WO2019132415A1 - Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same - Google Patents

Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same Download PDF

Info

Publication number
WO2019132415A1
WO2019132415A1 PCT/KR2018/016329 KR2018016329W WO2019132415A1 WO 2019132415 A1 WO2019132415 A1 WO 2019132415A1 KR 2018016329 W KR2018016329 W KR 2018016329W WO 2019132415 A1 WO2019132415 A1 WO 2019132415A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
range
chain alkyl
fluorinated
fluorine
Prior art date
Application number
PCT/KR2018/016329
Other languages
French (fr)
Korean (ko)
Inventor
손은호
박인준
하종욱
이수복
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180142481A external-priority patent/KR102144814B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2019132415A1 publication Critical patent/WO2019132415A1/en
Priority to US16/913,016 priority Critical patent/US20200385563A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms

Definitions

  • Fluorine forms a strong carbon-fluorine bond because it has a high electron density, a small atomic radius next to hydrogen atoms, and strong electronegativity. Due to such fluorine properties, monomers containing a perfluoroalkyl group have a critical surface tension of as low as 6-8 dynes / cm, and surface energy is also very low, repelling both water and oil. As a result, the fluorine-based compound is superior in terms of chemical stability, heat resistance, weatherability, non-stickiness, low surface energy, water repellency and low refractive index.
  • fluorinated functional materials are widely used as core materials of next generation technologies in optical communication, optoelectronics, semiconductors, automobiles, and computers in high-tech industries because they exhibit excellent performance that can not be realized by other materials due to contamination resistance, weather resistance, heat resistance, .
  • fluorinated functional materials are widely used as core materials of next generation technologies in optical communication, optoelectronics, semiconductors, automobiles, and computers in high-tech industries because they exhibit excellent performance that can not be realized by other materials due to contamination resistance, weather resistance, heat resistance, .
  • an antifouling coating such as an outermost layer of a liquid crystal display or a frame of an elegant display
  • Fluoropolymers have properties such as low surface energy, water repellency, lubricity, and low refractive index, along with excellent heat resistance, chemical resistance and weather resistance, and have been widely used in industry, starting from household articles.
  • the present inventors have found that the present inventors have found that a fluoropolymer having excellent surface energy and light transmittance similar to that of a conventional fluoropolymer, exhibiting excellent pencil strength, exhibiting excellent adhesion to a substrate and coating stability, And has completed the present invention by confirming that it has the above functions.
  • An object of one aspect of the present invention is to provide a fluorine-based polymer having high pencil strength and low surface energy while exhibiting excellent solubility in a common organic solvent and adhesion to a substrate surface, and a fluorine-based polymer membrane using the same.
  • Another object of the present invention is to provide a fluoropolymer composition comprising the fluoropolymer.
  • R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl
  • R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group
  • R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl
  • x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
  • fluorinated polymer composition comprising the fluorinated polymer represented by the above formula (1) and an organic solvent.
  • fluorinated polymer membrane comprising the fluorinated polymer represented by the above formula (1).
  • step 2 A step of coating the polymer solution of step 1 on a substrate and drying to form a polymer membrane (step 2).
  • optical film comprising the above fluorinated polymer membrane.
  • the fluorine-based polymer provided in one aspect of the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties.
  • the surface energy can be lowered to 19 mN / m or less and the light transmittance can be increased by more than 2%.
  • it has an effect of exhibiting excellent pencil strength.
  • the fluorine-based polymer provided in one aspect of the present invention can be applied as a surface coating and a membrane material for various products due to its high solubility in common organic solvents even though it has a very low surface energy.
  • the base material has excellent adhesion to the surface of the base material and is applicable to various fields such as automobile glass, building exterior material, fresh water, condenser in a power plant, and solar battery.
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5;
  • FIG. 1 is a graph of
  • FIG. 2 is a graph showing the pencil intensity of a polymer membrane prepared by using Examples 1 to 5 and Comparative Example 2.
  • FIG. 2 is a graph showing the pencil intensity of a polymer membrane prepared by using Examples 1 to 5 and Comparative Example 2.
  • R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl
  • R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group
  • R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl
  • x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
  • the fluorinated polymer according to the present invention can be represented by the above formula (1).
  • R f may be represented by - (CH 2 ) a (CF 2 ) b -F.
  • a may be an integer in the range of 1 to 10, an integer in the range of 1 to 7, and an integer in the range of 1 to 3.
  • B may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, an integer ranging from 1 to 5, and most preferably an integer ranging from 1 to 3.
  • R 1 , R 2 , R 3 and R 4 in the fluorine-containing polymer represented by Formula 1 may each independently be hydrogen (H), methyl (CH 3 ), and a halogen group.
  • the halogen group may be fluorine (F), chlorine (Cl).
  • R 1 , R 2 , R 3, and R 4 in the fluorine-containing polymer represented by Formula 1 are methyl.
  • R 5 in the fluorine-containing polymer represented by Formula 1 may be represented by - (CH 2 ) c -CH 3 .
  • c may be an integer ranging from 0 to 15, an integer ranging from 1 to 10, and an integer ranging from 1 to 5, but the range of the value c is not limited thereto.
  • the above x is preferably 45-55, more preferably 46-54, most preferably 47-50.
  • the above-mentioned y is preferably 30-40, more preferably 32-38, most preferably 34-36.
  • p + q may be 30 or less, and may be 25 or less.
  • p is preferably 1-10, may be 1-8, may be 1-5, may be 1-3, and may be 2-3. Or more, it is possible to exhibit excellent tackiness upon coating the substrate.
  • q is preferably 10-20, may be 12-18, and may be 14-16.
  • the fluorine-containing polymer according to the present invention can be used to form a stable polymer membrane through a curing process.
  • the number average molecular weight of the fluorinated polymer represented by Formula 1 is preferably 5,000 to 500,000, and more preferably 10,000 to 400,000. If the number average molecular weight of the fluorinated polymer is less than 5,000, the thermal and mechanical strength of the polymer may be decreased. If the number average molecular weight is more than 500,000, the solubility of the fluorinated polymer in the organic solvent may rapidly decrease.
  • the polymer represented by the general formula (1) provided in one aspect of the present invention can dissolve in a generally known organic solvent unlike the conventional fluorine-based polymer, and thus has a very advantageous effect in the manufacturing process.
  • organic solvent include organic solvents such as chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, and dichlorobenzene.
  • fluorine-based polymer provided in one aspect of the present invention may be represented by the following general formula (2).
  • R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl
  • R 1 , R 2 ', R 2 ", R 3 and R 4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
  • R 5 ' is C 2-20 straight chain alkyl or C 3-20 branched chain alkyl
  • x 45 to 55, y 'is 22 to 28, y " is 8 to 12, p is 1 to 10, and q is 10-20;
  • R f may be represented by - (CH 2 ) a (CF 2 ) b -F.
  • a may be an integer in the range of 1 to 10, an integer in the range of 1 to 7, and an integer in the range of 1 to 3.
  • B may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, an integer ranging from 1 to 5, and most preferably an integer ranging from 1 to 3.
  • R 1 , R 2 ', R 2 ", R 3 and R 4 in the fluorine-containing polymer represented by Formula 2 may each independently be hydrogen (H), methyl (CH 3 )
  • the halogen group may be fluorine (F), chlorine (Cl).
  • R 1 , R 2 ', R 2 ", R 3 and R 4 in the fluorine-containing polymer represented by Formula 1 are methyl.
  • R 5 ' may be represented by - (CH 2 ) d -CH 3 .
  • d may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, and an integer ranging from 1 to 5, but the range of the d value is not limited thereto.
  • the above x is preferably 45-55, more preferably 6-54, most preferably 47-50.
  • y '+ y' ' is preferably 30-40, more preferably 32-38, most preferably 34-36.
  • p + q may be 30 or less, and may be 25 or less.
  • p is preferably 1-10, may be 1-8, may be 1-5, may be 1-3, and may be 2-3. Or more, it is possible to exhibit excellent tackiness upon coating the substrate.
  • q is preferably 10-20, may be 12-18, and may be 14-16.
  • the fluorine-containing polymer according to the present invention can be used to form a stable polymer membrane through a curing process.
  • a fluorinated polymer composition comprising the fluorinated polymer represented by Formula 1 or the fluorinated polymer represented by Formula 2 and an organic solvent.
  • the fluorine-based polymer is as described above, and the fluorine-based polymer according to the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties.
  • the organic solvent may be chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene or the like, but the organic solvent is not limited thereto.
  • fluorinated polymer membrane comprising the fluorinated polymer represented by the formula (1) or the fluorinated polymer represented by the formula (2).
  • the fluorinated polymer membrane provided in one aspect of the present invention can exhibit very low surface energy and excellent light transmittance. In addition, it has excellent adhesion to the surface of the substrate and can be cured, and thus it can be applied to various fields such as glass for automobiles, building exterior materials, condensers in fresh water or power plants, and solar cells.
  • step 2 A step of coating the polymer solution of step 1 on a substrate and drying to form a polymer membrane (step 2).
  • step 1 is a step of preparing a polymer solution by dissolving the fluorinated polymer as described in the present invention in an organic solvent.
  • the fluorine-based polymer according to the present invention has excellent solubility with an organic solvent and can be easily dissolved in an organic solvent to prepare a polymer solution.
  • the organic solvent used in step 1 may be chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene or the like, but the organic solvent is not limited thereto.
  • step 2 is a step of coating the polymer solution of step 1 on the substrate and drying to form a polymer membrane.
  • the application of the step 2 may be performed by a method such as spin coating, dip coating, roll coating and spray coating.
  • An optical film comprising the above fluorinated polymer membrane is provided.
  • the optical film may have a structure in which fluorine-based polymer membranes having different transmittances by region (wavelength region) of light are laminated alone or in combination.
  • the optical film may further include a non-fluorinated polymer membrane.
  • the fluorine-containing polymer represented by Formula 1 Organic solvent; And at least one selected from the group consisting of pigments, pigments, dyes, and additives.
  • Example 2 Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 2 are shown in Table 2 below.
  • Example 3 Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 3 are shown in Table 3 below.
  • Example 4 Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 4 are shown in Table 4 below.
  • Example 5 Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 5 are shown in Table 5 below.
  • PMMA Polymethyl methacrylate
  • the fluoropolymers prepared in Examples 1 to 5 were dissolved in chloroform (CDCl 3 ), and then nuclear magnetic resonance spectroscopy (NMR, Bruker AC 500P < 1 > H NMR spectrometer). The results are shown in Table 7 below. The composition of the polymer was calculated from the peak area ratio of the graph analyzed by nuclear magnetic resonance spectroscopy. The results are shown in Table 7.
  • Example 1 20: 20: 40: 5: 15 21: 23: 37: 2: 16
  • Example 2 30: 20: 30: 5: 15 29: 21: 29: 6: 15
  • Example 3 40: 20: 20: 5: 15 42: 19: 19: 3: 17
  • Example 4 50: 20: 10: 5: 15 48: 24: 11: 2: 15
  • polymers prepared in Examples 1 to 5 and Comparative Example 1 were dissolved in chloroform at a concentration of 2% by weight, dropped on a cleaned glass slide having a diameter of 1.5 cm, and dried at a rate of 3,000 rpm for 40 seconds
  • Polymer membranes were prepared for surface roughness, contact angle and surface energy evaluation by spin coating at the application time and drying at room temperature for 12 hours in a vacuum oven.
  • the surface roughness of the polymer membranes prepared above was measured using an atomic force microscope (Model: SPA 400, manufactured by Seiko Instruments Industry, Co., Ltd., Japan), and the results are shown in Table 8 below.
  • the contact angles of the prepared polymer membranes were measured using a contact angle meter (Kruss DSA10, Germany), and the contact angles measured by dropping water and diiodomathane (DMI) on the polymer membranes were shown in Table 7 Respectively.
  • spherical droplets lose their shape on the solid surface and exhibit hydrophilic properties that wet the surface.
  • spherical droplets exhibit hydrophobicity that flows easily along the external force without wetting the surface while maintaining the shape of the spheres on the solid surface.
  • the surface energy of the polymer membranes prepared above was calculated. Specifically, the surface energy was calculated using the Owens-Wendt-Rabel-Kaelble method after measuring the contact angle using water and a diiodomathane (DMI) solvent.
  • DMI diiodomathane
  • the contact angle of the polymer membrane prepared in Comparative Example 1 to water was 75.6 °, while the contact angle of the fluorinated polymer membrane of the present invention was 97 ° to 104.5 °.
  • the contact angle with respect to DMI it was confirmed that the polymer membrane prepared in Comparative Example 1 was 35.1 °, while the contact angle of the fluorinated polymer membrane in Examples 1 to 5 was remarkably excellent from 63.9 ° to 81.2 °.
  • the surface energy of the polymer membrane prepared in Comparative Example 1 was 44.3 mN / m, while the surface energies of the fluorine-based polymer membranes of Examples 1 to 4 were 17.4 mN / m to 26.7 mN / m, which is very low.
  • the surface energy of the fluorinated polymer membrane of Example 5 is PTFE (surface energy ⁇ 18 mN / m), which is known to have a very low surface energy, and a much lower number of cations.
  • the light transmittance of the fluorinated polymer membrane prepared using the fluorinated polymers of Examples 1 to 5 and the glass substrate (bare glass) was measured using a Varian Cary 5000 spectrometer ) In a wavelength range of 200 nm to 800 nm, and the results are shown in FIG.
  • the transmittance of the fluorinated polymer membrane obtained in Example 4 was far superior to that of the glass substrate and other fluorinated polymer membranes.
  • the transmittance was excellent in the wavelength range of 350 nm to 700 nm, and the transmittance was much better in the wavelength range of 450 nm to 600 nm.
  • the pencil hardness of the polymer membrane prepared using the fluorinated polymer of Examples 1 to 5 and the PMMA polymer of Comparative Example 2 was measured using a hardness analyzer (BGD 506, Biuged Instruments Co., Ltd., Guangzhou), and the results are shown in Fig.
  • composition range of the fluorine-based polymer was far superior to that of the fluorine-based polymer membranes obtained in Examples 1, 2, 3 and 5 in which the x value was outside the range of 45-55.
  • the fluorine-based polymer according to the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties.
  • the surface energy can be lowered to 19 mN / m or less when the glass is coated, and the light transmittance can be increased by 2% or more.
  • the pencil strength showed a value of F (5), and it was confirmed that the pencil strength was much superior to that of the PMMA polymer and other fluorinated polymers.
  • it is excellent in light transmittance and pencil strength and can be widely applied as an optically applied material (optical film).
  • the fluorine-based polymer according to the present invention has a very low surface energy upon coating, it can be applied to surface coatings and membrane materials of various products due to high solubility in common organic solvents. Further, it is excellent in adhesion to the surface of the substrate and can be cured, which is applicable to various fields such as automobile glass, building exterior material, condenser in a fresh water or a power plant, a solar cell, and a light collector.

