二实施例提供的光源装置的结构示意图。
图5是图4所示的色轮组件的结构示意图。
图6是本发明第三实施例提供的光源装置的结构示意图。
图7是本发明实施例提供的激发光源、补偿光源的开断时序以及波长转换元件的分段区域的分布的示意图。
图8是本发明第四实施例提供的光源装置的结构示意图。
图9是本发明第五实施例提供的光源装置的结构示意图。
图10是图9所示第二反射元件的俯视示意图。
图11是本发明第六实施例提供的光源装置的结构示意图。
图12是本发明第七实施例提供的光源装置的结构示意图。
图13是本发明第八实施例提供的光源装置的结构示意图。
图14是图13所示色轮组件的结构示意图。
图15是本发明第九实施例提供的光源装置的结构示意图。
主要元件符号说明
Figure PCTCN2018080868-appb-000001
Figure PCTCN2018080868-appb-000002
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式 来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1为本发明第一实施例提供的光源装置100的结构示意图。所述光源装置100应用于投影装置。所述光源装置100包括激发光源120、调整装置、色轮组件160及第一匀光器件180。所述激发光源120用于产生至少一种颜色的激发光。所述色轮组件160用于对所述激发光进行波长转换并时序出射受激光和激发光。所述调整装置用于引导沿重叠光路入射的受激光与激发光,并将所述受激光调整为第一发散角从所述色轮组件160出射,且所述激发光以与所述第一发散角相匹配的第二发散角从所述色轮组件160出射。所述重叠光路是指受激光的传输光路和激发光的传输光路存在至少部分重叠。所述第一匀光器件180对以相互匹配的发散角出射的受激光和激发光进行匀光。
具体地,所述激发光源120包括用于产生所述激发光的发光体121与对所述激发光进行匀光的第二匀光器件122。
进一步地,所述激发光源120可以为蓝色光源,发出蓝色激发光。可以理解的是,所述激发光源120不限于蓝色光源,所述激发光源120也可以是紫色光源、红色光源或绿色光源等。本实施方式中,所述发光体121为蓝色激光器,用于发出蓝色激光作为所述激发光。可以理解,所述发光体121可以包括一个、两个或多个蓝色激光器,具体其激光器的数量可以依据实际需要选择。
所述第二匀光器件122位于所述发光体121的出射光路上, 用于将所述激发光进行匀光。本实施例中,所述第二匀光器件122为匀光棒,可以理解的是,在其他实施例中,所述第二匀光器件122可以包括复眼透镜、匀光棒、散光片或散射轮等,并不以此为限。
请一并参阅图1及图2,图2为图1所示的所述色轮组件160的结构示意图。所述色轮组件160包括第一承载件161、波长转换元件165、第二承载件163以及滤光元件167。所述波长转换元件165用于接收所述激发光源120发射的激发光并产生受激光,其环绕所述第一承载件161的周壁固定,构成滚筒式的波长转换结构。所述第二承载件163与所述第一承载件161固定连接。所述滤光元件167固定于所述第二承载件163远离所述第一承载件161的一端面且环绕所述第二承载件163的周向延伸,用于接收并过滤所述受激光。本实施例中,所述第一承载件161大致为柱状,所述第二承载件163大致为板状,且所述第二承载件163的宽度大于所述第一承载件161的宽度。所述第二承载件163通过一连接件与所述第一承载件161固定连接。所述第一承载件161的中心轴与所述第二承载件163的中心轴相重合,并用作所述色轮组件160的中心轴。可以理解的是,所述第二承载件163可直接固定于所述第一承载件161上,或者所述第一承载件161与第二承载件163可以一体成型,也可以分开成型再连接。
所述波长转换元件165设置于所述激发光的传输路径中,并在所述激发光源120的照射下时序地输出受激光和激发光。具体的,所述波长转换元件165包括周向设置的转换区164以及非转换区166。所述转换区164与所述非转换区166在驱动装置的驱动下交替位于所述激发光的光路上,使得所述色轮组 件160时序出射进行波长转换的受激光和未进行波长转换的激发光。所述转换区164以及所述非转换区166分别呈方形曲面分布,且所述转换区164以及非转换区166的外表面均与所述色轮组件160的中心轴相平行。本实施例中,所述波长转换元件165为反射式波长转换元件。反射式波长转换元件指的是波长转换元件165的出射光线的传播方向与入射光线的传播方向相反。
具体的,所述转换区164设置有波长转换材料,以在所述激发光的激发下产生至少一种颜色的朗伯光形式的受激光。如图2所示,所述转换区164分为红色区域(R)、绿色区域(G)与黄色区域(Y)。所述红色区域设置红色荧光粉,以在所述激发光的激发下产生红色的受激光;所述绿色区域设置绿色荧光粉,以在所述激发光的激发下产生绿色的受激光;所述黄色区域设置黄色荧光粉,以在所述激发光的激发下产生黄色的受激光。可以理解的是,所述转换区164还可以设置红色、绿色及黄色之外的其他颜色的荧光粉以产生其他颜色的受激光。所述非转换区166设置反射镜或小角度散射片,例如高斯反射片,用于反射激发光。本实施例中,所述非转换区166设为蓝色区域(B-mirror),用于反射蓝色激发光。红色受激光、绿色受激光、黄色受激光以及蓝色激发光在所述第一匀光器件180中匀光后形成白光。
