WO2019132275A1 - Circuit board using lds technique and manufacturing method therefor - Google Patents

Circuit board using lds technique and manufacturing method therefor Download PDF

Info

Publication number
WO2019132275A1
WO2019132275A1 PCT/KR2018/015102 KR2018015102W WO2019132275A1 WO 2019132275 A1 WO2019132275 A1 WO 2019132275A1 KR 2018015102 W KR2018015102 W KR 2018015102W WO 2019132275 A1 WO2019132275 A1 WO 2019132275A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoreactive
coating layer
filler
primer coating
adhesion
Prior art date
Application number
PCT/KR2018/015102
Other languages
French (fr)
Korean (ko)
Inventor
이성모
조용주
유진화
Original Assignee
유림특수화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유림특수화학 주식회사 filed Critical 유림특수화학 주식회사
Publication of WO2019132275A1 publication Critical patent/WO2019132275A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a circuit board and a manufacturing method thereof, and more particularly, to a circuit board using an LDS method capable of enhancing adhesion and adhesion between a metal substrate and a photoreactive coating layer, and a manufacturing method thereof.
  • LDS laser direct structuring
  • MID injection molding device
  • this method requires separate injection molding in order to form a fine pattern using the injection molding. Further, since the composition is not excellent in heat resistance and adhesion stability, there is a problem that when the composition is coated on a substrate, the substrate and the coating film peel off or float during laser processing.
  • a related prior art is Korean Patent Laid-Open Publication No. 10-2014-0091029 (published on July 18, 2014), which discloses a thermoplastic composition for use in forming a laser direct structure substrate.
  • a method of manufacturing a circuit board using an LDS method including: (a) coating a primer coating composition on a substrate and drying the primer coating composition to form a primer coating layer; (b) applying a photoreactive coating composition on the primer coating layer and drying to form a photoreactive coating layer; And (c) selectively irradiating the photoreactive coating layer with a laser to elute the photoreactive filler of the photoreactive coating layer, and plating the eluted photoreactive filler to form a circuit pattern .
  • a circuit board using an LDS method comprising: a substrate; A primer coating layer disposed on the substrate; A photoreactive paint coating layer disposed on the primer coating layer and having a photoreactive filler added thereto; And a circuit pattern formed by plating the photoreactive paint coating layer with the photoreactive filler through selective laser irradiation.
  • the circuit board using the LDS method and its manufacturing method according to the present invention can be manufactured by coating a primer coating layer and a photoreactive coating layer on a base material and then selectively irradiating laser to elute the photoreactive layer of the photoreactive coating layer , It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by plating using only the eluted photoreactive filler as a seed.
  • the circuit board using the LDS method and its manufacturing method according to the present invention can be manufactured by forming a primer coating layer and a photoreactive coating layer on a metal substrate by a coating method, irradiating the photoreactive coating layer directly with a laser,
  • the circuit pattern is formed using the photoreactive filler activated and eluted by the laser irradiation on the surface of the reactive paint coating layer as a seed so that it is possible to form a circuit pattern on the side portion of the substrate which is difficult to form a circuit pattern.
  • the circuit board using the LDS method and the method of manufacturing the same according to the present invention can enhance the adhesion and adhesion between the metal base material and the photoreactive paint coating layer by arranging the primer coating layer between the metal base material and the photoreactive coating layer. It is possible to prevent poor adhesion in the evaluation of the plating adhesion and to prevent a short defect in the lighting test after manufacturing the LED module.
  • FIG. 1 is a sectional view showing a circuit board using an LDS method according to an embodiment of the present invention
  • FIG. 2 is a process flow diagram illustrating a method of manufacturing a circuit board using an LDS method according to an embodiment of the present invention.
  • 3 to 6 are cross-sectional views illustrating a method of manufacturing a circuit board using an LDS method according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating a circuit board using an LDS method according to an embodiment of the present invention.
  • a circuit board 100 using an LDS method includes a substrate 120, a primer coating layer 140, a photoreactive coating layer 160, and a circuit pattern 180 do.
  • the base material 120 may be selected from metals, plastics, glass materials and the like, and more preferably, a metal material having excellent rigidity and strength is used.
  • a metal material having excellent rigidity and strength is used as the metal that can be used as the material of the substrate 120.
  • Al, Cr, Ni, Cu, or the like can be selected.
  • the photoreactive coating layer 160 when the photoreactive coating layer 160 is directly disposed on the base material 120 without forming the primer coating layer 140, the metal base material 120 and the photoreactive coating layer 160 are deposited on the plating solution The adhesive strength may be lowered due to insufficient resistance to the adhesive.
  • the primer coating layer 140 may be formed by applying a primer coating composition on the substrate 120 and drying at 130-170 ⁇ for 10-60 minutes.
  • the primer coating composition comprises 5 to 10% by weight of inorganic filler, 10 to 20% by weight of pigment, 10 to 30% by weight of organic solvent, 0.1 to 1.0% by weight of surface control agent, 0.05 to 1.0% by weight of dispersant, 0.01 to 0.5% %, Adhesion promoter 0.1 to 3.0 wt%, and the balance binder resin.
  • the inorganic filler is added to improve adhesion and adhesion.
  • the inorganic filler at least one selected from talc, calcium carbonate and the like can be used. It is more preferable to use an inorganic filler having an average diameter of 1 mu m or less in order to ensure dispersibility.
  • the addition amount of the inorganic filler is less than 5% by weight of the total weight of the primer coating composition, it may be difficult to secure adhesion and adhesion. On the contrary, when the addition amount of the inorganic filler exceeds 10 wt% of the total weight of the primer coating composition, the dispersibility may not be good due to excessive addition of the inorganic filler.
  • Pigments like inorganic fillers, are added to improve adhesion and adhesion. At this time, TiO2 may be used as the pigment.
  • the organic solvent is added to adjust the viscosity of the primer coating composition.
  • the organic solvent include methyl ethyl ketone, methyl isobutyl ketone, dimethyl ketone, isopropyl alcohol, isobutyl alcohol, At least one selected from the group consisting of normal butyl alcohol, ethyl acetate, ethyl cellusolve and butyl cellusolve may be used.
  • the amount of the organic solvent to be added is less than 10% by weight of the total weight of the primer coating composition, the viscosity of the primer coating composition is low and the dispersibility is poor, so that it may be difficult to prepare the paste in a paste state.
  • the amount of the organic solvent added is more than 30% by weight of the total amount of the primer coating composition, it is difficult to ensure a proper thickness of the coating film due to the excessive amount of the organic solvent during the spray coating using the nozzle .
  • the primer coating layer 140 preferably has a thickness of 20 to 40 ⁇ . If the thickness of the primer coating layer 140 is less than 20 ⁇ , it may be difficult to exhibit the effect of improving the adhesion and adhesion, and since the thickness of the primer coating layer 140 is too thin, It can cause defects. On the contrary, when the thickness of the primer coating layer 140 is more than 40 ⁇ , the thickness of the primer coating layer 140 may be increased only to increase the thickness of the coating layer without increasing the effect.
  • the surface control agent is added to improve the surface modification property of the coating film.
  • polymeric elastomer Polydimethyl siloxane
  • PDMS Polydimethyl siloxane
  • the addition amount of the surface modifier is less than 0.1 wt% of the total weight of the primer coating composition, it may be difficult to exert the surface modifying effect properly. On the other hand, if the addition amount of the surface modifier exceeds 1.0% by weight of the total weight of the primer coating composition, it is not preferable because the production cost is increased only without increasing the effect.
  • the dispersant is added to improve the dispersibility of the base resin, the inorganic filler and the pigment, and an acrylic copolymer may be used.
  • the acrylic copolymer is characterized by being able to uniformly disperse the paint with the polymer polymer and to control the viscosity, and is excellent in thermal decomposition property, non-discoloration property, transparency, weather resistance and easy copolymerization with other components.
  • the anti-settling agent is added to exhibit the anti-settling effect.
  • Such an anti-settling agent may be an amide wax to prevent layer separation.
  • the amide wax means a wax in which polyamide is dispersed in water which is water-soluble and which is a solvent.
  • the adhesion promoter may comprise a copolymer having a hydrophilic functional group.
  • a copolymer having an acidic functional group, -COOH can be used as the adhesion promoter.
  • the adhesion reinforcing agent having such a functional group has an effect of improving the adhesion due to the interaction by the electric bonding, the van der Waals force and the acidic functional group.
  • the binder resin at least one selected from an acryl-based polyol, an ester-based polyol, a melamine resin and an epoxy resin may be used.
  • the acrylic polyol may be, for example, acrylic polyol, and the acrylic polyol may have a weight average molecular weight of 5000 to 100,000.
  • the ester-based polyol is produced by a condensation reaction of a polybasic acid and a polyhydric alcohol.
  • examples thereof include polybasic acids such as isophthalic acid and phthalic anhydride, and ethylene glycol and butane.
  • the ester-based polyol is inexpensive and the manufacturing process is simple.
  • a melamine resin is a thermosetting resin that has excellent water resistance and heat resistance and is prepared by mixing melamine and formalin to form methinol melamine and then dehydrating and condensing the melamine resin.
  • Epoxy resins are synthesized by polymerization of epichlorohydrin and bisphenol A, and have excellent mechanical properties, abrasion resistance, and water resistance when cured.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, novolac type epoxy resin, and the like.
  • the photoreactive coating layer 160 is disposed on the primer coating layer 140.
  • the photoreactive coating layer 160 may be formed by applying a photoreactive coating composition on the primer coating layer 140 and drying at 130-170 ° C for 100-200 minutes.
  • the photoreactive coating composition comprises 10 to 20 wt% of a photoreactive filler, 10 to 40 wt% of an organic solvent, 0.1 to 1.0 wt% of a surface conditioner, 0.05 to 1.0 wt% of a dispersant, 0.01 to 0.5 wt% To 3.0% by weight and the balance binder resin.
  • the photoreactive filler 165 When forming the circuit pattern 180 using the LDS method, the photoreactive filler 165 locally activates only the irradiated portion of the photoreactive coating layer 160 on the substrate 120 by selectively irradiating the laser to activate Reactive filler 165 is eluted to the surface of the photoreactive coating layer 160 and the circuit pattern 180 is formed by plating only the portion where the eluted photoreactive filler 165a is disposed.
  • the photoreactive filler 165 may include a metal compound that can be activated by a laser.
  • photoreactive fillers 165 include copper nitrate (Cu (NO 3 ) 2 ), cupper nitrite Cu 3 N, titanium dioxide (TiO 2 ), antimony oxide may be selected from (antimony oxide, Sb 2 O 3 ), copper phosphate (copper (II) phosphate, Cu 3 (PO 4) 2).
  • As the photoreactive filler 165 those having an average diameter of about 1 mu m or less can be used.
  • the addition amount of the photoreactive filler 165 is less than 10% by weight of the total weight of the photoreactive coating composition, the amount of the plating seed formed during laser irradiation may be insufficient to cause plating defects. On the contrary, when the addition amount of the photoreactive filler 165 exceeds 20% by weight of the total weight of the photoreactive coating composition, it may act as a factor to lower the physical properties of the coating film.
  • the organic solvent is added to control the viscosity of the photoreactive coating composition.
  • the organic solvent include methyl ethyl ketone, methyl isobutyl ketone, dimethyl ketone, isopropyl alcohol, isobutyl alcohol, At least one selected from the group consisting of normal butyl alcohol, ethyl acetate, ethyl cellusolve and butyl cellusolve may be used.
  • the amount of the organic solvent to be added is less than 10% by weight of the total weight of the photoreactive coating composition, the viscosity of the photoreactive coating composition may be lowered and the dispersibility may be poor.
  • the amount of the organic solvent added is more than 40% by weight of the total weight of the photoreactive coating composition, it is difficult to ensure the appropriate thickness of the coating film due to the excessive addition of the organic solvent during the spray coating using the nozzle Can be followed.
  • the surface conditioner, dispersant, anti-settling agent, adhesion promoter and binder resin added to the photoreactive coating composition may be substantially the same as the surface conditioner, dispersant, anti-settling agent, adhesion promoter and binder resin added to the primer coating composition Therefore, redundant description is omitted.
  • the circuit pattern 180 is formed by plating a photoreactive filler 165a, which is selectively irradiated with laser light to the photoreactive paint coating layer 160 to be eluted.
  • a selective laser irradiation is applied to the photoreactive coating layer 160 to dissolve the photoreactive filler 165 of the photoreactive coating layer 160 to the surface, and then the eluted photoreactive filler 165a is used as a seed Plating can be performed to form a circuit pattern 180 having substantially the same shape as the eluted photoreactive filler 165a.
  • a primer coating layer and a photoreactive coating layer are coated on a substrate, and selective laser irradiation is performed to dissolve the photoreactive layer of the photoreactive coating layer It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by performing plating using only the eluted photoreactive filler as a seed.
  • a primer coating layer and a photoreactive coating layer were formed on a substrate made of metal by a coating method, and a laser was irradiated directly to the photoreactive coating layer,
  • a circuit pattern can be formed using a photoreactive filler that is activated and eluted by the laser irradiation on the surface of the paint coating layer as a seed, so that it is possible to form a circuit pattern on the side surface of the substrate, which is difficult to form a circuit pattern.
  • the circuit board using the LDS method according to the embodiment of the present invention can improve the adhesion and adhesion between the metal base material and the photoreactive paint coating layer by disposing a primer coating layer between the metal base material and the photoreactive coating layer It is possible to prevent adhesion failure in the evaluation of the plating adhesion and to prevent a short defect in the lighting test after manufacturing the LED module.
  • FIG. 2 is a process flow chart illustrating a method of manufacturing a circuit board using the LDS method according to an embodiment of the present invention
  • FIGS. 3 to 6 are process sectional views illustrating a method of manufacturing a circuit board using the LDS method according to an embodiment of the present invention .
  • a method of manufacturing a circuit board using an LDS method includes forming a primer coating layer (S110), forming a photoreactive coating layer (S120), and forming a circuit pattern (S130) do.
  • a primer coating composition is applied onto a base material 120 and dried to form a primer coating layer 140.
  • the base material 120 may be selected from metal, plastic, and glass materials, and more preferably, a metal material having excellent rigidity and strength is used.
  • a metal material having excellent rigidity and strength is used as the metal that can be used as the material of the substrate 120.
  • Al, Cr, Ni, Cu, or the like can be selected.
  • the primer coating composition comprises 5 to 10% by weight of inorganic filler, 10 to 20% by weight of pigment, 10 to 30% by weight of organic solvent, 0.1 to 1.0% by weight of surface control agent, 0.05 to 1.0% ⁇ 0.5 wt%, adhesion promoter 0.1 ⁇ 3.0 wt%, and the balance binder resin.
  • the drying is preferably performed at 130 to 170 ° C for 10 to 60 minutes. At this time, if the drying temperature is less than 130 ° C or the drying time is less than 10 minutes, the primer coating composition may not be sufficiently dried and may not uniformly adhere to the substrate. On the contrary, when the drying temperature exceeds 170 DEG C or the drying time exceeds 60 minutes, it may be a factor that raises the manufacturing cost without further increase in the effect, which is not preferable.
  • the primer coating layer 140 is preferably formed to a thickness of 20 to 40 ⁇ .
  • the thickness of the primer coating layer 140 is less than 20 ⁇ , it may be difficult to exhibit the adhesion improving effect properly, and the thickness of the primer coating layer 140 may be too thin to cause a short defect in the lighting test after the LED module is manufactured on the substrate .
  • the thickness of the primer coating layer 140 is more than 40 ⁇ , the thickness of the primer coating layer 140 may be increased only to increase the thickness of the coating layer without increasing the effect.
  • a photoreactive coating composition is coated on a primer coating layer 140 and dried to form a photoreactive coating layer 160.
  • the photoreactive coating composition comprises 10 to 20 wt% of a photoreactive filler, 10 to 40 wt% of an organic solvent, 0.1 to 1.0 wt% of a surface conditioner, 0.05 to 1.0 wt% of a dispersant, 0.01 to 0.5 wt% of an anticorrosive agent, Percent by weight, and the balance binder resin.
  • drying is preferably performed at 130 to 170 ° C for 100 to 200 minutes.
  • the drying temperature is less than 130 ° C or the drying time is less than 100 minutes in this step, the photoreactive coating composition may not be sufficiently dried and may not be uniformly adhered to the primer coating layer 140, resulting in a decrease in adhesion and adhesion .
  • the drying temperature exceeds 170 ° C or the drying time exceeds 200 minutes, there is a fear that the film quality is not good due to excessive drying.
  • the photoreactive coating layer is selectively laser-irradiated to elute the photoreactive filler of the photoreactive coating layer, and the eluted photoreactive filler is plated Thereby forming a circuit pattern.
  • a selective laser L is irradiated from the laser beam 200 to the photoreactive coating layer 160 to form a photoreactive layer 165 of the photoreactive coating layer 160 on the surface .
  • the photoreactive filler 165a which is selectively eluted only to the portion irradiated with the laser beam 200 by the laser beam 200, is disposed on the surface of the photoreactive coating layer 160.
  • plating is performed using the eluted photoreactive filler as a seed to form a circuit pattern having the same shape as the eluted photoreactive filler.
  • the circuit substrate using the LDS method according to the embodiment of the present invention manufactured by the above-described processes (S110 to S130) is formed by coating a primer coating layer and a photoreactive coating layer on a substrate, It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by eluting the photoreactive filler of the reactive paint coating layer and plating using only the eluted photoreactive filler as a seed.
  • the circuit board using the LDS method which is manufactured by the method according to the embodiment of the present invention, forms a primer coating layer and a photoreactive coating layer by coating on a metal substrate, A circuit pattern is formed using the photoreactive filler activated by laser irradiation on the surface of the photoreactive coating layer as a seed, so that it is possible to form a circuit pattern on the side portion of the substrate, which is difficult to form a circuit pattern have.
  • the circuit board using the LDS method manufactured by the method according to the embodiment of the present invention can improve the adhesion between the base material of the metal material and the photoreactive paint coating layer and the adhesion between the metal base material and the photoreactive paint coating layer, It is possible to prevent adherence failure in evaluating the adhesion of plating and to prevent a short defect in the lighting test after fabricating the LED module.
  • Al (Talc) 7 wt%, TiO 2 % Of a dispersant, 0.3 wt.% Of an amidewax, 2.0 wt.% Of an adhesion promoter, and the remaining acrylic polyol. was applied to a thickness of 30 ⁇ and dried at 150 ⁇ for 30 minutes to prepare a primer coating layer.
  • the photoreactive paint coating layer was selectively irradiated with a laser of 3W power to elute the photoreactive filler of the photoreactive coating layer, and electroplated on the photoreactive reactive filler to form a circuit pattern, thereby forming a circuit board .
  • a circuit board was prepared in the same manner as in Example 1, except that the primer coating composition was applied in a thickness of 25 ⁇ and dried at 130 ⁇ for 40 minutes to prepare a primer coating layer.
  • a circuit board was prepared in the same manner as in Example 1, except that the primer coating composition was applied in a thickness of 35 ⁇ and dried at 160 ⁇ for 20 minutes to prepare a primer coating layer.
  • a circuit board was prepared in the same manner as in Example 1, except that the photoreactive coating composition was applied in a thickness of 60 ⁇ and dried at 170 ⁇ for 110 minutes to prepare a photoreactive coating layer.
  • the photoreactive paint coating layer was selectively irradiated with a laser of 3W power to elute the photoreactive filler of the photoreactive coating layer, and electroplated on the photoreactive reactive filler to form a circuit pattern, thereby forming a circuit board .
  • Table 1 shows the results of physical properties evaluation of the specimens prepared according to Examples 1 to 4 and Comparative Example 1.
  • the adhesion was evaluated based on the provisions of JIS K 5400.
  • the sample was subjected to a humidifying treatment at 40 ⁇ ⁇ and 92% RH for 12 hours, followed by a humidifying treatment at 80 ⁇ ⁇ and 90% RH for 12 hours.
  • a 5% sodium hydroxide aqueous solution was immersed at room temperature for 96 hours and then measured. "Good” when it is the same as the initial state, “Normal” when the cracking and discoloration is 50% or less, and “Poor” when the crack or discoloration is 50% or more.
  • a 5% hydrochloric acid aqueous solution was immersed at room temperature for 96 hours and then measured.
  • Examples 1 to 4 exhibited excellent adhesion, alkali resistance, and acid resistance. Particularly, when the coating film shear force was measured to be 86 N or more, it was confirmed that the adhesive properties were excellent.
  • Comparative Example 1 exhibited excellent alkali resistance and acid resistance, but the adhesion was moderate, and the film shear force measurement was only 53N.