Abstract

In one aspect of the present invention, a fluoropolymer represented by chemical formula 1 is provided. The fluoropolymer provided in one aspect of the present invention can obtain low surface energy and high light transmittance, and thus can be applied to various applications requiring such properties. In particular, when coated on glass, the surface energy can be lowered to 19 mN/m or less and the light transmittance can be increased by at least 2%. At the same time, the fluoropolymer has an effect of exhibiting excellent pencil hardness. In addition, the fluoropolymer provided in one aspect of the present invention can be used as a surface coating material and a membrane material for various products due to high solubility in common organic solvents, despite having a very low surface energy during coating. Furthermore, the fluoropolymer has excellent adhesion to the surface of a base material and can be subjected to a curing process, and thus, the fluoropolymer is applicable to various applications such as automobile glass, building exterior material, condensers in power plants, fresh water, and solar batteries, etc.

Description

불소계 고분자, 이를 포함하는 불소계 고분자 조성물 및 이를 이용한 불소계 고분자막Fluorine-based polymer, fluorine-based polymer composition containing the same, and fluorine-based polymer membrane using the same
불소계 고분자, 이를 포함하는 불소계 고분자 조성물 및 이를 이용한 불소계 고분자막에 관한 것이다. A fluorine-based polymer composition containing the fluorine-based polymer, and a fluorine-based polymer membrane using the same.
불소는 전자밀도가 높고 수소 원자 다음으로 원자 반경이 작으며 또한 강한 전기음성도를 갖고 있으므로 견고한 탄소-불소 결합을 형성한다. 이러한 불소계 특성으로 과불소 알킬기를 포함하는 단량체는 임계표면장력이 6-8 dynes/cm 정도의 극소수성을 나타내며, 표면에너지 또한 매우 낮아 물과 기름에 모두 반발한다. 이에 따라 불소계 화합물은 비교적 고가임에도 불구하고 화학적 안정성, 내열성, 내후성, 비점착성, 낮은 표면에너지, 발수성, 낮은 굴절률 등이 탁월하여 점차 그 사용 영역을 넓혀가고 있다.Fluorine forms a strong carbon-fluorine bond because it has a high electron density, a small atomic radius next to hydrogen atoms, and strong electronegativity. Due to such fluorine properties, monomers containing a perfluoroalkyl group have a critical surface tension of as low as 6-8 dynes / cm, and surface energy is also very low, repelling both water and oil. As a result, the fluorine-based compound is superior in terms of chemical stability, heat resistance, weatherability, non-stickiness, low surface energy, water repellency and low refractive index.
현재, 불소계 기능성 소재는 내오염성, 내후성, 내열성, 광학특성 등에서 타 소재가 구현할 수 없는 우수한 성능을 발휘하기 때문에 첨단산업인 광통신, 광전자, 반도체, 자동차 및 컴퓨터 분야 등에서 차세대 기술의 핵심소재로서 다양하게 사용되고 있다. 특히, 내오염성과 관련하여 최근 급증하고 있는 액정 디스플레이의 전면 최외각층 또는 미려한 디스플레이의 프레임(frame) 등의 오염방지 코팅을 포함하여 전통적인 내오염 표면 물성이 요구되는 생활가전, 건축, 조선, 토목 분야에 적용되는 각종 도료 및 코팅제 등에서도 오염 방지 코팅에 대한 관심이 높아지면서 불소계 기능성 소재에 대한 연구가 활발히 진행되고 있다.At present, fluorinated functional materials are widely used as core materials of next generation technologies in optical communication, optoelectronics, semiconductors, automobiles, and computers in high-tech industries because they exhibit excellent performance that can not be realized by other materials due to contamination resistance, weather resistance, heat resistance, . Especially, in the field of consumer electronics, construction, shipbuilding, and civil engineering, which requires a conventional contamination surface property including an antifouling coating such as an outermost layer of a liquid crystal display or a frame of an elegant display, There has been a growing interest in fluorine-based functional materials because of the growing interest in anti-fouling coatings.
불소 고분자는 우수한 내열성, 내화학성, 내후성 등과 함께 낮은 표면에너지, 발수성, 윤활성, 낮은 굴절률 등의 성질을 지니는 물질로 가정용품으로부터 시작하여 산업전반에 널리 이용되어 왔다.Fluoropolymers have properties such as low surface energy, water repellency, lubricity, and low refractive index, along with excellent heat resistance, chemical resistance and weather resistance, and have been widely used in industry, starting from household articles.
그렇지만, 종래의 불소 고분자들의 경우 그 성능(발수성, 오염방지 등)의 우수성에도 불구하고 재료 가격이 비싸고, 일반 유기 용매의 사용이 대부분 힘들기 때문에 제조공정상 문제점들이 크게 대두되어 왔다. However, in the case of conventional fluoropolymers, despite the superiority of the performance (water repellency, contamination prevention, etc.), the material cost is high and the use of general organic solvent is hardly used.
또한, 기재 종류에 따라서 기재에 대한 코팅시 점착성이 떨어지는 등의 문제가 발생해 왔다. 즉, 불소 고분자의 성능을 유지하면서도 일반 유기 용매에 잘 녹고 코팅 재료로 이용하기 위한 기재에 대한 점착성이 우수하다면 그 산업적인 가치는 매우 클 것으로 보인다.In addition, depending on the type of the base material, problems such as deterioration of the adhesiveness upon coating the base material have occurred. That is, if the fluorine polymer is excellent in adhesiveness to a substrate to be used as a coating material while being well soluble in a common organic solvent while maintaining the performance of the fluorine polymer, its industrial value seems to be very large.
<선행기술문헌><Prior Art Literature>
<특허문헌><Patent Literature>
일본 공개특허 JP 2012-177111 AJapanese Laid-Open Patent JP-A-1-177111 A
<비특허문헌><Non-patent Document>
Colloids and Surfaces A: Physicochem. Eng. Aspects 502 (2016) 159-167Colloids and Surfaces A: Physicochem. Eng. Aspects 502 (2016) 159-167
전술한 문제점을 해결하고자, 본 발명자들은 종래의 불소 고분자와 유사하거나 더욱 우수한 표면에너지 및 빛 투과도를 지니면서, 우수한 연필 강도를 나타내며, 기재에 대한 점착성과 코팅 안정성 그리고 일반 유기 용매에 용해 가능한 다기능성을 가지는 불소계 고분자를 개발하였으며, 상기 기능을 가짐을 확인하고 본 발명을 완성하였다.In order to solve the above-mentioned problems, the present inventors have found that the present inventors have found that a fluoropolymer having excellent surface energy and light transmittance similar to that of a conventional fluoropolymer, exhibiting excellent pencil strength, exhibiting excellent adhesion to a substrate and coating stability, And has completed the present invention by confirming that it has the above functions.
본 발명의 일 측면에서의 목적은 높은 연필 강도를 가짐과 동시에 낮은 표면에너지를 지니고 있으면서 일반 유기 용매에 대한 용해성과 기재 표면에 대한 점착성이 우수한 불소계 고분자 및 이를 이용한 불소계 고분자막을 제공하는 데 있다.An object of one aspect of the present invention is to provide a fluorine-based polymer having high pencil strength and low surface energy while exhibiting excellent solubility in a common organic solvent and adhesion to a substrate surface, and a fluorine-based polymer membrane using the same.
본 발명의 다른 측면에서의 목적은 상기 불소계 고분자를 포함하는 불소계 고분자 조성물을 제공하는 데 있다.Another object of the present invention is to provide a fluoropolymer composition comprising the fluoropolymer.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에서In order to achieve the above object, in one aspect of the present invention,
하기 화학식 1로 표시되는 불소계 고분자가 제공된다.There is provided a fluorine-based polymer represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018016329-appb-I000001
Figure PCTKR2018016329-appb-I000001
(상기 화학식 1에서,(In the formula 1,
Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
z는 1-5이다)z is 1-5)
또한, 본 발명의 다른 측면에서In another aspect of the present invention,
상기 화학식 1로 표시되는 불소계 고분자 및 유기 용매를 포함하는 불소계 고분자 조성물이 제공된다.There is provided a fluorinated polymer composition comprising the fluorinated polymer represented by the above formula (1) and an organic solvent.
나아가, 본 발명의 또 다른 측면에서Further, in another aspect of the present invention
상기 화학식 1로 표시되는 불소계 고분자를 포함하는 불소계 고분자막이 제공된다.There is provided a fluorinated polymer membrane comprising the fluorinated polymer represented by the above formula (1).
더욱 나아가, 본 발명의 다른 측면에서Further, in another aspect of the present invention
상기 불소계 고분자를 유기 용매에 용해시켜 고분자 용액을 준비하는 단계(단계 1); 및Preparing a polymer solution by dissolving the fluorine-based polymer in an organic solvent (step 1); And
상기 단계 1의 고분자 용액을 기판 위에 도포하고 건조하여 고분자막을 형성하는 단계(단계 2);를 포함하는 불소계 고분자막의 제조방법이 제공된다.A step of coating the polymer solution of step 1 on a substrate and drying to form a polymer membrane (step 2).
나아가, 본 발명의 또 다른 측면에서Further, in another aspect of the present invention
상기의 불소계 고분자막을 포함하는 광학 필름을 제공된다.There is provided an optical film comprising the above fluorinated polymer membrane.
본 발명의 일 측면에서 제공되는 불소계 고분자는 낮은 표면에너지와 높은 빛 투과도를 얻을 수 있어, 이러한 특성을 필요로 하는 다양한 응용분야에 적용이 가능하다. 특히, 유리에 코팅할 경우 표면에너지를 19 mN/m 이하로 낮출 수 있으며 빛 투과도는 2 % 이상 상승시킬 수 있다. 동시에 우수한 연필 강도를 나타내는 효과가 있다.The fluorine-based polymer provided in one aspect of the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties. In particular, when coated on glass, the surface energy can be lowered to 19 mN / m or less and the light transmittance can be increased by more than 2%. At the same time, it has an effect of exhibiting excellent pencil strength.