所述滤光元件167大致为环形板状,其包括空心区域162以及环绕空心区域162设置的滤光区168以及非滤光区169。所述滤光区168与所述非滤光区169分别呈扇环形设置。可以理解的是,在其他实施例中,所述滤光元件167还可设计为圆盘状,此时所述滤光区168与所述非滤光区169分别呈扇形设 置。所述滤光区168与所述转换区164相对应,用于对受激光进行过滤,以提高光源基色的色纯度。所述非滤光区169与所述非转换区166相对应,用于对激发光进行散射,扩大激发光的发散角,由所述非滤光区169出射的激发光呈郎伯光分布。
具体的,所述滤光区168设置有滤光材料,以对具有至少一种颜色的朗伯光形式的受激光进行过滤。如图2所示,所述滤光区168分为红色区域(R)、绿色区域(G)与黄色区域(Y),所述滤光区168的红色区域、绿色区域以及黄色区域分别与所述转换区164的红色区域、绿色区域以及黄色区域一一对应。所述红色区域设置红色滤光片,以对红色的受激光进行过滤;所述绿色区域设置绿色滤光片,以对绿色的受激光进行过滤;所述黄色区域设置黄色滤光片,以对黄色的受激光进行过滤。可以理解的是,所述转换区164还可以设置红色、绿色及黄色之外的其他颜色的滤光片以过滤其他颜色的受激光。所述非滤光区169设置透射式散射片或单复眼,用于扩大由非转换区166出射的激发光的发散角。本实施例中,所述非滤光区169设为蓝色区域(B-diffuser),用于扩大蓝色激发光的发散角。
本实施例中,所述第一承载件161以及第二承载件163由同一驱动装置驱动,例如所述驱动装置可部分容置于所述空心区域162中并与所述承载件相连。当承载件旋转时,由转换区164出射的各种颜色的基色光以及由非转换区166出射的激发光时序地入射至所述滤光元件167上对应颜色的滤光区168以及非滤光区169上,从而使得各基色光时序地合成白光。
请参阅图3,图3是图2所示色轮组件160的俯视示意图。所述滤光元件167中的各个分段区域(例如G滤光区)对应色轮组件160轴心的角度与所述波长转换元件165中对应的各个 分段区域(例如G转换区)对应色轮组件160的轴心的角度相等且重合,使得在所述色轮组件160转动时,由波长转换元件165中的各个分段区域出射的受激光或激发光能够入射至所述滤光元件167中对应的区域。
所述调整装置包括收集透镜141、分光合光元件142、第一中继透镜143以及第一反射元件144。所述收集透镜141用于将所述激发光源120发出的激发光会聚于所述波长转换元件165的表面,并对所述波长转换元件165的出射光进行准直。所述分光合光元件142用于透射所述激发光并反射所述受激光。所述第一反射元件144用于反射由所述波长转换元件165出射的激发光。所述第一中继透镜143用于对由所述波长转换元件165出射的激发光与受激光进行会聚出射。
所述激发光源120的主光轴与所述收集透镜141的主光轴相平行但不重合,以区分所述非转换区166上的激发光的入射光路以及出射光路。所述激发光源120发出的激发光经所述收集透镜141会聚后,以预设角度倾斜入射并会聚于所述波长转换元件165的表面,经所述非转换区166反射后出射。其中,入射至所述非转换区166的激发光的入射光路与由所述非转换区166反射的激发光的出射光路不重叠,并沿所述收集透镜141的主光轴对称设置。
所述分光合光元件142可以采用波长分光的光学结构,即根据入射光的不同波长范围进行合光。作为波长分光的一种实施例,所述分光合光元件142用于透射所述激发光,反射所述受激光。具体地,所述分光合光元件142包括相对设置的第一表面与第二表面,所述激发光源120出射的激发光由所述第一表面射入所述分光合光元件142并透过所述第二表面出射至 所述收集透镜141。所述波长转换元件165出射的激发光以及受激光经所述收集透镜141准直后射入所述分光合光元件142的第二表面,其中受激光由分光合光元件142的第二表面反射,激发光依次透过分光合光元件142的第二表面与第一表面出射至所述第一反射元件144。本实施例中,所述分光合光元件142包括透蓝反黄的二向色膜层。
所述第一反射元件144用于反射由所述分光合光元件142的第一表面出射的激发光。经由所述第一反射元件144反射的激发光依次透过所述分光合光元件142的第一表面以及第二表面出射。由波长转换元件165出射的受激光与激发光在所述分光合光元件142的第二表面合为一路。此时,激发光的光学扩展量小于受激光的光学扩展量,受激光与激发光的角分布不匹配。本实施例中,所述第一反射元件144为平面反射镜。可以理解的是,所述第一反射元件144还可以为凸面反射镜。
由所述分光合光元件142出射的受激光与激发光经过所述第一中继透镜143会聚后入射至所述滤光元件167,从滤光元件167出射的激发光与受激光以相互匹配的发散角耦合进所述第一匀光器件180。具体的,在激发光经过所述非滤光区169时,激发光发生散射,使得激发光的发散角扩大,激发光以与受激光的第一发散角相匹配的第二发散角入射至所述第一匀光器件180,即激发光与受激光在所述第一匀光器件180的入口面处具有相互匹配的角分布,激发光与受激光在所述第一匀光器件180内部进行多次反射,使得由所述第一匀光器件180出射的激发光与受激光混合得更加均匀,提高光源的均匀性。