Abstract

Disclosed are a circuit board using the LDS technique capable of strengthening the adhesion and bonding force between a substrate of a metallic material and a photo-reactive paint coating layer, and a manufacturing method therefor.

Description

LDS 방식을 이용한 회로 기판 및 그 제조 방법Circuit board using LDS method and manufacturing method thereof
본 발명은 회로기판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 금속 재질의 기재와 광반응성 도료 코팅층 간의 밀착력 및 부착력을 강화시킬 수 있는 LDS 방식을 이용한 회로 기판 및 그 제조 방법에 관한 것이다.The present invention relates to a circuit board and a manufacturing method thereof, and more particularly, to a circuit board using an LDS method capable of enhancing adhesion and adhesion between a metal substrate and a photoreactive coating layer, and a manufacturing method thereof.
최근, 레이저 처리와 도금으로 정확한 패턴과 회로를 형성하는 레이저 직접 구조화(Laser Direct Structuring, LDS)가 사용되고 있다. LDS는 사출물에 레이저 활성화(Laser Activation) 및 무전해 도금 처리를 하는 공정을 포함하는 간단한 공정으로 패턴과 회로를 형성할 수 있다. 구체적으로, 레이저 빔이 사출 성형 소자(MID) 상에서 이동하여 전도성 경로를 배치하고자 하는 위치에서 플라스틱 표면을 활성화한 후, 레이저 직접 구조화용 조성물을 사용하면 작은 전도성 경로 폭(예: 150㎛ 이하)을 얻을 수 있어, 세밀한 패턴을 표현하는 것이 가능하다는 장점이 있다.In recent years, laser direct structuring (LDS) has been used to form accurate patterns and circuits by laser processing and plating. LDS can form patterns and circuits in a simple process involving laser activation and electroless plating of the injection. Specifically, after activating the plastic surface at a position where the laser beam is moved on the injection molding device (MID) to place the conductive path, using a composition for direct direct structuring of the laser, a small conductive path width (for example, So that it is possible to express a fine pattern.
그러나, 이러한 방법은 사출물을 이용하여 미세 패턴을 형성하는 점에서 별도의 사출물을 필요로 한다. 또한, 조성물의 내열성 및 부착 안정성이 우수하지 못해, 기판 상에 조성물을 도장한 후 레이저 가공 시, 기판과 도막이 박리되거나 들뜨는 현상이 발생한다는 문제점이 있다.However, this method requires separate injection molding in order to form a fine pattern using the injection molding. Further, since the composition is not excellent in heat resistance and adhesion stability, there is a problem that when the composition is coated on a substrate, the substrate and the coating film peel off or float during laser processing.
관련 선행문헌으로는 대한민국 공개특허공보 10-2014-0091029호(2014.07.18. 공개)가 있으며, 상기 문헌에는 레이저 직접 구조체 기판의 형성에 사용하기 위한 열가소성 조성물이 기재되어 있다.A related prior art is Korean Patent Laid-Open Publication No. 10-2014-0091029 (published on July 18, 2014), which discloses a thermoplastic composition for use in forming a laser direct structure substrate.
본 발명의 목적은 금속 재질의 기재와 광반응성 도료 코팅층 간의 밀착력 및 부착력을 강화시킬 수 있는 LDS 방식을 이용한 회로 기판 및 그 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a circuit board using the LDS method capable of enhancing adhesion and adhesion between a metal base material and a photoreactive coating layer, and a manufacturing method thereof.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법은 (a) 기재 상에 프라이머 도료 조성물을 도포하고, 건조하여 프라이머 도료 코팅층을 형성하는 단계; (b) 상기 프라이머 도료 코팅층 상에 광반응성 도료 조성물을 도포하고, 건조하여 광반응성 도료 코팅층을 형성하는 단계; 및 (c) 상기 광반응성 도료 코팅층에 선택적인 레이저 조사를 실시하여 상기 광반응성 도료 코팅층의 광반응성 필러를 용출시키고, 상기 용출된 광반응성 필러에 도금을 실시하여 회로패턴을 형성하는 단계;를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of manufacturing a circuit board using an LDS method, including: (a) coating a primer coating composition on a substrate and drying the primer coating composition to form a primer coating layer; (b) applying a photoreactive coating composition on the primer coating layer and drying to form a photoreactive coating layer; And (c) selectively irradiating the photoreactive coating layer with a laser to elute the photoreactive filler of the photoreactive coating layer, and plating the eluted photoreactive filler to form a circuit pattern .
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판은 기재; 상기 기재 상에 배치된 프라이머 도료 코팅층; 상기 프라이머 도료 코팅층 상에 배치되며, 광반응성 필러가 첨가된 광반응성 도료 코팅층; 및 상기 광반응성 도료 코팅층에 선택적인 레이저 조사가 실시되어 용출되는 상기 광반응성 필러에 도금되어 형성된 회로패턴;을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a circuit board using an LDS method, comprising: a substrate; A primer coating layer disposed on the substrate; A photoreactive paint coating layer disposed on the primer coating layer and having a photoreactive filler added thereto; And a circuit pattern formed by plating the photoreactive paint coating layer with the photoreactive filler through selective laser irradiation.
본 발명에 따른 LDS 방식을 이용한 회로 기판 및 그 제조 방법은 기재 상에 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 도장한 후, 선택적인 레이저 조사를 실시하여 광반응성 도료 코팅층의 광반응성 필러를 용출시킨 후, 용출된 광반응성 필러만을 씨드로 이용한 도금을 실시하는 것에 의해, 용출된 광반응성 필러와 동일한 형태를 갖는 회로패턴을 형성하는 것이 가능해질 수 있다.The circuit board using the LDS method and its manufacturing method according to the present invention can be manufactured by coating a primer coating layer and a photoreactive coating layer on a base material and then selectively irradiating laser to elute the photoreactive layer of the photoreactive coating layer , It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by plating using only the eluted photoreactive filler as a seed.
이 결과, 본 발명에 따른 LDS 방식을 이용한 회로 기판 및 그 제조 방법은 금속 재질의 기재 상에 코팅 방식으로 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 형성하고, 광반응성 도료 코팅층에 직접 레이저를 조사하여 광반응성 도료 코팅층의 표면으로 레이저 조사에 의해 활성화되어 용출되는 광반응성 필러를 씨드로 이용하여 회로패턴이 형성되므로, 회로패턴 형성이 어려운 기재의 측면 부분에도 회로패턴을 형성하는 것이 가능해질 수 있다.As a result, the circuit board using the LDS method and its manufacturing method according to the present invention can be manufactured by forming a primer coating layer and a photoreactive coating layer on a metal substrate by a coating method, irradiating the photoreactive coating layer directly with a laser, The circuit pattern is formed using the photoreactive filler activated and eluted by the laser irradiation on the surface of the reactive paint coating layer as a seed so that it is possible to form a circuit pattern on the side portion of the substrate which is difficult to form a circuit pattern.
또한, 본 발명에 따른 LDS 방식을 이용한 회로 기판 및 그 제조 방법은 금속 재질의 기재와 광반응성 도료 코팅층 사이에 프라이머 도료 코팅층을 배치시킴으로써, 금속 재질의 기재와 광반응성 도료 코팅층 간의 밀착력 및 부착력을 강화시키는 것에 의해 도금 밀착력 평가시 밀착력 불량 발생과 더불어, LED 모듈 제작 후 점등 시험에서의 쇼트 불량을 미연에 방지할 수 있는 효과가 있다.In addition, the circuit board using the LDS method and the method of manufacturing the same according to the present invention can enhance the adhesion and adhesion between the metal base material and the photoreactive paint coating layer by arranging the primer coating layer between the metal base material and the photoreactive coating layer. It is possible to prevent poor adhesion in the evaluation of the plating adhesion and to prevent a short defect in the lighting test after manufacturing the LED module.
도 1은 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판을 나타낸 단면도.1 is a sectional view showing a circuit board using an LDS method according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법을 나타낸 공정 순서도.2 is a process flow diagram illustrating a method of manufacturing a circuit board using an LDS method according to an embodiment of the present invention.
도 3 내지 도 6은 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법을 나타낸 공정 단면도.3 to 6 are cross-sectional views illustrating a method of manufacturing a circuit board using an LDS method according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and how to accomplish them, will become apparent by reference to the embodiments described in detail below with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 LDS 방식을 이용한 회로 기판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Hereinafter, a circuit board using LDS method according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판을 나타낸 단면도이다.1 is a cross-sectional view illustrating a circuit board using an LDS method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판(100)은 기재(120), 프라이머 도료 코팅층(140), 광반응성 도료 코팅층(160) 및 회로패턴(180)을 포함한다.Referring to FIG. 1, a circuit board 100 using an LDS method according to an embodiment of the present invention includes a substrate 120, a primer coating layer 140, a photoreactive coating layer 160, and a circuit pattern 180 do.
기재(120)는 금속, 플라스틱, 유리 재질 등에서 선택될 수 있으며, 이 중 강성 및 강도가 우수한 금속 재질을 이용하는 것이 보다 바람직하다. 기재(120)의 재질로 사용될 수 있는 금속으로는 Al, Cr, Ni, Cu 등에서 선택될 수 있다.The base material 120 may be selected from metals, plastics, glass materials and the like, and more preferably, a metal material having excellent rigidity and strength is used. As the metal that can be used as the material of the substrate 120, Al, Cr, Ni, Cu, or the like can be selected.
