WO2019132431A1 - 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드 - Google Patents

이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드 Download PDF

Info

Publication number
WO2019132431A1
WO2019132431A1 PCT/KR2018/016397 KR2018016397W WO2019132431A1 WO 2019132431 A1 WO2019132431 A1 WO 2019132431A1 KR 2018016397 W KR2018016397 W KR 2018016397W WO 2019132431 A1 WO2019132431 A1 WO 2019132431A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
random number
master
slave
boards
Prior art date
Application number
PCT/KR2018/016397
Other languages
English (en)
French (fr)
Inventor
권효철
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Publication of WO2019132431A1 publication Critical patent/WO2019132431A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • G06F11/2023Failover techniques
    • G06F11/2033Failover techniques switching over of hardware resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes

Definitions

  • the present invention relates to a method of setting a redundant board, and more particularly, to a method and board for setting a master / slave board among redundant boards at initial boot.
  • the controller In the case of a controller that normally controls an important facility, the controller is implemented in a redundant manner so that continuous control can be achieved even when a sudden failure occurs.
  • a board that performs important functions such as a calculation board and a control board in a controller is also implemented in a redundant manner.
  • Korean Unexamined Patent Application Publication No. 2000-0055954 and Korean Patent Registration No. 0320149 disclose that when a failure occurs during operation of a master board in a redundant board, the slave board detects a failure through communication and operates as a master board by transferring itself to the master Technology.
  • this prior art document does not describe a technique for setting master and slave boards at initial booting of a redundant board as a description of master / slave board switching during operation of a redundant board.
  • the register value of the counter board is read between the redundant boards to determine whether to operate as a master, or the information of an external dip switch is read, .
  • the present invention has been proposed in order to solve the above problems of the prior art, and it is an object of the present invention to provide a master / slave setting method of a redundant board in which a master / slave board is set by using information stored in a dual- And to provide the board.
  • Another object of the present invention is to provide a master / slave setting method of a redundant board and a board for setting a master / slave board through a simple communication in a redundant board.
  • a master / slave setup method in a redundant board includes: an input step of simultaneously inputting power by initial booting to first and second boards configured as redundant; Generating a random number for each of the first and second boards when the power is input; A transmitting and receiving step of transmitting the generated random number to the counter board and receiving a random number of the counter board from the counter board; The first and second boards compare the transmitted and received two random numbers and set themselves as a master board or a slave board.
  • the first and second boards if the random number generated by the first and second boards is greater than the random number of the counterpart board, the first and second boards set themselves as a master board, and if they are smaller, set themselves as a slave board.
  • the first and second boards set themselves as a master board if the generated random number is smaller than the random number of the counterpart board, and set themselves as a slave board if they are larger.
  • the random number has a digital value composed of 1 and 0, and the communication unit alternately transmits and receives the digital value of the random number by 1 bit alternately with the counter board when transmitting and receiving 1 bit.
  • the control unit when transmitting and receiving the digital values of the two random numbers one bit at a time, compares the transmitted and received random numbers one bit at a time, and sets the master and slave boards according to the following conditions.
  • each of the redundant boards includes a random number generator for generating a random number when a power source for initial booting is input; A communication unit for transmitting the random number generated by the random number generation unit to the counter board and receiving a random number of the counter board from the counter board; And a controller for comparing the transmitted and received two random numbers through the communication unit and setting itself as a master board or a slave board.
  • the communication unit transmits its random number to the counter board every clock of a predetermined cycle.
  • the controller sets the board that generated the larger random number as a master board as a result of comparison of the two random numbers.
  • the controller sets the board that generated the smaller random number as a result of the comparison of the two random numbers to the master board.
  • the random number has a digital value composed of 1 and 0, and the communication unit alternately transmits and receives the digital value of the random number alternately with the counter board one bit at a time when transmitting and receiving one bit at a time.
  • the control unit when transmitting and receiving the digital values of the two random numbers one bit at a time, compares the transmitted and received random numbers one bit at a time, and sets the master and slave boards according to the following conditions.
  • the master / slave board is set by using the random numbers generated in the redundant boards in the controller, it is possible to perform simple and quick setting.
  • the same software can be installed on the redundant board and the master / slave board can be set without additional configuration, the productivity of the product is increased and the possibility of malfunction is reduced.
  • FIG. 1 is an illustration of an apparatus to which a redundant board is applied according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of a redundant board according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a digital value transfer process of a random number between boards according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a master / slave setting method of a redundant board according to an embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements.
  • FIG. 1 is an illustration of an apparatus to which a redundant board is applied according to an embodiment of the present invention
  • an apparatus 10 to which a redundant board 20 according to an embodiment of the present invention is applied includes a first board 21 and a second board 22 configured in a redundant manner. Since the first board 21 and the second board 20 are configured in redundancy, the first board 21 and the second board 20 are composed of the same configuration (hardware) and the same function (software and program).
  • a device 10 may be configured in a variety of ways. For example, a control device for controlling a facility, a device, and the like.
  • the first board 21 and the second board 22 are boards provided in a general controller, and collectively refer to boards that perform various functions such as a calculation board and a control board .
  • such boards 21 and 22 are used as a concept including a device such as a controller or a control module.
  • a board doubled by two boards 21 and 22 is shown.
  • the present invention is not limited to this embodiment, and the board may be composed of two or more boards. That is, the setting method of the master / slave board according to the present invention can be similarly applied to the multiplexing board. For the sake of convenience, the present invention will be described with reference to a redundant board.