本实施例的色轮组件160,通过将滤光元件167设置于第二承载件163的一端,使滤光元件167的宽度沿色轮组件160 的径向延伸,并将波长转换元件165环绕设置于第一承载件161的周壁上,使波长转换元件165的宽度沿色轮组件160的轴向延伸,从而使得色轮组件160的整体宽度仅由滤光元件167的宽度贡献,从而使得色轮组件160的径向尺寸大大减小,实现了小型化。再者,将滤光元件167设于第二承载件163的一端,通过调节第二承载件163的宽度,使得由分光合光元件142合光后的激发光与受激光仅通过第一中继透镜143会聚后即可出射至所述滤光元件167,减少了光学元件数量,简化了结构。另外,对色轮组件160进行转动控制时,滤光元件167以及波长转换元件165随同承载件的驱动而被驱动,无需考虑滤光轮以及荧光轮的同步控制问题,使色轮组件160的驱动控制更加简单。另外,受激光经过滤光区168的过滤后,提高了光源基色的色纯度;激发光在光源装置100中无损失,其角分布连续,且在经过非滤光区169的散射后,其角分布与受激光的角分布相匹配,从而实现较好的均匀性。
请参阅图4以及图5,图4是本发明第二实施例的光源装置200的结构示意图,图5是图4所示色轮组件260的结构示意图。本实施例的光源装置300与实施例一中的光源装置的不同在于收集透镜与激发光源的位置关系以及波长转换元件的转换区的结构不同。
具体的,所述激发光源220与所述收集透镜241同轴设置;所述非转换区266的外表面相对所述色轮组件260的中心轴倾斜设置。激发光源220发出的激发光沿所述收集透镜241的主光轴入射至所述非转换区266,并以预设角度倾斜反射回所述收集透镜241,使所述非转换区266上的激发光的入射光路与出射光路不重叠。其中,入射光路以及出射光路沿非转换区 264的斜面的法线对称设置。
本实施例的光源装置200,除了具有实施例一中的功效外,通过同轴设置的激发光源220与收集透镜241,使得激发光沿所述收集透镜241的主光轴入射至所述波长转换元件265的外表面。根据像差原理可知,轴上光线(零视场)成像像差小于轴外光线(较大视场)的像差。因此,激发光沿所述收集透镜241的主光轴入射,可以在所述波长转换元件265的外表面形成成像质量较好且照度均匀的光斑,进而提高转换区264上的波长转换材料(例如,荧光粉)的激发效率。
请参阅图6,图6是本发明第三实施例的光源装置300的结构示意图。本实施例的光源装置300与第二实施例的光源装置的不同在于增加了用于发出光谱范围与激发光的光谱范围不同的补偿光的补偿光源330以及用于引导补偿光的合光元件345。
本实施例中,所述补偿光源330可以为红色或绿色光源,发出红色或绿色补偿光。可以理解的是,所述补偿光源330不限于红色或绿色光源,也可以是紫色光源等。具体的,所述补偿光源330包括发光体331、散射元件332、第一透镜333以及第二透镜334。所述发光体331用于发出红色或绿色补偿光,其中红色补偿光和绿色补偿光可通过二向色片合光并行。可以理解的是,所述发光体331可以包括一个、两个或多个红色或绿色激光器。补偿光经所述第一透镜333会聚于所述散射元件332的表面后再发散,发散的补偿光经所述第二透镜334会聚于所述合光元件345上。
所述散射元件332用于将所述补偿光均匀化、消相干,并扩大补偿光的发散角。所述散射元件332包括散射轮335以及 第二驱动件336。所述第二驱动件336与所述散射轮335相连,用于驱动所述散射轮335绕预定转轴旋转。散射轮335在第二驱动件336的驱动下转动,能够消除补偿光的散斑现象。
所述合光元件345包括透射区域以及反射区域。所述透射区域用于透射由所述滤光元件367出射的激发光与受激光,所述反射区域用于反射所述补偿光。本实施例中,所述透射区域设置有全波段增透膜,所述反射区域设置有红光或绿光反射膜。补偿光会聚于所述反射区域,并在透过所述反射区域后与受激光、激发光合光后共同耦合进所述第一匀光器件380。由于补偿光会聚于反射区域,因此补偿光照射于反射区域上的光斑较小,从而可以减小反射区域的面积,进而可减小受激光的损失。受激光在反射区域的角分布的损失由补偿光来弥补,使得受激光的角分布仍旧是连续的,使得受激光与激发光在第一匀光器件中依旧能够混合得均匀。
请一并参阅图7,图7是本发明实施例提供的激发光源、补偿光源的开断时序以及波长转换元件的分段区域的分布的示意图。所述波长转换元件的转换区设置有第一波长转换层,所述第一波长转换层在所述激发光的照射下出射第一受激光。其中,所述第一波长转换层指的是可将激发光转换成与所述补偿光存在光谱重叠的受激光的波长转换层。可以理解的是,所述第一波长转换层可以为红色区域(R)、绿色区域(G)及/或黄色区域(Y)的分段区域,所述第一受激光可以为红色的受激光、绿色的受激光及/或黄色的受激光。
光源在驱动时,所述激发光源一直处于开启状态,所述补偿光源在转换区设有第一波长转换层的分段区域位于激发光源的传输路径中时打开,在转换区的其他分段区域以及非转换 区域关闭。具体的,激发光源发出蓝色激发光,若补偿光源为红色激光光源时,当所述激发光源照射于所述转换区的红色区域(R)或黄色区域(Y)时,所述补偿光源打开;当所述激发光源照射于所述转换区的绿色区域(G)或非转换区域(B-mirror)时,所述补偿光源关闭。若补偿光源为绿色激光光源时,当所述激发光源照射于所述转换区的绿色区域(G)或黄色区域(Y)时,所述补偿光源打开;当所述激发光源照射于所述转换区的红色区域(R)或非转换区域(B-mirror)时,所述补偿光源关闭。