프라이머 도료 코팅층(140)은 기재(120) 상에 배치된다. 특히, 프라이머 도료 코팅층(140)은 금속 재질의 기재(120)와 광반응성 도료 코팅층(160)의 사이에 부착되어, 밀착력 및 부착력을 향상시키는 역할을 한다.The primer coating layer 140 is disposed on the substrate 120. Particularly, the primer coating layer 140 is attached between the substrate 120 made of a metal and the photoreactive coating layer 160 to improve adhesion and adhesion.
따라서, 기재(120) 상에 프라이머 도료 코팅층(140)을 형성하는 것 없이 직접 광반응성 도료 코팅층(160)을 배치시키게 되면, 금속 재질의 기재(120)와 광반응성 도료 코팅층(160)이 도금 용액에 대한 내성 부족으로 밀착력이 저하될 수 있다.Therefore, when the photoreactive coating layer 160 is directly disposed on the base material 120 without forming the primer coating layer 140, the metal base material 120 and the photoreactive coating layer 160 are deposited on the plating solution The adhesive strength may be lowered due to insufficient resistance to the adhesive.
이러한 프라이머 도료 코팅층(140)은 기재(120) 상에 프라이머 도료 조성물을 도포하고, 130 ~ 170℃에서 10 ~ 60분 동안 건조하는 것에 의해 형성될 수 있다.The primer coating layer 140 may be formed by applying a primer coating composition on the substrate 120 and drying at 130-170 캜 for 10-60 minutes.
이때, 프라이머 도료 조성물은 무기필러 5 ~ 10 중량%, 안료 10 ~ 20 중량%, 유기 용매 10 ~ 30 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함한다.The primer coating composition comprises 5 to 10% by weight of inorganic filler, 10 to 20% by weight of pigment, 10 to 30% by weight of organic solvent, 0.1 to 1.0% by weight of surface control agent, 0.05 to 1.0% by weight of dispersant, 0.01 to 0.5% %, Adhesion promoter 0.1 to 3.0 wt%, and the balance binder resin.
무기필러는 밀착력 및 접착력을 향상시키기 위해 첨가된다. 이때, 무기필러로는 탈크(Talc), 탄산칼슘 등에서 선택된 1종 이상이 이용될 수 있다. 이러한 무기필러로는 분산성 확보를 위해, 1㎛ 이하의 평균 직경을 갖는 것을 이용하는 것이 보다 바람직하다.The inorganic filler is added to improve adhesion and adhesion. At this time, as the inorganic filler, at least one selected from talc, calcium carbonate and the like can be used. It is more preferable to use an inorganic filler having an average diameter of 1 mu m or less in order to ensure dispersibility.
무기필러의 첨가량이 프라이머 도료 조성물 전체 중량의 5 중량% 미만일 경우에는 밀착력 및 접착력 확보에 어려움이 따를 수 있다. 반대로, 무기필러의 첨가량이 프라이머 도료 조성물 전체 중량의 10 중량%를 초과할 경우에는 무기필러의 과도한 첨가로 인하여 분산성이 좋지 않을 수 있다.When the addition amount of the inorganic filler is less than 5% by weight of the total weight of the primer coating composition, it may be difficult to secure adhesion and adhesion. On the contrary, when the addition amount of the inorganic filler exceeds 10 wt% of the total weight of the primer coating composition, the dispersibility may not be good due to excessive addition of the inorganic filler.
안료는 무기필러와 마찬가지로 밀착력 및 접착력을 향상시키기 위해 첨가된다. 이때, 안료로는 TiO2가 이용될 수 있다.Pigments, like inorganic fillers, are added to improve adhesion and adhesion. At this time, TiO2 may be used as the pigment.
유기 용매는 프라이머 도료 조성물의 점도를 조절하기 위해 첨가된다. 이러한 유기 용매로는 메틸 에틸 케톤(methyl ethyl ketone), 메틸 아이소부틸 케톤(methyl isobutyl ketone), 다이메틸 케톤(dimethyl ketone), 아이소프로필 알콜(isopropyl alcohol), 아이소부틸 알콜(isobutyl alcohol), 노르말 부틸 알콜(normal butyl alcohol), 에틸 아세테이트(ethyl acetate), 에틸 셀루솔브(ethyl cellusolve), 부틸 셀루솔브(butyl cellusolve) 등에서 선택된 1종 이상이 이용될 수 있다.The organic solvent is added to adjust the viscosity of the primer coating composition. Examples of the organic solvent include methyl ethyl ketone, methyl isobutyl ketone, dimethyl ketone, isopropyl alcohol, isobutyl alcohol, At least one selected from the group consisting of normal butyl alcohol, ethyl acetate, ethyl cellusolve and butyl cellusolve may be used.
이러한 유기 용매의 첨가량이 프라이머 도료 조성물 전체 중량의 10 중량% 미만일 경우에는 프라이머 도료 조성물의 점도가 낮아져 분산성이 좋지 못하여 페이스트 상태로 제조하는데 어려움이 따를 수 있다. 반대로, 유기 용매의 첨가량이 프라이머 도료 조성물 전체 중량의 30 중량%를 초과할 경우에는 노즐을 이용한 스프레이 코팅 시 유기 용매의 과도한 첨가로 인하여 프라이머 도료 조성물이 흘러내려 도막의 적정 두께를 확보하는데 어려움이 따를 수 있다.When the amount of the organic solvent to be added is less than 10% by weight of the total weight of the primer coating composition, the viscosity of the primer coating composition is low and the dispersibility is poor, so that it may be difficult to prepare the paste in a paste state. On the other hand, when the amount of the organic solvent added is more than 30% by weight of the total amount of the primer coating composition, it is difficult to ensure a proper thickness of the coating film due to the excessive amount of the organic solvent during the spray coating using the nozzle .
이를 위해, 프라이머 도료 코팅층(140)은 20 ~ 40㎛의 두께를 갖는 것이 바람직하다. 프라이머 도료 코팅층(140)의 두께가 20㎛ 미만일 경우에는 밀착력 및 부착력 향상 효과를 제대로 발휘하는데 어려움이 따를 수 있으며, 그 두께가 너무 얇아 기재(120) 상에 LED 모듈을 제작한 후 점등 시험시 쇼트 불량을 유발할 수 있다. 반대로, 프라이머 도료 코팅층(140)의 두께가 40㎛를 초과할 경우에는 더 이상의 효과 상승 없이 도막 두께만을 증가시키는 요인으로 작용할 수 있으므로, 바람직하지 못하다.For this purpose, the primer coating layer 140 preferably has a thickness of 20 to 40 탆. If the thickness of the primer coating layer 140 is less than 20 탆, it may be difficult to exhibit the effect of improving the adhesion and adhesion, and since the thickness of the primer coating layer 140 is too thin, It can cause defects. On the contrary, when the thickness of the primer coating layer 140 is more than 40 탆, the thickness of the primer coating layer 140 may be increased only to increase the thickness of the coating layer without increasing the effect.
표면 조절제는 도막의 표면 개질 특성을 향상시키기 위해 첨가된다. 이를 위해, 표면 조절제로는 고분자 탄성 중합체인 PDMS(Polydimethyl siloxane)가 이용될 수 있다. PDMS는 실리콘으로 이루어진 고분자 중합체로, 내구성과 유연성이 우수하고 투명한 성질을 지닌다.The surface control agent is added to improve the surface modification property of the coating film. For this purpose, polymeric elastomer, PDMS (Polydimethyl siloxane), may be used as the surface modifier. PDMS is a high molecular polymer made of silicon and has excellent durability and flexibility and is transparent.
표면 조절제의 첨가량이 프라이머 도료 조성물 전체 중량의 0.1 중량% 미만일 경우에는 표면 개질 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 표면 조절제의 첨가량이 프라이머 도료 조성물 전체 중량의 1.0 중량%를 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용만을 상승시킬 우려가 크므로, 바람직하지 못하다.If the addition amount of the surface modifier is less than 0.1 wt% of the total weight of the primer coating composition, it may be difficult to exert the surface modifying effect properly. On the other hand, if the addition amount of the surface modifier exceeds 1.0% by weight of the total weight of the primer coating composition, it is not preferable because the production cost is increased only without increasing the effect.
분산제는 베이스 수지와 무기필러 및 안료의 분산성을 향상시키기 위해 첨가되는 것으로, 아크릴계 공중합체(copolymer)가 이용될 수 있다. 아크릴계 공중합체는 고분자 폴리머로 도료를 고르게 분산시키고, 점도를 조절할 수 있으며, 열분해성, 무변색성, 투명성, 내후성이 우수하고 다른 성분과의 공중합이 용이한 특징이 있다.The dispersant is added to improve the dispersibility of the base resin, the inorganic filler and the pigment, and an acrylic copolymer may be used. The acrylic copolymer is characterized by being able to uniformly disperse the paint with the polymer polymer and to control the viscosity, and is excellent in thermal decomposition property, non-discoloration property, transparency, weather resistance and easy copolymerization with other components.
침강방지제는 침강 방지 효과를 발휘하기 위해 첨가된다. 이러한 침강방지제는 층상 분리를 방지하기 위해 아미드왁스(amidewax)가 이용될 수 있다. 아미드 왁스는 수용성으로 용제인 물에 폴리아미드가 분산된 상태의 왁스를 의미한다.The anti-settling agent is added to exhibit the anti-settling effect. Such an anti-settling agent may be an amide wax to prevent layer separation. The amide wax means a wax in which polyamide is dispersed in water which is water-soluble and which is a solvent.
부착보강제는 친수성 작용기를 갖는 공중합체(copolymer)를 포함할 수 있다. 예를 들어, 부착보강제는 -COOH인 산성 작용기를 갖는 공중합체가 사용될 수 있다. 이러한 작용기를 갖는 부착보강제는 전기적 결합, 반데르 발스 힘, 산성 작용기에 의한 상호 작용으로 부착성이 향상되는 효과가 있다.The adhesion promoter may comprise a copolymer having a hydrophilic functional group. For example, a copolymer having an acidic functional group, -COOH, can be used as the adhesion promoter. The adhesion reinforcing agent having such a functional group has an effect of improving the adhesion due to the interaction by the electric bonding, the van der Waals force and the acidic functional group.
바인더 수지는 아크릴계 폴리올, 에스테르계 폴리올, 멜라민 수지 및 에폭시 수지 중 선택된 1종 이상이 이용될 수 있다. 아크릴계 폴리올은 예를 들어, 아크릴릭 폴리올(acrylic polyol) 등이 사용될 수 있으며, 아크릴계 폴리올의 중량평균분자량은 5000~100,000일 수 있다.As the binder resin, at least one selected from an acryl-based polyol, an ester-based polyol, a melamine resin and an epoxy resin may be used. The acrylic polyol may be, for example, acrylic polyol, and the acrylic polyol may have a weight average molecular weight of 5000 to 100,000.