  • FIG. 2 is a configuration diagram of a redundant board according to an embodiment of the present invention. As described above, the duplicated boards 21 and 22 have the same configuration and function, respectively. Therefore, only the first board 21 will be described below.
  • the first board 21 includes a random number generator 211, a communication unit 212, and a controller 213.
  • the random number generator 211 generates a random number when a power source for initial booting of the board 21 is input.
  • the power source may be a start-up voltage supplied from a power supply (e.g., SMPS) when the board 21 is powered off, specifically, when the apparatus including the board 21 is turned off, .
  • SMPS power supply
  • the board 21 is also supplied with power.
  • the random number generating unit 211 generates random water immediately.
  • the communication unit 212 transmits the generated random number to the counter board and receives the counter number of the counter board from the counter board. That is, the first board 21 transmits the generated random number to the second board 22, and conversely receives the random number generated from the second board 22 from the second board 22. The transmission and reception of such a random number is also applied to the second board. That is, the second board 22 transmits a random number generated by the second board 22 to the first board 21, and conversely receives a random number generated from the first board 21 from the first board 21.
  • the communication unit 212 alternately exchanges digital values with the counter board one bit at a time. For example, assuming that the first and second boards 21 and 22 transmit and receive a random number 5, that is, a digital value 1001, the first board 21 transmits the first bit 1 and the second board 22 The first board 21 transmits the next digital value 0, and the second board 22 transmits its own second digital value 0 to the first board 21. [ In this manner, the digital values of 1 bit are alternately transmitted alternately in sequence.
  • the communication unit 212 transmits the digital value through the differential communication line 30 connected between the first and second boards 21 and 22.
  • the differential communication line 30 supports the first board 21 and the second board 22 to sequentially transmit digital values one bit at a time.
  • the control unit 213 compares the two random numbers transmitted and received through the communication unit 212 to set a master / slave board. As a result of the comparison, a board having a larger random number among the two random numbers is set as a master board, Board. Of course, on the other hand, you can set a larger random number to a slave pod, and a smaller random number to a master board.
  • the setting of the master / slave board is for setting a board having a larger or smaller random number among the duplicated first and second boards 21 and 22 as a master board.
  • the duplicated boards 21 and 22 are substantially the same board. That is, the same board having the same configuration and function and operating substantially the same. However, even if the two boards 21 and 22 are the same, the random number generation in the random number generator 211 is less likely to occur. In particular, the probability of generating the same number of random numbers when generating random numbers of 32 bits or more is close to zero.
  • a power source is applied to two first and second boards 21 and 22, and a random number is generated, thereby setting a board having a larger or smaller random number as a master board.
  • the control unit 213 compares the digital values of two random numbers to set the master / slave board according to the following conditions.
  • the controller 213 temporarily holds the setting of the master / slave board and generates a random number again do. Similarly, for the random number generated again, the next one bit of the digital value of the random number is transmitted / received to / from each other through the communication unit 212, and the master board and the slave board are set in the same manner in accordance with the above conditions. This process is sequentially performed on the digital values one bit at a time until the random number of one of the two boards 21 and 22 becomes larger.
  • FIG. 3 is a diagram for explaining a process of transmitting digital values of random numbers between boards according to an embodiment of the present invention.
  • the digital value of the random number generated in the first board 21 is assumed to be 101
  • the digital value of the random number generated in the second board 22 is assumed to be 100.
  • the first board 21 transmits the first bit 1 of its own digital value 101 to the first communication line 31 of the differential communication line 30 to the second board 22 as shown in (a)
  • the second board 22 transmits the first bit 1 of its own digital value 100 to the second board 21 via the second communication line 32. Accordingly, each control unit of the first and second boards 21 and 22 suspends the setting of the master board since the digital value 1 of the first and second boards 21 and 22 is the same as the digital value 1 of the counter board.
  • each control unit holds the setting of the master board because the two digital values transmitted and received are the same.
  • the third bit of the next bit is transmitted and received again as shown in (c).
  • the first board 21 transmits 1 and the second bit 22 transmits 0.
  • the control unit of the first board 21 sets itself to the master board because its digital value is 1 and the digital value of the second board 22 as the counter board is 0.
  • the control unit of the second board 22 sets its own digital value to 0, and the digital value of the first board 21 as the counter board is 1, so it sets itself as a slave board.
  • the configuration of the master and slave boards can be reversed. That is, it is preferable to set the board of the larger random number as the master or the board of the smaller random number as the master in advance according to the comparison of the random numbers.
  • the first and second boards 21 and 22 alternately exchange the digital values of the random numbers generated by the first and second boards 21 and 22, respectively, one bit at a time,
  • the master / slave board is determined according to the result.
  • the random number generating unit 211 may generate the random number generating program 211 through a preset random number generating program.
  • the first and second boards 21 and 22 include a random number generating unit 211 on which the same random number generating program is mounted.
  • FIG. 4 is a flowchart illustrating a master / slave setting method of a redundant board according to an embodiment of the present invention.
  • the initial booting power is simultaneously input to the first board 21 and the second board 22 configured at redundancy (S101).
  • the first and second boards 21 and 22 generate random numbers (S103).
  • the first and second boards 21 and 22 transmit and receive their own random numbers to each other (S107). That is, the first and second boards 21 and 22 transmit their respective random numbers to the counter board using the differential communication line 30 and receive the random numbers generated from the counter board from the counter board.
  • the first and second boards 21 and 22 compare the two random numbers transmitted and received (S109). If the random numbers of the first and second boards 21 and 22 are larger (S111), the first and second boards 21 and 22 set themselves as master boards (S113) If it is smaller, it is set as a slave board (S115). Of course, the opposite can also be set. In other words, if your random number is bigger, you can set yourself as a slave board, and if it is smaller, you can set it as a master board.
  • a random number is generated in each of the redundant boards having the same configuration and function, and the master / slave board is set by transmitting / receiving the random numbers and then comparing the random number of the transmitted / received own random number with the random number of the counter board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Hardware Redundancy (AREA)