本实施例的光源装置300除了具有实施例二中的的光源装置200的功效外,通过增设补偿光源330,提高了光源亮度以及基色(红光或绿光)的色纯度。
请参阅图8,图8是本发明第四实施例的光源装置400的结构示意图。本实施例的光源装置400与所述第三实施例的光源装置的不同在于补偿光源430的设置位置不同,用于引导所述补偿光的合光元件444的结构以及位置的不同,以及所述分光合光元件442的结构不同。
具体的,所述补偿光源430邻近所述分光合光元件442设置,所述合光元件444替代所述第一反射元件并设于所述第一反射元件的位置上。所述补偿光源430发出的补偿光透过所述合光元件444后会聚于所述分光合光元件442,并在所述分光合光元件442的第二表面与所述激发光与受激光合为一路。所述合光元件444用于透射补偿光并反射所述激发光。本实施例中,所述合光元件444包括反蓝透黄二向色膜层。所述分光合光元件442包括用于透射所述补偿光的透射区域以及用于反射受激光并透射激发光的合光区域。其中,所述透射区域设置 有全波段增透膜,所述合光区域设置有透蓝反黄的二向色膜。
本实施例的光源装置400除了具备实施例三中的光源装置的功效外,还通过将补偿光源430邻近分光合光元件442设置,使补偿光在分光合光元件442处与受激光进行合光,省略了用于对补偿光以及荧光单独进行合光的合光元件,减少了光学元件数量。
请参阅图9,图9是本发明第五实施例的光源装置500的结构示意图。本实施例的光源装置500与所述第一实施例的光源装置的区别主要在于滤光结构的不同,以及增加了用于引导光入射至滤光结构以及由滤光结构出射的光学元件。
所述第二承载件563大致为中空柱状。所述滤光元件567环绕所述第二承载件563的周壁固定,构成滚筒式的滤光结构。所述滤光元件567包括沿周向分布的滤光区与非滤光区。其中,所述滤光区与非滤光区分别呈方形曲面分布。所述调整装置还包括第三反射元件545以及第二反射元件546。本实施例中,所述第三反射元件545以及第二反射元件546均为全波段反射元件。所述第三反射元件545用于将由分光合光元件542出射的激发光与受激光反射至所述第一中继透镜543,使得经所述第一中继透镜543会聚的激发光与受激光能够射入呈圆环柱状的滤光元件567上。所述第二反射元件546容置于所述第二承载件563中,用于校正由所述滤光元件567出射的激发光与受激光的发散角。其中,所述第二反射元件546为柱面镜,其入射面为凹面,用于对经过滤光元件567后发散的激发光与受激光进行校正,使激发光与受激光具有相互匹配的发散角。具体的,所述第二反射元件546的入射面在图10的Y方向上设置为凹面。
本实施例的光源装置500,除了具有实施例一中的功效外,通过将设置滚筒式的滤光结构,使得滤光元件567的宽度也沿色轮组件的轴向延伸,而非沿色轮组件的径向延伸,从而使得色轮组件的径向尺寸能够进一步减小,使得色轮组件以及光源装置500更加小型化。
请参阅图11,图11是本发明第六实施例的光源装置600的结构示意图。本实施例的光源装置600与所述第五实施例的光源装置的不同在于增加了用于发出光谱范围与激发光的光谱范围不同的补偿光的补偿光源630以及用于引导补偿光的合光元件645,省略了第三反射元件。
所述补偿光源630的结构与实施例三中的补偿光源的结构相同,此处不再进行赘述。
所述合光元件645替代所述第三反射元件并设于所述第三反射元件的位置上。所述补偿光源630发出的补偿光透过所述合光元件645射入所述第一中继透镜643。所述合光元件645包括用于透射所述补偿光的透射区域以及用于反射所述激发光与受激光的反射区域。其中,所述补偿光会聚于所述透射区域。本实施例中,所述透射区域设置有红光或绿光增透膜,所述反射区域设置有全波段反射膜。
本实施例的光源装置600,除了具有实施例五中的功效外,还通过增设补偿光源630,提高了光源亮度以及基色(红色或绿色)的色纯度。
请参阅12,图12是本发明第七实施例的光源装置700的结构示意图。本实施例的光源装置700与所述第二实施例的光源装置的不同在于所述波长转换元件765结构的不同,第一反射元件744的位置设置不同,以及增加用于引导由所述波长转 换元件765出射的激发光的光学元件。
所述波长转换元件765为包含反射部分和透射部分的波长转换元件。其中,包含反射部分和透射部分的波长转换元件指的是波长转换元件的出射光线中部分出射光线的传播方向与入射光线的传播方向相同,部分出射光线的传播方向与入射光线的传播方向相反。具体的,所述转换区位于所述波长转换元件765的反射部分,所述非转换区位于所述波长转换元件765的透射部分。
所述第一反射元件744容置于所述第一承载件761中,用于反射透过所述非转换区的激发光。所述调整装置还包括第二中继透镜747、第三反射元件745以及第二反射元件746。所述第二中继透镜747用于对由所述第一反射元件744出射的激发光进行收集、准直。所述第三反射元件745用于反射由所述第二中继透镜747出射的激发光。所述第二反射元件746用于将由所述第三反射元件745出射的激发光反射至所述分光合光元件742,使得由所述波长转换元件765出射的激发光与受激光合为一路。
可以理解的是,由于激发光透过所述非转换区出射,因此本实施例中的非转换区的外表面无需设置为斜面。可以理解的是,所述第二反射元件746或第三反射元件745可以省略,即通过调整反射元件的位置,可使由所述第一反射元件744出射的激发光仅通过一个反射元件就可反射至所述分光合光元件742。可以理解的是,所述第二中继透镜747也可以省略。