에스테르계 폴리올은 다염기산과 다가알코올의 축합반응에 의해 생성된다. 예를 들어, 이소프탈산, 무수프탈산 등의 다염기산과 에틸렌글리콜, 부탄을 포함한다. 디올, 펜탄디올 등의 다가알코올을 반응시켜 에스테르계 폴리올을 생성한다. 에스테르계 폴리올은 가격이 저렴하고 제조 공정이 간단하다.The ester-based polyol is produced by a condensation reaction of a polybasic acid and a polyhydric alcohol. Examples thereof include polybasic acids such as isophthalic acid and phthalic anhydride, and ethylene glycol and butane. Diol, pentanediol, or other polyhydric alcohol to produce an ester-based polyol. The ester-based polyol is inexpensive and the manufacturing process is simple.
멜라민 수지는 우수한 내수성, 내열성을 가지며, 멜라민과 포르말린을 혼합하여 가열하여 메티놀 멜라민을 형성한 후, 탈수축합 과정을 통해 제조되는 상의 열경화성 수지이다.A melamine resin is a thermosetting resin that has excellent water resistance and heat resistance and is prepared by mixing melamine and formalin to form methinol melamine and then dehydrating and condensing the melamine resin.
에폭시 수지는 에피크로로히드린과 비스페놀 A를 중합하여 조되며, 경화 시 기계적 성질, 내마모성, 내수성 등이 우수한 특징이 있다. 예를 들어, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 노볼락 타입의 에폭시 수지 등이 있다.Epoxy resins are synthesized by polymerization of epichlorohydrin and bisphenol A, and have excellent mechanical properties, abrasion resistance, and water resistance when cured. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, and the like.
광반응성 도료 코팅층(160)은 프라이머 도료 코팅층(140) 상에 배치된다. 이러한 광반응성 도료 코팅층(160)은 프라이머 도료 코팅층(140) 상에 광반응성 도료 조성물을 도포하고, 130 ~ 170℃에서 100 ~ 200분 동안 건조하는 것에 의해 형성될 수 있다.The photoreactive coating layer 160 is disposed on the primer coating layer 140. The photoreactive coating layer 160 may be formed by applying a photoreactive coating composition on the primer coating layer 140 and drying at 130-170 ° C for 100-200 minutes.
이때, 광반응성 도료 조성물은 광반응성 필러 10 ~ 20 중량%, 유기 용매 10 ~ 40 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함한다.In this case, the photoreactive coating composition comprises 10 to 20 wt% of a photoreactive filler, 10 to 40 wt% of an organic solvent, 0.1 to 1.0 wt% of a surface conditioner, 0.05 to 1.0 wt% of a dispersant, 0.01 to 0.5 wt% To 3.0% by weight and the balance binder resin.
광반응성 필러(165)는 LDS 방식을 이용하여 회로패턴(180)을 형성할 시, 기재(120) 상의 광반응성 도료 코팅층(160)에 선택적으로 레이저를 조사하여 조사시킨 부분만을 국부적으로 활성화시켜 활성화된 광반응성 필러(165)가 광반응성 도료 코팅층(160)의 표면으로 용출되어, 용출된 광반응성 필러(165a)가 배치된 부분만을 도금 처리하는 방식으로 회로패턴(180)을 형성하게 된다.When forming the circuit pattern 180 using the LDS method, the photoreactive filler 165 locally activates only the irradiated portion of the photoreactive coating layer 160 on the substrate 120 by selectively irradiating the laser to activate Reactive filler 165 is eluted to the surface of the photoreactive coating layer 160 and the circuit pattern 180 is formed by plating only the portion where the eluted photoreactive filler 165a is disposed.
이를 위해, 광반응성 필러(165)로는 레이저에 의해 활성화될 수 있는 금속 화합물을 포함할 수 있다. 이러한 광반응성 필로(165)로는, 예를 들어, 질산구리(copper nitrate, Cu(NO3)2), 구리질화물(cupper nitrite Cu3N), 산화티타늄(titanium dioxide, TiO2), 산화안티모니(antimony oxide, Sb2O3), 구리 인산염(copper(II) phosphate, Cu3(PO4)2) 등에서 선택될 수 있다. 광반응성 필러(165)로는 대략 1㎛ 이하의 평균 직경을 갖는 것이 이용될 수 있다.For this, the photoreactive filler 165 may include a metal compound that can be activated by a laser. Examples of such photoreactive fillers 165 include copper nitrate (Cu (NO 3 ) 2 ), cupper nitrite Cu 3 N, titanium dioxide (TiO 2 ), antimony oxide may be selected from (antimony oxide, Sb 2 O 3 ), copper phosphate (copper (II) phosphate, Cu 3 (PO 4) 2). As the photoreactive filler 165, those having an average diameter of about 1 mu m or less can be used.
이러한 광반응성 필러(165)의 첨가량이 광반응성 도료 조성물 전체 중량의 10 중량% 미만일 경우에는 레이저 조사시 도금 시드 형성량이 부족하여 도금 불량을 유발할 수 있다. 반대로, 광반응성 필러(165)의 첨가량이 광반응성 도료 조성물 전체 중량의 20 중량%를 초과할 경우에는 도막의 물성을 저하시키는 요인으로 작용할 수 있다.If the addition amount of the photoreactive filler 165 is less than 10% by weight of the total weight of the photoreactive coating composition, the amount of the plating seed formed during laser irradiation may be insufficient to cause plating defects. On the contrary, when the addition amount of the photoreactive filler 165 exceeds 20% by weight of the total weight of the photoreactive coating composition, it may act as a factor to lower the physical properties of the coating film.
유기 용매는 광반응성 도료 조성물의 점도를 조절하기 위해 첨가된다. 이러한 유기 용매로는 메틸 에틸 케톤(methyl ethyl ketone), 메틸 아이소부틸 케톤(methyl isobutyl ketone), 다이메틸 케톤(dimethyl ketone), 아이소프로필 알콜(isopropyl alcohol), 아이소부틸 알콜(isobutyl alcohol), 노르말 부틸 알콜(normal butyl alcohol), 에틸 아세테이트(ethyl acetate), 에틸 셀루솔브(ethyl cellusolve), 부틸 셀루솔브(butyl cellusolve) 등에서 선택된 1종 이상이 이용될 수 있다.The organic solvent is added to control the viscosity of the photoreactive coating composition. Examples of the organic solvent include methyl ethyl ketone, methyl isobutyl ketone, dimethyl ketone, isopropyl alcohol, isobutyl alcohol, At least one selected from the group consisting of normal butyl alcohol, ethyl acetate, ethyl cellusolve and butyl cellusolve may be used.
이러한 유기 용매의 첨가량이 광반응성 도료 조성물 전체 중량의 10 중량% 미만일 경우에는 광반응성 도료 조성물의 점도가 낮아져 분산성이 좋지 못하여 페이스트 상태로 제조하는데 어려움이 따를 수 있다. 반대로, 유기 용매의 첨가량이 광반응성 도료 조성물 전체 중량의 40 중량%를 초과할 경우에는 노즐을 이용한 스프레이 코팅 시 유기 용매의 과도한 첨가로 인하여 광반응성 도료 조성물이 흘러내려 도막의 적정 두께를 확보하는데 어려움이 따를 수 있다.When the amount of the organic solvent to be added is less than 10% by weight of the total weight of the photoreactive coating composition, the viscosity of the photoreactive coating composition may be lowered and the dispersibility may be poor. On the contrary, when the amount of the organic solvent added is more than 40% by weight of the total weight of the photoreactive coating composition, it is difficult to ensure the appropriate thickness of the coating film due to the excessive addition of the organic solvent during the spray coating using the nozzle Can be followed.
이 밖에, 광반응성 도료 조성물에 첨가되는 표면조절제, 분산제, 침강방지제, 부착보강제 및 바인더 수지는 프라이머 도료 조성물에 첨가되는 표면조절제, 분산제, 침강방지제, 부착보강제 및 바인더 수지와 실질적으로 동일한 것이 이용될 수 있으므로, 중복 설명은 생략하도록 한다.In addition, the surface conditioner, dispersant, anti-settling agent, adhesion promoter and binder resin added to the photoreactive coating composition may be substantially the same as the surface conditioner, dispersant, anti-settling agent, adhesion promoter and binder resin added to the primer coating composition Therefore, redundant description is omitted.
회로패턴(180)은 광반응성 도료 코팅층(160)에 선택적인 레이저 조사가 실시되어 용출되는 광반응성 필러(165a)에 도금되어 형성된다.The circuit pattern 180 is formed by plating a photoreactive filler 165a, which is selectively irradiated with laser light to the photoreactive paint coating layer 160 to be eluted.
즉, 광반응성 도료 코팅층(160)에 선택적인 레이저 조사를 실시하여 광반응성 도료 코팅층(160)의 광반응성 필러(165)를 표면으로 용출시킨 후, 용출된 광반응성 필러(165a)를 씨드로 이용한 도금을 실시하여, 용출된 광반응성 필러(165a)와 실질적으로 동일한 형태를 갖는 회로패턴(180)을 형성할 수 있게 된다.That is, a selective laser irradiation is applied to the photoreactive coating layer 160 to dissolve the photoreactive filler 165 of the photoreactive coating layer 160 to the surface, and then the eluted photoreactive filler 165a is used as a seed Plating can be performed to form a circuit pattern 180 having substantially the same shape as the eluted photoreactive filler 165a.
전술한 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판은 기재 상에 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 도장한 후, 선택적인 레이저 조사를 실시하여 광반응성 도료 코팅층의 광반응성 필러를 용출시킨 후, 용출된 광반응성 필러만을 씨드로 이용한 도금을 실시하는 것에 의해, 용출된 광반응성 필러와 동일한 형태를 갖는 회로패턴을 형성하는 것이 가능해질 수 있다.In the circuit board using the LDS method according to the embodiment of the present invention, a primer coating layer and a photoreactive coating layer are coated on a substrate, and selective laser irradiation is performed to dissolve the photoreactive layer of the photoreactive coating layer It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by performing plating using only the eluted photoreactive filler as a seed.
이 결과, 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판은 금속 재질의 기재 상에 코팅 방식으로 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 형성하고, 광반응성 도료 코팅층에 직접 레이저를 조사하여 광반응성 도료 코팅층의 표면으로 레이저 조사에 의해 활성화되어 용출되는 광반응성 필러를 씨드로 이용하여 회로패턴이 형성되므로, 회로패턴 형성이 어려운 기재의 측면 부분에도 회로패턴을 형성하는 것이 가능해질 수 있다.As a result, in the circuit board using the LDS method according to the embodiment of the present invention, a primer coating layer and a photoreactive coating layer were formed on a substrate made of metal by a coating method, and a laser was irradiated directly to the photoreactive coating layer, A circuit pattern can be formed using a photoreactive filler that is activated and eluted by the laser irradiation on the surface of the paint coating layer as a seed, so that it is possible to form a circuit pattern on the side surface of the substrate, which is difficult to form a circuit pattern.