또한, 본 발명의 일 측면에서 제공되는 불소계 고분자는 코팅 시 매우 낮은 표면에너지를 가짐에도 불구하고 일반 유기 용매들에 대한 높은 용해성으로 인해서 다양한 제품들의 표면 코팅 및 멤브레인 소재로 응용이 가능하다. In addition, the fluorine-based polymer provided in one aspect of the present invention can be applied as a surface coating and a membrane material for various products due to its high solubility in common organic solvents even though it has a very low surface energy.
나아가, 기재 표면에 대한 점착력이 우수하며, 경화공정이 가능하여 차량용 유리, 건축 외장재, 담수 혹은 발전소에서의 콘덴서, 태양전지 등 다양한 분야에 적용이 가능하다.Furthermore, it has excellent adhesion to the surface of the base material and is applicable to various fields such as automobile glass, building exterior material, fresh water, condenser in a power plant, and solar battery.
도 1은 실시예 1 내지 5를 이용하여 제조된 불소계 고분자막 및 유리 기판(Bare glass)의 빛 투과도를 측정한 그래프이고;FIG. 1 is a graph of light transmittance of a fluorinated polymer membrane and a glass substrate (bare glass) prepared by using Examples 1 to 5; FIG.
도 2는 실시예 1 내지 5 및 비교예 2를 이용하여 제조된 고분자막의 연필 강도를 측정한 그래프이다.FIG. 2 is a graph showing the pencil intensity of a polymer membrane prepared by using Examples 1 to 5 and Comparative Example 2. FIG.
본 발명의 일 측면에서In one aspect of the invention,
하기 화학식 1로 표시되는 불소계 고분자가 제공된다.There is provided a fluorine-based polymer represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018016329-appb-I000002
Figure PCTKR2018016329-appb-I000002
(상기 화학식 1에서,(In the formula 1,
Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
z는 1-5이다.)z is 1-5.)
이하, 본 발명에 따른 불소계 고분자에 대하여 상세히 설명한다.Hereinafter, the fluorinated polymer according to the present invention will be described in detail.
본 발명에 따른 불소계 고분자는 상기 화학식 1로 표시될 수 있다.The fluorinated polymer according to the present invention can be represented by the above formula (1).
일례로, 상기 화학식 1로 표시되는 불소계 고분자에서 Rf는 -(CH2)a(CF2)b-F로 표시될 수 있다. For example, in the fluorine-based polymer represented by Formula 1, R f may be represented by - (CH 2 ) a (CF 2 ) b -F.
이때, 상기 a는 1-10 범위의 정수일 수 있고, 1-7 범위의 정수일 수 있으며, 1-3 범위의 정수일 수 있다. 또한, 상기 b는 1-15 범위의 정수일 수 있고, 1-10 범위의 정수일 수 있으며, 1-5 범위의 정수일 수 있고, 가장 바람직하게는 1-3 범위의 정수이다.In this case, a may be an integer in the range of 1 to 10, an integer in the range of 1 to 7, and an integer in the range of 1 to 3. B may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, an integer ranging from 1 to 5, and most preferably an integer ranging from 1 to 3.
또한, 일례로 상기 화학식 1로 표시되는 불소계 고분자에서 R1, R2, R3 및 R4는 각각 독립적으로 수소(H), 메틸(CH3) 및 할로겐기일 수 있다. 상기 할로겐기는 불소(F), 염소(Cl)일 수 있다. 나아가, 상기 화학식 1로 표시되는 불소계 고분자에서 R1, R2, R3 및 R4는 메틸인 것이 바람직하다.In addition, for example, R 1 , R 2 , R 3 and R 4 in the fluorine-containing polymer represented by Formula 1 may each independently be hydrogen (H), methyl (CH 3 ), and a halogen group. The halogen group may be fluorine (F), chlorine (Cl). Further, it is preferable that R 1 , R 2 , R 3, and R 4 in the fluorine-containing polymer represented by Formula 1 are methyl.
나아가, 일례로 상기 화학식 1로 표시되는 불소계 고분자에서 R5는 -(CH2)c-CH3로 표시될 수 있다. Further, for example, R 5 in the fluorine-containing polymer represented by Formula 1 may be represented by - (CH 2 ) c -CH 3 .
이때, 상기 c는 0-15 범위의 정수일 수 있고, 1-10 범위의 정수일 수 있으며, 1-5 범위의 정수일 수 있으나 상기 c 값의 범위는 이에 제한되는 것은 아니다.Here, c may be an integer ranging from 0 to 15, an integer ranging from 1 to 10, and an integer ranging from 1 to 5, but the range of the value c is not limited thereto.
또한, 일례로 상기 화학식 1로 표시되는 불소계 고분자에서 x, y, p 및 q는 x+y+p+q=100으로 하는 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이다.For example, x, y, p and q in the fluorine-based polymer represented by Formula 1 are based on a weight ratio of x + y + p + q = 100, wherein x is 45-55, y is 30-40, p is 1-10, and q is 10-20.
상기 x는 45-55인 것이 바람직하고, 46-54인 것이 더욱 바람직하고, 47-50인 것이 가장 바람직하다. 또한, 상기 y는 30-40인 것이 바람직하고, 32-38인 것이 더욱 바람직하며, 34-36인 것이 가장 바람직하다. 나아가, p+q는 30 이하일 수 있고, 25 이하일 수 있다. 이상의 범위의 조성을 가짐으로써 더욱 낮은 표면에너지와 더욱 높은 빛 투과도와 더불어 월등히 높은 연필 강도를 나타낼 수 있다.The above x is preferably 45-55, more preferably 46-54, most preferably 47-50. The above-mentioned y is preferably 30-40, more preferably 32-38, most preferably 34-36. Further, p + q may be 30 or less, and may be 25 or less. By weight of the composition can exhibit significantly higher pencil strength with lower surface energy and higher light transmittance.
또한, 일례로 상기 p는 1-10인 것이 바람직하고, 1-8일 수 있으며, 1-5일 수 있고, 1-3일 수 있으며, 2-3일 수 있다. 이상의 범위의 조성을 가짐으로써 기재에 대한 코팅시 우수한 점착성을 나타낼 수 있다.Also, for example, p is preferably 1-10, may be 1-8, may be 1-5, may be 1-3, and may be 2-3. Or more, it is possible to exhibit excellent tackiness upon coating the substrate.
나아가, 일례로 상기 q는 10-20인 것이 바람직하고, 12-18일 수 있으며, 14-16일 수 있다. 이상의 범위의 조성을 가짐으로써 본 발명에 따른 불소계 고분자를 이용하여 경화공정을 통해서 안정한 고분자막을 형성할 수 있다.Further, for example, q is preferably 10-20, may be 12-18, and may be 14-16. The fluorine-containing polymer according to the present invention can be used to form a stable polymer membrane through a curing process.
또한, 일례로 상기 화학식 1로 표시되는 불소계 고분자는 수평균분자량이 5,000-500,000인 것이 바람직하고, 10,000-400,000인 것이 더욱 바람직하다. 만약, 상기 불소계 고분자의 수평균분자량이 5,000 미만인 경우에는 고분자의 열적, 기계적 강도가 감소할 수 있으며, 500,000을 초과하는 경우에는 유기 용매에 대한 용해도가 급격히 감소하는 문제가 발생할 수 있다.For example, the number average molecular weight of the fluorinated polymer represented by Formula 1 is preferably 5,000 to 500,000, and more preferably 10,000 to 400,000. If the number average molecular weight of the fluorinated polymer is less than 5,000, the thermal and mechanical strength of the polymer may be decreased. If the number average molecular weight is more than 500,000, the solubility of the fluorinated polymer in the organic solvent may rapidly decrease.
본 발명의 일 측면에서 제공되는 화학식 1로 표시되는 고분자는 종래 불소계 고분자와 달리 일반적으로 알려진 유기 용매에 용해가 가능하므로, 제조 공정상 매우 유리한 효과가 있다. 상기 유기 용매의 예로는 클로로폼, 디클로로메탄, 아세톤, 피리딘, 테트라하이드로퓨란, 클로로벤젠, 디클로로벤젠 등과 같은 일반 유기 용매라면 아무런 제약 없이 사용할 수 있다.The polymer represented by the general formula (1) provided in one aspect of the present invention can dissolve in a generally known organic solvent unlike the conventional fluorine-based polymer, and thus has a very advantageous effect in the manufacturing process. Examples of the organic solvent include organic solvents such as chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, and dichlorobenzene.
또한, 본 발명의 일 측면에서 제공되는 불소계 고분자는 일례로써, 하기 화학식 2로 표시될 수 있다.Further, the fluorine-based polymer provided in one aspect of the present invention may be represented by the following general formula (2).
[화학식 2](2)
Figure PCTKR2018016329-appb-I000003
Figure PCTKR2018016329-appb-I000003
(상기 화학식 2에서,(In the formula (2)
Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
R1, R2′, R2″, R3 및 R4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1 , R 2 ', R 2 ", R 3 and R 4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
R5′은 C2-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 'is C 2-20 straight chain alkyl or C 3-20 branched chain alkyl;
x+y′+y″+p+q=100인 중량비 기준으로, x는 45-55이고, y′은 22-28이며, y″은 8-12이고, p는 1-10이며, q는 10-20이고;x is 45 to 55, y 'is 22 to 28, y &quot; is 8 to 12, p is 1 to 10, and q is 10-20;
z는 1-5이다).z is 1-5).
구체적인 일례로, 상기 화학식 2로 표시되는 불소계 고분자에서 Rf는 -(CH2)a(CF2)b-F로 표시될 수 있다. As a specific example, in the fluorine-based polymer represented by Formula 2, R f may be represented by - (CH 2 ) a (CF 2 ) b -F.
이때, 상기 a는 1-10 범위의 정수일 수 있고, 1-7 범위의 정수일 수 있으며, 1-3 범위의 정수일 수 있다. 또한, 상기 b는 1-15 범위의 정수일 수 있고, 1-10 범위의 정수일 수 있으며, 1-5 범위의 정수일 수 있고, 가장 바람직하게는 1-3 범위의 정수이다.In this case, a may be an integer in the range of 1 to 10, an integer in the range of 1 to 7, and an integer in the range of 1 to 3. B may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, an integer ranging from 1 to 5, and most preferably an integer ranging from 1 to 3.
