WO2019134134A1 - 偶极子天线及无人机 - Google Patents

偶极子天线及无人机 Download PDF

Info

Publication number
WO2019134134A1
WO2019134134A1 PCT/CN2018/071631 CN2018071631W WO2019134134A1 WO 2019134134 A1 WO2019134134 A1 WO 2019134134A1 CN 2018071631 W CN2018071631 W CN 2018071631W WO 2019134134 A1 WO2019134134 A1 WO 2019134134A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipole antenna
pcb board
unit
antenna according
vibrator unit
Prior art date
Application number
PCT/CN2018/071631
Other languages
English (en)
French (fr)
Inventor
李栋
高志涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880031276.2A priority Critical patent/CN110612637B/zh
Priority to PCT/CN2018/071631 priority patent/WO2019134134A1/zh
Priority to CN202210261604.6A priority patent/CN114628907A/zh
Publication of WO2019134134A1 publication Critical patent/WO2019134134A1/zh
Priority to US16/919,708 priority patent/US20200335871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/14Supports; Mounting means for wire or other non-rigid radiating elements
    • H01Q1/16Strainers, spreaders, or spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10075Non-printed oscillator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10265Metallic coils or springs, e.g. as part of a connection element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of drones, in particular to a dipole antenna and a drone.
  • UAV Unmanned Aerial Vehicle
  • drone applications have become more widespread.
  • drones are used to transport goods, and in the agricultural field, drones are used to measure farmland, and in the field of surveying and mapping, drones are used for surveying and mapping.
  • an antenna is required on the drone to receive signals sent from the outside world or to send signals to the outside world.
  • the antennas currently used on drones are large in size and cannot meet the needs of miniaturization of drones.
  • the embodiment of the invention provides a dipole antenna and a drone for solving the problem that the existing antenna cannot meet the requirement of miniaturization of the drone.
  • an embodiment of the present invention provides a dipole antenna, including: a PCB board, a first vibrator unit, and a second vibrator unit, wherein the first vibrator unit is a spiral antenna, and is spirally wound around The outer side of the PCB board, the first vibrator unit and the second vibrator unit together form a half-wave dipole antenna.
  • an embodiment of the present invention provides a drone, including: a transceiver control unit and the dipole antenna of the first aspect;
  • the dipole antenna is electrically connected to the transceiver control unit for communicating with a ground control station under the control of the transceiver control unit.
  • the dipole antenna and the drone provided by the embodiment of the invention are provided with a PCB board, a first vibrator unit and a second vibrator unit, wherein the first vibrator unit is a spiral antenna, and is spirally wound around the PCB board.
  • the first transducer unit and the second transducer unit together form a half-wave dipole antenna.
  • the dipole antenna has a small size and is convenient to be mounted on a micro drone, which can meet the miniaturization requirements of the drone.
  • the dipole antenna formed by the first vibrator unit and the second vibrator unit has high radiation efficiency, so that the drone can accurately communicate with the outside through the dipole antenna, thereby improving the reliability of the drone. Sex.
  • FIG. 1 is a schematic structural diagram of a dipole antenna according to Embodiment 1 of the present invention.
  • FIG. 2 is another schematic structural diagram of a dipole antenna according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a dipole antenna according to Embodiment 2 of the present invention.
  • FIG. 4 is another schematic structural diagram of a dipole antenna according to Embodiment 2 of the present invention.
  • FIG. 5 is a front view of a second transducer unit in a dipole antenna according to Embodiment 3 of the present invention.
  • FIG. 6 is a top plan view of a second transducer unit in a dipole antenna according to Embodiment 3 of the present invention.
  • FIG. 7 is a left side view of a second transducer unit in a dipole antenna according to Embodiment 3 of the present invention.
  • FIG. 8 is a perspective view of a second vibrator unit in a dipole antenna according to Embodiment 3 of the present invention.
  • FIG. 11 is a front view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention.
  • FIG. 12 is a top plan view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention.
  • FIG. 13 is a left side view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention.
  • FIG. 14 is a perspective view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention.
  • 16 is a test gain diagram of the dipole antenna shown in the fourth embodiment.
  • 17 is a test pattern of the dipole antenna shown in the fourth embodiment.
  • FIG. 18 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 19 is another schematic structural diagram of a drone according to an embodiment of the present invention.
  • drones have been widely used in surveying and mapping, planning farmland, power inspection and other fields, and these areas require drones to communicate accurately with the outside world.
  • an embodiment of the present invention provides a dipole antenna including two vibrator units and a PCB board, wherein one vibrator unit is a spiral antenna and is spirally wound around the PCB. On the outside of the board, the two vibrator units together form a half-wave dipole antenna.
  • the dipole antenna has a small size and high radiation efficiency, and can meet the requirements of miniaturization of the drone.
  • FIG. 1 is a schematic structural diagram of a dipole antenna according to Embodiment 1 of the present invention
  • FIG. 2 is another schematic structural diagram of a dipole antenna according to Embodiment 1 of the present invention.
  • the dipole antenna 100 of the present embodiment includes a PCB board 10, a first vibrator unit 20, and a second vibrator unit 30, the first vibrator unit 20 is a helical antenna, and is spiral. Grounded around the outside of the PCB board 10, the first transducer unit 20 and the second transducer unit 30 together form a half-wave dipole antenna.
  • the unmanned aerial vehicle of this embodiment may be a plant protection drone, an aerial drone, a surveying drone, etc., and the specific type of the drone is not limited in this embodiment.
  • the dipole antenna 100 of the present embodiment includes a first vibrator unit 20, a second vibrator unit 30, and a PCB board 10.
  • the first vibrator unit 20 is a helical antenna, and the first vibrator unit 20 is spirally wound around the outer side of the PCB board 10 to form a half-wave dipole antenna together with the second vibrator unit 30.
  • the half-wave dipole antenna has high working efficiency in the working frequency band and good omnidirectional radiation performance in the horizontal plane.
  • the first vibrator unit 20 is wound around the outer side of the PCB board 10, so that the overall size of the antenna is reduced, and it can be mounted on the micro drone, thereby ensuring the dipole antenna 100. Under the premise of high radiation efficiency, the miniaturization demand of the drone is realized.
  • the second transducer unit 30 of the present embodiment is the same as the first transducer unit 20 , and may also be a helical antenna, and is spirally disposed on the outer side of the PCB board 10 .
  • the first transducer unit 20 is wound around the upper half of the PCB board 10
  • the second transducer unit 30 is wound around the lower half of the PCB board 10; or, the first transducer unit 20 is wound around the lower half of the PCB board 10.
  • the second transducer unit 30 is wound around the upper half of the PCB board 10.
  • the lengths of the first transducer unit 20 and the second transducer unit 30 are each equivalent to 1/4 wavelength, and the total length is 1/2 wavelength, constituting a half-wave dipole antenna.
  • the dipole antenna 100 of the present embodiment further reduces the volume of the antenna when the first vibrator unit 20 and the second vibrator unit 30 are both helical antennas and are wound around the outer side of the PCB board 10
  • the miniaturization needs of drones.
  • the radiation efficiency of the dipole antenna 100 is high, so that the drone can accurately communicate with the outside through the dipole antenna 100, thereby improving the operational reliability of the drone.
  • the second transducer unit 30 of the embodiment may also be a Planar Printed Antenna (PPA).
  • PPA Planar Printed Antenna
  • a PPA is disposed on the PCB 10
  • the PPA is used as the second. Vibrator unit 30.
  • the first transducer unit 20 and the second transducer unit 30 together form a half-wave dipole antenna, and the dipole antenna 100 has high radiation efficiency.
  • the dipole antenna 100 directly prints the second transducer unit 30 on the PCB board 10, which not only reduces the overall size of the antenna, but also makes the structure of the antenna more compact, thereby improving the structural stability of the dipole antenna 100. Sex.
  • the second vibrator unit 30 of the embodiment may also be a vibrator unit of other structures, for example, a metal wire.
  • the specific structure of the second vibrator unit 30 is not limited in this embodiment, as long as it can be guaranteed.
  • the first transducer unit 20 may collectively constitute a half-wave dipole antenna.
  • the first transducer unit 20 and the second transducer unit 30 of the present embodiment collectively form a half-wave dipole antenna, and the input impedance of the half-wave dipole antenna is pure impedance.
  • the power transmission at the feeder terminal is zero, there is no standing wave on the feeder, and the input impedance on the antenna is relatively stable with frequency, and the performance is good.
  • the ground control station transmits a control signal to the drone in the form of electromagnetic waves, the control signal being used to indicate that the aircraft continues to fly vertically upwards by 100 mm at the current altitude.
  • the first transducer unit 20 and the second transducer unit 30 on the dipole antenna 100 simultaneously receive the control signal and transmit the control signal to the flight controller of the drone. Based on the control signal, the flight controller controls the power system of the drone so that the drone continues to fly vertically upwards by 100 mm on the current altitude.
  • the dipole antenna 100 of the present embodiment can receive linearly polarized electromagnetic waves, and can also receive circularly polarized electromagnetic waves, and has a wide receiving range.
  • the dipole antenna provided by the embodiment of the invention includes a PCB board, a first vibrator unit and a second vibrator unit, wherein the first vibrator unit is a spiral antenna and is spirally wound around the outer side of the PCB board, first The vibrator unit and the second vibrator unit together form a half-wave dipole antenna.