Abstract

본 발명은 이중화 보드의 초기 부팅시 마스터/슬레이브 보드를 설정하기 위한 방법 및 그 보드에 관한 것이다. 본 발명의 실시 예에 따른 이중화 보드에서 마스터/슬레이브 설정방법은, 이중화로 구성된 제1 및 제2 보드에 초기 부팅에 의한 전원이 동시에 입력되는 입력단계; 상기 전원이 입력되면 상기 제1,2보드는 난수를 각각 발생하는 발생단계; 상기 제1,2보드가 상기 발생된 난수를 상대보드로 전송하고 상대보드로부터 상기 상대보드의 난수를 수신하는 송수신단계; 상기 제1,2보드는 상기 송수신된 두 난수를 비교하여 각각 자신을 마스터 보드 또는 슬레이브 보드로 설정하는 설정단계를 포함한다.

Description

이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드
본 발명은 이중화 보드 설정방법에 관한 것으로서, 특히 초기 부팅시 이중화 보드 중 마스터/슬레이브 보드를 설정하기 위한 방법 및 그 보드에 관한 것이다.
통상적으로 중요한 설비를 제어하는 제어기의 경우 갑작스런 고장 발생에도 끊김없는 제어가 이루어지도록 이중화로 구현된다. 최근에는 제어기 내에서 연산보드, 제어보드 등 중요한 기능들을 수행하는 보드도 이중화로 구현하는 사례가 증가하고 있다.
한국 공개특허공보 제2000-0055954호 및 한국 등록특허공보 제0320149호에는 이중화 보드에서 마스터 보드가 동작중 고장발생시 슬레이브 보드가 통신을 통하여 고장을 감지하여 자신이 마스터로 절체되어 마스터 보드로서 운영되도록 하는 기술에 대해 개시하고 있다.
하지만 이러한 선행문헌은 이중화 보드의 동작중에 마스터/슬레이브 보드의 절체에 관한 기술로서 이중화 보드의 초기 부팅시 마스터와 슬레이브 보드를 설정하는 기술에 대해 제시하는 것이 아니다.
또한 종래에 이중화 보드의 초기 부팅시 마스터 보드와 슬레이브 보드를 설정하기 위해 이중화 보드 간에 상대보드의 레지스터 값을 읽어들여서 마스터로 동작할지를 판단하거나 외부의 딥스위치(dip switch)의 정보를 읽어서 마스터/슬레이브를 결정하도록 한다.
이러한 종래기술에서는 상대보드의 정보를 서로 간에 읽어들여야 하므로 마스터/슬레이브 결정에 일정한 시간이 필요하고, 또한 딥스위치의 동작시 작업자의 설정 오류가 발생할 수 있으며 딥스위치의 정보를 읽는데도 일정시간이 소요된다는 문제점이 있다. 이러한 시간의 소요는 빠른 제어를 필요로 하는 보드에서 동작의 시간지연으로 이어진다는 문제점으로 나타난다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 이중화로 구현된 보드를 초기부팅시 내부에 저장되는 정보를 이용하여 마스터/슬레이브 보드를 설정하도록 하는 이중화 보드의 마스터/슬레이브 설정방법 및 그 보드를 제공하는데 그 목적이 있다.
또한, 본 발명은 이중화 보드에서 간단한 통신을 통해 마스터/슬레이브 보드를 빠르게 설정할 수 있는 이중화 보드의 마스터/슬레이브 설정방법 및 그 보드를 제공하는데 다른 목적이 있다.
본 발명의 실시 예에 따른 이중화 보드에서 마스터/슬레이브 설정방법은, 이중화로 구성된 제1 및 제2 보드에 초기 부팅에 의한 전원이 동시에 입력되는 입력단계; 상기 전원이 입력되면 상기 제1,2보드는 난수를 각각 발생하는 발생단계; 상기 제1,2보드가 상기 발생된 난수를 상대보드로 전송하고 상대보드로부터 상기 상대보드의 난수를 수신하는 송수신단계; 상기 제1,2보드는 상기 송수신된 두 난수를 비교하여 각각 자신을 마스터 보드 또는 슬레이브 보드로 설정하는 설정단계를 포함한다.
본 발명에서, 상기 제1,2보드는 자신이 발생한 난수가 상기 상대보드의 난수보다 더 크면 자신을 마스터 보드로 설정하고 더 작으면 자신을 슬레이브 보드로 설정한다.
본 발명에서, 상기 제1,2보드는 자신이 발생한 난수가 상기 상대보드의 난수보다 더 작으면 자신을 마스터 보드로 설정하고 더 크면 자신을 슬레이브 보드로 설정한다.
본 발명에서, 상기 난수는 1과 0으로 구성된 디지털 값을 갖고 상기 통신부는 상기 난수의 디지털 값을 1비트씩 송수신시 상기 상대보드와 교대로 1비트씩 번갈아가면서 송수신한다.
본 발명에서, 상기 두 난수의 디지털 값을 1비트씩 송수신시, 상기 제어부는 송수신된 난수의 1비트씩 비교하여 하기 조건에 따라 마스터 및 슬레이브 보드를 설정한다.
1) A=1, B=0이면 자신의 보드를 마스터 보드로 설정
2) A=0, B=1이면 자신의 보드를 슬레이브 보드로 설정
