WO2015009114A1 - Polycarbonate glazing and method for producing same - Google Patents

Polycarbonate glazing and method for producing same Download PDF

Info

Publication number
WO2015009114A1
WO2015009114A1 PCT/KR2014/006570 KR2014006570W WO2015009114A1 WO 2015009114 A1 WO2015009114 A1 WO 2015009114A1 KR 2014006570 W KR2014006570 W KR 2014006570W WO 2015009114 A1 WO2015009114 A1 WO 2015009114A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
coating layer
hard coating
glazing
polycarbonate glazing
Prior art date
Application number
PCT/KR2014/006570
Other languages
French (fr)
Korean (ko)
Inventor
김병수
강세영
김중인
이대규
최우석
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130101338A external-priority patent/KR20150010540A/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2015009114A1 publication Critical patent/WO2015009114A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a polycarbonate glazing and a method of manufacturing the same.
  • plastic materials have contributed to the weight reduction of automobiles, improving design and design freedom, granting new functions, and reducing costs. It is preferred as an alternative material for parts that have been difficult to resinize.
  • plastic materials such as polycarbonate (PC) and polymethyl methacrylate (PMMA), etc.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • Automotive window modules offer new uses for the plastic materials due to various advantages in areas such as styling / design, weight reduction, stability / safety and the like.
  • plastic materials not only differentiate the vehicle from competing vehicles by increasing the overall design and shape complexity, but also provide the automobile manufacturer with the ability to reduce the complexity of the window assembly by integrating functional parts into molded plastic modules.
  • the use of lightweight plastic window modules promotes the vehicle's low center of gravity and fuel economy.
  • the plastic window module can increase the overall stability of the vehicle by strengthening the occupant's support in a rollover accident.
  • plastic materials such as polycarbonate have a problem in that scratch resistance and abrasion resistance are weak.
  • PECVD plasma enhanced chemical vapor deposition
  • CVD chemical vapor deposition
  • sputtering sol-gel, or the like.
  • the PECVD method, the CVD method, and the sputtering method have a problem that the apparatus is expensive and the control for forming a high quality coating film is troublesome.
  • the sol-gel method the required firing temperature is higher than 500 ° C., which makes the process difficult. There is a problem.
  • the problem to be solved by the present invention is to provide a polycarbonate glazing excellent in wear resistance.
  • Another problem to be solved by the present invention is to provide a polycarbonate glazing excellent transparency.
  • Another object of the present invention is to provide a polycarbonate glazing excellent in adhesion between the polycarbonate-based substrate and the hard coating layer.
  • Another object of the present invention is to provide a polycarbonate glazing having low water permeability and excellent gas barrier properties.
  • Another problem to be solved by the present invention is to provide a polycarbonate glazing excellent in pollution resistance.
  • Another problem to be solved by the present invention is to provide a polycarbonate glazing with excellent flexibility to prevent cracking.
  • Another object of the present invention is to provide a method for producing a polycarbonate glazing having a short manufacturing time and excellent processability by enabling non-vacuum wet coating.
  • One aspect of the invention is a polycarbonate-based substrate; And a hard coating layer formed on one surface of the substrate, wherein the hard coating layer is an organic-inorganic mixed layer derived from polysilazane or polysiloxane, and 500 g of CS-10F wear wheel using a taper abraser. It is related to polycarbonate glazing in which the haze difference ( ⁇ Haze) before and after abrasion is about 6.0 or less and the permeability difference ( ⁇ Transmittance) is about 0.8 or less at 500 wear under load conditions.
  • Another aspect of the present invention relates to a method for producing a polycarbonate glazing comprising forming a hard coating layer with a coating liquid containing polysilazane or polysiloxane on one side of a polycarbonate-based substrate.
  • Polycarbonate glazing of the present invention is excellent in wear resistance and transparency, excellent adhesion between the polycarbonate-based substrate and the hard coating layer without a separate primer layer, excellent water barrier properties, low gas permeability, and excellent pollution resistance.
  • the polycarbonate glazing manufacturing method of the present invention is non-vacuum wet coating by a wet process, the manufacturing time is short and excellent processability.
  • FIG. 1 is a cross-sectional view of a polycarbonate glazing in accordance with one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a polycarbonate glazing in accordance with another embodiment of the present invention.
  • the polycarbonate glazing may include a substrate including polycarbonate and at least one coating layer laminated on the substrate.
  • the polycarbonate glazing 100 is a polycarbonate-based substrate 110; And it may include a hard coating layer 120 formed on one surface of the polycarbonate-based substrate 110.
  • the polycarbonate-based substrate 110 includes a polycarbonate-based resin, and the polycarbonate-based resin may be used without limitation within a range capable of achieving the object of the present invention.
  • polycarbonate, polycarbonate copolymer or polycarbonate blending resin may be used, and the blending resin may be polyamide, thermoplastic polyurethane (TPU), acrylonitrile-styrene-acrylonitrile, polymethyl methacrylate.
  • TPU thermoplastic polyurethane
  • a blended polycarbonate with at least one polymer resin selected from the group consisting of polyester and acrylonitrile-butadiene-styrene may be used, but is not limited thereto.
  • 2 or more types can be mixed and used.
  • the polycarbonate may be prepared by reacting a dihydric phenol compound with phosgene in the presence of a molecular weight modifier and a catalyst according to a conventional production method.
  • the polycarbonate may be prepared using an ester interchange reaction of a dihydric phenol compound and a carbonate precursor such as diphenyl carbonate.
  • a bisphenol compound may be used as the dihydric phenol compound, and for example, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) may be used.
  • bisphenol A may be partially or wholly replaced by another type of dihydric phenol compound.
  • the polycarbonate resin has a tensile strength of about 60 MPa or more, a tensile modulus of about 1.5 GPa or more, a Vicat softening point of about 120 ° C. or more, and a total light transmittance. This may be at least about 80%.
  • the thickness of the polycarbonate-based substrate 110 may be about 1 mm to 10 mm. Within this range, mechanical strength, flexibility, transparency, and the like may be excellent as a substrate of the polycarbonate glazing.
  • the hard coating layer 120 may be formed on the polycarbonate-based substrate 110.
  • the hard coat layer 120 may be derived from polysiloxane or polysilazane. Specifically, the hard coating layer 110 is coated with a hydrogenated polysiloxane or polysilazane, and a coating solution containing an organic solvent on one side of the polycarbonate-based substrate 120, the hydrogenated polysilazane or included in the coating solution through a modification process
  • a siloxane compound, such as hydrogenated polysiloxane may be ceramicized to be converted into silicon dioxide (SiO 2 ) to form a coating layer containing silicon oxide (SiO x).
  • the hard coating layer 120 may have a thickness of about 50 to 3,000 nm, specifically about 100 to 1,000 nm. It is possible to secure sufficient wear resistance in the thickness range, it is possible to minimize the occurrence of cracks. In addition, since the hard coating layer 120 is formed by a wet process, it is possible to secure sufficient adhesion or adhesion without forming a separate primer layer on the polycarbonate-based substrate. Therefore, it may be formed directly on the polycarbonate-based substrate 110.
  • Polycarbonate glazing according to an embodiment of the present invention may be excellent in wear resistance by having a hard coating layer derived from polysiloxane or polysilazane.
  • the polycarbonate glazing has a haze difference ( ⁇ Haze) of about 6.0 or less after wear and wear 500 times under a CS-10F wear wheel and 500 g load condition using a taper abraser.
  • the transmittance difference ( ⁇ Transmittance) may be about 0.8 or less.
  • the polycarbonate glazing according to an embodiment of the present invention has a modulus of about 45 to 60 GPa, thereby minimizing the crack of the hard coating layer and ensuring sufficient strength, and has excellent wear resistance.
  • modulus means a value measured at room temperature using a nanoindenter Ti 750 Ubi (manufactured by Hysitron). In the present invention, room temperature means 25 ° C ⁇ 3 ° C unless otherwise specified.
  • the polycarbonate glazing according to an embodiment of the present invention has a water permeability (WVTR) (g / m 2 / day) is measured using the Aquatran Model 1 (Mocon Co., Ltd.) according to ASTM F-1249 standard ( 1.0) g / (m 2 ⁇ day) or less, excellent barrier property against gas and impurities.
  • WVTR water permeability
  • the polycarbonate glazing according to an embodiment of the present invention may have a surface roughness (Ra) of about 1 to 50nm, it is possible to obtain a polycarbonate glazing improved surface flatness due to the hard coating layer.
  • FIG. 2 shows a cross-sectional view of a polycarbonate glazing in accordance with another embodiment of the present invention.
  • the polycarbonate glazing according to another embodiment of the present invention is substantially the same as the polycarbonate glazing according to the embodiment of the present invention except that an intermediate layer is further laminated between the polycarbonate-based substrate and the hard coating layer. The explanation will focus on the middle layer.
  • the intermediate layer 130 may be a laminate structure of a bonding layer, a functional layer or a bonding layer, and a functional layer, and may be a laminate structure of at least one layer.
  • the functional layer may be, for example, an ultraviolet blocking layer, a buffer layer, an abrasion resistant layer, a barrier layer, or the like, and may be a plurality of layers in combination thereof.
  • the intermediate layer 130 may improve the bonding force between the polycarbonate-based substrate 110 and other layers, and selected from amide resin, acrylic resin, urethane resin, siloxane resin, silicone resin or copolymer thereof It may include, but is not limited to, a substance. Specifically, aliphatic polyether thermoplastic polyurethanes, polyester / polyether thermoplastic polyurethanes, anionic fatty polyester based polyurethanes, anionic fatty polyester / polyether polyurethanes, aqueous polyurethanes, polyamides, and polyester acrylics And the like.
  • the intermediate layer 130 may include a material that absorbs light having a wavelength of about 200 to 340 nm, which is an ultraviolet region, as an ultraviolet absorber to protect the polycarbonate-based substrate from ultraviolet rays to improve weather resistance.
  • the ultraviolet absorber may include metal oxide fine particles, an organic compound, and the like, and specifically, may include metal oxide.
  • the metal oxide used as the ultraviolet absorber is a fine particle having an average particle diameter of about 1 to 100 nm, for example, about 5 to 25 nm, selected from the group consisting of zinc oxide, titanium oxide, cerium oxide, iron oxide, and the like. It may comprise one or more fine particles.
  • the organic compound used as the ultraviolet absorber may include a benzotriazole, triazine, or the like.
  • the ultraviolet absorber may include a HALS agent having an antioxidant function, for example, a hindered amine compound may be used as the HALS agent.
  • the intermediate layer 130 may include a binder resin, and the binder resin may include an acrylate monomer, an acrylate oligomer, a siloxane monomer, a siloxane polymer, a silicone monomer, a silicone polymer, an acrylic resin, or a uritan based resin. Resins and the like can be used.
  • the intermediate layer 130 is a silicon-based having a silica network structure formed by condensation reaction of a hydrolyzed alkoxy silane by a colloidal silica sol by sol-gel synthesis It may be a buffer layer.