请参阅图13,图13是本发明第八实施例的光源装置800的结构示意图。本实施例的光源装置800与所述第七实施例的光源装置的不同在于滤光元件的867的结构不同,所述第二承 载件863直接固定于所述第一承载件861,第二中继透镜847、第三反射元件845位置设置不同,增加用于将由所述波长转换元件出射的激发光以及受激光合为一路的合光元件846,省略了第二反射元件。
请参阅图14,图14是图13所示色轮组件的结构示意图。具体的,所述非滤光区869设置于所述滤光元件867的中心区域,所述滤光区868设于所述非滤光区869的周缘,此时所述非滤光区869呈圆形分布。由于非转换区对应的非滤光区869设在了滤光元件867的中心区域,使得滤光元件867上与非转换区具有相等且重合的轴心角的区域为空置区域。基于转动平衡,所述滤光元件867还包括配重区880,所述配重区880位于该空置区域并与所述滤光区868合围形成一圆环,所述圆环环绕所述非滤光区869的周缘设置。其中,所述配重区880的材料可与滤光区868的材料相同。
由所述第一反射元件844出射的激发光透过位于中心区域的非滤光区869后,依次经所述第二中继透镜847、第三反射元件845以及合光元件846后出射至所述第一中继透镜843。由所述分光合光元件842出射的受激光透过所述滤光区868后射入所述合光元件846,并透过所述合光元件846与所述激发光合为一路。所述合光元件846用于透射所述受激光并反射所述激发光。本实施例中,所述合光元件846为反蓝透黄二向色片。可以理解的是,所述第三反射元件845以及第二中继透镜847可以省略,通过调整所述合光元件846的位置,使得由所述第一反射元件844出射的激发光以及由所述分光合光元件842出射的受激光能够在所述合光元件846处合为一路即可。
请参阅图15,图15是本发明第九实施例的光源装置900 的结构示意图。本实施例的光源装置900与所述第五实施例的光源装置的不同主要在于所述波长转换元件965结构的不同,第一反射元件944的设置位置不同,滤光元件967的结构不同,第一中继透镜943的设置位置不同,增加了用于引导由所述波长转换元件965出射的激发光并校正其发散角的光学元件,增加用于将由所述波长转换元件出射的激发光以及受激光合为一路的合光元件946,省略了第二反射元件。
具体的,所述波长转换元件965为包含反射部分和透射部分的波长转换元件。其中,所述转换区位于所述波长转换元件965的反射部分,所述非转换区位于所述波长转换元件965的透射部分。
所述第一反射元件944容置于所述第一承载件中。所述非转换区出射的激发光透过所述非转换区后,经所述第一反射元件944反射射出。
所述滤光元件967包括滤光区968以及非滤光区969,其中所述滤光区968环绕所述第二承载件的周壁固定,所述非滤光区969固定于所述第二承载件的一端,使得由容置于所述第一承载件中的第一反射元件944出射的激发光能够透过所述非滤光区969进行发散以扩大其发散角。
所述调整装置还包括第二中继透镜947,其容置于所述第二承载件中,用于对透过所述非滤光区969的激发光进行准直。
所述合光元件946替代所述第二反射元件并设于所述第二反射元件的位置上。准直后的激发光透过所述合光元件946出射,其中所述合光元件946用于透射所述激发光并反射所述受激光。由分光合光元件942出射的受激光经第三反射元件945 反射后透过所述滤光区968出射至所述合光元件946,并在所述合光元件946处与所述激发光合为一路出射至所述第一中继透镜943。本实施例中,所述合光元件946包括透蓝反黄的二向色膜层。
本实施方式中,可将所述第一承载件与第二承载件设为一体,此时所述非滤光区969也容置于色轮组件的腔体中,可采用一个驱动装置同时驱动第一承载件与第二承载件;或者还可将第一承载件与第二承载件分开设置,此时可采用两个驱动装置分别驱动所述第一承载件与第二承载件。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (30)

  1. 一种色轮组件,其特征在于,包括:
    第一承载件;
    波长转换元件,环绕所述第一承载件的周壁固定,用于接收光源的激发光并产生受激光;
    第二承载件,与所述第一承载件的一端固定连接;以及
    滤光元件,固定于所述第二承载件上,用于接收并过滤所述受激光。
  2. 如权利要求1所述的色轮组件,其特征在于,所述波长转换元件包括周向设置的转换区以及非转换区,所述转换区用于将所述激发光进行波长转换并出射受激光,所述非转换区用于出射所述激发光;所述滤光元件包括滤光区以及非滤光区,所述滤光区与所述转换区相对应,用于对所述受激光进行过滤,所述非滤光区与所述非转换区相对应,用于扩大由所述非转换区出射的激发光的发散角。
  3. 如权利要求2所述的色轮组件,其特征在于,所述非转换区的外表面相对所述色轮组件的中心轴倾斜设置,用于反射所述激发光。
  4. 如权利要求2所述的色轮组件,其特征在于,所述滤光元件设于所述第一承载件的一端面并环绕所述第二承载件的周向延伸,所述滤光区以及非滤光区呈扇形或扇环形分布。
  5. 如权利要求2所述的色轮组件,其特征在于,所述滤光元件环绕所述第二承载件的周壁固定,所述滤光区与所述非滤光区分别呈方形曲面设置。