(이때, A는 상기 상대보드로 송신한 1비트의 디지털 값이고, B는 상기 상대보드로부터 수신한 1비트의 디지털 값)
본 발명에서, 상기 A=B=1 또는 A=B=0인 경우 상기 발생단계로 진행하여 난수를 재차 발생하고 상기 재차 발생된 난수에 대하여 상기 송수신단계 및 설정단계를 반복 수행한다.
또한, 본 발명의 실시 예에 따른 이중화 보드 각각은, 이중화로 구성된 보드에 있어서, 초기 부팅에 의한 전원이 입력되면 난수를 발생하는 난수발생부; 상기 난수발생부에서 발생된 자신의 난수를 상대보드로 송신하고 상기 상대보드로부터 상기 상대보드의 난수를 수신하는 통신부; 상기 통신부를 통해 상기 송수신된 두 난수를 비교하여 자신을 마스터 보드 또는 슬레이브 보드로 설정하는 제어부를 포함한다.
본 발명에서, 상기 통신부는 기설정된 주기의 클럭마다 자신의 난수를 상기 상대보드로 송신한다.
본 발명에서, 상기 제어부는 상기 두 난수의 비교결과 더 큰 난수를 발생시킨 보드를 마스터 보드로 설정한다.
본 발명에서, 상기 제어부는 상기 두 난수의 비교결과 더 작은 난수를 발생시킨 보드를 마스터 보드로 설정한다.
본 발명에서, 상기 난수는 1과 0으로 구성된 디지털 값을 갖고 상기 통신부는 상기 난수의 디지털 값을 1비트씩 순차적으로 송수신시 상기 상대보드와 교대로 1비트씩 번갈아가면서 송수신한다.
본 발명에서, 상기 두 난수의 디지털 값을 1비트씩 송수신시, 상기 제어부는 송수신된 난수의 1비트씩 비교하여 하기 조건에 따라 마스터 및 슬레이브 보드를 설정한다.
1) A=1, B=0이면 자신의 보드를 마스터 보드로 설정
2) A=0, B=1이면 자신의 보드를 슬레이브 보드로 설정
(이때, A는 상기 상대보드로 송신한 1비트의 디지털 값이고, B는 상기 상대보드로부터 수신한 1비트의 디지털 값)
본 발명에서, 상기 A=B=1 또는 A=B=0인 경우 상기 발생단계로 진행하여 난수를 재차 발생하고 상기 재차 발생된 난수에 대하여 상기 송수신단계 및 설정단계를 반복 수행한다.
본 발명에 의하면 제어기 내의 이중화 보드에서 각각 발생된 난수를 이용하여 마스터/슬레이브 보드를 설정하므로 간단하고 빠른 설정이 가능하다.
또한, 본 발명에 의하면 이중화 보드에 동일한 소프트웨어를 탑재하고 추가적인 구성없이 마스터/슬레이브 보드를 설정할 수 있으므로 제품의 생산성이 높아지고 오작동 가능성이 낮아진다.
도 1은 본 발명의 실시 예에 따른 이중화 보드가 적용된 장치의 예시도이다.
도 2는 본 발명의 실시 예에 따른 이중화 보드의 구성도이다.
도 3은 본 발명의 실시 예에 따른 보드 간 난수의 디지털 값 전송과정을 설명하는 예시도이다.
도 4는 본 발명의 실시 예에 따른 이중화 보드의 마스터/슬레이브 설정방법을 나타낸 흐름도이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 실시 예에 따른 이중화 보드가 적용된 장치의 예시도이다. 도 1을 참조하면 본 발명의 실시 예에 따른 이중화 보드(20)가 적용된 장치(10)는 이중화로 구성된 제1보드(21) 및 제2보드(22)를 포함하여 구성된다. 제1보드(21) 및 제2보드(20)는 이중화로 구성되므로 서로 동일한 구성(하드웨어) 및 동일한 기능(소프트웨어 및 프로그램)으로 구성된다. 이러한 장치(10)는 다양하게 구성될 수 있다. 예컨대 설비나 장치 등을 제어하는 제어장치가 될 수 있다.
또한, 본 발명의 실시 예에서 제1보드(21) 및 제2보드(22)는 일반적인 제어기 내에 구비되는 보드(board)로서, 예컨대 연산보드, 제어보드 등과 같이 각종 기능을 수행하는 보드를 통칭한다. 뿐만아니라 본 발명에서 이러한 보드(21,22)는 제어기 또는 제어모듈 등의 장치를 포함하는 개념으로 사용된다.
나아가, 본 발명의 실시 예에서는 일례로 2개의 보드(21,22)로 이중화된 보드를 도시하고 있으나, 본 발명은 이러한 실시 예에 한정되지 않고 2개 이상의 보드들로 다중화로 구성될 수도 있다. 즉, 본 발명에 따른 마스터/슬레이브 보드의 설정방법은 다중화 보드에도 동일하게 적용될 수 있다. 이에 본 발명에서는 설명의 편의상 일례로 이중화된 보드에 대하여 설명하도록 한다.
도 2는 본 발명의 실시 예에 따른 이중화 보드의 구성도이다. 상기한 바와 같이 이중화된 보드(21,22)는 각각 동일한 구성 및 기능을 가지므로, 이하에서는 제1보드(21)에 대해서만 설명하기로 한다.
본 발명의 실시 예에서 제1보드(21)는 난수발생부(211), 통신부(212) 및 제어부(213)를 포함하여 구성된다.