  • the dipole antenna is small in size and can be easily mounted on a micro drone, which can realize the miniaturization of the drone.
  • the dipole antenna formed by the first vibrator unit and the second vibrator unit has high radiation efficiency, so that the drone can accurately communicate with the outside through the dipole antenna, thereby improving the reliability of the drone. Sex.
  • FIG. 3 is a schematic structural diagram of a dipole antenna according to Embodiment 2 of the present invention
  • FIG. 4 is another schematic structural diagram of a dipole antenna according to Embodiment 2 of the present invention.
  • the first transducer unit 20 of the present embodiment is spirally wound around the upper half of the PCB board 10 and extends toward the upper end portion of the PCB board 10.
  • the PCB board 10 is divided into two parts: an upper half and a lower half.
  • the first transducer unit 20 of the present embodiment is disposed on the upper half of the PCB board 10, specifically spirally wound around the upper half of the PCB board 10 and toward the upper end of the PCB board 10. Extension. This facilitates the connection of the first transducer unit 20 to the PCB board 10 and facilitates the reception of the signal by the first transducer unit 20.
  • the first vibrator unit 20 of the embodiment is a first spiral wire.
  • a conductive metal wire such as copper, aluminum, gold or silver is spirally formed to form the first vibrator unit 20.
  • the first spiral wire of the embodiment may be a metal spring. That is, the present embodiment can directly use the existing metal spring as the first transducer unit 20 to reduce the manufacturing cost of the first transducer unit 20.
  • the present embodiment provides a first recess 11 on the side wall of the upper half of the PCB board 10, the first spiral A wire is fixed in the first groove 11.
  • the first spiral wire ie, the first vibrator unit 20
  • the first spiral wire contacts the sidewall of the upper half of the PCB board 10.
  • a plurality of first grooves 11 may be provided on the side walls of the upper half of the PCB board 10, and the first spiral wires are wound around the upper half of the PCB board 10 when the first spiral wires are wound around the upper half of the PCB board 10.
  • the first vibrating wire is fixed in the first groove 11 to realize the reliable connection between the first spiral wire and the PCB board 10, thereby improving the stability of the first vibrator and preventing the first vibrator unit 20 from being broken when the UAV is shaken.
  • the problem that the dipole antenna 100 cannot be used.
  • each of the first grooves 11 is spirally distributed on the side wall of the upper half of the PCB board 10.
  • three first grooves 11 are sequentially disposed on the first side wall of the PCB board 10, which are a, b, and c, respectively.
  • three first grooves 11 are arranged on the second side wall of the PCB board 10, respectively, d, e and f.
  • the first grooves 11 on the first side wall and the second side wall are joined in the order of a-d-b-e-c-f, the connecting line of which forms a spiral just, and the spiral line is the same as the direction of rotation of the first spiral wire.
  • an upright wire may be used, and the wire is wound around each of the first grooves 11 in the upper half of the PCB board 10 to form a first spiral wire.
  • the entire upper half of the PCB board 10 can be A spiral first groove 11 is provided on the outer wall, and the first spiral wire is fixed in the first groove 11.
  • the embodiment may bond the first spiral wire in the first groove 11.
  • the first spiral wire may also be welded in the first groove 11 such that the connection of the first spiral wire to the PCB board 10 is stronger.
  • the shape of the first spiral wire in this embodiment is closely related to the shape of the upper half of the PCB board 10.
  • the first spiral wire is Cylindrical.
  • the upper half of the PCB board 10 is a trapezoidal shape that is large and small
  • the first spiral wire is a large and small truncated cone.
  • the upper half of the PCB board 10 is a small upper and lower trapezoid
  • the front projection of the corresponding first spiral wire is the same as the projection shape of the upper half of the PCB board 10.
  • the shape of the upper half of the PCB board 10 and the specific shape of the first spiral wire are not limited in this embodiment, and are specifically determined according to actual needs.
  • a top cover may be disposed on the outer side of the first vibrator unit 20, and the top cover may protect the first vibrator unit 20.
  • the first transducer unit 20 and the second transducer unit 30 of the present embodiment are fed through the coaxial line 40. That is, the feeding end 21 of the first vibrator unit 20 and the feeding end 31 of the second vibrator unit 30 are both connected to the coaxial line 40, and the received signal is transmitted through the coaxial line 40 to the transceiver control unit on the drone.
  • the transceiver control unit transmits signals to the first transducer unit 20 and the second transducer unit 30 via the coaxial line 40 to cause the first transducer unit 20 and the second transducer unit 30 to transmit the signal.
  • the first vibrator unit 20 and the second vibrator unit 30 are balancedly fed by the coaxial line 40, and the connection is convenient, the manufacturing is simple, the matching is easy, and the parasitic radiation ratio is reduced, thereby reducing the manufacturing cost of the antenna and further improving.
  • the radiation efficiency of the antenna is a simple, the matching is easy, and the parasitic radiation ratio is reduced, thereby reducing the manufacturing cost of the antenna and further improving.
  • the coaxial line of this embodiment may be a silver tin cable.
  • connection manner between the first vibrator unit 20 and the coaxial line 40 and the second vibrator unit 30 and the coaxial line 40 is not limited, that is, the first vibrator unit 20 and the second vibrator unit 30 can be coaxial with each other.
  • the wires 40 are directly connected or connected by other conductive connectors.
  • the feed end 21 of the first vibrator unit 20 and the feed end 31 of the second vibrator unit 30 are respectively soldered to the coaxial line 40.
  • the first pad 12 and the second pad 13 are disposed on the PCB board 10, and the feeding end 21 of the first vibrator unit 20 is coaxial with The wires 40 are all soldered to the first pads 12 such that the first transducer unit 20 is connected to the coaxial line 40 through the first pads 12.
  • the feed end 31 of the second transducer unit 30 and the coaxial line 40 are both soldered to the second pad 13 such that the second transducer unit 30 is connected to the coaxial line 40 through the second pad 13.
  • the first pad 12 and the second pad 13 may be located on different faces of the PCB board 10 .
  • the first pad 12 is located on the front side of the PCB board 10
  • the second pad 13 is located on the back side of the PCB board 10 .
  • the first pad 12 and the second pad 13 are located on the same side of the PCB board 10.
  • the specific connection manner of the first vibrator unit 20 and the second vibrator unit 30 and the coaxial line 40 may be that the feeding end 21 of the first vibrator unit 20 is connected to the inner conductor 41 of the coaxial line 40.
  • the feed end 31 of the second transducer unit 30 is connected to the outer conductor 42 of the coaxial line 40.
  • the specific connection manner between the first vibrator unit 20 and the second vibrator unit 30 and the coaxial line 40 may be that the feeding end 21 of the first vibrator unit 20 is connected to the outer conductor 42 of the coaxial line 40.
  • the feed end 31 of the two-vibrator unit 30 is connected to the inner conductor 41 of the coaxial line 40.
  • the dipole antenna provided by the embodiment of the present invention facilitates the fixed connection between the first vibrator unit and the PCB board by spirally winding the first vibrator unit on the upper half of the PCB board and extending toward the upper end portion of the PCB board. Further, in order to improve the fixability of the first vibrator unit, a first groove is disposed on a sidewall of the upper half of the PCB board, and the first spiral wire is fixed in the first groove, thereby improving the number The connection between the one vibrator unit and the PCB board is firm, thereby improving the working stability of the dipole antenna.
  • the first vibrator unit and the second vibrator unit of the embodiment are fed by the coaxial line, the connection is convenient, the manufacturing is simple, the matching is easy, and the parasitic radiation ratio is reduced, thereby reducing the manufacturing cost of the antenna, and further improving. Radiation efficiency of the antenna.
  • FIG. 5 is a front view of a second transducer unit in a dipole antenna according to Embodiment 3 of the present invention
  • FIG. 6 is a top view of a second transducer unit in a dipole antenna according to Embodiment 3 of the present invention
  • FIG. 8 is a perspective view of the second transducer unit in the dipole antenna according to the third embodiment of the present invention.
  • the second transducer unit 30 of the present embodiment is spirally wound around the outside of the PCB board 10.
  • the second vibrator unit 30 can be wound around the lower end of the PCB board 10 when the first vibrator unit 20 is wound around the PCB board 10.
  • the second transducer unit 30 can be wound around the upper end of the PCB board 10.
  • the second transducer unit 30 of the present embodiment is spirally wound around the lower half of the PCB board 10 and extends toward the lower end portion of the PCB board 10.
  • the second transducer unit 30 includes a feeding end and a free end, wherein the feeding end 31 of the second vibrator unit 30 is fixed in the middle of the PCB board 10, and the free end of the second vibrator unit 30 is from the lower side of the PCB board 10.
  • the half begins to spirally extend toward the lower end of the PCB board 10.
  • the first transducer unit 20 is wound around the upper half of the PCB board 10 and extends toward the upper end portion of the PCB board 10.
  • the first transducer unit 20 and the second transducer unit 30 of the present embodiment are symmetric with respect to the middle portion of the PCB board 10 , and the feeding end 21 of the first transducer unit 20 and the second transducer unit 30 are The feed terminals 31 are all located in the middle of the PCB board 10, achieving balanced feeding of the first vibrator unit 20 and the second vibrator unit 30.