  • a trivalent or tetravalent alkoxy silane can be used.
  • the alkoxy silane include vinyltrimethoxysilane, propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, methyltrimethoxysilane and the like. May be used alone or in combination.
  • the intermediate layer 130 may be an acrylic wear resistant layer including a photocurable resin and silica nanoparticles.
  • the photocurable resin may be formed by curing an ultraviolet curable compound having an acrylate functional group.
  • the ultraviolet curable compound may be a polyfunctional (meth) acrylate compound and the like.
  • polyfunctional acrylate compound ethylene glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate, trimethylolpropane tri (meth) acrylate, di Obtained by esterifying pentaerythritol hexa (meth) acrylate, polyol poly (meth) acrylate, di (meth) acrylate of bisphenol A-diglycidyl ether, polyhydric alcohol and polyhydric carboxylic acid, and its anhydride and acrylic acid Ester (meth) acrylate, a siloxane compound containing an acrylate functional group, urethane (meth) acrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, and the like may be used, but is not limited thereto.
  • the silica nanoparticles may have an average particle diameter (D50) of about 100 nm or less, for example, about 10 to 50 nm, and about 50 wt% or less, for example, about 5 to 40 wt% of the acrylic wear resistant layer.
  • D50 average particle diameter
  • the hardness may be increased to further improve wear resistance.
  • the coating solution for forming a hard coat layer may be hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof; And solvents. Referring to each component constituting the coating solution is as follows.
  • the coating solution of the present invention may include a hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof as a composition for forming a silicon oxide layer.
  • the hydrogenated polysiloxane or hydrogenated polysilazane may be converted to a silicon oxide material by heating and oxidation, and a hard coating layer having excellent wear resistance may be obtained.
  • the hydrogenated polysiloxane may include silicon-oxygen-silicon (Si-O-Si) bonding units in addition to silicon-nitrogen (Si-N) bonding units in the structure.
  • silicon-oxygen-silicon (Si-O-Si) bonding units can alleviate stress upon curing to reduce shrinkage.
  • Hydrogenated polysilazanes have a basic backbone in the structure including silicon-hydrogen (Si-H), nitrogen-hydrogen (N-H) coupling units in addition to silicon-nitrogen (Si-N) coupling units.
  • the (Si-N) bond may be substituted with a (Si-O) bond.
  • the hydrogenated polysiloxane may have a unit represented by Formula 1, a unit represented by Formula 2, and a terminal portion represented by Formula 3 below:
  • R 1 to R 7 are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C3 to C30 Aryl group, substituted or unsubstituted C3 to C30 arylalkyl group, substituted or unsubstituted C3 to C30 heteroalkyl group, substituted or unsubstituted C3 to C30 heterocyclic alkyl group, substituted or unsubstituted C3 to C30 alkene It means a niyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted carbonyl group, a hydroxy group or a combination thereof.
  • substituted means hydrogen, halogen atom, hydroxyl group, nitro group, cyano group, amino group, azido group, amidino group, hydrazino group, carbonyl group, carbamyl group, thiol group, ester group, Carboxyl groups or salts thereof, sulfonic acid groups or salts thereof, phosphate groups or salts thereof, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and carbon atoms
  • An aryl group having -30, an aryloxy group having 6-30 carbon atoms, a cycloalkyl group having 3-30 carbon atoms, a cycloalkenyl group having 3-30 carbon atoms, a cycloalkynyl group having 3-30 carbon atoms, or a combination thereof is meant.
  • the hydrogenated polysiloxane or hydrogenated polysilazane may have an oxygen content of about 0.2% to 3% by weight.
  • the stress relaxation by the silicon-oxygen-silicon (Si-O-Si) bond in the structure is sufficient to prevent shrinkage during heat treatment and thus prevent the occurrence of cracks in the formed hard coating layer.
  • the oxygen content of the hydrogenated polysiloxane or hydrogenated polysilazane may be about 0.2 to 3% by weight, specifically about 0.5 to 2% by weight.
  • the hydrogenated polysiloxane or polysilazane has a structure in which the terminal portion is capped with hydrogen, and the terminal group represented by Formula 3 is about 15 with respect to the total content of Si—H bonds in the hydrogenated polysiloxaneoxane or hydrogenated polysilazane structure. To 35% by weight.
  • the terminal group of Formula 3 may be included in about 20 to 30% by weight relative to the total content of Si-H bonds in the hydrogenated polysiloxane or hydrogenated polysilazane structure.
  • the hydrogenated polysiloxane or hydrogenated polysilazane of the present invention may have a weight average molecular weight (Mw) of about 1,000 to 5,000 g / mol. In the above range, it is possible to form a dense organic-inorganic mixed layer with a thin film coating while reducing components to evaporate during heat treatment.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) may be about 1,500 to 3,500 g / mol.
  • the hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof may be included in an amount of about 0.1 to 50% by weight based on the total content of the coating solution. When included in the above range can maintain a suitable viscosity and can be formed flat and evenly without bubbles and voids (Void).
  • the solvent may be used as long as it is a solvent which can dissolve them without being reactive with hydrogenated polysiloxane or hydrogenated polysilazane.
  • a solvent containing no -OH group is preferable because it is reactive with the siloxane compound.
  • ethers such as hydrocarbon solvents, such as aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon, halogenated hydrocarbon solvent, aliphatic ether, alicyclic ether, can be used.
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, sorbetso, and taben, halogen hydrocarbons such as methylene chloride and tricholoethane, dibutyl ether, dioxane, tetra hybrido furan and the like Ryu.
  • halogen hydrocarbons such as methylene chloride and tricholoethane, dibutyl ether, dioxane, tetra hybrido furan and the like Ryu.
  • the solubility of a siloxane compound, the evaporation rate of a solvent, etc. may be selected suitably, and a some solvent may be mixed.
  • the coating liquid of the present invention may further include a thermal acid generator (TAG).
  • TAG thermal acid generator
  • the thermal acid generator is an additive for improving the developability of the hydride polysiloxane and the contamination by uncuring, so that the hydride polysiloxane may be developed at a relatively low temperature.
  • the thermal acid generator is not particularly limited as long as it is a compound capable of generating an acid (H +) by heat, but may be selected to have low volatility by being activated at about 90 ° C. or higher to generate sufficient acid.
  • Such thermal acid generators can be selected, for example, from nitrobenzyl tosylate, nitrobenzyl benzenesulfonate, phenol sulfonate and combinations thereof.
  • the thermal acid generator may be included in about 25% by weight or less, for example about 0.01 to 20% by weight based on the total content of the coating liquid. When included in the above range, the siloxane compound may be developed at a relatively low temperature.
  • the coating liquid of the present invention may further include a surfactant.
  • the said surfactant is not specifically limited, For example, polyoxyethylene alkyl ethers, such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene ether, polyoxyethylene rail ether, polyoxyethylene nonyl phenol ether, etc.
  • Polyoxyethylene sorbitan such as polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene block copolymer, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate
  • Nonionic surfactants such as fatty acid esters, F-top EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), Megapack F171, F173 (manufactured by Dainippon Ink, Inc.).
  • Fluorine-based surfactants such as Prorad FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard AG710, Saffron S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahigara Corporation), or Kano siloxane polymer KP341 (made by Shin-Etsu Chemical Co., Ltd.), etc., etc. are mentioned.
  • the surfactant may be included in about 10% by weight or less, for example, about 0.001 to 5% by weight based on the total content of the coating liquid.
  • Method for producing a polycarbonate glazing may include forming a hard coating layer with a coating liquid containing a hydrogenated polysilazane or a hydrogenated polysiloxane to one side of the substrate. Specifically, it may include forming a hard coat layer by applying a coating solution and then modifying it.
  • a coating liquid containing polysilazane or polysiloxazane is applied onto the polycarbonate-based substrate.
  • the coating solution may be applied by roll coating, spin coating, bar coating, dip coating, flow coating, spray coating, or the like, but is not limited thereto. Do not.
  • the spin coating may be applied to the coating solution for about 10 to 60 seconds at about 500 to 4,000rpm, the coating may be repeated one or more times.
  • the coating thickness of the coating solution may be about 50 to 3,000 nm, and after coating the coating solution may be dried for about 1 to 100 minutes at about 50 to 100 °C and relative humidity about 40 to 90%.
  • the modification to form the hard coat layer refers to a process of converting a siloxane compound such as hydrogenated polysiloxane or hydrogenated polysilazane into silicon dioxide to ceramic.
  • the silazane or polysiloxane compound in order to increase the conversion rate of the silazane or polysiloxane compound to silicon dioxide, it may be ceramicized under ultraviolet irradiation or high temperature, high humidity.
  • the ultraviolet irradiation may be performed using a vacuum ultraviolet. Specifically, about 100 to 200 nm vacuum ultraviolet light may be used. Irradiation intensity and irradiation amount of ultraviolet ray can be set suitably.
  • the ultraviolet radiation may be irradiated at an irradiation intensity of about 10 to 200 mW / cm 2 and an irradiation amount of about 100 to 6,000 mJ / cm 2 for about 0.1 to 5 minutes.
  • the dosage may be about 1,000 to 5,000 mJ / cm 2.
  • the ceramicization under high temperature and high humidity may be, for example, heat treatment at about 300 to 1,500 ° C. for about 1 to 12 hours.
  • the heat treatment may further include a heat treatment for about 40 to 100 minutes at 90% of the conditions.
  • the inside of the 2L reactor equipped with the stirrer and the temperature controller was replaced with dry nitrogen, and 2.0 g of pure water was injected into 1,500 g of dry pyridine, followed by sufficient mixing.
  • 100 g of dichlorosilane was slowly injected over 1 hour, and then 70 g of ammonia was slowly injected over 3 hours with stirring.
  • dry nitrogen was injected for 30 minutes and the ammonia remaining in the reactor was removed.
  • the product on the obtained white slurry was filtered using a 1 ⁇ m Teflon filter under a dry nitrogen atmosphere to obtain 1,000 g of a filtrate.
  • a hard coating layer coating solution I was prepared by filtration with a filter made of 0.03 ⁇ m of Teflon filter.
  • the oxygen content of the obtained hydrogenated polysiloxazane is 0.5%, SiH 3 / SiH ( total) is 0.20, a weight average molecular weight of 2,000g / mol.
  • tetraethyl silicate TEOS, Sigma-Aldrich Co., Ltd.
  • MTMS methyltrimethoxysilane
  • the molar ratio of tetraethyl silicate and methyltrimethoxysilane added is 1: 2.
  • silica particles SiO 2 , FUSO Co., Ltd.
  • urethane acrylate resin (UNIDIC RC27-947, DIC CORPORATION) was added to 69.0 g of solvent isopropyl alcohol (IPA, Samjeon Pure Chemical Co., Ltd., KBM503) and stirred, while stirring, and Igacure 184 (Igacure 184, Ciba Co., Ltd.) as a photoinitiator. After adding 3 g additionally, the resin solution was prepared by stirring at 700 rpm for 20 minutes. Thereafter, silica particles (SiO 2 , FUSO Co., Ltd.) were added to 30 parts by weight of the resin solids to prepare a hard coating solution III.