또한, 일례로 상기 화학식 2로 표시되는 불소계 고분자에서 R1, R2′, R2″, R3 및 R4는 각각 독립적으로 수소(H), 메틸(CH3) 및 할로겐기일 수 있다. 상기 할로겐기는 불소(F), 염소(Cl)일 수 있다. 나아가, 상기 화학식 1로 표시되는 불소계 고분자에서 R1, R2′, R2″, R3 및 R4는 메틸인 것이 바람직하다.In addition, for example, R 1 , R 2 ', R 2 ", R 3 and R 4 in the fluorine-containing polymer represented by Formula 2 may each independently be hydrogen (H), methyl (CH 3 ) The halogen group may be fluorine (F), chlorine (Cl). Furthermore, it is preferable that R 1 , R 2 ', R 2 ", R 3 and R 4 in the fluorine-containing polymer represented by Formula 1 are methyl.
일례로, 상기 화학식 2로 표시되는 불소계 고분자에서 R5′는 -(CH2)d-CH3로 표시될 수 있다. For example, in the fluorine-based polymer represented by Formula 2, R 5 'may be represented by - (CH 2 ) d -CH 3 .
이때, 상기 d는 1-15 범위의 정수일 수 있고, 1-10 범위의 정수일 수 있으며, 1-5 범위의 정수일 수 있으나 상기 d 값의 범위는 이에 제한되는 것은 아니다.Here, d may be an integer ranging from 1 to 15, an integer ranging from 1 to 10, and an integer ranging from 1 to 5, but the range of the d value is not limited thereto.
또한, 일례로 상기 화학식 2로 표시되는 불소계 고분자에서 x, y′, y″, p 및 q는 x+y′+y″+p+q=100인 중량비 기준으로, x는 45-55이고, y′은 22-28이며, y″은 8-12이고, p는 1-10이며, q는 10-20이다.For example, x, y ', y ", p and q in the fluorine-based polymer represented by Formula 2 are based on a weight ratio of x + y' + y" + p + q = y &quot; is 22-28, y &quot; is 8-12, p is 1-10, and q is 10-20.
상기 x는 45-55인 것이 바람직하고, 6-54인 것이 더욱 바람직하고, 47-50인 것이 가장 바람직하다. 또한, y'+y''은 30-40인 것이 바람직하고, 32-38인 것이 더욱 바람직하며, 34-36인 것이 가장 바람직하다. 나아가, p+q는 30 이하일 수 있고, 25 이하일 수 있다. 이상의 범위의 조성을 가짐으로써 더욱 낮은 표면에너지와 더욱 높은 빛 투과도와 더불어 월등히 높은 연필 강도를 나타낼 수 있다.The above x is preferably 45-55, more preferably 6-54, most preferably 47-50. Further, y '+ y' 'is preferably 30-40, more preferably 32-38, most preferably 34-36. Further, p + q may be 30 or less, and may be 25 or less. By weight of the composition can exhibit significantly higher pencil strength with lower surface energy and higher light transmittance.
또한, 일례로 상기 p는 1-10인 것이 바람직하고, 1-8일 수 있으며, 1-5일 수 있고, 1-3일 수 있으며, 2-3일 수 있다. 이상의 범위의 조성을 가짐으로써 기재에 대한 코팅시 우수한 점착성을 나타낼 수 있다.Also, for example, p is preferably 1-10, may be 1-8, may be 1-5, may be 1-3, and may be 2-3. Or more, it is possible to exhibit excellent tackiness upon coating the substrate.
나아가, 일례로 상기 q는 10-20인 것이 바람직하고, 12-18일 수 있으며, 14-16일 수 있다. 이상의 범위의 조성을 가짐으로써 본 발명에 따른 불소계 고분자를 이용하여 경화공정을 통해서 안정한 고분자막을 형성할 수 있다.Further, for example, q is preferably 10-20, may be 12-18, and may be 14-16. The fluorine-containing polymer according to the present invention can be used to form a stable polymer membrane through a curing process.
또한, 본 발명의 다른 측면에서In another aspect of the present invention,
상기 화학식 1로 표시되는 불소계 고분자 또는 화학식 2로 표시되는 불소계 고분자 및 유기 용매를 포함하는 불소계 고분자 조성물이 제공된다.There is provided a fluorinated polymer composition comprising the fluorinated polymer represented by Formula 1 or the fluorinated polymer represented by Formula 2 and an organic solvent.
이하, 본 발명에 따른 불소계 고분자 조성물에 대하여 상세히 설명한다.Hereinafter, the fluoropolymer composition according to the present invention will be described in detail.
상기 불소계 고분자는 이상에서 설명한 바와 같으며, 본 발명에 따른 불소계 고분자는 낮은 표면에너지와 높은 빛 투과도를 얻을 수 있어, 이러한 특성을 필요로 하는 다양한 응용분야에 적용이 가능하다. 이러한 적용을 위한 조성물로서, 유기 용매에 대한 높은 용해성을 가짐을 특징으로 한다.The fluorine-based polymer is as described above, and the fluorine-based polymer according to the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties. As a composition for such application, it is characterized by having high solubility in an organic solvent.
상기 유기 용매는 클로로폼, 디클로로메탄, 아세톤, 피리딘, 테트라하이드로퓨란, 클로로벤젠 및 디클로로벤젠 등일 수 있으나, 상기 유기 용매가 이에 제한되는 것은 아니다.The organic solvent may be chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene or the like, but the organic solvent is not limited thereto.
또한, 본 발명의 또 다른 측면에서Further, in another aspect of the present invention
상기 화학식 1로 표시되는 불소계 고분자 또는 상기 화학식 2로 표시되는 불소계 고분자를 포함하는 불소계 고분자막이 제공된다.There is provided a fluorinated polymer membrane comprising the fluorinated polymer represented by the formula (1) or the fluorinated polymer represented by the formula (2).
본 발명의 일 측면에서 제공되는 불소계 고분자막은 매우 낮은 표면에너지 및 우수한 빛 투과도를 나타낼 수 있다. 또한, 기재 표면에 대한 점착력이 우수하며, 경화공정이 가능하여 차량용 유리, 건축 외장재, 담수 혹은 발전소에서의 콘덴서, 태양전지 등 다양한 분야에 적용이 가능하다.The fluorinated polymer membrane provided in one aspect of the present invention can exhibit very low surface energy and excellent light transmittance. In addition, it has excellent adhesion to the surface of the substrate and can be cured, and thus it can be applied to various fields such as glass for automobiles, building exterior materials, condensers in fresh water or power plants, and solar cells.
나아가, 본 발명의 다른 측면에서Further, in another aspect of the present invention
상기의 불소계 고분자를 유기 용매에 용해시켜 고분자 용액을 준비하는 단계(단계 1); 및Preparing a polymer solution by dissolving the fluoropolymer in an organic solvent (step 1); And
상기 단계 1의 고분자 용액을 기판 위에 도포하고 건조하여 고분자막을 형성하는 단계(단계 2);를 포함하는 불소계 고분자막의 제조방법이 제공된다.A step of coating the polymer solution of step 1 on a substrate and drying to form a polymer membrane (step 2).
이하, 본 발명에 따른 불소계 고분자막의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, the method for producing the fluorinated polymer membrane according to the present invention will be described in detail for each step.
먼저, 본 발명에 따른 불소계 고분자막의 제조방법에 있어서, 단계 1은 본 발명에서 제시하는 불소계 고분자를 유기 용매에 용해시켜 고분자 용액을 준비하는 단계이다.First, in the method for producing a fluorinated polymer membrane according to the present invention, step 1 is a step of preparing a polymer solution by dissolving the fluorinated polymer as described in the present invention in an organic solvent.
본 발명에 따른 불소계 고분자는 유기 용매와의 용해성이 매우 우수하여 손쉽게 유기 용매에 용해시켜 고분자 용액을 준비할 수 있다.The fluorine-based polymer according to the present invention has excellent solubility with an organic solvent and can be easily dissolved in an organic solvent to prepare a polymer solution.
일례로, 상기 단계 1의 유기 용매는 클로로폼, 디클로로메탄, 아세톤, 피리딘, 테트라하이드로퓨란, 클로로벤젠 및 디클로로벤젠 등을 사용할 수 있으나, 상기 유기 용매가 이에 제한되는 것은 아니다.For example, the organic solvent used in step 1 may be chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene or the like, but the organic solvent is not limited thereto.
다음으로, 본 발명에 따른 불소계 고분자막의 제조방법에 있어서, 단계 2는 상기 단계 1의 고분자 용액을 기판 위에 도포하고 건조하여 고분자막을 형성하는 단계이다.Next, in the method for producing a fluorinated polymer membrane according to the present invention, step 2 is a step of coating the polymer solution of step 1 on the substrate and drying to form a polymer membrane.
구체적인 일례로, 상기 단계 2의 도포는 스핀코팅, 딥코팅, 롤 코팅 및 스프레이 코팅 등의 방법으로 수행할 수 있다.As a specific example, the application of the step 2 may be performed by a method such as spin coating, dip coating, roll coating and spray coating.
나아가, 본 발명의 다른 측면에서Further, in another aspect of the present invention
상기의 불소계 고분자막을 포함하는 광학 필름이 제공된다.An optical film comprising the above fluorinated polymer membrane is provided.
본 발명의 일 측면에서, 상기 광학 필름은 빛의 영역(파장 영역)대별 투과율이 다른 불소계 고분자막을 단독 또는 두 종류 이상 적층된 구조일 수 있다. In one aspect of the present invention, the optical film may have a structure in which fluorine-based polymer membranes having different transmittances by region (wavelength region) of light are laminated alone or in combination.
또한, 본 발명의 다른 측면에서, 상기 광학 필름은 비불소계 고분자막을 더 포함할 수 있다.In another aspect of the present invention, the optical film may further include a non-fluorinated polymer membrane.
또한, 본 발명의 또 다른 측면에서Further, in another aspect of the present invention
상기 화학식 1로 표시되는 불소계 고분자; 유기 용매; 및 안료, 안료, 염료 및 첨가제로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하는 도료 조성물이 제공된다.The fluorine-containing polymer represented by Formula 1; Organic solvent; And at least one selected from the group consisting of pigments, pigments, dyes, and additives.
더욱 나아가, 본 발명의 또 다른 일 측면에서Further, in another aspect of the present invention,
상기의 불소계 고분자를 안료, 염료 및 첨가제로 이루어지는 군으로부터 선택되는 1종 이상과 혼합하고, 이를 유기 용매에 용해시키는 단계;를 포함하는 도료 조성물의 제조방법이 제공된다.And mixing the fluoropolymer with at least one member selected from the group consisting of pigments, dyes and additives, and dissolving the fluoropolymer in an organic solvent.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the following examples and experimental examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시예 및 실험예에 의해 한정되는 것은 아니다.It should be noted, however, that the following examples and experimental examples are illustrative of the present invention, but the scope of the invention is not limited by the examples and the experimental examples.