  • the 3D pattern of the balanced feed dipole antenna 100 is an apple type, and the roundness in the horizontal plane is good, thereby improving the omnidirectional radiation performance of the dipole antenna 100 in the horizontal plane.
  • the second vibrator unit 30 of the embodiment is a second spiral wire.
  • a conductive metal wire such as copper, aluminum, gold or silver is spirally formed to form the second vibrator unit 30.
  • the second spiral wire of the embodiment may be a metal spring. That is, the present embodiment can directly use the existing metal spring as the second transducer unit 30 to reduce the manufacturing cost of the second transducer unit 30.
  • the present embodiment provides a second recess 14 on the sidewall of the lower half of the PCB board 10, the second spiral A shaped wire is secured in the second recess 14.
  • a plurality of second grooves 14 may be disposed on the sidewall of the lower half of the PCB board 10, and the second spiral wire is fixed when the second spiral wire is wound around the upper half of the PCB board 10.
  • a reliable connection of the second spiral wire to the PCB board 10 is further achieved, thereby improving the stability of the second transducer unit 30.
  • each of the second grooves 14 is spirally distributed on the sidewall of the lower half of the PCB board 10.
  • an upright wire may be used, and the wire is wound around the second groove 14 in the lower half of the PCB board 10 to form a second spiral wire.
  • the entire outer wall of the lower half of the PCB board 10 may be A spiral second groove 14 is provided thereon, and the second spiral wire is fixed in the second groove 14.
  • this embodiment can bond the second spiral wire in the second groove 14.
  • the second spiral wire can also be welded in the second recess 14 such that the connection of the second spiral wire to the PCB board 10 is stronger.
  • the shape of the second spiral wire in this embodiment is closely related to the shape of the upper half of the PCB board 10.
  • the second spiral wire is Cylindrical.
  • the second spiral wire is a large and small truncated cone.
  • the second spiral wire is a truncated cone that is large and small.
  • the front projection of the corresponding second spiral wire is the same as the projection shape of the lower half of the PCB board 10.
  • the shape of the lower half of the PCB board 10 and the specific shape of the second spiral wire are not limited in this embodiment, and are specifically determined according to actual needs.
  • the PCB board 10 of the embodiment is a trapezoidal PCB board
  • the first vibrator unit 20 is a first conical spiral metal wire.
  • the second spiral wire ie, the second vibrating unit 30
  • the first conical spiral wire is wound around the upper half of the PCB board 10
  • a second conical spiral wire is wound around the lower half of the PCB board 10.
  • the dipole antenna 100 formed by the first transducer unit 20 and the second transducer unit 30 has a truncated cone shape.
  • the PCB board 10 of the embodiment may be a trapezoidal board that is large and small, that is, the width of the upper half of the PCB board 10 is greater than the width of the lower half, the first vibrator unit 20 and the second vibrator unit
  • the dipole antenna 100 formed in common is a truncated cone that is large and small.
  • the maximum spiral diameter of the first conical spiral wire ie, the first vibrator unit 20
  • the minimum helix diameter of the second conical spiral wire ie, the second vibrator unit 30.
  • the first The dipole antenna 100 formed by the vibrator unit 20 and the second vibrator unit 30 is a truncated cone that is large and small.
  • the maximum spiral diameter of the first conical spiral wire i.e., the first vibrator unit 20
  • the minimum helix diameter of the second conical spiral wire i.e., the second vibrator unit 30.
  • the first conical spiral wire and the second conical spiral wire are located on the same conical surface, which not only increases the aesthetics of the dipole antenna 100, but also The structure of the dipole antenna 100 is made more stable.
  • the embodiment in order to conveniently set the first vibrator unit 20 and the second vibrator unit 30, as shown in FIG. 5 to FIG. 8, the embodiment is in the upper half and the lower half of the PCB board 10.
  • a first positioning portion 15 and a second positioning portion 16 are disposed between, wherein
  • the first transducer unit 20 is spirally extended from the first positioning portion 15 toward the upper end portion of the PCB board 10. Specifically, the feeding end 21 of the first vibrator unit 20 is fixed on the first positioning portion 15, and the free end of the first vibrator unit 20 starts from the first positioning portion 15 and spirals along the upper half of the PCB board 10. The upper end portion of the PCB board 10 is extended.
  • the second transducer unit 30 extends spirally from the second positioning portion 16 toward the lower end portion of the PCB board 10. Specifically, the feeding end 31 of the second vibrator unit 30 is fixed on the second positioning portion 16, and the free end of the second vibrator unit 30 starts from the second positioning portion 16 and spirals along the lower half of the PCB board 10. The lower end portion of the PCB board 10 is extended.
  • first positioning portion 15 and the second positioning portion 16 of the embodiment may be disposed on different faces of the PCB board 10.
  • first positioning portion 15 is disposed on the front surface of the PCB board 10
  • second positioning portion 16 is disposed on the back surface of the PCB board 10.
  • the first positioning portion 15 and the second positioning portion 16 are disposed on the same side of the PCB board 10, for example, both on the front side of the PCB board 10, or both are disposed on the PCB board.
  • the back of the 10th is disposed on the same side of the PCB board 10.
  • the first pad 12 may be disposed on the first positioning portion 15 and the second pad 13 may be disposed on the second positioning portion 16.
  • the height of the truncated cone-shaped dipole antenna 100 of the present embodiment is 10 mm, and the diameter of the upper frustum of the dipole antenna 100 is 4 mm, and the dipole antenna The lower frustum of 100 has a diameter of 8 mm.
  • the working frequency range of the dipole antenna 100 is 2.4 Ghz to 2.5 Ghz, and the height of the dipole antenna 100 is only one-twelfth of the working frequency band.
  • FIG. 9 is a test efficiency diagram of the dipole antenna shown in the third embodiment
  • FIG. 10 is a test pattern diagram of the dipole antenna shown in the third embodiment.
  • the dipole antenna 100 of the present embodiment is tested. As shown in FIG. 9, the dipole antenna 100 has an efficiency of more than 50% in a working frequency range of 2.4 GHz to 2.5 GHz, and the gain is greater than 1 dBi. As shown in FIG. 10, the dipole antenna 100 of the present embodiment has a circularity of less than 6 dB in the radiation pattern of the horizontal plane.
  • the dipole antenna provided by the embodiment of the present invention is formed by spirally winding the second vibrator unit on the outer side of the PCB board, so that the spiral first vibrator unit and the spiral second vibrator unit are formed together.
  • the polar antenna has high radiation efficiency, the radiation pattern in the horizontal plane is not round, and the structure is simple, and it is easy to process and manufacture, thereby reducing the manufacturing cost of the dipole antenna.
  • FIG. 11 is a front view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention
  • FIG. 12 is a top view of a second transducer unit in a dipole antenna according to Embodiment 4 of the present invention
  • FIG. 14 is a perspective view of the second transducer unit in the dipole antenna according to the fourth embodiment of the present invention.
  • the second transducer unit 30 of the present embodiment is a planar printed antenna PPA disposed on the PCB board 10.
  • the first transducer unit 20 of the present embodiment is a helical antenna, and is spirally wound on the PCB board 10
  • the second transducer unit 30 is disposed on the PCB board 10 .
  • PPA Planar printed antenna
  • the second transducer unit 30 in this embodiment does not interfere with the position of the first transducer unit 20. Therefore, the second transducer unit 30 can be disposed at any position of the PCB 10, for example, can be disposed on the PCB.
  • the upper half of the 10, or disposed in the lower half of the PCB board 10, may also be disposed in the middle of the PCB board 10 to facilitate the arrangement of the second transducer unit 30.
  • the second transducer unit 30 of the embodiment may be disposed at The lower end portion of the PCB board 10. At this time, the first vibrator unit 20 and the second vibrator unit 30 are staggered on the PCB board 10 to facilitate subsequent connection.
  • the second transducer unit 30 of the embodiment may have a shape of a T shape, an umbrella shape or the like.
  • the second transducer unit 30 of the present embodiment has an "L" shape.
  • the present embodiment in order to fix the first vibrator unit 20 , provides an outwardly extending gear portion 17 between the lower half and the upper half of the PCB board 10 .
  • the bottom of the one vibrator unit 20 abuts on the gear portion 17, and the top of the first vibrator unit 20 spirally extends toward the upper end portion of the PCB board 10.
  • the top of the first vibrator unit 20 in the present embodiment is the position where the free end of the first vibrator unit 20 is located, and the bottom of the first vibrator unit 20 is the position where the feeding end 21 of the first vibrator unit 20 is located.
  • an outwardly extending gear portion 17 is disposed between the upper half portion and the lower half portion of the PCB board 10, and the first vibrator unit 20 is disposed above the gear portion 17 with the gear portion 17 as a boundary line.
  • the bottom of the first transducer unit 20 abuts on the gear portion 17, and the top of the first transducer unit 20 spirally extends toward the upper end portion of the PCB board 10.
  • the second transducer unit 30 is disposed above the gear portion 17, specifically, on the lower half of the PCB board 10.
  • the first pad 12 and the second pad 13 may be disposed on the PCB board 10 The lower half.
  • the second pad 13 may also be disposed on the second transducer unit 30.