  • solvent isopropyl alcohol IPA, Samjeon Pure Chemical Co., Ltd., KBM503
  • Igacure 184 Igacure 184, Ciba Co., Ltd.
  • Igacure 184 (Igacure 184, Ciba) was added as a photoinitiator, followed by stirring at 700 rpm for 20 minutes, and isopropyl alcohol (IPA, Samjeon Pure Chemical Co., Ltd.) KBM503 ) 57.0 g was added and stirred for 20 minutes, and finally, 0.1 g of polyether-modified polydimethyl siloxane (BYK306) was added as a leveling improving additive, followed by stirring for 10 minutes to prepare a resin solution. Thereafter, silica particles (SiO 2 , FUSO Co., Ltd.) were added at 30 parts by weight based on the resin solid content to prepare a hard coating solution IV.
  • silica particles SiO 2 , FUSO Co., Ltd.
  • the inorganic coating having a thickness of 500 nm was formed by spin coating a hard coating layer coating solution I on one surface of a polycarbonate substrate (LEXAN, GE) having a thickness of 3 mm. At this time, the coating solution was used to dilute the solid content to 9.5% with DBE (dibuthyl ether), spin coating was coated at 1,000rpm for 20 seconds, dried for 3 minutes at 80 °C convection oven, UV irradiation (SMT Co., Ltd.) CR403) was exposed to irradiation intensity of 14mW / cm 2 for 143 seconds, UV irradiation at 2,000mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing, and the measured values were measured in Table 1 below. Indicated.
  • an inorganic layer having a thickness of 500 nm was formed by spin coating with a hard coating layer coating solution I.
  • the coating solution was used to dilute the solid content to 9.5% with DBE (dibuthyl ether), spin coating was coated at 1,000rpm for 20 seconds, dried for 3 minutes at 80 °C convection oven, UV irradiation (SMT Co., Ltd.) CR403) was exposed to irradiation intensity of 14 mW / cm 2 for 214 seconds, UV irradiation at 4,000 mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing, and the measured values were measured in Table 1 below. Indicated.
  • an inorganic layer having a thickness of 1,000 nm was formed by spin coating with a hard coating layer coating solution I.
  • the coating solution was diluted with DBE (dibuthyl ether) so that the solid content was 9.5%.
  • the spin coating was coated for 20 seconds at 1,000 rpm, then dried for 3 minutes in an 80 ° C. convection oven, and again for 20 seconds at 1,000 rpm, followed by drying for 3 minutes in an 80 ° C. convection oven.
  • UV irradiation was performed at 14mW / cm 2 for 143 seconds using UV irradiator (SMT CR403) and UV irradiation at 2,000mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing.
  • SMT CR403 UV irradiator
  • UV irradiation was performed at 14mW / cm 2 for 143 seconds using UV irradiator (SMT CR403) and UV irradiation at 2,000mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing.
  • SMT CR403 UV irradiator
  • a coating layer having a thickness of 500 nm was formed by spin coating with a hard coating layer coating solution II.
  • the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes at 80 °C convection oven, 2,000mJ / cm 2 by exposure for 14 minutes at 14mW / cm 2 irradiation intensity in a UV irradiator (CR403) SMT
  • UV irradiator CR403 SMT
  • a coating layer having a thickness of 1,000 nm was formed by spin coating the hard coating layer coating solution III. At this time, the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes in an 80 °C convection oven, polycarbonate glazing was prepared by UV irradiation at 350mJ / cm light using a high-pressure mercury lamp, measured physical properties The measured values are shown in Table 1 below.
  • a coating layer having a thickness of 1,000 nm was formed by spin coating with a hard coating layer coating solution IV. At this time, the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes in an 80 °C convection oven, polycarbonate glazing was prepared by UV irradiation at 350mJ / cm light using a high-pressure mercury lamp, measured physical properties The measured values are shown in Table 1 below.
  • Abrasion resistance Haze before and after abrasion with haze meter (NHD 2000N, Nippon Denshoku) when wear 500 times under CS-10F wear wheel and 500g load condition using Taber Abraser Transmittance was measured respectively.
  • Adhesion 100 points were made by making a checkerboard scale by drawing lines on the specimen at 2mm intervals. The number of times where peeling did not occur was carried out by tape-taking and pulling once strongly in a vertical direction.
  • Moisture Permeability (g / m 2 / day): Measured according to ASTM F-1249 standard using Aquatran Model1 (Mocon). Specimen size is 100 * 100mm.
  • the PC glazing of the embodiment including a hard coating layer derived from polysilazane or polysiloxane and formed by a wet process has a haze difference ( ⁇ Haze) and a transmittance difference ( ⁇ Transmittance) before and after wear. ) Is lower than the comparative example, and it can be seen from this that the wear resistance is excellent.
  • the PC glazing of the embodiment is excellent in adhesion between the substrate and the hard coating layer without having a separate primer layer, low moisture permeability (WVTR), excellent barrier properties, low surface roughness, surface flatness of the hard coating layer It can be seen that it is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to polycarbonate glazing and a method for producing same, the polycarbonate glazing comprising: a polycarbonate-based substrate; and a silicon-based hard coating layer formed on one side of the substrate, wherein the hard coating layer is derived from polysilazanes or polysiloxazanes and, when subjected to abrasion for 500 cycles using a Taber abraser with a CS-10F abrasion wheel under a load of 500 g, has a difference in haze (△haze) before and after the abrasion of at most about 6.0 and a transmittance difference (△transmittance) of at most about 0.8. The polycarbonate glazing has superior abrasion resistance and transparency, superior adhesion between the polycarbonate-based substrate and the hard coating layer even without a separate primer layer, excellent gas barrier properties due to low moisture permeability, and superior fouling resistance. In addition, the method for producing polycarbonate glazing according to the present invention allows non-vacuum wet coating in a wet process and thus has reduced production time and superior processability.

Description

폴리카보네이트 글래이징 및 그 제조방법Polycarbonate Glazing and Manufacturing Method Thereof
본 발명은 폴리카보네이트 글래이징 및 그 제조방법에 관한 것이다.The present invention relates to a polycarbonate glazing and a method of manufacturing the same.
최근 자동차업계는 최대현안인 연비 절감, 환경 규제에 대한 대응, 승객의 안전성 확보, 그리고 자동차사 간의 경쟁 심화로 인한 원가 절감의 압박 등의 문제에 직면하고 있다. 이 같은 문제를 해결하기 위하여, 윈도우 모듈에 사용되는 창유리나 차체 등에 사용되는 연질강판 등을 경량 금속, 플라스틱, 또는 탄소 복합소재 등으로 대체하는 연구가 활발하게 이루어지고 있다.Recently, the automobile industry is facing problems such as fuel economy reduction, responding to environmental regulations, securing passenger safety, and pressure on cost reduction due to intensifying competition among automakers. In order to solve this problem, studies are being actively conducted to replace soft steel sheets used for window modules or car bodies with lightweight metals, plastics, or carbon composite materials.
특히, 플라스틱 재료는 지금까지 자동차의 경량화, 설계 및 디자인의 자유도 향상, 신규 기능의 부여, 비용 절감에 기여해왔으며, 새로운 과제로서 환경문제에도 대응하는 기술개발, 자동차의 창유리와 같이 종래 기술로는 수지화가 어려웠던 부품의 대체 재료로 선호되고 있다.In particular, plastic materials have contributed to the weight reduction of automobiles, improving design and design freedom, granting new functions, and reducing costs. It is preferred as an alternative material for parts that have been difficult to resinize.
예로서, 폴리카보네이트(PC) 및 폴리메틸 메타크릴레이트(PMMA) 등과 같은 플라스틱 재료는 내충격성, 투명성 및 성형성이 우수하기 때문에 현재 B-필러와 헤드램프 및 선루프 등과 같은 다양한 자동차 부분 및 부품 제조에 사용되고 있다. 자동차 윈도우 모듈은 스타일링/디자인, 중량 감소, 안정/안전 등과 같은 영역에서의 다양한 장점으로 인해, 상기 플라스틱 물질들에 대해 새로운 용도를 제공한다. 특히, 플라스틱 물질은 전체적인 디자인 및 형상 복합성을 증가시키므로써 차량을 경쟁차 차량과 차별시킬 뿐만 아니라, 기능적 부품들을 성형된 플라스틱 모듈로 집적하므로써 자동차 제조자에게 윈도우 조립체의 복잡함을 감소시킬 능력을 제공한다. 경량 플라스틱 윈도우 모듈을 사용하면 차량의 낮은 무게중심과 연료 경제성을 촉진시킨다. 또한, 플라스틱 윈도우 모듈은 롤오버 사고시 탑승자의 지지를 강화시키므로써 차량의 전체적인 안정성을 증가시킬 수 있다. For example, plastic materials such as polycarbonate (PC) and polymethyl methacrylate (PMMA), etc., have excellent impact resistance, transparency and formability, and are currently used in various automotive parts and parts such as B-pillars and headlamps and sunroofs. It is used for manufacture. Automotive window modules offer new uses for the plastic materials due to various advantages in areas such as styling / design, weight reduction, stability / safety and the like. In particular, plastic materials not only differentiate the vehicle from competing vehicles by increasing the overall design and shape complexity, but also provide the automobile manufacturer with the ability to reduce the complexity of the window assembly by integrating functional parts into molded plastic modules. The use of lightweight plastic window modules promotes the vehicle's low center of gravity and fuel economy. In addition, the plastic window module can increase the overall stability of the vehicle by strengthening the occupant's support in a rollover accident.
그러나, 폴리카보네이트과 같은 플라스틱 재료는 내스크래치성 및 내마모성이 취약하다는 문제점이 있다. 이와 같은 내스크래치성 또는 내마모성 개선을 위하여 플라즈마 화학증착법(Plasma enhanced chemical vapor deposition, PECVD), CVD법, 스퍼터링법(sputtering), 졸-겔법 등에 의하여 기재 위에 하드코팅층으로 실리카막을 형성하려는 시도가 있어 왔다. 그러나, PECVD법, CVD법, 스퍼터링법은 장치가 고가이고 양질의 도막을 형성하기 위한 제어가 번거롭다는 문제가 있고, 졸-겔법에서는 요구되는 소성 온도가 500℃ 이상으로 높아 공정이 용이하지 않은 문제점이 있다.However, plastic materials such as polycarbonate have a problem in that scratch resistance and abrasion resistance are weak. In order to improve such scratch resistance or abrasion resistance, there have been attempts to form a silica film as a hard coating layer on a substrate by plasma enhanced chemical vapor deposition (PECVD), CVD, sputtering, sol-gel, or the like. . However, the PECVD method, the CVD method, and the sputtering method have a problem that the apparatus is expensive and the control for forming a high quality coating film is troublesome. In the sol-gel method, the required firing temperature is higher than 500 ° C., which makes the process difficult. There is a problem.