<실시예 1> 불소계 고분자 제조 1&Lt; Example 1 > Preparation of fluorinated polymer 1
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트, 스테아릴 메타아크릴레이트, 메틸 메타아크릴레이트, 메타아크릴산, 2-히드록시에틸 메타아크릴레이트 단량체와 테트라하이드로퓨란(THF)을 하기 표 1의 비율에 따라 반응기에 넣고 탈기(degassing)한 후 진공 및 질소 충진을 반복하며 질소 분위기를 만들었다. (Meth) acrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, stearyl methacrylate, methyl methacrylate, methacrylic acid, 2-hydroxyethyl methacrylate monomer and tetrahydrofuran The reactor was degassed according to the ratios shown in Table 1, followed by repeatedly performing vacuum and nitrogen charging to create a nitrogen atmosphere.
이후, 상기 반응기의 온도를 60 ℃의 온도로 올린 후 약 10 분간 교반하였다. 다음으로, 아조비스이소부티로니트릴(Azobisisobutyronitrile, AIBN)을 하기 표 1의 비율에 따라 질소 분위기를 유지하면서 반응기 내로 투입시켜 중합 반응을 개시하였다. 중합 반응 개시 후 약 15 시간 반응 후 물/메탄올 혼합 용매에 침전시켜 생성물을 얻었다. 상기 실시예 1의 고분자 제조를 위해서 제조된 고분자의 수평균분자량 및 분산도 등은 하기 표 1에 나타내었다.Thereafter, the temperature of the reactor was raised to a temperature of 60 ° C, and the mixture was stirred for about 10 minutes. Next, azobisisobutyronitrile (AIBN) was introduced into the reactor while keeping the nitrogen atmosphere according to the ratio shown in Table 1 below to initiate the polymerization reaction. After the reaction was started for about 15 hours, the reaction mixture was precipitated in a water / methanol mixed solvent to obtain a product. The number average molecular weight and the degree of dispersion of the polymer prepared for preparing the polymer of Example 1 are shown in Table 1 below.
실시예 1 Example 1
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 44
스테아릴 메타아크릴레이트 [g]Stearyl methacrylate [g] 44
메틸 메타아크릴레이트 [g]Methyl methacrylate [g] 88
메타아크릴산 [g]Methacrylic acid [g] 1One
2-히드록시에틸 메타아크릴레이트 [g]2-hydroxyethyl methacrylate [g] 33
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 73,00073,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 1.91.9
<실시예 2> 불소계 고분자 제조 2&Lt; Example 2 > Preparation of fluorinated polymer 2
상기 실시예 1과 동일한 반응 조건에서 중합을 실시하였으며, 실시예 2의 불소계 고분자 제조를 위해서 사용된 반응물의 함량과 수평균분자량 및 분산도 등은 하기 표 2에 나타내었다.Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 2 are shown in Table 2 below.
실시예 2 Example 2
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 66
스테아릴 메타아크릴레이트 [g]Stearyl methacrylate [g] 44
메틸 메타아크릴레이트 [g]Methyl methacrylate [g] 66
메타아크릴산 [g]Methacrylic acid [g] 1One
2-히드록시에틸 메타아크릴레이트 [g]2-hydroxyethyl methacrylate [g] 33
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 78,00078,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 1.91.9
<실시예 3> 불소계 고분자 제조 3&Lt; Example 3 > Preparation of fluorinated polymer 3
상기 실시예 1과 동일한 반응 조건에서 중합을 실시하였으며, 실시예 3의 불소계 고분자 제조를 위해서 사용된 반응물의 함량과 수평균분자량 및 분산도 등은 하기 표 3에 나타내었다.Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 3 are shown in Table 3 below.
실시예 3 Example 3
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 88
스테아릴 메타아크릴레이트 [g]Stearyl methacrylate [g] 44
메틸 메타아크릴레이트 [g]Methyl methacrylate [g] 44
메타아크릴산 [g]Methacrylic acid [g] 1One
2-히드록시에틸 메타아크릴레이트 [g]2-hydroxyethyl methacrylate [g] 33
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 74,00074,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 2.12.1
<실시예 4> 불소계 고분자 제조 4Example 4 Production of fluorinated polymer 4
상기 실시예 1과 동일한 반응 조건에서 중합을 실시하였으며, 실시예 4의 불소계 고분자 제조를 위해서 사용된 반응물의 함량과 수평균분자량 및 분산도 등은 하기 표 4에 나타내었다.Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 4 are shown in Table 4 below.
실시예 4 Example 4
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 1010
스테아릴 메타아크릴레이트 [g]Stearyl methacrylate [g] 44
메틸 메타아크릴레이트 [g]Methyl methacrylate [g] 22
메타아크릴산 [g]Methacrylic acid [g] 1One
2-히드록시에틸 메타아크릴레이트 [g]2-hydroxyethyl methacrylate [g] 33
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 71,00071,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 2.12.1
<실시예 5> 불소계 고분자 제조 5&Lt; Example 5 > Preparation of fluorinated polymer 5
상기 실시예 1과 동일한 반응 조건에서 중합을 실시하였으며, 실시예 5의 불소계 고분자 제조를 위해서 사용된 반응물의 함량과 수평균분자량 및 분산도 등은 하기 표 5에 나타내었다.Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluoropolymer of Example 5 are shown in Table 5 below.
실시예 5Example 5
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 1212
스테아릴 메타아크릴레이트 [g]Stearyl methacrylate [g] 44
메타아크릴산 [g]Methacrylic acid [g] 1One
2-히드록시에틸 메타아크릴레이트 [g]2-hydroxyethyl methacrylate [g] 33
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 98,00098,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 2.92.9
<비교예 1>&Lt; Comparative Example 1 &
상기 실시예 1과 동일한 반응 조건에서 중합을 실시하였으며, 비교예 1의 불소계 고분자 제조를 위해서 사용된 반응물의 함량과 수평균분자량 및 분산도 등은 하기 표 6에 나타내었다.Polymerization was carried out under the same reaction conditions as in Example 1, and the content, number average molecular weight and dispersity of the reactants used for preparing the fluorinated polymer of Comparative Example 1 are shown in Table 6 below.
비교예 1Comparative Example 1
2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트 [g]2,2,3,3,3-pentafluoropropyl methacrylate [g] 2020
아조비스이소부틸로니트릴 (AIBN) [g]Azobisisobutylonitrile (AIBN) [g] &lt; RTI ID = 0.0 &gt; 0.4080.408
테트라하이드로퓨란 (THF)[g]Tetrahydrofuran (THF) [g] 40 40
분자량 [Mn]Molecular weight [Mn] 95,00095,000
분자량 분포 [PDI]Molecular Weight Distribution [PDI] 2.72.7
<비교예 2>&Lt; Comparative Example 2 &
폴리메틸메타크릴레이트(PMMA) 고분자를 준비하였다.Polymethyl methacrylate (PMMA) polymer was prepared.
<실험예 1> 불소계 고분자 조성 분석<Experimental Example 1> Analysis of fluorine-based polymer composition
본 발명에 따른 실시예 1 내지 5에서 제조된 불소계 고분자들의 조성을 확인하기 위하여, 상기 실시예 1 내지 5에서 제조된 불소계 고분자들을 클로로폼(CDCl3)에 용해시킨 후 핵자기공명 분광학(NMR, Bruker AC 500P 1H NMR spectrometer)을 이용하여 분석하였으며, 그 결과를 하기 표 7에 나타내었다. 핵자기공명 분광학으로 분석된 그래프의 피크 면적비를 통해 고분자의 조성을 계산하였고, 그 결과를 표 7에 나타내었다.In order to confirm the compositions of the fluoropolymers prepared in Examples 1 to 5 according to the present invention, the fluoropolymers prepared in Examples 1 to 5 were dissolved in chloroform (CDCl 3 ), and then nuclear magnetic resonance spectroscopy (NMR, Bruker AC 500P &lt; 1 &gt; H NMR spectrometer). The results are shown in Table 7 below. The composition of the polymer was calculated from the peak area ratio of the graph analyzed by nuclear magnetic resonance spectroscopy. The results are shown in Table 7.
투입비율 (Weight%)Input ratio (Weight%) 조성비(Weight%)Composition ratio (Weight%)
A:B:C:D:EA: B: C: D: E
실시예 1Example 1 20:20:40:5:1520: 20: 40: 5: 15 21:23:37:2:1621: 23: 37: 2: 16
실시예 2Example 2 30:20:30:5:1530: 20: 30: 5: 15 29:21:29:6:1529: 21: 29: 6: 15
실시예 3Example 3 40:20:20:5:1540: 20: 20: 5: 15 42:19:19:3:1742: 19: 19: 3: 17
실시예 4Example 4 50:20:10:5:1550: 20: 10: 5: 15 48:24:11:2:1548: 24: 11: 2: 15
실시예 5Example 5 60:20:0:5:1560: 20: 0: 5: 15 61:21:0:2:1661: 21: 0: 2: 16
A : 2,2,3,3,3-펜타플루오로프로필 메타아크릴레이트B : 스테아릴 메타아크릴레이트A: 2,2,3,3,3-pentafluoropropyl methacrylate B: stearyl methacrylate
C : 메틸 메타아크릴레이트C: methyl methacrylate
D : 메타아크릴산D: methacrylic acid
E : 2-히드록시에틸 메타아크릴레이트E: 2-hydroxyethyl methacrylate
상기 표 7에 나타낸 바와 같이, 실시예 1 내지 5에서 제조된 불소계 고분자의 조성은 단량체 투입 비율과 거의 비슷하게 나온 것을 확인할 수 있었다.As shown in Table 7, it was confirmed that the compositions of the fluoropolymers prepared in Examples 1 to 5 were almost the same as those of the monomers.
<실험예 2> 표면 거칠기, 접촉각 및 표면 에너지 평가<Experimental Example 2> Evaluation of surface roughness, contact angle and surface energy
불소계 고분자막의 준비Preparation of fluorine-based polymer membrane
상기 실시예 1 내지 5 및 비교예 1에서 제조된 고분자들을 클로로폼에 2 중량%의 농도로 용해시켜 직경 1.5 cm의 세척이 완료된 글래스 슬라이드(glass slide)에 떨어뜨리고, 3,000 rpm의 속도로 40 초의 도포 시간 조건에서 스핀코팅하고, 진공오븐에서 12 시간 동안 상온에서 건조하여, 표면 거칠기, 접촉각 및 표면에너지 평가를 위한 고분자막들을 준비하였다.The polymers prepared in Examples 1 to 5 and Comparative Example 1 were dissolved in chloroform at a concentration of 2% by weight, dropped on a cleaned glass slide having a diameter of 1.5 cm, and dried at a rate of 3,000 rpm for 40 seconds Polymer membranes were prepared for surface roughness, contact angle and surface energy evaluation by spin coating at the application time and drying at room temperature for 12 hours in a vacuum oven.
(1) 표면 거칠기의 측정(1) Measurement of surface roughness