  • the height of the dipole antenna 100 of the present embodiment is 12 mm, and the first vibrator unit 20 has a spiral diameter of 8 mm.
  • the operating frequency range of the dipole antenna 100 is 2.4 Ghz to 2.5 Ghz, and the height of the dipole antenna 100 is only one tenth of the operating frequency band.
  • FIG. 15 is a test efficiency diagram of the dipole antenna shown in the fourth embodiment
  • FIG. 16 is a test gain diagram of the dipole antenna shown in the fourth embodiment
  • FIG. 17 is a dipole shown in the fourth embodiment. Test pattern of the sub-antenna.
  • the dipole antenna 100 of the present embodiment is tested. As shown in FIG. 15, the dipole antenna 100 has an efficiency of more than 55% in a working frequency range of 2.4 GHz to 2.5 GHz, and can reach a maximum of 70%.
  • the gain of the dipole antenna 100 of the present embodiment is between 1.5 dBi and 2.8 dBi in the operating frequency band, which can meet the requirements of the use of the micro drone.
  • the dipole antenna 100 of the present embodiment has a circularity of less than 6 dB in the radiation pattern of the horizontal plane.
  • the second vibrator unit is a planar printed antenna disposed on the PCB, and the dipole antenna formed by the first vibrator unit and the second vibrator unit is small in size and light in weight.
  • the radiation pattern of the dipole antenna of the embodiment is not rounded in the horizontal plane, and the communication precision between the drone and the outside is improved.
  • FIG. 18 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 19 is another schematic structural diagram of the unmanned aerial vehicle according to an embodiment of the present invention.
  • the drone of the present embodiment includes a transceiving control unit 200 and the dipole antenna 100 described in the above embodiment.
  • the dipole antenna 100 is electrically connected to the transceiver control unit 200 and communicates with the ground control station under the control of the transceiver control unit 200.
  • the ground control station when the local control station needs to control the drone, the ground control station sends a control signal to the drone in the form of electromagnetic waves, and the dipole antenna 100 receives the control sent by the ground control station under the control of the transceiver control unit 200. signal.
  • the drone transmits a response signal to the ground control station via the dipole antenna 100.
  • the UAV of the embodiment includes a housing, a power system, a transmission system, a control system, and the like in addition to the transceiver control unit 200 and the dipole antenna 100 antenna.
  • the drone of the present embodiment further includes a flight controller 300, which is connected to the transceiver control unit 200.
  • the transceiver control unit 200 is configured to control the dipole antenna 100 to receive the control signal sent by the ground control station, and send the control signal to the flight controller 300.
  • the flight controller 300 is configured to control the drone according to the control signal.
  • the command information is carried in the control signal and sent to the drone.
  • the transceiver control unit 200 on the drone controls the dipole antenna 100 to receive the control signal and transmits the control signal to the flight controller 300.
  • the flight controller 300 parses the control signal to obtain command information that the drone reaches the point A from the current point B within 2 minutes. Then, the flight controller 300 controls the power system of the drone to perform corresponding actions according to the analyzed command information, so that the drone reaches the point A within 2 minutes.
  • the drone of the embodiment when the drone of the embodiment is an aerial drone, as shown in FIG. 19, the drone further includes a camera 400.
  • the camera 400 is connected to the flight controller 300 for performing aerial photography under the control of the flight controller 300, forming an image signal, and transmitting the image signal to the flight controller 300.
  • the flight controller 300 is configured to control the transceiving control unit 200 to cause the control transceiving control unit 200 to transmit the image signal to the ground control station through the dipole antenna 100, thereby realizing the actual transmission of the image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明实施例公开了一种偶极子天线及无人机,所述偶极子天线包括:PCB板、第一振子单元和第二振子单元,所述第一振子单元为螺旋型天线,并且螺旋式地绕设在所述PCB板的外侧,所述第一振子单元与所述第二振子单元共同形成半波偶极子天线。该偶极子天线体积小,方便安装在微型无人机上,满足无人机的小型化需求。同时,第一振子单元和第二振子单元共同形成的偶极子天线,其辐射效率高,使得无人机可以通过该偶极子天线与外界进行精准通信,进而提高了无人机的工作可靠性。

Description