또한, 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판은 금속 재질의 기재와 광반응성 도료 코팅층 사이에 프라이머 도료 코팅층을 배치시킴으로써, 금속 재질의 기재와 광반응성 도료 코팅층 간의 밀착력 및 부착력을 강화시키는 것에 의해 도금 밀착력 평가시 밀착력 불량 발생과 더불어, LED 모듈 제작 후 점등 시험에서의 쇼트 불량을 미연에 방지할 수 있는 효과가 있다.In addition, the circuit board using the LDS method according to the embodiment of the present invention can improve the adhesion and adhesion between the metal base material and the photoreactive paint coating layer by disposing a primer coating layer between the metal base material and the photoreactive coating layer It is possible to prevent adhesion failure in the evaluation of the plating adhesion and to prevent a short defect in the lighting test after manufacturing the LED module.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법에 대하여 상세히 설명하도록 한다.Hereinafter, a method of manufacturing a circuit board using the LDS method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법을 나타낸 공정 순서도이고, 도 3 내지 도 6은 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법을 나타낸 공정 단면도이다.FIG. 2 is a process flow chart illustrating a method of manufacturing a circuit board using the LDS method according to an embodiment of the present invention, and FIGS. 3 to 6 are process sectional views illustrating a method of manufacturing a circuit board using the LDS method according to an embodiment of the present invention .
도 2를 참조하면, 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판 제조 방법은 프라이머 도료 코팅층 형성 단계(S110), 광반응성 도료 코팅층 형성 단계(S120) 및 회로패턴 형성 단계(S130)를 포함한다.Referring to FIG. 2, a method of manufacturing a circuit board using an LDS method according to an embodiment of the present invention includes forming a primer coating layer (S110), forming a photoreactive coating layer (S120), and forming a circuit pattern (S130) do.
프라이머primer 도료 코팅층 형성 Formation of paint coating layer
도 2 및 도 3에 도시된 바와 같이, 프라이머 도료 코팅층 형성 단계(S110)에서는 기재(120) 상에 프라이머 도료 조성물을 도포하고, 건조하여 프라이머 도료 코팅층(140)을 형성한다.2 and 3, in a primer coating layer formation step (S110), a primer coating composition is applied onto a base material 120 and dried to form a primer coating layer 140. [
기재(120)로는 금속, 플라스틱, 유리 재질 등에서 선택될 수 있으며, 이 중 강성 및 강도가 우수한 금속 재질을 이용하는 것이 보다 바람직하다. 기재(120)의 재질로 사용될 수 있는 금속으로는 Al, Cr, Ni, Cu 등에서 선택될 수 있다.The base material 120 may be selected from metal, plastic, and glass materials, and more preferably, a metal material having excellent rigidity and strength is used. As the metal that can be used as the material of the substrate 120, Al, Cr, Ni, Cu, or the like can be selected.
상술한 바와 같이, 프라이머 도료 조성물은 무기필러 5 ~ 10 중량%, 안료 10 ~ 20 중량%, 유기 용매 10 ~ 30 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함한다.As described above, the primer coating composition comprises 5 to 10% by weight of inorganic filler, 10 to 20% by weight of pigment, 10 to 30% by weight of organic solvent, 0.1 to 1.0% by weight of surface control agent, 0.05 to 1.0% ~ 0.5 wt%, adhesion promoter 0.1 ~ 3.0 wt%, and the balance binder resin.
건조는 130 ~ 170℃에서 10 ~ 60분 동안 실시하는 것이 바람직하다. 이때, 건조 온도가 130℃ 미만이거나, 건조 시간이 10분 미만일 경우에는 프라이머 도료 조성물이 충분히 건조되지 못하여 기재에 균일하게 부착되지 못할 우려가 있다. 반대로, 건조 온도가 170℃를 초과하거나, 건조 시간이 60분을 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용만을 상승시키는 요인으로 작용할 수 있으므로, 바람직하지 못하다.The drying is preferably performed at 130 to 170 ° C for 10 to 60 minutes. At this time, if the drying temperature is less than 130 ° C or the drying time is less than 10 minutes, the primer coating composition may not be sufficiently dried and may not uniformly adhere to the substrate. On the contrary, when the drying temperature exceeds 170 DEG C or the drying time exceeds 60 minutes, it may be a factor that raises the manufacturing cost without further increase in the effect, which is not preferable.
이러한 프라이머 도료 코팅층(140)은 20 ~ 40㎛의 두께로 형성하는 것이 바람직하다. 프라이머 도료 코팅층(140)의 두께가 20㎛ 미만일 경우에는 밀착력 향상 효과를 제대로 발휘하는데 어려움이 따를 수 있으며, 그 두께가 너무 얇아 기재 상에 LED 모듈을 제작한 후 점등 시험시 쇼트 불량을 유발할 수 있다. 반대로, 프라이머 도료 코팅층(140)의 두께가 40㎛를 초과할 경우에는 더 이상의 효과 상승 없이 도막 두께만을 증가시키는 요인으로 작용할 수 있으므로, 바람직하지 못하다.The primer coating layer 140 is preferably formed to a thickness of 20 to 40 탆. When the thickness of the primer coating layer 140 is less than 20 탆, it may be difficult to exhibit the adhesion improving effect properly, and the thickness of the primer coating layer 140 may be too thin to cause a short defect in the lighting test after the LED module is manufactured on the substrate . On the contrary, when the thickness of the primer coating layer 140 is more than 40 탆, the thickness of the primer coating layer 140 may be increased only to increase the thickness of the coating layer without increasing the effect.
광반응성Photoreactive 도료 코팅층 형성 Formation of paint coating layer
도 2 및 도 4에 도시된 바와 같이, 광반응성 도료 코팅층 형성 단계(S120)에서는 프라이머 도료 코팅층(140) 상에 광반응성 도료 조성물을 도포하고, 건조하여 광반응성 도료 코팅층(160)을 형성한다.As shown in FIGS. 2 and 4, in the step of forming a photoreactive coating layer (S120), a photoreactive coating composition is coated on a primer coating layer 140 and dried to form a photoreactive coating layer 160. Referring to FIG.
광반응성 도료 조성물은 광반응성 필러 10 ~ 20 중량%, 유기 용매 10 ~ 40 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함한다.The photoreactive coating composition comprises 10 to 20 wt% of a photoreactive filler, 10 to 40 wt% of an organic solvent, 0.1 to 1.0 wt% of a surface conditioner, 0.05 to 1.0 wt% of a dispersant, 0.01 to 0.5 wt% of an anticorrosive agent, Percent by weight, and the balance binder resin.
이때, 건조는 130 ~ 170℃에서 100 ~ 200분 동안 실시하는 것이 바람직하다.At this time, drying is preferably performed at 130 to 170 ° C for 100 to 200 minutes.
본 단계시, 건조 온도가 130℃ 미만이거나, 건조 시간이 100분 미만일 경우에는 광반응성 도료 조성물이 충분히 건조되지 못하여 프라이머 도료 코팅층(140)에 균일하게 부착되지 못하여 밀착력 및 부착력이 저하될 우려가 크다. 반대로, 건조 온도가 170℃를 초과하거나, 건조 시간이 200분을 초과할 경우에는 과도한 건조로 인하여 막질 특성이 좋지 않을 우려가 있다.If the drying temperature is less than 130 ° C or the drying time is less than 100 minutes in this step, the photoreactive coating composition may not be sufficiently dried and may not be uniformly adhered to the primer coating layer 140, resulting in a decrease in adhesion and adhesion . On the contrary, when the drying temperature exceeds 170 ° C or the drying time exceeds 200 minutes, there is a fear that the film quality is not good due to excessive drying.
회로패턴 형성Circuit pattern formation
도 2에 도시된 바와 같이, 회로패턴 형성 단계(S130)에서는 광반응성 도료 코팅층에 선택적인 레이저 조사를 실시하여 광반응성 도료 코팅층의 광반응성 필러를 용출시키고, 용출된 광반응성 필러에 도금을 실시하여 회로패턴을 형성한다.As shown in FIG. 2, in the circuit pattern forming step (S130), the photoreactive coating layer is selectively laser-irradiated to elute the photoreactive filler of the photoreactive coating layer, and the eluted photoreactive filler is plated Thereby forming a circuit pattern.
즉, 도 5에 도시된 바와 같이, 광반응성 도료 코팅층(160)에 레이저 빔(200)으로부터 선택적인 레이저(L)를 조사하여 광반응성 도료 코팅층(160)의 광반응성 필러(165)를 표면으로 용출시키게 된다. 이에 따라, 광반응성 도료 코팅층(160)의 표면에는 레이저 빔(200)에 의해 레이저 조사가 이루어진 부분에만 선택적으로 용출된 광반응성 필러(165a)가 배치되게 된다.5, a selective laser L is irradiated from the laser beam 200 to the photoreactive coating layer 160 to form a photoreactive layer 165 of the photoreactive coating layer 160 on the surface . Accordingly, the photoreactive filler 165a, which is selectively eluted only to the portion irradiated with the laser beam 200 by the laser beam 200, is disposed on the surface of the photoreactive coating layer 160.
다음으로, 도 6에 도시된 바와 같이, 용출된 광반응성 필러를 씨드로 이용한 도금을 실시하여, 용출된 광반응성 필러와 동일한 형태를 갖는 회로패턴을 형성한다.Next, as shown in Fig. 6, plating is performed using the eluted photoreactive filler as a seed to form a circuit pattern having the same shape as the eluted photoreactive filler.
상기의 과정(S110 ~ S130)에 의해 제조되는 본 발명의 실시예에 따른 LDS 방식을 이용한 회로 기판은 기재 상에 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 도장한 후, 선택적인 레이저 조사를 실시하여 광반응성 도료 코팅층의 광반응성 필러를 용출시킨 후, 용출된 광반응성 필러만을 씨드로 이용한 도금을 실시하는 것에 의해, 용출된 광반응성 필러와 동일한 형태를 갖는 회로패턴을 형성하는 것이 가능해질 수 있다.The circuit substrate using the LDS method according to the embodiment of the present invention manufactured by the above-described processes (S110 to S130) is formed by coating a primer coating layer and a photoreactive coating layer on a substrate, It is possible to form a circuit pattern having the same shape as the eluted photoreactive filler by eluting the photoreactive filler of the reactive paint coating layer and plating using only the eluted photoreactive filler as a seed.