본 발명이 해결하고자 하는 과제는 내마모성이 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.The problem to be solved by the present invention is to provide a polycarbonate glazing excellent in wear resistance.
본 발명이 해결하고자 하는 다른 과제는 투명도가 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.Another problem to be solved by the present invention is to provide a polycarbonate glazing excellent transparency.
본 발명이 해결하고자 하는 또 다른 과제는 폴리카보네이트계 기재와 하드코팅층의 밀착성이 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.Another object of the present invention is to provide a polycarbonate glazing excellent in adhesion between the polycarbonate-based substrate and the hard coating layer.
본 발명의 해결하고자 하는 또 다른 과제는 수분투과도가 낮고 가스 배리어성이 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.Another object of the present invention is to provide a polycarbonate glazing having low water permeability and excellent gas barrier properties.
본 발명의 해결하고자 하는 또 다른 과제는 내오염성이 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.Another problem to be solved by the present invention is to provide a polycarbonate glazing excellent in pollution resistance.
본 발명의 해결하고자 하는 또 다른 과제는 유연성이 우수하여 크랙방지가 우수한 폴리카보네이트 글래이징을 제공하기 위함이다.Another problem to be solved by the present invention is to provide a polycarbonate glazing with excellent flexibility to prevent cracking.
본 발명의 해결하고자 하는 또 다른 과제는 비진공 wet coating이 가능하여 제조시간이 짧고 공정성이 우수한 폴리카보네이트 글래이징의 제조방법을 제공하기 위한 것이다. Another object of the present invention is to provide a method for producing a polycarbonate glazing having a short manufacturing time and excellent processability by enabling non-vacuum wet coating.
본 발명의 하나의 관점은 폴리카보네이트계 기재; 및 상기 기재의 일면에 형성된 하드코팅층을 포함하고, 상기 하드코팅층은 폴리실라잔 또는 폴리실록사잔으로부터 유래된 유-무기 혼합층이며, 테이버 마모시험기(Taber Abraser)를 이용하여 CS-10F 마모휠과 500g 하중 조건에서 500회 마모시, 마모 전·후의 헤이즈 차이(△Haze)가 약 6.0이하이고, 투과도 차이(△Transmittance)가 약 0.8 이하인 폴리카보네이트 글래이징에 관한 것이다.One aspect of the invention is a polycarbonate-based substrate; And a hard coating layer formed on one surface of the substrate, wherein the hard coating layer is an organic-inorganic mixed layer derived from polysilazane or polysiloxane, and 500 g of CS-10F wear wheel using a taper abraser. It is related to polycarbonate glazing in which the haze difference (ΔHaze) before and after abrasion is about 6.0 or less and the permeability difference (ΔTransmittance) is about 0.8 or less at 500 wear under load conditions.
본 발명의 다른 관점은 폴리카보네이트계 기재의 일 면에 폴리실라잔 또는 폴리실록사잔을 포함하는 코팅액으로 하드코팅층을 형성하는 것을 포함하는 폴리카보네이트 글래이징의 제조방법에 관한 것이다.Another aspect of the present invention relates to a method for producing a polycarbonate glazing comprising forming a hard coating layer with a coating liquid containing polysilazane or polysiloxane on one side of a polycarbonate-based substrate.
본 발명의 폴리카보네이트 글래이징은 내마모성 및 투명성이 우수하고, 별도의 프라이머층 없이도 폴리카보네이트계 기재와 하드코팅층의 밀착성이 우수하고, 수분투과도가 낮아 가스 배리어성이 탁월하며, 내오염성이 우수하다. 또한, 본 발명의 폴리카보네이트 글래이징 제조 방법은 습식 공정으로 비진공 wet coating이 가능하여 제조시간이 짧고 공정성이 우수하다.Polycarbonate glazing of the present invention is excellent in wear resistance and transparency, excellent adhesion between the polycarbonate-based substrate and the hard coating layer without a separate primer layer, excellent water barrier properties, low gas permeability, and excellent pollution resistance. In addition, the polycarbonate glazing manufacturing method of the present invention is non-vacuum wet coating by a wet process, the manufacturing time is short and excellent processability.
도 1은 본 발명의 일 구체예에 따른 폴리카보네이트 글래이징의 단면도이다.1 is a cross-sectional view of a polycarbonate glazing in accordance with one embodiment of the present invention.
도 2는 본 발명의 다른 구체예에 따른 폴리카보네이트 글래이징의 단면도이다.2 is a cross-sectional view of a polycarbonate glazing in accordance with another embodiment of the present invention.
이하, 첨부한 도면들을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 또한, 설명의 편의를 위하여 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소의 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고, 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다. Hereinafter, with reference to the accompanying drawings, it will be described embodiments of the present application in more detail. However, the technology disclosed in the present application is not limited to the embodiments described herein and may be embodied in other forms. It is merely to be understood that the embodiments introduced herein are provided so that the disclosure can be made thorough and complete, and that the spirit of the present application can be fully conveyed to those skilled in the art. In the drawings, the width, thickness, and the like of the components are enlarged in order to clearly express the components of each device. In addition, although only a part of the components are shown for convenience of description, those skilled in the art will be able to easily understand the rest of the components. When described in the drawings as a whole, at the point of view of the observer, when one element is referred to as being positioned on top of another, this means that one element may be placed directly on top of another or that additional elements may be interposed between them. Include. In addition, one of ordinary skill in the art may implement the spirit of the present application in various other forms without departing from the technical spirit of the present application. In addition, in the drawings, the same reference numerals refer to substantially the same elements.
폴리카보네이트 글래이징 (Polycarbonate Glazing)Polycarbonate Glazing
본 발명의 하나의 관점은 폴리카보네이트 글래이징에 관한 것이다. 본 발명에서 폴리카보네이트 글래이징은 폴리카보네이트를 포함하는 기재 및 상기 기재에 적층된 적어도 하나 이상의 코팅층을 포함할 수 있다. One aspect of the invention relates to polycarbonate glazing. In the present invention, the polycarbonate glazing may include a substrate including polycarbonate and at least one coating layer laminated on the substrate.
도 1은 본 발명의 일 구체예에 따른 폴리카보네이트 글래이징의 단면도를 나타낸 것이다. 도 1을 참고하면, 폴리카보네이트 글래이징(100)은 폴리카보네이트계 기재(110); 및 폴리카보네이트계 기재(110)의 일면에 형성된 하드코팅층(120)을 포함할 수 있다.1 illustrates a cross-sectional view of a polycarbonate glazing in accordance with one embodiment of the present invention. Referring to Figure 1, the polycarbonate glazing 100 is a polycarbonate-based substrate 110; And it may include a hard coating layer 120 formed on one surface of the polycarbonate-based substrate 110.
폴리카보네이트계 기재(110)는 폴리카보네이트계 수지를 포함하며, 상기 폴리카보네이트계 수지는 본 발명의 목적을 달성할 수 있는 범위 내에서 제한없이 사용될 수 있다. 예를 들어, 폴리카보네이트, 폴리카보네이트 공중합체 또는 폴리카보네이트 블렌딩 수지가 사용될 수 있으며, 상기 블렌딩 수지로 폴리아미드, 열가소성 폴리우레탄(TPU), 아크릴로니트릴-스틸렌-아크릴로니트릴, 폴리메틸 메타크릴레이트, 폴리에스테르 및 아크릴로니트릴-부타디엔-스티렌로 이루어진 군에서 선택된 1종 이상의 고분자 수지와 폴리카보네이트를 블렌딩한 것을 사용할 수 있으나, 이에 제한되는 것은 아니다. 또한, 2종 이상을 혼합하여 사용할 수 있다. 상기 폴리카보네이트는 통상적인 제조 방법에 따라, 분자량 조절제와 촉매의 존재 하에, 디히드릭 페놀계 화합물과 포스겐을 반응시켜 제조할 수 있다. 또한, 다른 구체예로서, 상기 폴리카보네이트는 디히드릭 페놀계 화합물과 디페닐카보네이트와 같은 카보네이트 전구체의 에스테르 상호 교환 반응을 이용하여 제조할 수도 있다. 이러한 폴리카보네이트의 제조 방법에서, 상기 디히드릭 페놀계 화합물로는 비스페놀계 화합물을 사용할 수 있고, 예로서, 2,2-비스(4-히드록시페닐)프로판(비스페놀 A)을 사용할 수 있다. 이때, 상기 비스페놀 A가 부분적 또는 전체적으로 다른 종류의 디히드릭 페놀계 화합물로 대체되어도 무방하다. The polycarbonate-based substrate 110 includes a polycarbonate-based resin, and the polycarbonate-based resin may be used without limitation within a range capable of achieving the object of the present invention. For example, polycarbonate, polycarbonate copolymer or polycarbonate blending resin may be used, and the blending resin may be polyamide, thermoplastic polyurethane (TPU), acrylonitrile-styrene-acrylonitrile, polymethyl methacrylate. A blended polycarbonate with at least one polymer resin selected from the group consisting of polyester and acrylonitrile-butadiene-styrene may be used, but is not limited thereto. Moreover, 2 or more types can be mixed and used. The polycarbonate may be prepared by reacting a dihydric phenol compound with phosgene in the presence of a molecular weight modifier and a catalyst according to a conventional production method. In another embodiment, the polycarbonate may be prepared using an ester interchange reaction of a dihydric phenol compound and a carbonate precursor such as diphenyl carbonate. In the method for producing the polycarbonate, a bisphenol compound may be used as the dihydric phenol compound, and for example, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) may be used. In this case, the bisphenol A may be partially or wholly replaced by another type of dihydric phenol compound.
구체적으로, 폴리카보네이트 글래이징용 기재로서 요구되는 안전성 및 투명성의 관점에서 상기 폴리카보네이트계 수지는 인장강도가 약 60MPa 이상, 인장탄성률이 약 1.5GPa 이상, Vicat 연화점이 약 120℃ 이상, 전체광선투과율이 약 80% 이상일 수 있다. Specifically, in view of the safety and transparency required as a substrate for polycarbonate glazing, the polycarbonate resin has a tensile strength of about 60 MPa or more, a tensile modulus of about 1.5 GPa or more, a Vicat softening point of about 120 ° C. or more, and a total light transmittance. This may be at least about 80%.
폴리카보네이트계 기재(110)의 두께는 약 1㎜ 내지 10㎜가 될 수 있다. 상기 범위 내에서, 폴리카보네이트 글래이징의 기재로서 기계적 강도, 가요성, 투명성 등이 우수할 수 있다. The thickness of the polycarbonate-based substrate 110 may be about 1 mm to 10 mm. Within this range, mechanical strength, flexibility, transparency, and the like may be excellent as a substrate of the polycarbonate glazing.