偶极子天线及无人机 技术领域
本发明涉及无人机技术领域,特别涉及一种偶极子天线及无人机。
背景技术
近年来,随着无人机(Unmanned Aerial Vehicle,UAV)技术的迅速发展,无人机应用越来越广泛。例如,在运输行业利用无人机运输货物,在农业领域利用无人机测量农田,在测绘领域利用无人机进行测绘。在上述应用中,无人机上均需要设置天线,用于接收外界发送的信号,或者向外界发送信号。但是,目前无人机上使用的天线,其尺寸较大,无法满足无人机小型化的需求。
发明内容
本发明实施例提供一种偶极子天线及无人机,用于解决现有的天线无法满足无人机小型化的需求的问题。
第一方面,本发明实施例提供一种偶极子天线,包括:PCB板、第一振子单元和第二振子单元,所述第一振子单元为螺旋型天线,并且螺旋式地绕设在所述PCB板的外侧,所述第一振子单元与所述第二振子单元共同形成半波偶极子天线。
第二方面,本发明实施例提供一种无人机,包括:收发控制单元和第一方面所述偶极子天线;
所述偶极子天线,与所述收发控制单元电连接,用于在所述收发控制单元的控制下与地面控制站进行通信。
本发明实施例提供的偶极子天线及无人机,通过设置PCB板、第一振子单元和第二振子单元,其中,第一振子单元为螺旋型天线,并且螺旋式地绕设在PCB板的外侧,第一振子单元与第二振子单元共同形成半波偶极子天线。该偶极子天线尺寸小,方便安装在微型无人机上,可以满足无人机的小型化需求。同时,第一振子单元和第二振子单元共同形成的偶 极子天线,其辐射效率高,使得无人机可以通过该偶极子天线与外界进行精准通信,进而提高了无人机的工作可靠性。
附图说明
为了更清楚地说明本发明方法实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明方法的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的偶极子天线的一种结构示意图;
图2为本发明实施例一提供的偶极子天线的另一种结构示意图;
图3为本发明实施例二提供的偶极子天线的一种结构示意图;
图4为本发明实施例二提供的偶极子天线的另一种结构示意图;
图5为本发明实施例三提供的偶极子天线中第二振子单元的主视图;
图6为本发明实施例三提供的偶极子天线中第二振子单元的俯视图;
图7为本发明实施例三提供的偶极子天线中第二振子单元的左视图;
图8为本发明实施例三提供的偶极子天线中第二振子单元的立体图;
图9为本实施例三所示的偶极子天线的测试效率图;
图10为本实施例三所示的偶极子天线的测试方向图;
图11为本发明实施例四提供的偶极子天线中第二振子单元的主视图;
图12为本发明实施例四提供的偶极子天线中第二振子单元的俯视图;
图13为本发明实施例四提供的偶极子天线中第二振子单元的左视图;
图14为本发明实施例四提供的偶极子天线中第二振子单元的立体图;
图15为本实施例四所示的偶极子天线的测试效率图;
图16为本实施例四所示的偶极子天线的测试增益图;
图17为本实施例四所示的偶极子天线的测试方向图
图18为本发明实施例提供的无人机的一种结构示意;
图19为本发明实施例提供的无人机的另一种结构示意。
附图标记说明:
100:偶极子天线;
10:PCB板;
20:第一振子单元;
30:第二振子单元;
11:第一凹槽;
40:同轴线;
41:内导体;
42:外导体;
21:第一振子单元的馈电端;
31:第二振子单元的馈电端;
12:第一焊盘;
13:第二焊盘;
14:第二凹槽;
15:第一定位部;
16:第二定位部;
17:挡位部;
200:收发控制单元;
300:飞行控制器;
400:摄像机。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
随着无人机的发展,无人机在测绘、规划农田、电力巡检等领域得到了广泛的应用,而这些领域均需要无人机与外界进行精准通信。为了与外界精准通信,则需要在无人机上安装尺寸较大的天线,以提高天线的收发效率和辐射覆盖性能。这样会增大无人机的尺寸,无法满足无人机小型化的需求。
为了解决上述技术问题,本发明实施例提供一种偶极子天线,该偶极 子天线包括两个振子单元和一个PCB板,其中一个振子单元为螺旋型天线,且螺旋式地绕设在PCB板的外侧,两个振子单元共同形成半波偶极子天线。该偶极子天线尺寸小,辐射效率高,可以满足无人机小型化的需求。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例一提供的偶极子天线的一种结构示意图,图2为本发明实施例一提供的偶极子天线的另一种结构示意图。如图1和2所示,本实施例的偶极子天线100包括:PCB板10、第一振子单元20和第二振子单元30,所述第一振子单元20为螺旋型天线,并且螺旋式地绕设在所述PCB板10的外侧,所述第一振子单元20与所述第二振子单元30共同形成半波偶极子天线。
本实施例的无人机可以是植保无人机、航拍无人机、测绘无人机等,本实施例对无人机的具体类型不做限制。
具体的,如图1和图2所示,本实施例的偶极子天线100包括第一振子单元20、第二振子单元30和PCB板10。其中,第一振子单元20为螺旋型天线,该第一振子单元20螺旋式地绕设在PCB板10的外侧,与第二振子单元30共同形成半波偶极子天线。该半波偶极子天线在工作频段内的工作效率高,在水平面的全向辐射性能好。
同时,本实施例的偶极子天线100,第一振子单元20绕设在PCB板10的外侧,使得天线的整体尺寸减小,可以安装在微型无人机上,进而在保证偶极子天线100的高辐射效率的前提下,实现了无人机的小型化需求。
可选的,如图1所示,本实施例的第二振子单元30与第一振子单元20相同,也可以为螺旋型天线,且螺旋式地绕设在PCB板10的外侧。例如,第一振子单元20绕设在PCB板10的上半部,第二振子单元30绕设在PCB板10的下半部;或者,第一振子单元20绕设在PCB板10的下半部,第二振子单元30绕设在PCB板10的上半部。此时,该第一振子单元20和第二振子单元30的长度均等效为1/4波长,总长度为1/2波长,构成半波偶极子天线。
即本实施例的偶极子天线100,当第一振子单元20和第二振子单元30均为螺旋型天线,且均绕设在PCB板10的外侧时,进一步减小了天线的体积,实现无人机的小型化需求。同时,该偶极子天线100的辐射效率高,使得无人机可以通过该偶极子天线100与外界进行精准通信,进而提高了无人机的工作可靠性。
可选的,如图2所示,本实施例的第二振子单元30还可以为平面印刷天线(Planar Printed Antenna,PPA),例如,在PCB板10上设置一PPA,将该PPA作为第二振子单元30。此时第一振子单元20与第二振子单元30共同形成半波偶极子天线,该偶极子天线100的辐射效率高。同时,该偶极子天线100将第二振子单元30直接印刷在PCB板10上,不仅减小了天线的整体尺寸,并且使得天线的结构更加紧凑,进而提高了偶极子天线100的结构稳定性。
可选的,本实施例的第二振子单元30还可以是其他结构的振子单元,例如直接为一根金属线,本实施例对第二振子单元30的具体结构不做限制,只要保证可以与第一振子单元20共同构成半波偶极子天线即可。
由上述可知,本实施例的第一振子单元20和第二振子单元30共同形成半波偶极子天线,而半波偶极子天线的输入阻抗为纯阻抗。此时馈线终端功率反射为零,馈线上没有驻波,天线上的输入阻抗随频率的变化比较稳定,性能较好。
本实施例偶极子天线100的一种可能的使用过程中,地面控制站以电磁波的形式向无人机发送控制信号,该控制信号用于指示飞机在当前的高度继续竖直向上飞行100mm。偶极子天线100上的第一振子单元20和第二振子单元30同时接收该控制信号,并将该控制信号发送给无人机的飞行控制器。飞行控制器根据该控制信号,控制无人机的动力系统,以使无人机在当前的高度基础上继续竖直向上飞行100mm。
本实施例的偶极子天线100可以接收线极化电磁波,也可以接收圆极化电磁波,其接收范围广。
本发明实施例提供的偶极子天线,包括PCB板、第一振子单元和第二振子单元,其中,第一振子单元为螺旋型天线,并且螺旋式地绕设在PCB板的外侧,第一振子单元与第二振子单元共同形成半波偶极子天线。该偶 极子天线尺寸小,方便安装在微型无人机上,可以实现了无人机的小型化需求。同时,第一振子单元和第二振子单元共同形成的偶极子天线,其辐射效率高,使得无人机可以通过该偶极子天线与外界进行精准通信,进而提高了无人机的工作可靠性。
图3为本发明实施例二提供的偶极子天线的一种结构示意图,图4为本发明实施例二提供的偶极子天线的另一种结构示意图。如图3和图4所示,本实施例的第一振子单元20螺旋式地绕设在所述PCB板10的上半部并向所述PCB板10的上端部延伸。
具体的,为了便于阐述,将PCB板10分成了两部分:上半部和下半部。如图3和图4所示,本实施例的第一振子单元20设置在PCB板10的上半部,具体是螺旋式地绕设在PCB板10的上半部并向PCB板10的上端部延伸。这样方便第一振子单元20与PCB板10的连接固定,并方便第一振子单元20接收信号。
可选的,本实施例的第一振子单元20为第一螺旋形金属丝,例如,将铜、铝、金、银等导电金属丝绕制成螺旋状,形成第一振子单元20。
可选的,为了便于获取第一螺旋形金属丝,则本实施例的第一螺旋形金属丝可以为金属弹簧。即本实施例可以直接将现有的金属弹簧作为第一振子单元20,以降低第一振子单元20的制造成本。
继续参照图3和图4所示,为了提高第一振子单元20的稳定性,则本实施例在PCB板10的上半部的侧壁上设置第一凹槽11,所述第一螺旋形金属丝固定在所述第一凹槽11中。
具体的,将第一螺旋形金属丝(即第一振子单元20)螺旋式地绕设在PCB板10的上半部时,第一螺旋形金属丝与PCB板10上半部的侧壁接触。因此,可以在PCB板10上半部的侧壁上设置多个第一凹槽11,在第一螺旋形金属丝绕设在PCB板10的上半部时,将该第一螺旋形金属丝固定在第一凹槽11中,进而实现第一螺旋形金属丝与PCB板10的可靠连接,提高了第一振子的稳定性,防止无人机抖动时,第一振子单元20发生折断,造成偶极子天线100无法使用的问题。
需要说明的是,各第一凹槽11在PCB板10上半部的侧壁上呈螺旋 状分布。例如,PCB板10的第一侧壁上依次设置有3个第一凹槽11,分别为a、b和c。对应的,在PCB板10的第二侧壁上依次设置有3个第一凹槽11,分别为d、e和f。按照a-d-b-e-c-f的顺序,将第一侧壁和第二侧壁上的各第一凹槽11连接,其连接线正好形成螺旋线,且该螺旋线与第一螺旋形金属丝的旋向相同。此时,在制作第一振子单元20时,可以使用一根直立的金属丝,将该金属丝绕设在PCB板10上半部的各第一凹槽11中,形成第一螺旋形金属丝。
可选的,当本实施例的PCB板10为柱体时,例如为圆柱体或圆锥台时,为了进一步提高第一振子单元20的固定稳定性,则可以将PCB板10上半部的整个外壁上设置螺旋状的第一凹槽11,将该第一螺旋形金属丝固定在该第一凹槽11中。