상기에서 준비한 고분자막들을 원자힘 현미경(모델명: SPA 400, 제조사: Seiko Instruments Industry, Co.,Ltd.,Japan)을 이용하여 표면의 거칠기를 각각 측정하였고, 그 결과를 하기 표 8에 나타내었다.The surface roughness of the polymer membranes prepared above was measured using an atomic force microscope (Model: SPA 400, manufactured by Seiko Instruments Industry, Co., Ltd., Japan), and the results are shown in Table 8 below.
(2) 접촉각 평가(2) Evaluation of contact angle
상기에서 준비한 고분자막들에 대한 접촉각 측정을 접촉각 측정기(Kruss DSA10, Germany)를 사용하여 평가하였고, 물 및 다이아이오도메탄(diiodomathane, DMI) 각각을 고분자막들에 떨어뜨려 측정한 접촉각을 하기 표 7에 나타내었다.The contact angles of the prepared polymer membranes were measured using a contact angle meter (Kruss DSA10, Germany), and the contact angles measured by dropping water and diiodomathane (DMI) on the polymer membranes were shown in Table 7 Respectively.
참조로, 접촉각의 크기가 90도 보다 작은 경우 구형상의 물방울은 고체 표면에서 그 형태를 잃고 표면을 적시는 친수성을 나타낸다. 또한, 접촉각의 크기가 90도 보다 큰 경우 구형상의 물방울은 고체 표면에서 구의 형상을 유지하면서 표면을 적시지 않고 외부 힘에 따라 쉽게 흐르는 소수성을 나타낸다.For reference, when the contact angle is smaller than 90 degrees, spherical droplets lose their shape on the solid surface and exhibit hydrophilic properties that wet the surface. In addition, when the contact angle is larger than 90 degrees, spherical droplets exhibit hydrophobicity that flows easily along the external force without wetting the surface while maintaining the shape of the spheres on the solid surface.
(3) 표면에너지의 평가(3) Evaluation of surface energy
상기에서 준비한 고분자막들의 표면에너지를 계산하였다. 구체적으로, 표면에너지는 물 및 다이아이오도메탄(diiodomathane, DMI) 용매를 사용하여 접촉각을 측정한 후, Owens-Wendt-Rabel-Kaelble method를 통해서 계산하였다.The surface energy of the polymer membranes prepared above was calculated. Specifically, the surface energy was calculated using the Owens-Wendt-Rabel-Kaelble method after measuring the contact angle using water and a diiodomathane (DMI) solvent.
접촉각 (degree)Contact angle (degree) 표면에너지(mN/m)Surface energy (mN / m) 표면거칠기(mN/m)Surface roughness (mN / m)
H2OH 2 O diiodomathane (DMI)diiodomathane (DMI)
비교예 1Comparative Example 1 75.675.6 35.135.1 44.344.3 < 2 nm<2 nm
실시예 1Example 1 97.097.0 63.9 63.9 26.726.7 < 2 nm<2 nm
실시예 2Example 2 101.1101.1 69.769.7 23.323.3 < 2 nm<2 nm
실시예 3Example 3 102.5102.5 70.870.8 22.622.6 < 2 nm<2 nm
실시예 4Example 4 103.3103.3 78.478.4 18.818.8 < 2 nm<2 nm
실시예 5Example 5 104.5104.5 81.281.2 17.417.4 < 2 nm<2 nm
상기 표 8에 나타낸 바와 같이, 상기 비교예 1에서 제조된 고분자막의 물에 대한 접촉각은 75.6 °인 반면, 본 발명에서 제시하는 불소계 고분자막의 접촉각은 97 ° 내지 104.5 °로 매우 우수한 것을 확인할 수 있다. 또한, DMI에 대한 접촉각의 경우 비교예 1에서 제조된 고분자막은 35.1 °인 반면, 상기 실시예 1 내지 5의 불소계 고분자막의 접촉각은 63.9 ° 내지 81.2 °로 월등히 우수한 것을 확인할 수 있었다.As shown in Table 8, the contact angle of the polymer membrane prepared in Comparative Example 1 to water was 75.6 °, while the contact angle of the fluorinated polymer membrane of the present invention was 97 ° to 104.5 °. In addition, in the case of the contact angle with respect to DMI, it was confirmed that the polymer membrane prepared in Comparative Example 1 was 35.1 °, while the contact angle of the fluorinated polymer membrane in Examples 1 to 5 was remarkably excellent from 63.9 ° to 81.2 °.
나아가, 상기 표 8에 나타낸 바와 같이, 상기 비교예 1에서 제조된 고분자 막의 표면에너지는 44.3 mN/m인 반면, 상기 실시예 1 내지 4의 불소계 고분자막의 표면에너지는 17.4 mN/m 내지 26.7 mN/m로 매우 낮은 표면에너지를 가짐을 확인할 수 있었다. 특히, 실시예 5의 불소계 고분자막의 표면에너지는 매우 낮은 표면에너지를 가지고 있는 것으로 알려진 고분자인 PTFE (표면에너지 ~ 18 mN/m)와 더욱 낮은 갑승ㄹ 보이는 것을 확인할 수 있다.Further, as shown in Table 8, the surface energy of the polymer membrane prepared in Comparative Example 1 was 44.3 mN / m, while the surface energies of the fluorine-based polymer membranes of Examples 1 to 4 were 17.4 mN / m to 26.7 mN / m, which is very low. In particular, it can be seen that the surface energy of the fluorinated polymer membrane of Example 5 is PTFE (surface energy ~ 18 mN / m), which is known to have a very low surface energy, and a much lower number of cations.
<실험예 3> 빛 투과도 분석<Experimental Example 3> Light transmittance analysis
본 발명에 따른 불소계 고분자막에 대한 빛 투과도를 확인하기 위하여, 상기 실시예 1 내지 5의 불소계 고분자를 사용하여 제조된 불소계 고분자막 및 유리 기판(Bare glass)에 대한 빛 투과도를 Varian Cary 5000 spectrometer (Agilent Technologies)를 이용하여 200 nm 내지 800 nm 범위의 파장영역에서 측정하였으며, 그 결과를 도 1에 나타내었다.In order to confirm the light transmittance of the fluorinated polymer membrane according to the present invention, the light transmittance of the fluorinated polymer membrane prepared using the fluorinated polymers of Examples 1 to 5 and the glass substrate (bare glass) was measured using a Varian Cary 5000 spectrometer ) In a wavelength range of 200 nm to 800 nm, and the results are shown in FIG.
도 1에 나타낸 바와 같이, 실시예 4로부터 얻어진 불소계 고분자막의 투과도는 유리 기판 뿐만 아니라 그외 불소계 고분자막에 비해서도 월등히 우수한 것을 확인할 수 있었다. 특히, 350 nm 내지 700 nm의 파장 영역에서 우수한 투과도를 나타냄을 확인할 수 있었으며, 450 nm 내지 600 nm의 파장 영역에서는 더욱 월등히 우수한 투과도를 나타냄을 확인할 수 있었다.As shown in Fig. 1, it was confirmed that the transmittance of the fluorinated polymer membrane obtained in Example 4 was far superior to that of the glass substrate and other fluorinated polymer membranes. In particular, it was confirmed that the transmittance was excellent in the wavelength range of 350 nm to 700 nm, and the transmittance was much better in the wavelength range of 450 nm to 600 nm.
<실험예 4> 연필 경도 분석<Experimental Example 4> Pencil hardness analysis
본 발명에 따른 불소계 고분자막에 대한 연필 경도를 확인하기 위하여, 상기 실시예 1 내지 5의 불소계 고분자와 비교예 2의 PMMA 고분자를 사용하여 제조된 고분자막의 연필 경도를 경도 분석 장치(BGD 506, Biuged Instruments Co., Ltd., Guangzhou)를 이용하여 측정하였으며, 그 결과를 도 2에 나타내었다.In order to confirm the pencil hardness of the fluorinated polymer membrane according to the present invention, the pencil hardness of the polymer membrane prepared using the fluorinated polymer of Examples 1 to 5 and the PMMA polymer of Comparative Example 2 was measured using a hardness analyzer (BGD 506, Biuged Instruments Co., Ltd., Guangzhou), and the results are shown in Fig.
도 2에 나타낸 바와 같이, 실시예 4로부터 얻어진 불소계 고분자막의 연필 강도는 F(5)로 비교예 2의 PMMA 고분자를 이용한 고분자막에 비해 월등히 우수한 것을 확인할 수 있었다.As shown in FIG. 2, it was confirmed that the pencil strength of the fluorinated polymer membrane obtained from Example 4 was much higher than that of the polymer membrane using the PMMA polymer of Comparative Example 2 as F (5).
뿐만 아니라, 불소계 고분자의 조성 범위 중 x 값이 45-55를 벗어난 실시예 1, 실시예 2, 실시예 3 및 실시예 5로부터 얻어진 불소계 고분자막의 연필 강도에 비해서도 월등히 우수한 것을 확인할 수 있었다.In addition, it was confirmed that the composition range of the fluorine-based polymer was far superior to that of the fluorine-based polymer membranes obtained in Examples 1, 2, 3 and 5 in which the x value was outside the range of 45-55.
이와 같이, 본 발명에 따른 불소계 고분자는 낮은 표면에너지와 높은 빛 투과도를 얻을 수 있음을 확인할 수 있었으며, 이러한 특성을 필요로 하는 다양한 응용분야에 적용이 가능하다. 특히, 유리에 코팅할 경우 표면에너지를 19 mN/m 이하로 낮출 수 있으며 빛 투과도는 2 % 이상 상승시킬 수 있음을 확인할 수 있었다. 또한, 연필 강도는 F(5)의 값을 나타내어 PMMA 고분자 및 다른 조성의 불소계 고분자에 비해서 월등히 우수한 연필 강도를 나타냄을 확인할 수 있었다. 나아가, 빛 투과율 및 연필 강도가 우수하여 광학적 응용재료(광학 필름)로 광범위하게 응용될 수 있다.As described above, the fluorine-based polymer according to the present invention has low surface energy and high light transmittance, and can be applied to various applications requiring such properties. In particular, it was confirmed that the surface energy can be lowered to 19 mN / m or less when the glass is coated, and the light transmittance can be increased by 2% or more. In addition, the pencil strength showed a value of F (5), and it was confirmed that the pencil strength was much superior to that of the PMMA polymer and other fluorinated polymers. Furthermore, it is excellent in light transmittance and pencil strength and can be widely applied as an optically applied material (optical film).
또한, 본 발명에 따른 불소계 고분자는 코팅 시 매우 낮은 표면에너지를 가짐에도 불구하고 일반 유기 용매들에 대한 높은 용해성으로 인해서 다양한 제품들의 표면 코팅 및 멤브레인 소재로 응용이 가능하다. 나아가, 기재 표면에 대한 점착력이 우수하며, 경화공정이 가능하여 차량용 유리, 건축 외장재, 담수 혹은 발전소에서의 콘덴서, 태양전지, 집광부(light collector) 등 다양한 분야에 적용이 가능하다.In addition, although the fluorine-based polymer according to the present invention has a very low surface energy upon coating, it can be applied to surface coatings and membrane materials of various products due to high solubility in common organic solvents. Further, it is excellent in adhesion to the surface of the substrate and can be cured, which is applicable to various fields such as automobile glass, building exterior material, condenser in a fresh water or a power plant, a solar cell, and a light collector.