폴리카보네이트계 기재(110) 위에는 하드코팅층(120)이 형성될 수 있다. 하드코팅층(120)은 폴리실록사잔 또는 폴리실라잔으로부터 유래될 수 있다. 구체적으로, 하드코팅층(110)은 수소화 폴리실록사잔 또는 폴리실라잔, 및 유기 용매를 포함하는 코팅액을 폴리카보네이트계 기재(120) 일면에 도포 후, 개질과정을 거쳐 코팅액에 포함된 수소화 폴리실라잔 또는 수소화 폴리실록사잔과 같은 실록산 화합물이 실리콘 다이옥사이드 (SiO2)로 변하게 되는 세라믹화가 이루어져 실리콘 옥사이드(SiOx)를 포함하는 코팅층으로 형성될 수 있다.The hard coating layer 120 may be formed on the polycarbonate-based substrate 110. The hard coat layer 120 may be derived from polysiloxane or polysilazane. Specifically, the hard coating layer 110 is coated with a hydrogenated polysiloxane or polysilazane, and a coating solution containing an organic solvent on one side of the polycarbonate-based substrate 120, the hydrogenated polysilazane or included in the coating solution through a modification process A siloxane compound, such as hydrogenated polysiloxane, may be ceramicized to be converted into silicon dioxide (SiO 2 ) to form a coating layer containing silicon oxide (SiO x).
하드코팅층(120)의 두께는 약 50 내지 3,000nm, 구체적으로 약 100 내지 1,000nm일 수 있다. 상기 두께 범위에서 충분한 내마모성의 확보가 가능하며, 크랙 발생을 최소화할 수 있다. 또한, 하드코팅층(120)은 습식 공정으로 형성되므로 폴리카보네이트계 기재 위에 별도의 프라이머층을 형성하지 않고도 충분한 밀착성 또는 접착력을 확보할 수 있다. 따라서, 폴리카보네이트계 기재(110) 상에 직접적으로 형성될 수 있다.The hard coating layer 120 may have a thickness of about 50 to 3,000 nm, specifically about 100 to 1,000 nm. It is possible to secure sufficient wear resistance in the thickness range, it is possible to minimize the occurrence of cracks. In addition, since the hard coating layer 120 is formed by a wet process, it is possible to secure sufficient adhesion or adhesion without forming a separate primer layer on the polycarbonate-based substrate. Therefore, it may be formed directly on the polycarbonate-based substrate 110.
본 발명의 일 실시예에 따른 폴리카보네이트 글래이징은 폴리실록사잔 또는 폴리실라잔으로부터 유래된 하드코팅층을 구비함으로서, 내마모성이 우수할 수 있다. 구체적으로, 상기 폴리카보네이트 글래이징은 테이버 마모시험기(Taber Abraser)를 이용하여 CS-10F 마모휠과 500g 하중 조건에서 500회 마모시, 마모 전·후의 헤이즈 차이(△Haze)가 약 6.0이하이고, 투과도 차이 (△Transmittance)가 약 0.8이하일 수 있다.Polycarbonate glazing according to an embodiment of the present invention may be excellent in wear resistance by having a hard coating layer derived from polysiloxane or polysilazane. Specifically, the polycarbonate glazing has a haze difference (ΔHaze) of about 6.0 or less after wear and wear 500 times under a CS-10F wear wheel and 500 g load condition using a taper abraser. , The transmittance difference (ΔTransmittance) may be about 0.8 or less.
또한, 본 발명의 일 실시예에 따른 폴리카보네이트 글래이징은 모듈러스가 약 45 내지 60GPa로 하드코팅층의 크랙이 최소화되고 강도가 충분히 확보될 수 있으며, 내마모성이 우수하다. 본 발명에서 ‘모듈러스’는 나노인덴터 Ti 750 Ubi(Hysitron社 제조)를 사용하여 상온에서 측정한 값을 의미한다. 본 발명에서 상온이란 특별한 언급이 없는 한, 25℃±3℃를 의미한다.In addition, the polycarbonate glazing according to an embodiment of the present invention has a modulus of about 45 to 60 GPa, thereby minimizing the crack of the hard coating layer and ensuring sufficient strength, and has excellent wear resistance. In the present invention, "modulus" means a value measured at room temperature using a nanoindenter Ti 750 Ubi (manufactured by Hysitron). In the present invention, room temperature means 25 ° C ± 3 ° C unless otherwise specified.
또한, 본 발명의 일 실시예에 따른 폴리카보네이트 글래이징은 수분투과도(WVTR)(g/m2/day)가 Aquatran Model1(Mocon社)을 사용하여 ASTM F-1249 규격에 의거하여 측정시 약 (1.0)g/(m2ㆍday)이하로, 가스 및 불순물에 대한 배리어성이 우수하다.In addition, the polycarbonate glazing according to an embodiment of the present invention has a water permeability (WVTR) (g / m 2 / day) is measured using the Aquatran Model 1 (Mocon Co., Ltd.) according to ASTM F-1249 standard ( 1.0) g / (m 2 · day) or less, excellent barrier property against gas and impurities.
또한, 본 발명의 일 실시예에 따른 폴리카보네이트 글래이징은 표면조도(Ra)가 약 1 내지 50nm일 수 있으며, 하드코팅층으로 인해 표면 평탄성이 향상된 폴리카보네이트 글래이징을 얻을 수 있다. In addition, the polycarbonate glazing according to an embodiment of the present invention may have a surface roughness (Ra) of about 1 to 50nm, it is possible to obtain a polycarbonate glazing improved surface flatness due to the hard coating layer.
이하, 도 2를 참조하여 본 발명의 다른 실시예에 따른 폴리카보네이트 글레이징에 대해 설명한다. 도 2는 본 발명의 다른 실시예에 따른 폴리카보네이트 글래이징의 단면도를 나타낸 것이다. 본 발명의 다른 실시예에 따른 폴리카보네이트 글레이징은 폴리카보네이트계 기재와 하드코팅층 사이에 중간층이 더 적층된다는 점을 제외하고는 상기 본 발명의 일 실시예에 따른 폴리카보네이트 글래이징과 실질적으로 동일하므로 여기서는 중간층을 중심으로 설명한다.Hereinafter, a polycarbonate glazing according to another embodiment of the present invention will be described with reference to FIG. 2. Figure 2 shows a cross-sectional view of a polycarbonate glazing in accordance with another embodiment of the present invention. The polycarbonate glazing according to another embodiment of the present invention is substantially the same as the polycarbonate glazing according to the embodiment of the present invention except that an intermediate layer is further laminated between the polycarbonate-based substrate and the hard coating layer. The explanation will focus on the middle layer.
도 2를 참고하면, 중간층(130)은 결합층, 기능성층 또는 결합층 및 기능성층의 적층 구조일 수 있으며, 적어도 1층 이상의 적층 구조일 수 있다. 상기 기능성층은 예를 들어, 자외선 차단층, 버퍼층, 내마모층 또는 배리어층 등일 수 있으며, 이들이 조합된 복수의 층일 수 있다.Referring to FIG. 2, the intermediate layer 130 may be a laminate structure of a bonding layer, a functional layer or a bonding layer, and a functional layer, and may be a laminate structure of at least one layer. The functional layer may be, for example, an ultraviolet blocking layer, a buffer layer, an abrasion resistant layer, a barrier layer, or the like, and may be a plurality of layers in combination thereof.
일 구체예로서, 중간층(130)은 폴리카보네이트계 기재(110)와 다른 층 간의 결합력을 향상시킬 수 있으며, 아미드 수지, 아크릴계 수지, 우레탄계 수지, 실록산계 수지, 실리콘계 수지 또는 이들의 코폴리머로부터 선택된 물질을 포함할 수 있으나 이에 제한되는 것은 아니다. 구체적으로, 지방성 폴리에테르계 열가소성 폴리우레탄, 폴리에스테르/폴리에테르계 열가소성 폴리우레탄, 음이온 지방성 폴리에스테르계 폴리우레탄, 음이온 지방성 폴리에스테르/폴리에테르 폴리우레탄, 수성 폴리우레탄, 폴리아미드, 및 폴리에스테르 아크릴 등을 포함할 수 있다.  In one embodiment, the intermediate layer 130 may improve the bonding force between the polycarbonate-based substrate 110 and other layers, and selected from amide resin, acrylic resin, urethane resin, siloxane resin, silicone resin or copolymer thereof It may include, but is not limited to, a substance. Specifically, aliphatic polyether thermoplastic polyurethanes, polyester / polyether thermoplastic polyurethanes, anionic fatty polyester based polyurethanes, anionic fatty polyester / polyether polyurethanes, aqueous polyurethanes, polyamides, and polyester acrylics And the like.
일 구체예로서, 중간층(130)은 자외선 영역인 약 200 내지 340nm 파장의 빛을 흡수하는 물질을 자외선 흡수제로 포함하여, 폴리카보네이트계 기재를 자외선으로부터 보호하여 내후성을 개선할 수 있다. 상기 자외선 흡수제는 금속 산화물 미립자, 유기 화합물 등이 포함될 수 있으며, 구체적으로 금속 산화물이 포함될 수 있다. 일 구체예로서, 자외선 흡수제로 사용되는 금속 산화물은 평균 입경이 약 1 내지 100nm, 예를 들면, 약 5 내지 25nm인 미립자로서, 산화아연, 산화 티탄, 산화 세륨, 산화 철 등으로 이루어진 군에서 선택된 1종 이상의 미립자를 포함할 수 있다. 다른 구체예로서, 자외선 흡수제로 사용되는 유기 화합물은 벤조 트리아졸(benzotriazole)계, 트리아진(triazine)계 등을 포함할 수 있다. 또한, 자외선 흡수제는 산화 방지 기능을 갖는 HALS제를 포함할 수 있으며, 예를 들면, HALS제로서 힌더드 아민계 화합물이 사용될 수 있다. 이 때, 중간층(130)은 바인더 수지를 포함할 수 있으며, 상기 바인더 수지로는 아크릴레이트계 모노머, 아크릴레이트계 올리고머, 실록산계 모노머, 실록산계 폴리머, 실리콘계 모노머, 실리콘계 폴리머, 아크릴계 수지, 우리탄계 수지 등이 사용될 수 있다. In one embodiment, the intermediate layer 130 may include a material that absorbs light having a wavelength of about 200 to 340 nm, which is an ultraviolet region, as an ultraviolet absorber to protect the polycarbonate-based substrate from ultraviolet rays to improve weather resistance. The ultraviolet absorber may include metal oxide fine particles, an organic compound, and the like, and specifically, may include metal oxide. In one embodiment, the metal oxide used as the ultraviolet absorber is a fine particle having an average particle diameter of about 1 to 100 nm, for example, about 5 to 25 nm, selected from the group consisting of zinc oxide, titanium oxide, cerium oxide, iron oxide, and the like. It may comprise one or more fine particles. In another embodiment, the organic compound used as the ultraviolet absorber may include a benzotriazole, triazine, or the like. In addition, the ultraviolet absorber may include a HALS agent having an antioxidant function, for example, a hindered amine compound may be used as the HALS agent. In this case, the intermediate layer 130 may include a binder resin, and the binder resin may include an acrylate monomer, an acrylate oligomer, a siloxane monomer, a siloxane polymer, a silicone monomer, a silicone polymer, an acrylic resin, or a uritan based resin. Resins and the like can be used.