可选的,本实施例可以将第一螺旋形金属丝粘接在第一凹槽11中。优选的,还可以将第一螺旋形金属丝焊接在第一凹槽11中,使得第一螺旋金属丝与PCB板10的连接更加牢固。
由上述可知,本实施例中第一螺旋形金属丝的形状与PCB板10的上半部的形状密切相关,例如,当PCB板10的上半部为长方形时,第一螺旋形金属丝为圆柱形。当PCB板10的上半部为上大下小的梯形时,则第一螺旋形金属丝为上大下小的圆锥台,当PCB板10的上半部为上小下大的梯形时,则第一螺旋形金属丝为上小下大的圆锥台。可选的,当PCB板10的上半部为其他形状的多边形时,对应的第一螺旋形金属丝的正面投影与PCB板10的上半部的投影形状相同。
即本实施例对PCB板10上半部的形状和第一螺旋形金属丝的具体形状不做限制,具体根据实际需要进行确定。
可选的,本实施例还可以在第一振子单元20的外侧罩设一个顶盖,该顶盖可以保护第一振子单元20。
继续参照图3和图4所示,本实施例的第一振子单元20与第二振子单元30通过同轴线40馈电。即第一振子单元20的馈电端21和第二振子单元30的馈电端31均与同轴线40连接,通过同轴线40将接收到的信号传输给无人机上的收发控制单元,或者收发控制单元将信号通过同轴线40 传输到第一振子单元20和第二振子单元30上,以使第一振子单元20和第二振子单元30将该信号发射出去。
本实施例第一振子单元20和第二振子单元30通过同轴线40平衡馈电,其连接方便,制造简单,易于匹配,同时寄生辐射比减小,进而降低了天线的制造成本,进一步提高了天线的辐射效率。
可选的,本实施例的同轴线可以为银锡Cable线。
本实施例对第一振子单元20与同轴线40以及第二振子单元30与同轴线40之间的连接方式不做限制,即第一振子单元20和第二振子单元30可以与同轴线40直接连接,也可以通过其他的导电连接件连接。
在一种可能的连接方式中,第一振子单元20的馈电端21和第二振子单元30的馈电端31分别与同轴线40焊接连接。
在另一种可能的连接方式中,如图3和图4所示,在PCB板10上设置第一焊盘12和第二焊盘13,第一振子单元20的馈电端21与同轴线40均焊接在第一焊盘12上,以使第一振子单元20通过第一焊盘12与同轴线40连接。同理,第二振子单元30的馈电端31和同轴线40均焊接在第二焊盘13上,以使第二振子单元30通过第二焊盘13与同轴线40连接。
其中,第一焊盘12和第二焊盘13可以位于PCB板10的不同面上,例如,第一焊盘12位于PCB板10的正面,第二焊盘13位于PCB板10的背面。
优选的,为了方便第一振子单元20和第二振子单元30与同轴线40的连接,则第一焊盘12和第二焊盘13位于PCB板10的同一面上。
本实施例中,第一振子单元20和第二振子单元30与同轴线40的具体连接方式可以是,第一振子单元20的馈电端21与所述同轴线40的内导体41连接,第二振子单元30的馈电端31与同轴线40的外导体42连接。
可选的,第一振子单元20和第二振子单元30与同轴线40的具体连接方式还可以是,第一振子单元20的馈电端21与同轴线40的外导体42连接,第二振子单元30的馈电端31与同轴线40的内导体41连接。
本发明实施例提供的偶极子天线,通过将第一振子单元螺旋式地绕设在PCB板的上半部并向PCB板的上端部延伸,方便第一振子单元与PCB 板的固定连接。进一步的,为了提高第一振子单元的固定性,则在PCB板的上半部的侧壁上设置第一凹槽,将第一螺旋形金属丝固定在该第一凹槽,进而提高了第一振子单元与PCB板的连接牢固性,从而提高了偶极子天线的工作稳定性。同时,本实施例的第一振子单元和第二振子单元通过同轴线馈电,其连接方便,制造简单,易于匹配,同时寄生辐射比减小,进而降低了天线的制造成本,进一步提高了天线的辐射效率。
图5为本发明实施例三提供的偶极子天线中第二振子单元的主视图,图6为本发明实施例三提供的偶极子天线中第二振子单元的俯视图,图7为本发明实施例三提供的偶极子天线中第二振子单元的左视图,图8为本发明实施例三提供的偶极子天线中第二振子单元的立体图。
如图5至图8所示,本实施例的第二振子单元30螺旋式地绕设在PCB板10的外侧。例如,当第一振子单元20绕设在PCB板10的上半部时,该第二振子单元30可以绕设在PCB板10的下端部,当第一振子单元20绕设在PCB板10的下半部时,该第二振子单元30可以绕设在PCB板10的上端部。
优选的,如图5至图8所示,本实施例的第二振子单元30螺旋式地绕设在PCB板10的下半部并向PCB板10的下端部延伸。具体的,该第二振子单元30包括馈电端和自由端,其中第二振子单元30的馈电端31固定在PCB板10的中部,第二振子单元30的自由端从PCB板10的下半部开始,螺旋式地向PCB板10的下端部延伸。此时,第一振子单元20绕设在PCB板10的上半部,并向PCB板10的上端部延伸。
如图5至图8所示,本实施例的第一振子单元20与第二振子单元30关于PCB板10的中部对称,且第一振子单元20的馈电端21和第二振子单元30的馈电端31均位于PCB板10的中部,实现第一振子单元20和第二振子单元30的平衡馈电。而平衡馈电的偶极子天线100的3D方向图为一个苹果型,在水平面的不圆度好,进而提高了偶极子天线100在水平面的全向辐射性能。
可选的,本实施例的第二振子单元30为第二螺旋形金属丝,例如,将铜、铝、金、银等导电金属丝绕制成螺旋状,形成第二振子单元30。
可选的,为了便于获取第二螺旋形金属丝,则本实施例的第二螺旋形金属丝可以为金属弹簧。即本实施例可以直接将现有的金属弹簧作为第二振子单元30,以降低第二振子单元30的制造成本。
继续参照图5和图8所示,为了提高第二振子单元30的稳定性,则本实施例在PCB板10的下半部的侧壁上设置有第二凹槽14,所述第二螺旋形金属丝固定在所述第二凹槽14中。
具体的,将第二螺旋形金属丝螺旋式地绕设在PCB板10的下半部时,第二螺旋形金属丝与PCB板10上半部的侧壁接触。因此,可以在PCB板10下半部的侧壁上设置多个第二凹槽14,在第二螺旋形金属丝绕设在PCB板10上半部时,将该第二螺旋形金属丝固定在第二凹槽14中,进而实现第二螺旋形金属丝与PCB板10的可靠连接,进而提高了第二振子单元30的稳定性。
需要说明的是,各第二凹槽14在PCB板10下半部的侧壁上呈螺旋状分布。其具体分布过程可以参照上述第一凹槽11的描述,本实施例在此不再赘述。
本实施例在制作第二振子单元30时,可以使用一根直立的金属丝,将该金属丝绕设在PCB板10下半部的第二凹槽14中,形成第二螺旋形金属丝。
可选的,当本实施例的PCB板10为柱体时,例如为圆柱体或圆锥台时,为了进一步提高第二振子单元30的稳定性,则可以在PCB板10下半部的整个外壁上设置螺旋状的第二凹槽14,将该第二螺旋形金属丝固定在该第二凹槽14中。
可选的,本实施例可以将第二螺旋形金属丝粘接在第二凹槽14中。优选的,还可以将第二螺旋形金属丝焊接在第二凹槽14中,使得第二螺旋金属丝与PCB板10的连接更加牢固。
由上述可知,本实施例中第二螺旋形金属丝的形状与PCB板10的上半部的形状密切相关,例如,当PCB板10的下半部为长方形时,第二螺旋形金属丝为圆柱形。当PCB板10的下半部为上大下小的梯形时,则第二螺旋形金属丝为上大下小的圆锥台,当PCB板10的下半部为上小下大的梯形时,则第二螺旋形金属丝为上小下大的圆锥台。可选的,当PCB 板10的下半部为其他形状的多边形时,对应的第二螺旋形金属丝的正面投影与PCB板10的下半部的投影形状相同。
即本实施例对PCB板10下半部的形状和第二螺旋形金属丝的具体形状不做限制,具体根据实际需要进行确定。
在本实施例的一种可能的实现方式中,如图5至图8所示,本实施例的PCB板10为梯形PCB板,所述第一振子单元20为第一圆锥形螺旋金属丝,所述第二螺旋形金属丝(即第二振子单元30)为第二圆锥形螺旋金属丝,其中,所述第一圆锥形螺旋金属丝绕设在所述PCB板10上半部,所述第二圆锥形螺旋金属丝绕设在所述PCB板10下半部。
此时,如5至图8所示,第一振子单元20和第二振子单元30共同形成的偶极子天线100呈圆锥台状。
可选的,当本实施例的PCB板10可以为上大下小的梯形板,即PCB板10上半部的宽度大于下半部的宽度时,则第一振子单元20和第二振子单元30共同形成的偶极子天线100为上大下小的圆锥台。此时,第一圆锥形螺旋金属丝(即第一振子单元20)的最大螺旋直径大于所述第二圆锥形螺旋金属丝(即第二振子单元30)的最小螺旋直径。
可选的,如图5至图8所示,当本实施例的PCB板10为上小下大的梯形板,即PCB板10上半部的宽度小于下半部的宽度时,则第一振子单元20和第二振子单元30共同形成的偶极子天线100为上小下大的圆锥台。此时,第一圆锥形螺旋金属丝(即第一振子单元20)的最大螺旋直径小于所述第二圆锥形螺旋金属丝(即第二振子单元30)的最小螺旋直径。
继续参照图5至图8所示,本实施例中第一圆锥形螺旋金属丝和第二圆锥形螺旋金属丝位于同一个圆锥面上,这样不仅增加了偶极子天线100的美观性,也使得偶极子天线100的结构更加稳定。
可选的,在本实施例中,为了方便设置第一振子单元20和第二振子单元30,则如图5至图8所示,本实施例在PCB板10的上半部与下半部之间设置有第一定位部15和第二定位部16,其中,
第一振子单元20从第一定位部15开始螺旋式地向PCB板10的上端部延伸。具体是,第一振子单元20的馈电端21固定在该第一定位部15 上,第一振子单元20的自由端从该第一定位部15开始,沿着PCB板10的上半部螺旋式地向PCB板10的上端部延伸。
第二振子单元30从第二定位部16开始螺旋式地向PCB板10的下端部延伸。具体是,第二振子单元30的馈电端31固定在该第二定位部16上,第二振子单元30的自由端从该第二定位部16开始,沿着PCB板10的下半部螺旋式地向PCB板10的下端部延伸。
可选的,本实施例的第一定位部15和第二定位部16可以设置在PCB板10的不同面上。例如,第一定位部15设置在PCB板10的正面,第二定位部16设置在PCB板10的背面。
优选的,为了便于与同轴线连接,则第一定位部15与第二定位部16设置在PCB板10的同一面上,例如,均设置在PCB板10的正面,或均设置在PCB板10的背面。
可选的,如图5所示,为了进一步方便第一振子单元20的馈电端21与同轴线40的连接,以及第二振子单元30的馈电端31与同轴线40的连接,则可以将第一焊盘12设置在第一定位部15上,将第二焊盘13设置在第二定位部16上。
在一种示例中,如图5和图8所示,本实施例的圆锥台状的偶极子天线100的高度为10mm,偶极子天线100的上锥台直径为4mm,偶极子天线100的下锥台的直径为8mm。该偶极子天线100的工作频段为2.4Ghz至2.5Ghz,偶极子天线100的高度仅为工作频段的十二分之一。
图9为本实施例三所示的偶极子天线的测试效率图,图10为本实施例三所示的偶极子天线的测试方向图。对本实施例的偶极子天线100进行测试,如图9所示,偶极子天线100在2.4GHz~2.5GHz工作频段内效率达到50%以上,增益大于1dBi。如图10所示,本实施例的偶极子天线100在水平面的辐射方向图不圆度小于6dB。