난수발생부(211)는 보드(21)의 초기 부팅에 의한 전원이 입력되면 난수를 발생한다. 여기서 전원은 보드(21)의 전원이 꺼진 상태, 구체적으로 해당 보드(21)를 포함하는 장치가 꺼진 상태에서 장치를 부팅할 때 전원공급장치(예:SMPS)로부터 공급되는 기동전압이 될 수 있다. 이와 같이 장치를 부팅하기 위해 전원을 공급하면 보드(21)로도 전원이 공급된다. 이에 전원이 보드(21)에 공급되면 난수발생부(211)에서 즉시 난수를 발생시키는 것이다.
통신부(212)는 상기와 같이 발생된 난수를 상대보드로 송신하고, 상대보드로부터 상대보드의 난수를 수신한다. 즉, 제1보드(21)는 자신이 발생한 난수를 제2보드(22)로 전송하고, 반대로 제2보드(22)로부터 제2보드(22)에서 발생한 난수를 수신하도록 한다. 이러한 난수의 송수신은 제2보드에도 동일하게 적용된다. 즉, 제2보드(22)는 자신이 발생한 난수를 제1보드(21)로 전송하고, 반대로 제1보드(21)로부터 제1보드(21)에서 발생한 난수를 수신하도록 하는 것이다.
이때, 제1,2보드(21,22)에서의 난수의 디지털 값을 서로 간에 송수신하는 경우 통신부(212)는 디지털 값에서 상대보드와 교대로 1비트씩 번갈아가면서 송수신한다. 예컨대 제1,2보드(21,22)가 모두 난수 5, 즉 디지털 값으로는 1001를 서로 송수신한다고 가정하면 제1보드(21)가 첫 번째 비트인 1을 전송하고 제2보드(22)도 첫 번째 비트인 1을 전송하며, 이후에 제1보드(21)가 다음 디지털 값인 0을 전송하고 제2보드(22)는 이에 자신의 두 번째 디지털 값인 0을 전송하는 것이다. 이와 같이 순차적으로 서로 번갈아가며 교대로 1비트의 디지털 값을 각각 전송하게 된다.
통신부(212)는 제1,2보드(21,22) 간에 연결된 차동통신선(30)을 통해 디지털 값을 전송한다. 이러한 차동통신선(30)은 제1보드(21)와 제2보드(22)가 서로 교대로 순차적으로 디지털 값을 1비트씩 전송하도록 지원한다.
제어부(213)는 통신부(212)를 통해 송수신된 두 난수를 비교하여 마스터/슬레이브 보드를 설정하는데, 그 비교결과 두 난수 중 더 큰 난수의 보드를 마스터 보드로 설정하고 더 작은 난수의 보드를 슬레이브 보드로 설정하도록 한다. 물론, 반대로 더 큰 난수의 보드를 슬레이브 보도로, 더 작은 난수의 보드를 마스터 보드로 설정할 수도 있다. 이러한 마스터/슬레이브 보드의 설정은 이중화된 제1,2보드(21,22) 중에서 난수가 더 크거나 작은 보드를 마스터 보드로 설정하기 위한 것이다.
상기한 바와 같이 이중화된 두 보드(21,22)는 실질적으로 동일한 보드이다. 즉, 동일한 구성 및 기능을 가지며 실질적으로 동일하게 동작하는 같은 보드이다. 하지만 이와 같이 두 보드(21,22)가 동일하다고 하더라도 난수발생부(211)에서의 난수발생은 동일하게 나올 확률이 적다. 특히 32비트 이상의 난수를 발생하는 경우 같은 수의 난수가 발생될 확률은 거의 0에 가깝다.
이에, 본 발명에서는 두 개의 제1,2보드(21,22)에 동시에 전원이 인가된 후 각각 난수를 발생시켜 더 큰 또는 더 작은 난수가 발생된 보드를 마스터 보드로 설정하는 것이다.
여기서, 제어부(213)는 두 난수의 디지털 값을 비교하여 마스터/슬레이브 보드를 설정할 때 다음과 같은 조건에 따라 설정하도록 한다. 설명의 편의상 제1보드(21)에서 제2보드(22)로 송신한 1비트의 디지털 값을 A라고 하고 제1보드(21)에서 제2보드(22)로부터 수신한 1비트의 디지털 값을 B라고 할 때, A와 B의 관계가 A=B=1이거나 또는 A=B=0인 경우에는 마스터/슬레이브 보드의 설정을 일시적으로 보류하고, A=1 및 B=0이면 제1보드(21)를 마스터 보드로 설정하며, A=0 및 B=1이면 제1보드(21)를 슬레이브 보드로 설정한다. 이때, 제1보드가 마스터 보드로 설정되면 제2보드는 슬레이브 보드로 설정되고, 반대로 제1보드가 슬레이브 보드로 설정되면 제2보드가 마스터 보드로 설정될 수도 있다.
만약, 상기 예에서 A=B=1이거나 또는 A=B=0가 발생한 확률이 거의 없지만 혹시라도 이러한 경우가 발생하면 제어부(213)는 마스터/슬레이브 보드의 설정을 일시 보류하고 재차 난수를 발생하도록 한다. 재차 발생된 난수에 대해서도 위와 동일하게 난수의 디지털 값 중 다음 1비트씩 통신부(212)를 통해 서로 송수신하도록 하여 상기 조건에 따라 역시 동일한 방법으로 마스터 보드 및 슬레이브 보드를 설정하도록 한다. 이러한 과정은 두 보드(21,22) 중 어느 하나의 난수가 더 클 때까지 디지털 값에 대해 1비트씩 순차적으로 진행된다.