이 결과, 본 발명의 실시예에 따른 방법으로 제조되는 LDS 방식을 이용한 회로 기판은 금속 재질의 기재 상에 코팅 방식으로 프라이머 도료 코팅층 및 광반응성 도료 코팅층을 형성하고, 광반응성 도료 코팅층에 직접 레이저를 조사하여 광반응성 도료 코팅층의 표면으로 레이저 조사에 의해 활성화되어 용출되는 광반응성 필러를 씨드로 이용하여 회로패턴이 형성되므로, 회로패턴 형성이 어려운 기재의 측면 부분에도 회로패턴을 형성하는 것이 가능해질 수 있다.As a result, the circuit board using the LDS method, which is manufactured by the method according to the embodiment of the present invention, forms a primer coating layer and a photoreactive coating layer by coating on a metal substrate, A circuit pattern is formed using the photoreactive filler activated by laser irradiation on the surface of the photoreactive coating layer as a seed, so that it is possible to form a circuit pattern on the side portion of the substrate, which is difficult to form a circuit pattern have.
또한, 본 발명의 실시예에 따른 방법으로 제조되는 LDS 방식을 이용한 회로 기판은 금속 재질의 기재와 광반응성 도료 코팅층 사이에 프라이머 도료 코팅층을 배치시킴으로써, 금속 재질의 기재와 광반응성 도료 코팅층 간의 밀착력 및 부착력을 강화시키는 것에 의해 도금 밀착력 평가시 밀착력 불량 발생과 더불어, LED 모듈 제작 후 점등 시험에서의 쇼트 불량을 미연에 방지할 수 있는 효과가 있다.In addition, the circuit board using the LDS method manufactured by the method according to the embodiment of the present invention can improve the adhesion between the base material of the metal material and the photoreactive paint coating layer and the adhesion between the metal base material and the photoreactive paint coating layer, It is possible to prevent adherence failure in evaluating the adhesion of plating and to prevent a short defect in the lighting test after fabricating the LED module.
실시예Example
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 설명한다. 하지만 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허 청구 범위에 속하는 것도 당연한 것이다.Hereinafter, a preferred embodiment will be described in order to facilitate understanding of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined by the appended claims.
1. 회로 기판 제조1. Circuit board manufacturing
실시예Example 1 One
Al 재질의 기재 상에 탈크(Talc) 7wt%, TiO2 15wt%, 메틸 에틸 케톤(methyl ethyl ketone) 25wt%, PDMS(Polydimethyl siloxane) 0.5wt%, 분산제 0.5wt%, 아미드왁스(amidewax) 0.3wt%, 부착보강제 2.0wt% 및 나머지 아크릴릭 폴리올(acrylic polyol)로 조성되는 프라이머 도료 조성물을 30㎛의 두께로 도포하고, 150℃에서 30분 동안 건조하여 프라이머 도료 코팅층을 제조하였다.Al (Talc) 7 wt%, TiO 2 % Of a dispersant, 0.3 wt.% Of an amidewax, 2.0 wt.% Of an adhesion promoter, and the remaining acrylic polyol. Was applied to a thickness of 30 탆 and dried at 150 캜 for 30 minutes to prepare a primer coating layer.
다음으로, 프라이머 도료 코팅층 상에 구리질화물(cupper nitrite Cu3N) 15wt%, 메틸 에틸 케톤(methyl ethyl ketone) 30wt%, PDMS(Polydimethyl siloxane) 0.5wt%, 분산제 0.5wt%, 아미드왁스(amidewax) 0.3wt%, 부착보강제 2.0wt% 및 나머지 아크릴릭 폴리올(acrylic polyol)로 조성되는 광반응성 도료 조성물을 50㎛의 두께로 도포하고, 150℃에서 120분 동안 건조하여 광반응성 도료 코팅층을 제조하였다.Next, 15 wt% of copper nitride (cupper nitrite Cu 3 N), 30 wt% of methyl ethyl ketone, 0.5 wt% of PDMS (Polydimethyl siloxane), 0.5 wt% of dispersant, and amidewax were coated on the primer coating layer. 0.3 wt%, adhesion reinforcing agent 2.0 wt%, and remaining acrylic polyol was coated at a thickness of 50 탆 and dried at 150 캜 for 120 min to prepare a photoreactive coating layer.
다음으로, 광반응성 도료 코팅층에 선택적으로 3W 전원의 레이저 조사하여 광반응성 도료 코팅층의 광반응성 필러를 용출시킨 후, 용출된 광반응성 필러에 전해 도금을 실시하여 회로패턴을 형성하여 회로 기판을 제조하였다.Next, the photoreactive paint coating layer was selectively irradiated with a laser of 3W power to elute the photoreactive filler of the photoreactive coating layer, and electroplated on the photoreactive reactive filler to form a circuit pattern, thereby forming a circuit board .
실시예Example 2 2
프라이머 도료 조성물을 25㎛의 두께로 도포하고, 130℃에서 40분 동안 건조하여 프라이머 도료 코팅층을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 회로 기판을 제조하였다.A circuit board was prepared in the same manner as in Example 1, except that the primer coating composition was applied in a thickness of 25 탆 and dried at 130 캜 for 40 minutes to prepare a primer coating layer.
실시예Example 3 3
프라이머 도료 조성물을 35㎛의 두께로 도포하고, 160℃에서 20분 동안 건조하여 프라이머 도료 코팅층을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 회로 기판을 제조하였다.A circuit board was prepared in the same manner as in Example 1, except that the primer coating composition was applied in a thickness of 35 탆 and dried at 160 캜 for 20 minutes to prepare a primer coating layer.
실시예Example 4 4
광반응성 도료 조성물을 60㎛의 두께로 도포하고, 170℃에서 110분 동안 건조하여 광반응성 도료 코팅층을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 회로 기판을 제조하였다.A circuit board was prepared in the same manner as in Example 1, except that the photoreactive coating composition was applied in a thickness of 60 탆 and dried at 170 캜 for 110 minutes to prepare a photoreactive coating layer.
비교예Comparative Example 1 One
Al 재질의 기재 상에 구리질화물(cupper nitrite Cu3N) 15wt%, 메틸 에틸 케톤(methyl ethyl ketone) 30wt%, PDMS(Polydimethyl siloxane) 0.5wt%, 분산제 0.5wt%, 아미드왁스(amidewax) 0.3wt%, 부착보강제 2.0wt% 및 나머지 아크릴릭 폴리올(acrylic polyol)로 조성되는 광반응성 도료 조성물을 50㎛의 두께로 도포하고, 150℃에서 120분 동안 건조하여 광반응성 도료 코팅층을 제조하였다.15 wt% of copper nitride (cupper nitrite Cu 3 N), 30 wt% of methyl ethyl ketone, 0.5 wt% of PDMS (polydimethyl siloxane), 0.5 wt% of dispersant, 0.3 wt% of amide wax (amidewax) %, Adhesive reinforcement of 2.0 wt%, and the remainder of acrylic polyol was coated to a thickness of 50 탆 and dried at 150 캜 for 120 minutes to prepare a photoreactive coating layer.
다음으로, 광반응성 도료 코팅층에 선택적으로 3W 전원의 레이저 조사하여 광반응성 도료 코팅층의 광반응성 필러를 용출시킨 후, 용출된 광반응성 필러에 전해 도금을 실시하여 회로패턴을 형성하여 회로 기판을 제조하였다.Next, the photoreactive paint coating layer was selectively irradiated with a laser of 3W power to elute the photoreactive filler of the photoreactive coating layer, and electroplated on the photoreactive reactive filler to form a circuit pattern, thereby forming a circuit board .
2. 물성 평가2. Property evaluation
표 1은 실시예 1 ~ 4 및 비교예 1에 따라 제조된 시편에 대한 물성 평가 결과를 나타낸 것이다.Table 1 shows the results of physical properties evaluation of the specimens prepared according to Examples 1 to 4 and Comparative Example 1. [
1) 밀착성 시험1) Adhesion test
JIS K 5400 의 규정에 기초하여 밀착성을 평가하였다. 40℃×92%RH에서 12시간 동안 가습 처리한 후, 80℃×90% RH에서 12시간 동안 가습 처리하여, 그 결과를, 「박리수/100」로 나타내었다.The adhesion was evaluated based on the provisions of JIS K 5400. The sample was subjected to a humidifying treatment at 40 占 폚 and 92% RH for 12 hours, followed by a humidifying treatment at 80 占 폚 and 90% RH for 12 hours.
박리수/100 평가 : 0/100 "우수", 1/100∼50/100 "보통", 51/100∼100/100 "나쁨"Number of peels / 100 Evaluation: 0/100 "Excellent", 1/100 to 50/100 "Normal", 51/100 to 100/100 "Bad"
2) 내알칼리성 시험2) Alkali resistance test
상온에서 5% 수산화나트륨 수용액을 96시간 동안 침지시킨 후 측정하였다. 초기 상태와 동일하면 "우수", 균열 및 변색이 50% 이하로 발생한 경우 "보통", 균열 및 변색이 50% 이상 발생한 경우 "나쁨"으로 표시하였다.A 5% sodium hydroxide aqueous solution was immersed at room temperature for 96 hours and then measured. "Good" when it is the same as the initial state, "Normal" when the cracking and discoloration is 50% or less, and "Poor" when the crack or discoloration is 50% or more.
3) 내산성 시험3) Acidity test
상온에서 5% 염산 수용액을 96시간 동안 침지시킨 후 측정하였다.A 5% hydrochloric acid aqueous solution was immersed at room temperature for 96 hours and then measured.
초기 상태와 동일하면 "우수", 균열 및 변색이 50% 이하로 발생한 경우 "보통", 균열 및 변색이 50% 이상 발생한 경우 "나쁨"으로 표시하였다."Good" when it is the same as the initial state, "Normal" when the cracking and discoloration is 50% or less, and "Poor" when the crack or discoloration is 50% or more.
4) 도막 전단력4) Coating shear force
ASTM F1044-5를 기준으로 하여 도막의 shear test를 실시하여 전단력 특성을 평가하였다. 70N 이상은 "우수", 30~69N은 "보통", 0~29N은 "나쁨"으로 표시하였다.A shear test was performed on the coating film based on ASTM F1044-5 to evaluate the shear force characteristics. Above 70N is indicated as "Excellent", 30 to 69N as "Normal" and 0 to 29N as "Bad".
[표 1][Table 1]
Figure PCTKR2018015102-appb-I000001
Figure PCTKR2018015102-appb-I000001
표 1을 참조하면, 실시예 1 ~ 4의 경우, 밀착력, 내알칼리성 및 내산성 면에서 우수한 특성을 나타내었으며, 특히 도막 전단력 측정 결과 86N 이상으로 측정되어 우수한 접착 특성을 나타내는 것을 확인할 수 있다.Referring to Table 1, Examples 1 to 4 exhibited excellent adhesion, alkali resistance, and acid resistance. Particularly, when the coating film shear force was measured to be 86 N or more, it was confirmed that the adhesive properties were excellent.
반면, 비교예 1의 경우, 내알칼리성, 내산성 면에서는 우수한 특성을 나타내었으나, 밀착력이 보통 수준이었고, 도막 전단력 측정 결과 53N에 불과하였다.On the other hand, Comparative Example 1 exhibited excellent alkali resistance and acid resistance, but the adhesion was moderate, and the film shear force measurement was only 53N.
위의 실험 결과를 토대로, 실시예 1 ~ 4에 같이 금속 재질의 기재와 광반응성 도료 코팅층 사이에 프라이머 도료 코팅층을 형성하게 되면, 밀착력 및 부착력이 강화되는 것을 확인하였다.Based on the above experimental results, it was confirmed that when the primer coating layer was formed between the base material of the metal material and the photoreactive coating layer as in Examples 1 to 4, adhesion and adhesion were enhanced.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. These changes and modifications may be made without departing from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