일 구체예로서, 중간층(130)은 졸-겔(sol-gel) 합성법에 의하여 가수분해된 알콕시 실란이 콜로이달 실리카(colloidal silica) 졸과 축합 반응하여 형성된 실리카 망목구조(network structure)를 갖는 실리콘계 버퍼층일 수 있다. 상기 알콕시 실란으로는 3가 또는 4가의 알콕시 실란을 사용할 수 있다. 상기 알콕시 실란은 예로서, 비닐트리메톡시실란(vinyltrimethoxysilane), 프로필트리메톡시실란(propyltrimethoxysilane), γ-글리시독시 프로필 트리메톡시실란 (γ-glycidoxypropyltrimethoxysilane), 메틸트리메톡시실란 (methyltrimethoxysilane) 등을 단독으로 또는 혼합하여 사용할 수 있다.In one embodiment, the intermediate layer 130 is a silicon-based having a silica network structure formed by condensation reaction of a hydrolyzed alkoxy silane by a colloidal silica sol by sol-gel synthesis It may be a buffer layer. As said alkoxy silane, a trivalent or tetravalent alkoxy silane can be used. Examples of the alkoxy silane include vinyltrimethoxysilane, propyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane and the like. May be used alone or in combination.
일 구체예로서, 중간층(130)은 광경화성 수지 및 실리카 나노입자를 포함하는 아크릴계 내마모층일 수 있다. 상기 광경화성 수지는 아크릴레이트계 관능기를 가지는 자외선 경화성 화합물을 경화시켜 형성할 수 있다. 상기 자외선 경화성 화합물은 다관능 (메타) 아크릴레이트 화합물 등이 사용될 수 있다. 예를 들어, 상기 다관능 아크릴레이트 화합물로 에틸렌글리콜 디아크릴레이트, 네오펜틸글리콜 디(메타)아크릴레이트, 1,6-헥산디올 (메타)아크릴레이트, 트리메틸올프로판 트리(메타)아크릴레이트, 디펜타에리스리톨 헥사(메타)아크릴레이트, 폴리올 폴리(메타)아크릴레이트, 비스 페놀A-디글리시딜 에테르의 디(메타)아크릴레이트, 다가 알코올과 다가 카르복산 및 그 무수물과 아크릴산을 에스테르화함으로써 얻을 수 있는 에스테르 (메타)아크릴레이트, 아크릴레이트 관능기를 포함하는 실록산 화합물, 우레탄 (메타)아크릴레이트, 펜타에리트리톨 테트라메타크릴레이트, 글리세린 트리메타크릴레이트 등이 사용될 수 있으나 이에 한정되는 것은 아니다.In one embodiment, the intermediate layer 130 may be an acrylic wear resistant layer including a photocurable resin and silica nanoparticles. The photocurable resin may be formed by curing an ultraviolet curable compound having an acrylate functional group. The ultraviolet curable compound may be a polyfunctional (meth) acrylate compound and the like. For example, as the polyfunctional acrylate compound, ethylene glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate, trimethylolpropane tri (meth) acrylate, di Obtained by esterifying pentaerythritol hexa (meth) acrylate, polyol poly (meth) acrylate, di (meth) acrylate of bisphenol A-diglycidyl ether, polyhydric alcohol and polyhydric carboxylic acid, and its anhydride and acrylic acid Ester (meth) acrylate, a siloxane compound containing an acrylate functional group, urethane (meth) acrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, and the like may be used, but is not limited thereto.
상기 실리카 나노입자는 평균입경(D50)이 약 100nm이하, 예를 들어 약 10 내지 50nm이고, 아크릴계 내마모층 중 약 50중량% 이하, 예를 들어 약 5 내지 40중량%로 포함될 수 있다. 상기 범위로 실리카 나노입자를 포함시, 경도를 증가시켜 내마모성을 보다 향상시킬 수 있다.The silica nanoparticles may have an average particle diameter (D50) of about 100 nm or less, for example, about 10 to 50 nm, and about 50 wt% or less, for example, about 5 to 40 wt% of the acrylic wear resistant layer. When silica nanoparticles are included in the above range, the hardness may be increased to further improve wear resistance.
이하, 본 발명의 실시예들에 따른 하드코팅층을 형성하는 코팅액의 조성에 대하여 구체적으로 살펴보기로 한다.Hereinafter, the composition of the coating liquid for forming the hard coating layer according to the embodiments of the present invention will be described in detail.
하드코팅층 코팅액Hard Coating Layer Coating Solution
하드코팅층 형성용 코팅액은 수소화폴리실록사잔, 수소화폴리실라잔 또는 이들의 혼합물; 및 용매를 포함할 수 있다. 코팅액을 구성하는 각 성분을 설명하면 다음과 같다.The coating solution for forming a hard coat layer may be hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof; And solvents. Referring to each component constituting the coating solution is as follows.
(A) 수소화 폴리실록사잔 또는 수소화 폴리실라잔(A) hydrogenated polysiloxane or hydrogenated polysilazane
본 발명의 코팅액은 실리콘 옥사이드층 형성용 조성물로서 수소화 폴리실록사잔, 수소화 폴리실라잔 또는 이들의 혼합물을 포함할 수 있다.The coating solution of the present invention may include a hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof as a composition for forming a silicon oxide layer.
상기 수소화 폴리실록사잔 또는 수소화 폴리실라잔은 가열, 산화반응에 의해 실리콘 옥사이드 재질로 전환될 수 있으며, 내마모성이 우수한 하드코팅층을 얻을 수 있다.The hydrogenated polysiloxane or hydrogenated polysilazane may be converted to a silicon oxide material by heating and oxidation, and a hard coating layer having excellent wear resistance may be obtained.
상기 수소화 폴리실록사잔은 구조 내에 규소-질소(Si-N) 결합 단위 외에 규소-산소-규소(Si-O-Si) 결합 단위를 포함한다. 이러한 규소-산소-규소(Si-O-Si) 결합 단위는 경화시 응력을 완화시켜 수축을 줄일 수 있다. The hydrogenated polysiloxane may include silicon-oxygen-silicon (Si-O-Si) bonding units in addition to silicon-nitrogen (Si-N) bonding units in the structure. Such silicon-oxygen-silicon (Si-O-Si) bonding units can alleviate stress upon curing to reduce shrinkage.
수소화 폴리실라잔은 구조 내의 기본 골격이 규소-질소(Si-N) 결합 단위 외에 규소-수소(Si-H), 질소-수소(N-H) 결합 단위를 포함한다. Hydrogenated polysilazanes have a basic backbone in the structure including silicon-hydrogen (Si-H), nitrogen-hydrogen (N-H) coupling units in addition to silicon-nitrogen (Si-N) coupling units.
상기 수소화 폴리실록사잔이나 수소화 폴리실라잔 모두 베이킹 과정이나 경화과정을 거친 후에는 (Si-N) 결합이 (Si-O) 결합으로 치환될 수 있다. After both the hydrogenated polysiloxane and hydrogenated polysilazane have been baked or cured, the (Si-N) bond may be substituted with a (Si-O) bond.
구체예에서 상기 수소화폴리실록사잔은 하기 화학식 1로 표시되는 단위, 하기 화학식 2로 표시되는 단위 및 하기 화학식 3으로 표시되는 말단부를 가진다:In embodiments, the hydrogenated polysiloxane may have a unit represented by Formula 1, a unit represented by Formula 2, and a terminal portion represented by Formula 3 below:
[화학식 1][Formula 1]
Figure PCTKR2014006570-appb-I000001
Figure PCTKR2014006570-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2014006570-appb-I000002
Figure PCTKR2014006570-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2014006570-appb-I000003
Figure PCTKR2014006570-appb-I000003
상기 화학식 1 및 2에서, R1 내지 R7은 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로 알킬기, 치환 또는 비치환된 C3 내지 C30의 아릴기, 치환 또는 비치환된 C3 내지 C30의 아릴알킬기, 치환 또는 비치환된 C3 내지 C30의 헤테로알킬기, 치환 또는 비치환된 C3 내지 C30의 헤테로사이클알킬기, 치환 또는 비치환된 C3 내지 C30의 알케닐기, 치환 또는 비치환된 알콕시기, 치환 또는 비치환된 카르보닐기, 히드록시기 또는 이들의 조합을 의미한다.In Formulas 1 and 2, R 1 to R 7 are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C3 to C30 Aryl group, substituted or unsubstituted C3 to C30 arylalkyl group, substituted or unsubstituted C3 to C30 heteroalkyl group, substituted or unsubstituted C3 to C30 heterocyclic alkyl group, substituted or unsubstituted C3 to C30 alkene It means a niyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted carbonyl group, a hydroxy group or a combination thereof.
본 발명에서 "치환된"의 의미는 수소, 할로겐원자, 하이드록시기, 니트로기, 시아노기, 아미노기, 아지도기, 아미디노기, 히드라지노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 카르복실기 또는 그의 염, 술폰산기 또는 그의 염, 포스페이트기 또는 그의 염, 탄소수 1-20의 알킬기, 탄소수 2-20의 알케닐기, 탄소수 2-20의 알키닐기, 탄소수 1-20의 알콕시기, 탄소수 6-30의 아릴기, 탄소수 6-30의 아릴옥시기, 탄소수 3-30의 사이클로알킬기, 탄소수 3-30의 사이클로알케닐기, 탄소수 3-30의 사이클로알키닐기 또는 이들의 조합을 의미한다. In the present invention, "substituted" means hydrogen, halogen atom, hydroxyl group, nitro group, cyano group, amino group, azido group, amidino group, hydrazino group, carbonyl group, carbamyl group, thiol group, ester group, Carboxyl groups or salts thereof, sulfonic acid groups or salts thereof, phosphate groups or salts thereof, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and carbon atoms An aryl group having -30, an aryloxy group having 6-30 carbon atoms, a cycloalkyl group having 3-30 carbon atoms, a cycloalkenyl group having 3-30 carbon atoms, a cycloalkynyl group having 3-30 carbon atoms, or a combination thereof is meant.
상기 수소화 폴리실록사잔 또는 수소화 폴리실라잔은 산소함유량이 약 0.2% 내지 3중량%일 수 있다. 상기 범위로 함유되는 경우 구조 중의 규소-산소-규소(Si-O-Si) 결합에 의한 응력 완화가 충분하여 열처리시 수축을 방지할 수 있으며 이에 따라 형성된 하드코팅층에 크랙이 발생하는 것을 방지할 수 있다. 예를 들면, 상기 수소화 폴리실록사잔 또는 수소화 폴리실라잔의 산소함유량은 약 0.2 내지 3중량%, 구체적으로는 약 0.5 내지 2중량% 일 수 있다. The hydrogenated polysiloxane or hydrogenated polysilazane may have an oxygen content of about 0.2% to 3% by weight. When it is contained in the above range, the stress relaxation by the silicon-oxygen-silicon (Si-O-Si) bond in the structure is sufficient to prevent shrinkage during heat treatment and thus prevent the occurrence of cracks in the formed hard coating layer. have. For example, the oxygen content of the hydrogenated polysiloxane or hydrogenated polysilazane may be about 0.2 to 3% by weight, specifically about 0.5 to 2% by weight.