도 3은 본 발명의 실시 예에 따른 보드 간 난수의 디지털 값의 전송과정을 설명하는 예시도이다. 도 3를 참조하면 일례로 제1보드(21)에서 발생된 난수의 디지털 값을 101이라 하고 제2보드(22)에서 발생된 난수의 디지털 값을 100이라 가정한다.
먼저 (a)와 같이 제1보드(21)는 자신의 디지털 값인 101에서 첫 번째 비트인 1을 제2보드(22)로 차동통신선(30)의 제1통신선(31)으로 전송하면 제2보드(22)는 자신의 디지털 값인 100에서 첫 번째 비트인 1을 제1보드(21)로 제2통신선(32)으로 전송한다. 이에 제1,2보드(21,22)의 각 제어부는 자신의 디지털 값인 1과 상대보드의 디지털 값인 1이 같으므로 마스터 보드의 설정을 보류한다.
그러면 (b)와 같이 제1보드(21)는 다음 두 번째 비트인 0을, 제2보드(22)도 다음 두 번째의 비트인 0을 서로 송수신한다. 이에 각 제어부는 역시 송수신된 두 디지털 값이 같으므로 마스터 보드의 설정을 보류한다.
그러면 다시 (c)와 같이 다음 비트인 세 번째를 서로 송수신한다. 이때 제1보드(21)는 1을 송신하고 제2비트(22)는 0을 송신한다. 그러면 제1보드(21)의 제어부는 자신의 디지털 값은 1이고 상대보드인 제2보드(22)의 디지털 값은 0이므로 자신이 마스터 보드로 설정된다. 이때, 제2보드(22)의 제어부는 자신의 디지털 값이 0인데 상대보드인 제1보드(21)의 디지털 값이 1이므로 자신은 슬레이브 보드로 설정하는 것이다. 물론, 마스터 보드 및 슬레이브 보드의 설정은 반대의 경우도 가능하다. 즉, 난수의 비교에 따라 더 큰 난수의 보드를 마스터로 할지, 더 작은 난수의 보드를 마스터로 할지는 미리 설정해두는 것이 바람직하다.
이러한 과정에서 알 수 있듯이 제1,2보드(21,22)는 각각 자신이 발생한 난수의 디지털 값을 서로 1비트씩 교대로 교환하되, 서로 다른 디지털 값이 나올 때까지 반복되며, 서로 다른 디지털 값이 나오면 그 결과에 따라 상기와 같이 마스터/슬레이브 보드가 결정되는 것이다.
난수발생부(211)는 기설정된 난수발생 프로그램을 통해 발생시키도록 할 수 있다. 이때, 제1,2보드(21,22)는 서로 동일한 난수발생 프로그램을 탑재한 난수발생부(211)를 각각 포함한다.
도 4는 본 발명의 실시 예에 따른 이중화 보드의 마스터/슬레이브 설정방법을 나타낸 흐름도이다. 도 4를 참조하면 본 발명에 따른 이중화 보드의 마스터/슬레이브 설정방법에서는 이중화로 구성된 제1보드(21) 및 제2보드(22)에 초기 부팅에 의한 전원이 동시에 입력된다(S101). 전원이 입력되면 제1,2보드(21,22)는 난수를 각각 발생시킨다(S103). 이에 제1,2보드(21,22)는 각각 자신의 난수를 서로 송수신한다(S107). 즉, 제1,2보드(21,22)는 차동통신선(30)을 이용하여 각각 자신의 난수를 상대보드로 전송하고 상대보드로부터 상기 상대보드에서 발생된 난수를 수신한다.
이어, 제1,2보드(21,22)는 각각 송수신된 두 난수를 비교하여(S109), 이러한 비교에서 자신의 난수가 더 크면(S111), 자신을 마스터 보드로 설정하고(S113), 반대로 더 작으면 슬레이브 보드로 설정한다(S115). 물론, 반대의 경우도 설정이 가능하다. 즉, 자신의 난수가 더 크면 자신을 슬레이브 보드로 설정하고 더 작으면 마스터 보드로 설정할 수도 있다.
이때, 상기 비교에서 두 난수가 동일하면(S117), S101 단계로 진행하여 난수를 재차 발생한다. 이후 재발생된 난수를 이용하여 상기 단계를 반복한다.
이상에서 설명한 바와 같이 본 발명에서는 동일한 구성 및 기능을 갖는 이중화 보드에서 각각 난수를 발생시켜 서로 송수신한 후, 송수신된 자신의 난수와 상대보드의 난수를 비교하여 마스터/슬레이브 보드를 설정하도록 한다. 이러한 방법에서는 보드 간의 통신으로 통해 간단한 방법으로 빠르게 마스터 보드를 설정할 수 있다는 장점이 있다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 이중화로 구성된 보드에 있어서,
    초기 부팅에 의한 전원이 입력되면 난수를 발생하는 난수발생부;
    상기 난수발생부에서 발생된 자신의 난수를 상대보드로 송신하고 상기 상대보드로부터 상기 상대보드의 난수를 수신하는 통신부;