  6. 如权利要求5所述的色轮组件,其特征在于,所述色轮组件还包括容置于所述第二承载件中的第二反射元件,用于反射透过所 述滤光元件的激发光与受激光,所述第二反射元件的入射面为凹面。
  7. 如权利要求2所述的色轮组件,其特征在于,所述非转换区用于透射所述激发光,所述色轮组件还包括容置于所述第一承载件中的第一反射元件,用于反射透过所述非转换区的激发光。
  8. 如权利要求7所述的色轮组件,其特征在于,所述滤光元件设于所述第一承载件的一端面并环绕所述第二承载件的周向延伸,所述非滤光区呈圆形分布,用于透射由所述第一反射元件反射的激发光,所述滤光区设于所述非滤光区周缘呈扇环形分布。
  9. 如权利要求7所述色轮组件,其特征在于,所述滤光区环绕所述第二承载件的周壁固定,所述非滤光区设于所述第二承载件的一端,用于透射由所述第一反射元件反射的激发光;所述色轮组件还包括容置于所述第二承载件中的合光元件,用于透射由所述第一反射元件反射的激发光,并透射透过所述滤光区的受激光。
  10. 一种光源装置,其特征在于,包括:
    激发光源,用于产生激发光;以及
    色轮组件,包括:
    第一承载件,
    波长转换元件,环绕所述第一承载件的周壁固定,并设置于所述激发光的传输路径中,在所述激发光源的照射下时序输出受激光和激发光,
    第二承载件,与所述第一承载件的一端固定连接,以及
    滤光元件,固定于所述第二承载件上,用于接收并过滤所述受激光。
  11. 如权利要求10所述的光源装置,其特征在于,所述波长转换元件包括周向设置的转换区以及非转换区,所述转换区用于将所 述激发光进行波长转换并出射受激光,所述非转换区用于出射所述激发光;所述滤光元件包括滤光区以及非滤光区,所述滤光区与所述转换区相对应,用于对所述受激光进行过滤,所述非滤光区与所述非转换区相对应,用于扩大由所述非转换区出射的激发光的发散角。
  12. 如权利要求11所述的光源装置,其特征在于,所述滤光元件设于所述第一承载件的一端面并环绕所述第二承载件的周向延伸,所述滤光区与所述非滤光区分别呈扇形或扇环形分布。
  13. 如权利要求12所述的光源装置,其特征在于,所述光源装置还包括调整装置,所述调整装置包括:
    分光合光元件,用于透射所述激发光并反射所述受激光,其中由所述波长转换元件出射的激发光与受激光在所述分光合光元件处合为一路;
    收集透镜,用于将所述激发光源发出的激发光会聚于所述波长转换元件表面并对所述波长转换元件的出射光进行准直;以及
    第一中继透镜,用于对由所述波长转换元件出射的激发光与受激光进行会聚出射。
  14. 如权利要求13所述的光源装置,其特征在于,所述调整装置还包括第一反射元件,由所述波长转换元件出射的激发光依次经过所述收集透镜以及分光合光元件出射至所述第一反射元件,并由所述第一反射元件反射至所述分光合光元件,使得由所述波长转换元件出射的激发光与受激光在所述分光合光元件处合为一路。
  15. 如权利要求13所述的光源装置,其特征在于,所述非转换区用于反射所述激发光,所述激发光源的主光轴与所述收集透镜的主光轴相平行但不重合,所述非转换区的外表面与所述色轮组件的中心轴相平行。
  16. 如权利要求13所述的光源装置,其特征在于,所述非转换区用于反射所述激发光,所述激发光源与所述收集透镜同轴设置,所述非转换区的外表面相对所述色轮组件的中心轴倾斜设置。
  17. 如权利要求16所述的光源装置,其特征在于,所述光源装置还包括用于发出光谱范围与所述激发光的光谱范围不同的补偿光的补偿光源以及合光元件,所述合光元件用于反射所述补偿光并透射由所述滤光元件出射的激发光与受激光,所述激发光、受激光以及补偿光在所述合光元件处合为一路。
  18. 如权利要求13所述的光源装置,其特征在于,所述光源装置还包括用于发出光谱范围与所述激发光的光谱范围不同的补偿光的补偿光源以及合光元件,所述合光元件邻近所述分光合光元件设置,用于透射所述补偿光并反射由所述波长转换元件出射的激发光与受激光,所述激发光、受激光以及补偿光在所述分光合光元件处合为一路。
  19. 如权利要求18所述的光源装置,其特征在于,所述分光合光元件包括透射区域以及合光区域,所述透射区域用于透射由所述合光元件出射的补偿光,且所述补偿光会聚于所述透射区域,所述合光区域用于反射受激光并透射激发光。
  20. 如权利要求13所述的光源装置,其特征在于,所述滤光元件环绕所述第二承载件的周壁固定,所述滤光区与所述非滤光区分别呈方形曲面设置。
  21. 如权利要求20所述的光源装置,其特征在于,所述调整装置还包括:
    第一反射元件,邻近所述分光合光元件设置,用于将由所述波长转换元件出射的激发光反射至所述分光合光元件;以及
    第二反射元件,容置于所述第二承载件中,用于反射透过所述 滤光元件的激发光与受激光。
  22. 如权利要求21所述的光源装置,其特征在于,所述第二反射元件的入射面为凹面。
  23. 如权利要求21所述的光源装置,其特征在于,所述光源装置还包括用于发出光谱范围与所述激发光的光谱范围不同的补偿光的补偿光源以及合光元件,所述合光元件用于透射所述补偿光并反射由所述分光合光元件出射的激发光,所述激发光、受激光以及补偿光在所述合光元件处合为一路。
  24. 如权利要求17、18、19、23中任一项所述的光源装置,其特征在于,所述补偿光源包括发光体、散射装置以及两个透镜,所述发光体发出的补偿光经一透镜会聚于所述散射装置后,再经另一个透镜进行会聚出射至所述合光元件。