또한, 상기 수소화 폴리실록사잔 또는 폴리실라잔은 말단부가 수소로 캡핑되어 있는 구조로, 상기 화학식 3으로 표시되는 말단기가 수소화 폴리실록사잔 또는 수소화 폴리실라잔 구조 중의 Si-H 결합의 총 함량에 대하여 약 15 내지 35중량%로 포함될 수 있다. 상기 범위로 포함되는 경우 경화시 산화반응이 충분히 일어나면서도 경화시 SiH3 부분이 SiH4로 되어 비산되는 것을 방지하여 수축을 방지하고 이로부터 형성된 하드코팅층은 크랙이 발생되는 것을 방지할 수 있다. 예를 들면, 상기 화학식 3의 말단기가 수소화 폴리실록사잔 또는 수소화 폴리실라잔 구조 중의 Si-H 결합의 총 함량에 대하여 약 20 내지 30중량%로 포함될 수 있다. In addition, the hydrogenated polysiloxane or polysilazane has a structure in which the terminal portion is capped with hydrogen, and the terminal group represented by Formula 3 is about 15 with respect to the total content of Si—H bonds in the hydrogenated polysiloxaneoxane or hydrogenated polysilazane structure. To 35% by weight. When included in the above range, the oxidation reaction occurs during curing, but the SiH 3 portion during curing prevents from being scattered by SiH 4 to prevent shrinkage and the hard coating layer formed therefrom may prevent cracks from occurring. For example, the terminal group of Formula 3 may be included in about 20 to 30% by weight relative to the total content of Si-H bonds in the hydrogenated polysiloxane or hydrogenated polysilazane structure.
본 발명의 상기 수소화 폴리실록사잔 또는 수소화 폴리실라잔은 중량평균분자량(Mw)이 약 1,000 내지 5,000g/mol일 수 있다. 상기 범위인 경우, 열처리시 증발하는 성분을 줄이면서도 박막 코팅으로 치밀한 유-무기 혼합층을 형성할 수 있다. 예를 들면, 상기 중량평균분자량(Mw)이 약 1,500 내지 3,500g/mol 일 수 있다.The hydrogenated polysiloxane or hydrogenated polysilazane of the present invention may have a weight average molecular weight (Mw) of about 1,000 to 5,000 g / mol. In the above range, it is possible to form a dense organic-inorganic mixed layer with a thin film coating while reducing components to evaporate during heat treatment. For example, the weight average molecular weight (Mw) may be about 1,500 to 3,500 g / mol.
상기 수소화 폴리실록사잔, 수소화 폴리실라잔 또는 이들 혼합물은 코팅액의 총 함량에 대하여 약 0.1 내지 50중량%로 포함될 수 있다. 상기 범위로 포함되는 경우 적절한 점도를 유지할 수 있으며 기포 및 간극(Void)없이 평탄하고 고르게 형성될 수 있다. The hydrogenated polysiloxane, hydrogenated polysilazane or a mixture thereof may be included in an amount of about 0.1 to 50% by weight based on the total content of the coating solution. When included in the above range can maintain a suitable viscosity and can be formed flat and evenly without bubbles and voids (Void).
(B) 용매(B) solvent
상기 용매는 수소화 폴리실록사잔 또는 수소화 폴리실라잔과 반응성이 없으면서 이들을 용해할 수 있는 용매라면 어느 것이든 사용될 수 있다. 다만, OH를 함유할 경우 실록산계 화합물과 반응성이 있으므로 -OH 기를 함유하지 않는 용매가 바람직하다. 예를 들면, 지방족 탄화 수소, 지환식 탄화수소, 방향족 탄화수소등의 탄화 수소 용매, 할로겐화 탄화 수소 용매, 지방족 에테르, 지환식 에테르등의 에테르 류를 사용할 수 있다. 구체적으로 펜탄, 헥산, 시클로 헥산, 톨루엔, 자일렌, 솔벳소, 타벤 등의 탄화 수소, 염화 메틸렌, 트리 코롤로 에탄 등의 할로겐 탄화 수소, 디부틸 에테르, 디옥산, 테트라 하이브리드로 퓨란 등의 에테르류 등이 있다. 실록산계 화합물의 용해도나 용제의 증발속도 등을 적절하게 선택하고 복수의 용제를 혼합해도 좋다. The solvent may be used as long as it is a solvent which can dissolve them without being reactive with hydrogenated polysiloxane or hydrogenated polysilazane. However, when OH is contained, a solvent containing no -OH group is preferable because it is reactive with the siloxane compound. For example, ethers, such as hydrocarbon solvents, such as aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon, halogenated hydrocarbon solvent, aliphatic ether, alicyclic ether, can be used. Specifically, hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, sorbetso, and taben, halogen hydrocarbons such as methylene chloride and tricholoethane, dibutyl ether, dioxane, tetra hybrido furan and the like Ryu. The solubility of a siloxane compound, the evaporation rate of a solvent, etc. may be selected suitably, and a some solvent may be mixed.
본 발명의 코팅액은 열산 발생제(thermal acid generator, TAG)를 더 포함할 수 있다. 상기 열산 발생제는 상기 수소화폴리실록사잔의 현상성 및 미경화에 의한 오염성을 개선하기 위한 첨가제로 상기 수소화폴리실록사잔이 비교적 낮은 온도에서 현상될 수 있도록 한다. 상기 열산 발생제는 열에 의해 산(H+)을 발생할 수 있는 화합물이면 특히 한정되지 않으나, 약 90℃ 이상에서 활성화 되어 충분한 산을 발생하여 휘발성이 낮은 것을 선택할 수 있다. 이러한 열산 발생제는 예컨대 니트로벤질 토실레이트, 니트로벤질 벤젠술폰네이트, 페놀 술폰네이트 및 이들의 조합에서 선택될 수 있다. 상기 열산 발생제는 코팅액의 총 함량에 대하여 약 25중량% 이하, 예를 들면 약 0.01 내지 20중량%로 포함될 수 있다. 상기 범위로 포함되는 경우 비교적 낮은 온도에서 실록산계 화합물이 현상될 수 있다.The coating liquid of the present invention may further include a thermal acid generator (TAG). The thermal acid generator is an additive for improving the developability of the hydride polysiloxane and the contamination by uncuring, so that the hydride polysiloxane may be developed at a relatively low temperature. The thermal acid generator is not particularly limited as long as it is a compound capable of generating an acid (H +) by heat, but may be selected to have low volatility by being activated at about 90 ° C. or higher to generate sufficient acid. Such thermal acid generators can be selected, for example, from nitrobenzyl tosylate, nitrobenzyl benzenesulfonate, phenol sulfonate and combinations thereof. The thermal acid generator may be included in about 25% by weight or less, for example about 0.01 to 20% by weight based on the total content of the coating liquid. When included in the above range, the siloxane compound may be developed at a relatively low temperature.
본 발명의 코팅액은 계면 활성제를 더 포함할 수 있다. 상기 계면 활성제는 특히 한정되지 않으며, 예컨데 폴리옥시에틸렌라우릴에테르, 폴리옥시에틸렌스테아릴에테르, 폴리옥시에틸렌에테르, 폴리옥시에틸렌레일에테르 등의 폴리옥시에틸렌알킬에테르류, 폴리옥시에틸렌노닐페놀에테르 등의 폴리옥시에틸렌알킬알릴에테르류, 폴리옥시에틸렌 폴리옥시프로필렌블럭코폴리머류, 솔비탄모노라우레이트, 솔비탄모노팔미테이트, 솔비탄모노스테아레이트, 솔비탄모노올레이에트 등의 폴리옥시에틸렌솔비탄지방산 에스테르 등의 노니온계 계면활성제, 에프톱EF301, EF303, EF352((주)토켐프로덕츠 제조), 메가팩F171, F173(다이닛폰잉크(주) 제조). 프로라드FC430, FC431(스미토모쓰리엠(주) 제조), 아사히가드AG710, 샤프론S-382, SC101, SC102, SC103, SC104, SC105, SC106(아사히가라스(주) 제조) 등의 불소계 계면활성제, 오르가노실록산폴리머 KP341(신에쯔카가쿠고교(주) 제조) 등과 기타 실리콘계 계면활성제를 들 수 있다. 상기 계면활성제는 코팅액의 총 함량에 대하여 약 10중량% 이하, 예를 들면, 약 0.001 내지 5중량%로 포함될 수 있다.The coating liquid of the present invention may further include a surfactant. The said surfactant is not specifically limited, For example, polyoxyethylene alkyl ethers, such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene ether, polyoxyethylene rail ether, polyoxyethylene nonyl phenol ether, etc. Polyoxyethylene sorbitan such as polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene block copolymer, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate Nonionic surfactants such as fatty acid esters, F-top EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), Megapack F171, F173 (manufactured by Dainippon Ink, Inc.). Fluorine-based surfactants such as Prorad FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard AG710, Saffron S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahigara Corporation), or Kano siloxane polymer KP341 (made by Shin-Etsu Chemical Co., Ltd.), etc., etc. are mentioned. The surfactant may be included in about 10% by weight or less, for example, about 0.001 to 5% by weight based on the total content of the coating liquid.
폴리카보네이트 글래이징의 제조방법Method of Making Polycarbonate Glazing
본 발명의 일 실시예에 따른 폴리카보네이트 글래이징의 제조방법은 기재의 일 면에 수소화 폴리실라잔 또는 수소화 폴리실록사잔을 포함하는 코팅액으로 하드코팅층을 형성하는 것을 포함할 수 있다. 구체적으로 코팅액을 도포한 후 개질하여 하드코팅층을 형성하는 것을 포함할 수 있다. Method for producing a polycarbonate glazing according to an embodiment of the present invention may include forming a hard coating layer with a coating liquid containing a hydrogenated polysilazane or a hydrogenated polysiloxane to one side of the substrate. Specifically, it may include forming a hard coat layer by applying a coating solution and then modifying it.
우선, 폴리카보네이트계 기재 상이 폴리실라잔 또는 폴리실록사잔을 포함하는 코팅액을 도포한다. 상기 코팅액의 도포는 롤(Roll) 코팅, 스핀(Spin) 코팅, 바(Bar) 코팅, 딥(Dip) 코팅, 플로우(Flow) 코팅, 스프레이(Spray) 코팅 등으로 도포할 수 있으며, 이에 한정되지 않는다. 예로서, 상기 스핀코팅은 약 500 내지 4,000rpm으로 약 10 내지 60초 동안 코팅액을 도포할 수 있으며, 1회 이상 반복하여 코팅이 이루어질 수 있다.First, a coating liquid containing polysilazane or polysiloxazane is applied onto the polycarbonate-based substrate. The coating solution may be applied by roll coating, spin coating, bar coating, dip coating, flow coating, spray coating, or the like, but is not limited thereto. Do not. For example, the spin coating may be applied to the coating solution for about 10 to 60 seconds at about 500 to 4,000rpm, the coating may be repeated one or more times.