    상기 통신부를 통해 상기 송수신된 두 난수를 비교하여 자신을 마스터 보드 또는 슬레이브 보드로 설정하는 제어부를 포함하는 것을 특징으로 하는 보드.
  2. 제1항에 있어서, 상기 통신부는 기설정된 주기의 클럭마다 자신의 난수를 상기 상대보드로 송신하는 것을 특징으로 하는 보드.
  3. 제1항에 있어서, 상기 제어부는 상기 두 난수의 비교결과 더 큰 난수를 발생시킨 보드를 마스터 보드로 설정하는 것을 특징으로 하는 보드.
  4. 제1항에 있어서, 상기 제어부는 상기 두 난수의 비교결과 더 작은 난수를 발생시킨 보드를 마스터 보드로 설정하는 것을 특징으로 하는 보드.
  5. 제1항에 있어서, 상기 난수는 1과 0으로 구성된 디지털 값을 갖고 상기 통신부는 상기 난수의 디지털 값을 1비트씩 순차적으로 송수신시 상기 상대보드와 교대로 1비트씩 번갈아가면서 송수신하는 것을 특징으로 하는 보드.
  6. 제5항에 있어서, 상기 두 난수의 디지털 값을 1비트씩 송수신시, 상기 제어부는 송수신된 디지털 값의 1비트씩 비교하여 하기 조건에 따라 마스터 및 슬레이브 보드를 설정하는 것을 특징으로 하는 보드.
    A=1, B=0이면 자신의 보드를 마스터 보드로 설정
    A=0, B=1이면 자신의 보드를 슬레이브 보드로 설정
    (이때, A는 상기 상대보드로 송신한 1비트의 디지털 값이고, B는 상기 상대보드로부터 수신한 1비트의 디지털 값)
  7. 제6항에 있어서, 상기 A=B=1 또는 A=B=0인 경우 상기 난수발생부에서 난수를 다시 발생시키는 것을 특징으로 하는 보드.
  8. 이중화로 구성된 제1 및 제2 보드에 초기 부팅에 의한 전원이 동시에 입력되는 입력단계;
    상기 전원이 입력되면 상기 제1,2보드는 난수를 각각 발생하는 발생단계;
    상기 제1,2보드가 상기 발생된 난수를 상대보드로 전송하고 상대보드로부터 상기 상대보드의 난수를 수신하는 송수신단계;
    상기 제1,2보드는 상기 송수신된 두 난수를 비교하여 각각 자신을 마스터 보드 또는 슬레이브 보드로 설정하는 설정단계를 포함하는 이중화 보드의 마스터/슬레이브 설정방법.
  9. 제8항에 있어서, 상기 제1,2보드는 자신이 발생한 난수가 상기 상대보드의 난수보다 더 크면 자신을 마스터 보드로 설정하고 더 작으면 자신을 슬레이브 보드로 설정하는 이중화 보드의 마스터/슬레이브 설정방법.
  10. 제8항에 있어서, 상기 제1,2보드는 자신이 발생한 난수가 상기 상대보드의 난수보다 더 작으면 자신을 마스터 보드로 설정하고 더 크면 자신을 슬레이브 보드로 설정하는 이중화 보드의 마스터/슬레이브 설정방법.
  11. 제8항에 있어서, 상기 난수는 1과 0으로 구성된 디지털 값을 갖고 상기 통신부는 상기 난수의 디지털 값을 1비트씩 송수신시 상기 상대보드와 교대로 1비트씩 번갈아가면서 송수신하는 이중화 보드의 마스터/슬레이브 설정방법.
  12. 제11항에 있어서, 상기 두 난수의 디지털 값을 1비트씩 송수신시, 상기 제어부는 송수신된 디지털 값의 1비트씩 비교하여 하기 조건에 따라 마스터 및 슬레이브 보드를 설정하는 이중화 보드의 마스터/슬레이브 설정방법.
    A=1, B=0이면 자신의 보드를 마스터 보드로 설정
    A=0, B=1이면 자신의 보드를 슬레이브 보드로 설정
    (이때, A는 상기 상대보드로 송신한 1비트의 디지털 값이고, B는 상기 상대보드로부터 수신한 1비트의 디지털 값)
  13. 제12항에 있어서, 상기 A=B=1 또는 A=B=0인 경우 상기 발생단계로 진행하여 난수를 재차 발생하고 상기 재차 발생된 난수에 대하여 상기 송수신단계 및 설정단계를 반복 수행하는 이중화 보드의 마스터/슬레이브 설정방법.
PCT/KR2018/016397 2017-12-28 2018-12-20 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드 WO2019132431A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170183192A KR20190080626A (ko) 2017-12-28 2017-12-28 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드
KR10-2017-0183192 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132431A1 true WO2019132431A1 (ko) 2019-07-04