  25. 如权利要求17、18、19、23中任一项所述的光源装置,其特征在于,所述转换区设有第一波长转换层,所述激发光源一直处于开启状态,所述补偿光源在所述转换区设有所述第一波长转换层的区域位于所述激发光源的传输路径中时打开,在所述转换区的其他区域以及所述非转换区关闭,其中所述第一波长转换层指的是可将激发光转换成与所述补偿光存在光谱重叠的受激光的波长转换层。
  26. 如权利要求13所述的光源装置,其特征在于,所述非转换区用于透射所述激发光,所述调整装置还包括:
    第一反射元件,容置于所述第一承载件中,用于反射透过所述波长转换元件出射的激发光;以及
    第二反射元件,用于将由所述第一反射元件出射的激发光反射至所述分光合光元件,其中由所述波长转换元件出射的激发光与受激光在所述分光合光元件处合为一路。
  27. 如权利要求13所述的光源装置,其特征在于,所述非转换区用于透射所述激发光,所述调整装置还包括:
    第一反射元件,容置于所述第一承载件中,用于反射透过所述波长转换元件出射的激发光;以及
    合光元件,用于反射由所述第一反射元件出射的激发光并透射由所述分光合光元件出射的受激光,其中由所述波长转换元件出射的激发光与受激光在所述合光元件处合为一路。
  28. 如权利要求27所述的光源装置,其特征在于,所述滤光区设于所述非滤光区的周缘,由所述第一反射元件反射的激发光透过所述非滤光区入射至所述合光元件,由所述分光合光元件出射的激发光透过所述滤光区射入所述合光元件。
  29. 如权利要求13所述的光源装置,其特征在于,所述滤光区环绕所述第二承载件的周壁固定,所述非滤光区设于所述第二承载件的一端,所述调整装置还包括:
    第一反射元件,容置于所述第一承载件中,用于反射透过所述波长转换元件出射的激发光;
    合光元件,用于透射透过所述非滤光区出射的激发光并反射透过所述滤光区出射的受激光,其中由所述波长转换元件出射的激发光与受激光在所述合光元件处合为一路。
  30. 一种投影系统,其包括权利要求10-29中任一项所述的光源装置。
PCT/CN2018/080868 2018-01-03 2018-03-28 色轮组件、光源装置及投影系统 WO2019134260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810005267.8 2018-01-03
CN201810005267.8A CN109991801B (zh) 2018-01-03 2018-01-03 色轮组件、光源装置及投影系统

Publications (1)

Publication Number Publication Date
WO2019134260A1 true WO2019134260A1 (zh) 2019-07-11

Family

ID=67128894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080868 WO2019134260A1 (zh) 2018-01-03 2018-03-28 色轮组件、光源装置及投影系统

Country Status (2)

Country Link
CN (1) CN109991801B (zh)
WO (1) WO2019134260A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908230A (zh) * 2019-12-16 2020-03-24 无锡视美乐激光显示科技有限公司 波长转换装置、光影处理设备及光处理方法
CN113900339B (zh) 2020-06-22 2022-09-27 青岛海信激光显示股份有限公司 光源组件和投影设备
CN113900341A (zh) * 2020-06-22 2022-01-07 青岛海信激光显示股份有限公司 光源组件和投影设备
WO2021259285A1 (zh) * 2020-06-22 2021-12-30 青岛海信激光显示股份有限公司 投影光源和投影设备
CN113079304B (zh) * 2021-04-25 2023-01-31 维沃移动通信有限公司 摄像模组和电子设备
CN114967310A (zh) * 2022-04-18 2022-08-30 扬州吉新光电有限公司 一种滤光扩散器件及其光源系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722014A (zh) * 2012-05-23 2012-10-10 深圳市绎立锐光科技开发有限公司 色轮和发光装置
CN102854723A (zh) * 2012-01-07 2013-01-02 深圳市光峰光电技术有限公司 发光装置和投影装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN205992115U (zh) * 2016-08-09 2017-03-01 深圳市绎立锐光科技开发有限公司 光源系统及投影设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945284A (ja) * 1995-08-03 1997-02-14 Toshiba Lighting & Technol Corp 蛍光ランプ、光源装置、液晶表示装置および読取り装置