Claims (9)

  1. (a) 기재 상에 프라이머 도료 조성물을 도포하고, 건조하여 프라이머 도료 코팅층을 형성하는 단계; (a) applying a primer coating composition on a substrate and drying to form a primer coating layer;
    (b) 상기 프라이머 도료 코팅층 상에 광반응성 도료 조성물을 도포하고, 건조하여 광반응성 도료 코팅층을 형성하는 단계; 및 (b) applying a photoreactive coating composition on the primer coating layer and drying to form a photoreactive coating layer; And
    (c) 상기 광반응성 도료 코팅층에 선택적인 레이저 조사를 실시하여 상기 광반응성 도료 코팅층의 광반응성 필러를 용출시키고, 상기 용출된 광반응성 필러에 도금을 실시하여 회로패턴을 형성하는 단계; (c) selectively irradiating the photoreactive coating layer with a laser to elute the photoreactive filler of the photoreactive coating layer, and plating the eluted photoreactive filler to form a circuit pattern;
    를 포함하는 LDS 방식을 이용한 회로 기판 제조 방법.Wherein the method comprises the steps of:
  2. 제1항에 있어서,The method according to claim 1,
    상기 (a) 단계에서, In the step (a)
    상기 프라이머 도료 조성물은 The primer coating composition
    무기필러 5 ~ 10 중량%, 안료 10 ~ 20 중량%, 유기 용매 10 ~ 30 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.Wherein the inorganic filler is 5 to 10 wt%, the pigment is 10 to 20 wt%, the organic solvent is 10 to 30 wt%, the surface modifier is 0.1 to 1.0 wt%, the dispersant is 0.05 to 1.0 wt%, the sedimentation inhibitor is 0.01 to 0.5 wt% 3.0% by weight, and the balance binder resin.
  3. 제1항에 있어서,The method according to claim 1,
    상기 (a) 단계에서, In the step (a)
    상기 건조는 The drying
    130 ~ 170℃에서 10 ~ 60분 동안 실시하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.And then performing the annealing at 130 to 170 ° C for 10 to 60 minutes.
  4. 제1항에 있어서,The method according to claim 1,
    상기 (a) 단계에서, In the step (a)
    상기 프라이머 도료 코팅층은 The primer coating layer
    20 ~ 40㎛의 두께로 형성하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.And a thickness of 20 to 40 占 퐉.
  5. 제1항에 있어서,The method according to claim 1,
    상기 (b) 단계에서,In the step (b)
    상기 건조는 The drying
    130 ~ 170℃에서 100 ~ 200분 동안 실시하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.And then performing the annealing at 130 to 170 DEG C for 100 to 200 minutes.
  6. 제1항에 있어서,The method according to claim 1,
    상기 (b) 단계에서,In the step (b)
    상기 광반응성 도료 조성물은 The photoreactive coating composition
    광반응성 필러 10 ~ 20 중량%, 유기 용매 10 ~ 40 중량%, 표면 조절제 0.1 ~ 1.0 중량%, 분산제 0.05 ~ 1.0 중량%, 침강방지제 0.01 ~ 0.5 중량%, 부착보강제 0.1 ~ 3.0 중량% 및 나머지 바인더 수지를 포함하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.The amount of the binder is 10 to 20 wt%, the amount of the organic solvent is 10 to 40 wt%, the amount of the surface control agent is 0.1 to 1.0 wt%, the amount of the dispersing agent is 0.05 to 1.0 wt%, the amount of the antireflection agent is 0.01 to 0.5 wt% Wherein the resin layer comprises a resin.
  7. 제1항에 있어서,The method according to claim 1,
    상기 (c) 단계는, The step (c)
    (c-1) 상기 광반응성 도료 코팅층에 선택적인 레이저 조사를 실시하여 상기 광반응성 도료 코팅층의 광반응성 필러를 용출시키는 단계; (c-1) selectively irradiating the photoreactive coating layer with a laser to elute the photoreactive filler of the photoreactive coating layer;
    (c-2) 상기 용출된 광반응성 필러를 씨드로 이용한 도금을 실시하여, 상기 용출된 광반응성 필러와 동일한 형태를 갖는 회로패턴을 형성하는 단계; (c-2) performing plating using the eluted photoreactive filler as a seed to form a circuit pattern having the same shape as the eluted photoreactive filler;
    를 포함하는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판 제조 방법.Wherein the method comprises the steps of:
  8. 기재; materials;
    상기 기재 상에 배치된 프라이머 도료 코팅층; A primer coating layer disposed on the substrate;
    상기 프라이머 도료 코팅층 상에 배치되며, 광반응성 필러가 첨가된 광반응성 도료 코팅층; 및 A photoreactive paint coating layer disposed on the primer coating layer and having a photoreactive filler added thereto; And
    상기 광반응성 도료 코팅층에 선택적인 레이저 조사가 실시되어 용출되는 상기 광반응성 필러에 도금되어 형성된 회로패턴; A circuit pattern formed by plating on the photoreactive filler coated with the photoreactive coating layer by selective laser irradiation;
    을 포함하는 LDS 방식을 이용한 회로 기판.And a circuit board using the LDS method.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 프라이머 도료 코팅층은 The primer coating layer
    20 ~ 40㎛의 두께를 갖는 것을 특징으로 하는 LDS 방식을 이용한 회로 기판.And has a thickness of 20 to 40 占 퐉.
PCT/KR2018/015102 2017-12-28 2018-11-30 Circuit board using lds technique and manufacturing method therefor WO2019132275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170183041A KR101985795B1 (en) 2017-12-28 2017-12-28 Circuit substrate using laser direct structuring and method of manufacturing the same
KR10-2017-0183041 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132275A1 true WO2019132275A1 (en) 2019-07-04