Claims (11)

  1. 하기 화학식 1로 표시되는 불소계 고분자:The fluorine-containing polymer represented by the following formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018016329-appb-I000004
    Figure PCTKR2018016329-appb-I000004
    (상기 화학식 1에서,(In the formula 1,
    Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
    R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
    R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
    x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
    z는 1-5이다).z is 1-5).
  2. 제1항에 있어서,The method according to claim 1,
    상기 불소계 고분자는 수평균분자량이 5,000-500,000인 것을 특징으로 하는 불소계 고분자.Wherein the fluorine-based polymer has a number average molecular weight of 5,000 to 500,000.
  3. 제1항에 있어서,The method according to claim 1,
    상기 불소계 고분자는 유기 용매에 용해되는 것을 특징으로 하는 불소계 고분자.Wherein the fluorine-based polymer is dissolved in an organic solvent.
  4. 하기 화학식 1로 표시되는 불소계 고분자 및 유기 용매를 포함하는 불소계 고분자 조성물:A fluorine-based polymer composition comprising a fluorine-based polymer represented by the following formula (1) and an organic solvent:
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018016329-appb-I000005
    Figure PCTKR2018016329-appb-I000005
    (상기 화학식 1에서,(In the formula 1,
    Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
    R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
    R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
    x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
    z는 1-5이다).z is 1-5).
  5. 제4항에 있어서,5. The method of claim 4,
    상기 유기 용매는 클로로폼, 디클로로메탄, 아세톤, 피리딘, 테트라하이드로퓨란, 클로로벤젠 및 디클로로벤젠으로 이루어지는 군으로부터 선택되는 1 종 이상인 것을 특징으로 하는 불소계 고분자 조성물.Wherein the organic solvent is at least one selected from the group consisting of chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, and dichlorobenzene.
  6. 하기 화학식 1로 표시되는 불소계 고분자를 포함하는 불소계 고분자막:1. A fluorinated polymer membrane comprising a fluorinated polymer represented by the following formula (1): &lt; EMI ID =
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018016329-appb-I000006
    Figure PCTKR2018016329-appb-I000006
    (상기 화학식 1에서,(In the formula 1,
    Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
    R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
    R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
    x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
    z는 1-5이다).z is 1-5).
  7. 제1항의 불소계 고분자를 유기 용매에 용해시켜 고분자 용액을 준비하는 단계(단계 1); 및Preparing a polymer solution by dissolving the fluoropolymer of claim 1 in an organic solvent (step 1); And
    상기 단계 1의 고분자 용액을 기판 위에 도포하고 건조하여 고분자막을 형성하는 단계(단계 2);를 포함하는 불소계 고분자막의 제조방법.(2) coating the polymer solution of the step (1) on a substrate and drying the polymer solution to form a polymer membrane (step 2).
  8. 제6항의 불소계 고분자막을 포함하는 광학 필름.An optical film comprising the fluoropolymer film of claim 6.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 광학 필름은 비불소계 고분자막을 더 포함하는 것을 특징으로 하는 광학 필름.Wherein the optical film further comprises a non-fluorinated polymer membrane.
  10. 하기 화학식 1로 표시되는 불소계 고분자; 유기 용매; 및 안료, 안료, 염료 및 첨가제로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하는 도료 조성물:A fluorine-based polymer represented by the following formula (1); Organic solvent; And at least one selected from the group consisting of pigments, pigments, dyes and additives.
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018016329-appb-I000007
    Figure PCTKR2018016329-appb-I000007
    (상기 화학식 1에서,(In the formula 1,
    Rf는 C1-20의 불소화된 직쇄 알킬 또는 C3-20의 불소화된 분지쇄 알킬이고;R f is C 1-20 fluorinated straight chain alkyl or C 3-20 fluorinated branched chain alkyl;
    R1-4는 각각 독립적으로 수소(H), 메틸(CH3) 또는 할로겐기이고;R 1-4 are each independently hydrogen (H), methyl (CH 3 ) or a halogen group;
    R5는 C1-20의 직쇄 알킬 또는 C3-20의 분지쇄 알킬이고;R 5 is C 1-20 straight chain alkyl or C 3-20 branched chain alkyl;
    x+y+p+q=100인 중량비 기준으로, x는 45-55이고, y는 30-40이며, p는 1-10이고, q는 10-20이며;x is in the range of 45 to 55, y is in the range of 30 to 40, p is in the range of 1-10, and q is in the range of 10-20;
    z는 1-5이다).z is 1-5).
  11. 제1항의 불소계 고분자를 안료, 염료 및 첨가제로 이루어지는 군으로부터 선택되는 1종 이상과 혼합하고, 이를 유기 용매에 용해시키는 단계;를 포함하는 도료 조성물의 제조방법.A process for producing a coating composition, which comprises mixing the fluoropolymer of claim 1 with at least one selected from the group consisting of pigments, dyes and additives, and dissolving the fluoropolymer in an organic solvent.
PCT/KR2018/016329 2017-12-26 2018-12-20 Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same WO2019132415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/913,016 US20200385563A1 (en) 2017-12-26 2020-06-26 Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0179571 2017-12-26
KR20170179571 2017-12-26
KR10-2018-0142481 2018-11-19
KR1020180142481A KR102144814B1 (en) 2017-12-26 2018-11-19 Fluorinated polymers, composition including the same and their films