本发明实施例提供的偶极子天线,通过将第二振子单元螺旋式地绕设在所述PCB板的外侧,使得螺旋型的第一振子单元和螺旋型的第二振子单元共同形成的偶极子天线的辐射效率高,在水平面的辐射方向图不圆度好,且结构简单,易于加工制造,进而降低了偶极子天线的制造成本。
图11为本发明实施例四提供的偶极子天线中第二振子单元的主视图,图12为本发明实施例四提供的偶极子天线中第二振子单元的俯视图,图13为本发明实施例四提供的偶极子天线中第二振子单元的左视图,图14为本发明实施例四提供的偶极子天线中第二振子单元的立体图。
本实施例的第二振子单元30为设置在PCB板10上的平面印刷天线PPA。具体的,如图11至图14所示,本实施例的第一振子单元20为螺旋型天线,且螺旋形地绕设在PCB板10上,第二振子单元30为设置在PCB板10上的PPA。此时,由第一振子单元20和第二振子单元30共同形成的偶极子天线100,其体积小,重量轻,进一步满足无人机的小型化需要。
可选的,本实施例中的第二振子单元30与第一振子单元20的位置不干涉,因此,该第二振子单元30可以设置在PCB板10的任意位置,例如,可以设置在PCB板10的上半部,或设置在PCB板10的下半部,也可以设置在PCB板10的中部,进而方便第二振子单元30的布置。
可选的,为了便于后续连线的方便,如图11至图14所示,当第一振子单元20绕设在PCB板10的上端部时,本实施例的第二振子单元30可以设置在PCB板10的下端部。此时,第一振子单元20与第二振子单元30在PCB板10上错开设置,方便后续连线。
可选的,本实施例的第二振子单元30可以为T形、伞形等形状。优选的,如图11所示,本实施例的第二振子单元30为“L”形。
继续参照图11至图14所示,本实施例为了固定第一振子单元20,本实施例在PCB板10的下半部与上半部之间设置有向外延伸的挡位部17,第一振子单元20的底部抵接在挡位部17上,第一振子单元20的顶部螺旋式地向PCB板10的上端部延伸。
其中,本实施例中第一振子单元20的顶部为第一振子单元20的自由端所在的位置,第一振子单元20的底部为第一振子单元20的馈电端21所在的位置。
本实施例在PCB板10的上半部与下半部之间设置向外延伸的挡位部17,以挡位部17为分界线,第一振子单元20设置在挡位部17的上方,具体是第一振子单元20的底部抵接在该挡位部17上,第一振子单元20的顶部螺旋式地向PCB板10的上端部延伸。第二振子单元30设置在挡 位部17的上方,具体是设置在PCB板10的下半部上。
此时,为了方便第一振子单元20与同轴线40以及和第二振子单元30与同轴线40的连接,则可以将第一焊盘12和第二焊盘13均设置在PCB板10的下半部。
可选的,还可以将第二焊盘13设置在第二振子单元30上。
在一种示例中,如图11至图14所示,本实施例的偶极子天线100的高度为12mm,第一振子单元20形成的螺旋直径为8mm。该偶极子天线100的工作频段为2.4Ghz至2.5Ghz,偶极子天线100的高度仅为工作频段的十分之一。
图15为本实施例四所示的偶极子天线的测试效率图,图16为本实施例四所示的偶极子天线的测试增益图,图17为本实施例四所示的偶极子天线的测试方向图。对本实施例的偶极子天线100进行测试,如图15所示,偶极子天线100在2.4GHz~2.5GHz工作频段内效率达到55%以上,最大可以达到70%。如图16所示,本实施例的偶极子天线100在工作频段内的增益介于1.5dBi与2.8dBi之间,可以满足微型无人机的使用需求。如图17所示,本实施例的偶极子天线100在水平面的辐射方向图不圆度小于6dB。
本发明实施例提供的偶极子天线,第二振子单元为设置在PCB板上的平面印刷天线,进而使得第一振子单元与第二振子单元共同形成的偶极子天线的体积小,重量轻,进一步满足无人机的小型化需要。同时,本实施例的偶极子天线在水平面的辐射方向图不圆度好,提高了无人机与外界的通信精准性。
图18为本发明实施例提供的无人机的一种结构示意,图19为本发明实施例提供的无人机的另一种结构示意。如图18和图19所示,本实施例的无人机包括:收发控制单元200和上述实施例所述的偶极子天线100。
其中,偶极子天线100与收发控制单元200电连接,在收发控制单元200的控制下与地面控制站进行通信。
例如,当地面控制站需要控制无人机时,则地面控制站以电磁波的形式向无人机发送控制信号,偶极子天线100在收发控制单元200的控制下, 接收地面控制站发送的控制信号。或者,无人机通过该偶极子天线100向地面控制站发送回应信号。
可选的,本实施例的无人机除了包括收发控制单元200和偶极子天线100天线外,还包括壳体、动力系统、传动系统和控制系统等。
进一步的,如图19所示,本实施例的无人机还包括飞行控制器300,该飞行控制器300与收发控制单元200连接。
此时,收发控制单元200,用于控制偶极子天线100接收地面控制站发送的控制信号,并将控制信号发送给飞行控制器300。
飞行控制器300,用于根据控制信号来控制无人机。
例如,地面控制站需要无人机在2min中内从当前的B点到达A点时,则将该指令信息携带在控制信号中发送给无人机。无人机上的收发控制单元200控制偶极子天线100接收该控制信号,并将该控制信号发送给飞行控制器300。飞行控制器300接收到该控制信号后,解析该控制信号,获得无人机在2min中内从当前的B点到达A点的指令信息。则飞行控制器300根据该解析的指令信息控制无人机的动力系统进行相应的动作,以使无人机在2min中内到达A点。
可选的,当本实施例的无人机为航拍无人机时,如图19所示,该无人机还包括摄像机400。其中,摄像机400与飞行控制器300连接,用于在飞行控制器300的控制下进行航拍,形成图像信号,并将图像信号发送给飞行控制器300。此时,飞行控制器300用于控制收发控制单元200,以使控制收发控制单元200通过偶极子天线100将该图像信号发送给地面控制站,进而实现图像的实传。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种偶极子天线,其特征在于,包括:PCB板、第一振子单元和第二振子单元,所述第一振子单元为螺旋型天线,并且螺旋式地绕设在所述PCB板的外侧,所述第一振子单元与所述第二振子单元共同形成半波偶极子天线。
  2. 根据权利要求1所述的偶极子天线,其特征在于,所述第一振子单元螺旋式地绕设在所述PCB板的上半部并向所述PCB板的上端部延伸。
  3. 根据权利要求2所述的偶极子天线,其特征在于,所述第一振子单元为第一螺旋形金属丝。
  4. 根据权利要求3所述的偶极子天线,其特征在于,所述PCB板的上半部的侧壁上设置有第一凹槽,所述第一螺旋形金属丝固定在所述第一凹槽中。
  5. 根据权利要求4所述的偶极子天线,其特征在于,所述第一螺旋形金属丝焊接在所述第一凹槽中。
  6. 根据权利要求3-5任一项所述的偶极子天线,其特征在于,所述第一螺旋形金属丝为金属弹簧。
  7. 根据权利要求1-6任一项所述的偶极子天线,其特征在于,所述第一振子单元与所述第二振子单元通过同轴线馈电。
  8. 根据权利要求7所述的偶极子天线,其特征在于,所述第一振子单元的馈电端和所述第二振子单元的馈电端分别与所述同轴线焊接连接。
  9. 根据权利要求7或8所述的偶极子天线,其特征在于,所述PCB板包括第一焊盘和第二焊盘,其中
    所述第一振子单元的馈电端与所述同轴线均焊接在所述第一焊盘上,以使所述第一振子单元通过所述第一焊盘与所述同轴线连接;
    所述第二振子单元的馈电端和所述同轴线均焊接在所述第二焊盘上,以使所述第二振子单元通过所述第二焊盘与所述同轴线连接。
  10. 根据权利要求9所述的偶极子天线,其特征在于,所述第一振子单元的馈电端与所述同轴线的内导体连接,所述第二振子单元的馈电端与所述同轴线的外导体连接。
  11. 根据权利要求9所述的偶极子天线,其特征在于,所述第一振子 单元的馈电端与所述同轴线的外导体连接,所述第二振子单元的馈电端与所述同轴线的内导体连接。
  12. 根据权利要求9所述的偶极子天线,其特征在于,所述第一焊盘和所述第二焊盘位于所述PCB板的同一面上。
  13. 根据权利要求9-12任一项所述的偶极子天线,其特征在于,所述第二振子单元螺旋式地绕设在所述PCB板的外侧。
  14. 根据权利要求13所述的偶极子天线,其特征在于,所述第二振子单元螺旋式地绕设在所述PCB板的下半部并向所述PCB板的下端部延伸。
  15. 根据权利要求14所述的偶极子天线,其特征在于,所述第二振子单元为第二螺旋形金属丝。
  16. 根据权利要求15所述的偶极子天线,其特征在于,所述PCB板的下半部的侧壁上设置有第二凹槽,所述第二螺旋形金属丝固定在所述第二凹槽中。
  17. 根据权利要求16所述的偶极子天线,其特征在于,所述第二螺旋形金属丝焊接在所述第二凹槽中。
  18. 根据权利要求15-17任一项所述的偶极子天线,其特征在于,所述第二螺旋形金属丝为金属弹簧。
  19. 根据权利要求18所述的偶极子天线,其特征在于,所述PCB板为梯形PCB板,所述第一振子单元为第一圆锥形螺旋金属丝,所述第二振子单元为第二圆锥形螺旋金属丝,其中,
    所述第一圆锥形螺旋金属丝绕设在所述PCB板上半部,所述第二圆锥形螺旋金属丝绕设在所述PCB板下半部。
  20. 根据权利要求19所述的偶极子天线,其特征在于,所述PCB板上半部的宽度小于下半部的宽度,所述第一圆锥形螺旋金属丝的最大螺旋直径小于所述第二圆锥形螺旋金属丝的最小螺旋直径。
  21. 根据权利要求20所述的偶极子天线,其特征在于,所述第一圆锥形螺旋金属丝和所述第二圆锥形螺旋金属丝位于同一个圆锥面上。
  22. 根据权利要求13-21任一项所述的偶极子天线,其特征在于,所述PCB板的上半部与下半部之间设置有第一定位部和第二定位部,其中,
    所述第一振子单元从所述第一定位部开始螺旋式地向所述PCB板的上端部延伸;
    所述第二振子单元从所述第二定位部开始螺旋式地向所述PCB板的下端部延伸。
  23. 根据权利要求22所述的偶极子天线,其特征在于,所述第一焊盘设置在所述第一定位部上,所述第二焊盘设置在所述第二定位部上。
  24. 根据权利要求9-12任一项所述的偶极子天线,其特征在于,所述第二振子单元为设置在所述PCB板上的平面印刷天线。
  25. 根据权利要求24所述的偶极子天线,其特征在于,所述第二振子单元设置在所述PCB板的下半部。
  26. 根据权利要求25所述的偶极子天线,其特征在于,所述PCB板的下半部与上半部之间设置有向外延伸的挡位部,所述第一振子单元的底部抵接在所述挡位部上,所述第一振子单元的顶部螺旋式地向所述PCB板的上端部延伸。
  27. 根据权利要求24-26任一项所述的偶极子天线,其特征在于,所述第二振子单元为“L”形。
  28. 根据权利要求27所述的偶极子天线,其特征在于,所述第一焊盘和所述第二焊盘均设置在所述PCB板的下半部。
  29. 根据权利要求28所述的偶极子天线,其特征在于,所述第二振子单元、所述第一焊盘和所述第二焊盘均位于所述PCB板的同一面上。