Family

ID=66811133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015102 WO2019132275A1 (en) 2017-12-28 2018-11-30 Circuit board using lds technique and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101985795B1 (en)
WO (1) WO2019132275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232817A1 (en) * 2020-05-18 2021-11-25 广东小天才科技有限公司 Circuit manufacturing method and lds antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856066A (en) * 1994-04-23 1996-02-27 Lpkf Cad Cam Syst Gmbh Method for metallizing surface of substrate
KR20070007173A (en) * 2004-03-31 2007-01-12 다다히로 오미 Circuit board and manufacturing method thereof
JP2015071739A (en) * 2013-07-09 2015-04-16 三菱エンジニアリングプラスチックス株式会社 Resin composition, resin molding, method of producing resin molding and laser direct structuring additive
KR20170129331A (en) * 2016-05-16 2017-11-27 (주)드림텍 Methdo of forming multi-layer curcuit using lds - lds painting repeat process
KR20170135357A (en) * 2016-05-31 2017-12-08 주식회사 에버플러스 A circuit pattern forming method to the metal material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856066A (en) * 1994-04-23 1996-02-27 Lpkf Cad Cam Syst Gmbh Method for metallizing surface of substrate
KR20070007173A (en) * 2004-03-31 2007-01-12 다다히로 오미 Circuit board and manufacturing method thereof
JP2015071739A (en) * 2013-07-09 2015-04-16 三菱エンジニアリングプラスチックス株式会社 Resin composition, resin molding, method of producing resin molding and laser direct structuring additive
KR20170129331A (en) * 2016-05-16 2017-11-27 (주)드림텍 Methdo of forming multi-layer curcuit using lds - lds painting repeat process
KR20170135357A (en) * 2016-05-31 2017-12-08 주식회사 에버플러스 A circuit pattern forming method to the metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232817A1 (en) * 2020-05-18 2021-11-25 广东小天才科技有限公司 Circuit manufacturing method and lds antenna

Also Published As

Publication number Publication date
KR101985795B1 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
KR102167337B1 (en) Manufacturing method of laser direct structuring type circuit substrate with coherence and adhesion
TWI493282B (en) A flame retardant solder resist composition and a flexible wiring board obtained using the same
KR101321262B1 (en) Plastic glazing system having a promotion of ink adhesion on the surface thereof
WO2013100502A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
KR20110066226A (en) Transparent substrate and method for production thereof
WO2020130365A1 (en) Polyphenylene sulfide resin composition, method for preparing same, and injection molded product manufactured from same
WO2010038644A1 (en) Polyamide resin, resin composition thereof, flame-retardant adhesive composition and adhesive sheet made of said composition, coverlay film, and printed wiring board
WO2015009114A1 (en) Polycarbonate glazing and method for producing same
JP2010516856A (en) Surface protection film
JPH03506101A (en) Solder mask compositions, articles produced therefrom and methods of using the same
KR100381762B1 (en) Silicone Adhesive Film
WO2019132275A1 (en) Circuit board using lds technique and manufacturing method therefor
KR20150102691A (en) Method for manufacturing printed wiring board
WO2010110528A1 (en) Hard coating composition, multi-layered sheet using the same, and preparation method thereof
TW201839040A (en) Dry film, cured product, printed wiring board, and method for manufacturing cured product
WO2016048016A1 (en) Optical film having excellent water resistance and solvent resistance, and polarization plate comprising same
WO2017078488A1 (en) Optical adhesive composition and optical adhesive film
WO2020262980A1 (en) Adhesive composition, coverlay film comprising same, and printed circuit board
JP6276499B2 (en) Adhesive film, method for producing cured body, cured body, wiring board, and semiconductor device
WO2012086944A2 (en) Adhesive resin composition containing an amine-based accelerator, and a decorative film including same
WO2018101740A2 (en) Coating paint using photo-reactive filler
WO2018124807A1 (en) Thermoplastic resin composition for laser direct structuring process and molded article produced therefrom
KR20120026068A (en) Mold release composition and surface protective film
WO2020080707A1 (en) Tape for processing wafer
KR101618558B1 (en) Method of making protection layer onto the surface of photomask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896722

Country of ref document: EP

Kind code of ref document: A1