Family

ID=67063952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016397 WO2019132431A1 (ko) 2017-12-28 2018-12-20 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드

Country Status (2)

Country Link
KR (1) KR20190080626A (ko)
WO (1) WO2019132431A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173751A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd 仮想マシンシステムを用いたマスタシステム稼動管理方法
JP2010258595A (ja) * 2009-04-22 2010-11-11 Toshiba Corp 電子機器および通信制御方法
JP2013197972A (ja) * 2012-03-21 2013-09-30 Nec Access Technica Ltd 通信装置、通信方法、及び、プログラム
JP2015061384A (ja) * 2013-09-18 2015-03-30 キヤノン株式会社 無線給電システム及びその制御方法、並びにプログラム
KR20160088941A (ko) * 2014-01-23 2016-07-26 미쓰비시덴키 가부시키가이샤 프로그래머블 컨트롤러 및 프로그래머블 컨트롤러 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055954A (ko) 1999-02-11 2000-09-15 김영환 이중화 보드용 마스터/슬레이버 선택 회로
KR100320149B1 (ko) 2000-03-07 2002-01-10 서평원 이중화 보드에서 와치독 인터럽트를 이용한 마스터 권한설정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173751A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd 仮想マシンシステムを用いたマスタシステム稼動管理方法
JP2010258595A (ja) * 2009-04-22 2010-11-11 Toshiba Corp 電子機器および通信制御方法
JP2013197972A (ja) * 2012-03-21 2013-09-30 Nec Access Technica Ltd 通信装置、通信方法、及び、プログラム
JP2015061384A (ja) * 2013-09-18 2015-03-30 キヤノン株式会社 無線給電システム及びその制御方法、並びにプログラム
KR20160088941A (ko) * 2014-01-23 2016-07-26 미쓰비시덴키 가부시키가이샤 프로그래머블 컨트롤러 및 프로그래머블 컨트롤러 시스템

Also Published As

Publication number Publication date
KR20190080626A (ko) 2019-07-08

Similar Documents

Publication Publication Date Title
EP0372801B1 (en) A method and apparatus for configuring data paths within a network station
CN102713773A (zh) 用于自动化设备的安全模块
WO2019132428A1 (ko) Mmc 컨버터 초기충전시 서브모듈 상태 진단방법
JP2006148911A (ja) ネットワークを動作させるための方法及び装置
WO2012053687A1 (ko) 동작 중 재구성이 가능한 제어 시스템 및 그 방법
US7135789B2 (en) Controlling devices using cascaded control units
KR20150130026A (ko) Usb 통신을 이용한 plc의 증설모듈
CN110995889A (zh) 地址分配系统和方法
WO2022114423A1 (ko) 공간 효율적 입출력 인터페이스를 제공하는 plc
WO2013180334A1 (ko) 통신 시스템의 백플랜 버스 구조 및 이를 이용한 보드 인식 방법
WO2017142106A1 (ko) 통합 통신 모듈을 사용하는 부하 분담을 위한 전원 공급 장치 및 시스템
WO2019132431A1 (ko) 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드
WO2019132430A1 (ko) 이중화 보드에서 마스터/슬레이브 설정방법 및 그 보드
US7843966B2 (en) Communication system for flexible use in different application scenarios in automation technology
US7032135B2 (en) Equipment protection using a partial star architecture
CN102638589A (zh) 一种通道的对应连接关系的确定方法及相关连接端和系统
CN102201959A (zh) 基板管理控制器的网络接口系统
JP2009206540A (ja) 回線終端装置、冗長化通信システム、冗長化通信方法及び冗長化通信プログラム
US8578077B2 (en) Group master communication system and method for serially transmitting data in automation systems
WO2020091256A1 (ko) 이중화 보드를 구비한 제어기 시스템 및 그 이중화 보드의 마스터/슬레이브 설정방법
EP0594198B1 (en) Crossbar switch for synthesizing multiple backplane interconnect topologies in communications system
Cisco FastPADmpr12/24 Hardware
WO2020091255A1 (ko) 이중화 보드 및 이중화 보드의 마스터/슬레이브 설정방법
JPH10333720A (ja) プログラマブル・ロジック・コントローラ
KR101858264B1 (ko) 이더넷 통신 기기를 위한 릴레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897481

Country of ref document: EP

Kind code of ref document: A1