  30. 根据权利要求29所述的偶极子天线,其特征在于,所述第二焊盘设置在所述第二振子单元上。
  31. 一种无人机,其特征在于,包括:收发控制单元和权利要求1-30任一项所述偶极子天线;
    所述偶极子天线,与所述收发控制单元电连接,用于在所述收发控制单元的控制下与地面控制站进行通信。
  32. 根据权利要求31所述的无人机,其特征在于,还包括飞行控制器,其中,
    所述收发控制单元,用于控制所述偶极子天线接收所述地面控制站发送的控制信号,并将所述控制信号发送给所述飞行控制器;
    所述飞行控制器,与所述收发控制单元电连接,用于根据所述控制信号来控制所述无人机。
  33. 根据权利要求32所述的无人机,其特征在于,还包括摄像机,
    所述摄像机,与所述飞行控制器连接,用于在所述飞行控制器的控制下进行航拍,形成图像信号;
    所述飞行控制器,具体用于控制所述收发控制单元通过所述偶极子天线将所述图像信号发送给所述地面控制站。
PCT/CN2018/071631 2018-01-05 2018-01-05 偶极子天线及无人机 WO2019134134A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880031276.2A CN110612637B (zh) 2018-01-05 2018-01-05 偶极子天线及无人机
PCT/CN2018/071631 WO2019134134A1 (zh) 2018-01-05 2018-01-05 偶极子天线及无人机
CN202210261604.6A CN114628907A (zh) 2018-01-05 2018-01-05 偶极子天线及无人机
US16/919,708 US20200335871A1 (en) 2018-01-05 2020-07-02 Dipole antenna and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071631 WO2019134134A1 (zh) 2018-01-05 2018-01-05 偶极子天线及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/919,708 Continuation US20200335871A1 (en) 2018-01-05 2020-07-02 Dipole antenna and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019134134A1 true WO2019134134A1 (zh) 2019-07-11

Family

ID=67144027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071631 WO2019134134A1 (zh) 2018-01-05 2018-01-05 偶极子天线及无人机

Country Status (3)

Country Link
US (1) US20200335871A1 (zh)
CN (2) CN114628907A (zh)
WO (1) WO2019134134A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164884B (zh) * 2020-08-21 2022-12-27 西安空间无线电技术研究所 一种多自由度幅相一致的星载螺旋阵列天线馈电探针
CN113131202B (zh) * 2021-04-27 2024-02-09 深圳迈睿智能科技有限公司 半波回折式定向微波探测天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858220A (en) * 1973-11-12 1974-12-31 S Arnow Tunable spiral dipole antenna
US20020190906A1 (en) * 2001-06-15 2002-12-19 Korea Institute Of Science And Technology Ceramic chip antenna
CN1969425A (zh) * 2004-06-11 2007-05-23 松下电器产业株式会社 便携式无线终端
CN206364196U (zh) * 2016-01-08 2017-07-28 深圳市脉冲星通信科技有限公司 无人机天线及无人机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100922A (ja) * 2000-09-26 2002-04-05 Kenwood Corp ヘリカルアンテナ及びアンテナコイルの基板への取り付け方法
CN2519424Y (zh) * 2001-09-28 2002-10-30 李尚贤 无线遥控系统的螺旋天线
CN101567486A (zh) * 2008-04-23 2009-10-28 富士康(昆山)电脑接插件有限公司 复合天线
US8115690B2 (en) * 2009-01-28 2012-02-14 Motorola Solutions, Inc. Coupled multiband antenna
US8466660B2 (en) * 2009-11-06 2013-06-18 Toyota Motor Engg. & Mfg. North America, Inc. Wireless energy transfer antennas and energy charging systems
CN201663230U (zh) * 2010-04-09 2010-12-01 中兴通讯股份有限公司 天线和终端
WO2012154140A1 (en) * 2011-05-06 2012-11-15 Temel Engin Tuncer Nonsymmetric wideband dipole antenna
CN204991964U (zh) * 2015-05-21 2016-01-20 嘉善金昌电子有限公司 馈电端短路环匹配的偶极子螺旋天线
CN205406715U (zh) * 2016-03-04 2016-07-27 福建三元达网络技术有限公司 一种具备宽频特性的宽带天线
CN107223292B (zh) * 2016-09-26 2019-04-23 深圳市大疆创新科技有限公司 天线及无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858220A (en) * 1973-11-12 1974-12-31 S Arnow Tunable spiral dipole antenna
US20020190906A1 (en) * 2001-06-15 2002-12-19 Korea Institute Of Science And Technology Ceramic chip antenna
CN1969425A (zh) * 2004-06-11 2007-05-23 松下电器产业株式会社 便携式无线终端
CN206364196U (zh) * 2016-01-08 2017-07-28 深圳市脉冲星通信科技有限公司 无人机天线及无人机

Also Published As

Publication number Publication date
CN110612637A (zh) 2019-12-24
CN114628907A (zh) 2022-06-14
US20200335871A1 (en) 2020-10-22
CN110612637B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US6204825B1 (en) Hybrid printed circuit board shield and antenna
CN105576353B (zh) 一种螺旋天线
EP2752942A1 (en) Omnidirectional antenna
US9240631B2 (en) Reduced ground plane shorted-patch hemispherical omni antenna
CN102800927A (zh) 通过多模行波(tw)的微型化超宽带多功能天线
US7173566B2 (en) Low-sidelobe dual-band and broadband flat endfire antenna
US5444452A (en) Dual frequency antenna
CN110313104B (zh) 螺旋天线及通信设备
CA2764005A1 (en) A compact ultra wide band antenna for transmission and reception of radio waves
WO2020038288A1 (zh) 天线及无人飞行器
WO2020038287A1 (zh) 天线及无人飞行器
US11095027B2 (en) Compressed closed circuit circularly polarized omni-directional antenna
US20200335871A1 (en) Dipole antenna and unmanned aerial vehicle
WO2020062448A1 (zh) 螺旋天线
JP2005269630A (ja) ケーブルアンテナ構造
JP4980327B2 (ja) 2周波共用アンテナ装置
JP2003152427A (ja) 密巻き小型ヘリカルアンテナ
TW201212387A (en) A multi-loop antenna system and an electronic device having the same
JP4287492B1 (ja) アンテナ装置
CN210111029U (zh) 一种双频天线及飞行器
US20210104816A1 (en) Combination driven and parasitic element circularly polarized antenna
CN206388848U (zh) 一种组合天线
US11442130B2 (en) Rotationally phased directional antenna
CN106961006A (zh) 一种双频双模小型化手持机天线
WO2019148890A1 (zh) 天线及无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898354

Country of ref document: EP

Kind code of ref document: A1