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/913,016 Continuation-In-Part US20200385563A1 (en) 2017-12-26 2020-06-26 Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same

Publications (1)

Publication Number Publication Date
WO2019132415A1 true WO2019132415A1 (en) 2019-07-04

Family

ID=67063941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016329 WO2019132415A1 (en) 2017-12-26 2018-12-20 Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same

Country Status (1)

Country Link
WO (1) WO2019132415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097338A (en) * 2000-09-22 2002-04-02 Nof Corp Resin composition and molded product thereof
JP2006063132A (en) * 2004-08-25 2006-03-09 Fuji Photo Film Co Ltd Organic solvent-based coating modifier
KR101212572B1 (en) * 2012-06-18 2012-12-14 (주)아해 Method for surface coating of concrete structure with improving ozone resistance
JP2013173840A (en) * 2012-02-24 2013-09-05 Nof Corp Curable resin composition and cured product thereof
WO2017216201A1 (en) * 2016-06-17 2017-12-21 Merck Patent Gmbh Fluorine containing polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097338A (en) * 2000-09-22 2002-04-02 Nof Corp Resin composition and molded product thereof
JP2006063132A (en) * 2004-08-25 2006-03-09 Fuji Photo Film Co Ltd Organic solvent-based coating modifier
JP2013173840A (en) * 2012-02-24 2013-09-05 Nof Corp Curable resin composition and cured product thereof
KR101212572B1 (en) * 2012-06-18 2012-12-14 (주)아해 Method for surface coating of concrete structure with improving ozone resistance
WO2017216201A1 (en) * 2016-06-17 2017-12-21 Merck Patent Gmbh Fluorine containing polymers

Similar Documents

Publication Publication Date Title
WO2019054616A1 (en) Polyimide copolymer and polyimide film using same
WO2019054612A1 (en) Polyimide precursor composition and polyimide film using same
WO2017209414A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2018080222A2 (en) Polyimide film forming composition and polyimide film produced by using same
WO2018030552A1 (en) Polymerizable composition
WO2019103274A1 (en) Polyimide film for display substrate
WO2013077695A1 (en) Resin mixture
WO2018004288A2 (en) Polyester multilayered film
WO2020141713A1 (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for manufacturing polyamide-imide film using same, and polyamide-imide film produced by same manufacturing method
WO2019132415A1 (en) Fluoropolymer, fluoropolymer composition containing same, and fluoropolymer film using same
WO2018147606A1 (en) Polyamide-imide film and method for preparing same
WO2020159174A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2013077696A1 (en) Resin mixture
WO2020130261A1 (en) Crosslinking agent compound, photosensitive composition including same, and photosensitive material using same
WO2022215847A1 (en) Fluorine-based polymer, fluorine-based polymer composition comprising same, and fluorine-based polymer membrane using same
WO2021071152A1 (en) Flexible window film and display apparatus comprising same
WO2022220349A1 (en) Double-sided antistatic silicone release film
WO2018208075A1 (en) Quad-polymer precursor for producing carbon fiber, method for producing same and method for using same
WO2022055235A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2018147617A1 (en) Polyamide-imide film and method for producing same
WO2022065886A1 (en) Low-refractive-index thermosetting composition, optical member formed therefrom, and display apparatus
WO2020159035A1 (en) Polyimide film, flexible substrate using same, and flexible display comprising flexible substrate
WO2020209625A1 (en) Polyamide-imide block copolymer, method for preparing same, and polyamide-imide film comprising same
WO2023003214A1 (en) Fluorine-based polymer with low dielectric constant and fluorine-based polymer composition comprising same
WO2020130552A1 (en) Diamine compound, polyimide precursor using same, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894566

Country of ref document: EP

Kind code of ref document: A1