CN100382605C (zh) * 1999-10-08 2008-04-16 Lg电子株式会社 圆柱形彩色轮及其制造方法和采用它的投影仪
KR100839285B1 (ko) * 2002-04-23 2008-06-17 엘지전자 주식회사 컬러드럼을 이용한 투사장치
JP2006067173A (ja) * 2004-08-26 2006-03-09 Ushio Inc 原稿照明装置
JP4816755B2 (ja) * 2009-04-02 2011-11-16 セイコーエプソン株式会社 光源装置及びプロジェクター
CN102566230B (zh) * 2010-12-08 2015-05-27 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
JP2015094824A (ja) * 2013-11-11 2015-05-18 株式会社リコー 光学素子、光源装置、照明光学系、画像表示装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN206671745U (zh) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 光源装置及投影系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854723A (zh) * 2012-01-07 2013-01-02 深圳市光峰光电技术有限公司 发光装置和投影装置
CN102722014A (zh) * 2012-05-23 2012-10-10 深圳市绎立锐光科技开发有限公司 色轮和发光装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN205992115U (zh) * 2016-08-09 2017-03-01 深圳市绎立锐光科技开发有限公司 光源系统及投影设备

Also Published As

Publication number Publication date
CN109991801B (zh) 2022-08-05
CN109991801A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019134260A1 (zh) 色轮组件、光源装置及投影系统
EP2741139B1 (en) Illumination optical system for beam projector
US10416440B2 (en) Projection system, light source system and light source assembly
US11402736B2 (en) Light source system and projection device
CN110161791B (zh) 照明系统及投影装置
CN109991803B (zh) 色轮组件、光源装置及投影系统
CN108663881B (zh) 一种投影光源及其投影系统
CN109765745B (zh) 光源装置及投影系统
JP2017143061A (ja) 光波長変換器及びそれを有する照明システム
US20200004120A1 (en) Illumination system and projection apparatus
WO2019041803A1 (zh) 色轮和激光投影设备
US10185214B2 (en) Projector and image display method including a light separation optical system
WO2020057299A1 (zh) 光源系统及投影设备
TWI658292B (zh) 照明系統與投影裝置
EP3771945B1 (en) Illumination system and projection apparatus
EP3989000A1 (en) Projection apparatus and illumination system
EP3364246B1 (en) Laser light source for projector and laser projection device
CN111983878B (zh) 光学旋转装置、照明系统以及投影装置
CN216210438U (zh) 光源组件及投影装置
TWI690764B (zh) 波長轉換元件、照明系統與投影裝置
KR20140073942A (ko) 빔 프로젝터용 조명 광학계
CN111722462A (zh) 照明系统及投影装置
CN118043737A (zh) 激光投影设备
CN213182293U (zh) 色轮和投影系统
CN113885285A (zh) 光源组件与投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898306

Country of ref document: EP

Kind code of ref document: A1