상기 코팅액의 도포 두께는 약 50 내지 3,000nm일 수 있고, 코팅액 도포 후 약 50 내지 100℃ 및 상대습도 약 40 내지 90%에서 약 1 내지 100분 동안 건조할 수 있다.The coating thickness of the coating solution may be about 50 to 3,000 nm, and after coating the coating solution may be dried for about 1 to 100 minutes at about 50 to 100 ℃ and relative humidity about 40 to 90%.
상기 개질하여 하드코팅층을 형성하는 것은 수소화 폴리실록사잔 또는 수소화 폴리실라잔과 같은 실록산 화합물을 실리콘 다이옥사이드로 변화시켜 세라믹화하는 과정을 의미한다. The modification to form the hard coat layer refers to a process of converting a siloxane compound such as hydrogenated polysiloxane or hydrogenated polysilazane into silicon dioxide to ceramic.
본 발명의 일 구체예로서, 실라잔 또는 폴리실록사잔 화합물의 실리콘 다이옥사이드로의 변환율을 높이기 위해 자외선 조사 또는 고온 고습하에서 세라믹화할 수 있다.In one embodiment of the present invention, in order to increase the conversion rate of the silazane or polysiloxane compound to silicon dioxide, it may be ceramicized under ultraviolet irradiation or high temperature, high humidity.
상기 자외선 조사는 진공 자외선을 사용하여 수행할 수 있다. 구체적으로 약 100 내지 200nm의 진공 자외선이 사용될 수 있다. 자외선의 조사강도, 조사량은 적절하게 설정하는 것이 가능하다. 상기 자외선 조사는 예를 들어, 약 0.1 내지 5분 동안, 조사 강도 약 10 내지 200mW/㎠, 조사량 약 100 내지 6,000mJ/㎠으로 조사할 수 있다. 상기 조사량은 구체적으로는 약 1,000 내지 5,000 mJ/㎠ 일 수 있다.The ultraviolet irradiation may be performed using a vacuum ultraviolet. Specifically, about 100 to 200 nm vacuum ultraviolet light may be used. Irradiation intensity and irradiation amount of ultraviolet ray can be set suitably. For example, the ultraviolet radiation may be irradiated at an irradiation intensity of about 10 to 200 mW / cm 2 and an irradiation amount of about 100 to 6,000 mJ / cm 2 for about 0.1 to 5 minutes. Specifically, the dosage may be about 1,000 to 5,000 mJ / cm 2.
상기 고온 고습하에서의 세라믹화는 예로서, 약 300 내지 1,500℃ 에서 약 1 내지 12시간 동안 열처리하는 것일 수 있다.The ceramicization under high temperature and high humidity may be, for example, heat treatment at about 300 to 1,500 ° C. for about 1 to 12 hours.
본 발명의 다른 실시예에 따른 제조 방법에 의하면, 상기 자외선 조사 후에는, 실리카로의 전환율을 보다 높이기 위하여, 예를 들어 약 80 내지 150℃ 및 상대습도 약 10 내지 90%, 구체적으로 약 40 내지 90%의 조건에서 약 40 내지 100분 동안 열처리하는 것을 더 포함할 수 있다. According to a manufacturing method according to another embodiment of the present invention, after the ultraviolet irradiation, in order to further increase the conversion to silica, for example, about 80 to 150 ℃ and relative humidity about 10 to 90%, specifically about 40 to The heat treatment may further include a heat treatment for about 40 to 100 minutes at 90% of the conditions.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, the following examples are provided to help the understanding of the present invention, and the scope of the present invention is not limited to the following examples. Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
제조예 1: 하드코팅층 코팅액 IPreparation Example 1 Hard Coating Layer Coating Liquid I
교반장치 및 온도제어장치가 부착된 2L의 반응기 내부를 건조 질소로 치환하고, 건조 피리딘 1,500g에 순수 2.0g을 주입하여 충분히 혼합한 후 이를 반응기에 넣고 5℃로 보온하였다. 여기에 디클로로실란 100g을 1시간에 걸쳐 서서히 주입 후 교반하면서 암모니아 70g을 3시간에 걸쳐서 서서히 주입하였다. 다음으로 건조 질소를 30분간 주입하고 반응기 내에 잔존하는 암모니아를 제거하였다. 얻어진 백색 슬러리 상의 생성물을 건조 질소 분위기하에서 1㎛의 테프론제 여과기를 사용하여 여과하고 여액 1,000g을 얻었다. 여기에 건조자일렌 1,000g을 첨가한 후, 로터리 이베포레이터(evaporater)를 사용하여 용매를 피리딘에서 자일렌으로 치환하는 조작을 총 3회 반복하면서 고형분 농도를 20%로 조정하고 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여 하드코팅층 코팅액 I을 제조하였다.The inside of the 2L reactor equipped with the stirrer and the temperature controller was replaced with dry nitrogen, and 2.0 g of pure water was injected into 1,500 g of dry pyridine, followed by sufficient mixing. Here, 100 g of dichlorosilane was slowly injected over 1 hour, and then 70 g of ammonia was slowly injected over 3 hours with stirring. Next, dry nitrogen was injected for 30 minutes and the ammonia remaining in the reactor was removed. The product on the obtained white slurry was filtered using a 1 μm Teflon filter under a dry nitrogen atmosphere to obtain 1,000 g of a filtrate. After adding 1,000 g of dried xylene, the operation of replacing the solvent with pyridine to xylene using a rotary evaporator was repeated three times, adjusting the solid content concentration to 20% and finally pore size. A hard coating layer coating solution I was prepared by filtration with a filter made of 0.03 μm of Teflon filter.
수득된 수소화폴리실록사잔의 산소함유량은 0.5%, SiH3/SiH(total)는 0.20, 중량평균분자량은 2,000g/mol이었다.The oxygen content of the obtained hydrogenated polysiloxazane is 0.5%, SiH 3 / SiH ( total) is 0.20, a weight average molecular weight of 2,000g / mol.
제조예 2: 하드코팅층 코팅액 ⅡPreparation Example 2 Hard Coating Layer Coating Solution II
95% 초산(acetic acid) 0.3g이 혼합된 증류수 100g에 테트라에틸실리케이트(TEOS, 시그마알드리치社) 25.62g을 투입하고 교반하면서 메틸트라이메톡시실란(MTMS, Shin Etsu(주) KBM503)을 추가 투입하여 상온에서 수지 용액을 제조하였다. 이때 투입된 테트라에틸실리케이트와 메틸트라이메톡시실란의 몰비는 1:2이다. 이 후 수지 고형분 대비 30중량부로 실리카 입자(SiO2, FUSO社)를 투입하여 하드코팅액 Ⅱ를 제조하였다. Add 25.62 g of tetraethyl silicate (TEOS, Sigma-Aldrich Co., Ltd.) to 100 g of distilled water mixed with 0.3 g of 95% acetic acid and add methyltrimethoxysilane (MTMS, Shin Etsu KBM503) while stirring. To prepare a resin solution at room temperature. At this time, the molar ratio of tetraethyl silicate and methyltrimethoxysilane added is 1: 2. Thereafter, silica particles (SiO 2 , FUSO Co., Ltd.) were added to 30 parts by weight of the resin solids to prepare a hard coating solution II.
제조예 3: 하드코팅층 코팅액 ⅢPreparation Example 3: Hard Coating Layer Coating Solution Ⅲ
우레탄 아크릴레이트 수지(UNIDIC RC27-947, DIC CORPORATION) 28.0g를 용매 이소프로필 알콜(IPA, 삼전순약(주) KBM503) 69.0g에 투입하고 교반하면서, 광개시제로서 이가큐어 184(Igacure 184, Ciba社) 3g을 추가 투입한 후 20분 동안 700rpm으로 교반하여 수지 용액을 제조하였다. 이 후 수지 고형분 대비 30중량부로 실리카 입자(SiO2, FUSO社)를 투입하여 하드코팅액 Ⅲ를 제조하였다. 28.0 g of urethane acrylate resin (UNIDIC RC27-947, DIC CORPORATION) was added to 69.0 g of solvent isopropyl alcohol (IPA, Samjeon Pure Chemical Co., Ltd., KBM503) and stirred, while stirring, and Igacure 184 (Igacure 184, Ciba Co., Ltd.) as a photoinitiator. After adding 3 g additionally, the resin solution was prepared by stirring at 700 rpm for 20 minutes. Thereafter, silica particles (SiO 2 , FUSO Co., Ltd.) were added to 30 parts by weight of the resin solids to prepare a hard coating solution III.
제조예 4: 하드코팅층 코팅액 ⅣPreparation Example 4 Hard Coating Layer Coating Solution Ⅳ
다관능 아크릴레이트 모노머인 디펜타에리트리톨 헥사 아크릴레이트(DPHA, SK Cytec社) 10g과 펜타에리트리톨 트리아크릴레이트(PETA, Satomer社) 10g을 제1 용매인 2-메톡시에탄올(MCS, 삼전순약) 20g에 투입하여 교반하고, 광개시제로서 이가큐어 184(Igacure 184, Ciba社) 3g을 투입한 후 20분 동안 700rpm으로 충분히 교반하고, 제2 용매인 이소프로필알콜(IPA, 삼전순약(주) KBM503) 57.0g을 추가 투입하고 20분 동안 교반하고, 마지막으로 레벨링 개선 첨가제로 폴리에테르 변성 폴리디메틸 실록산(BYK306) 0.1g을 투입하여 10분 동안 교반하여 수지 용액을 제조하였다. 이 후 수지 고형분 대비 30중량부로 실리카 입자 (SiO2, FUSO社) 를 투입하여 하드코팅액 Ⅳ를 제조하였다. 10 g of the polyfunctional acrylate monomer dipentaerythritol hexa acrylate (DPHA, SK Cytec) and 10 g pentaerythritol triacrylate (PETA, Satomer) were used as the first solvent, 2-methoxyethanol (MCS, Samjeon Pure Chemical). ) Was added to 20 g and stirred, and 3 g of Igacure 184 (Igacure 184, Ciba) was added as a photoinitiator, followed by stirring at 700 rpm for 20 minutes, and isopropyl alcohol (IPA, Samjeon Pure Chemical Co., Ltd.) KBM503 ) 57.0 g was added and stirred for 20 minutes, and finally, 0.1 g of polyether-modified polydimethyl siloxane (BYK306) was added as a leveling improving additive, followed by stirring for 10 minutes to prepare a resin solution. Thereafter, silica particles (SiO 2 , FUSO Co., Ltd.) were added at 30 parts by weight based on the resin solid content to prepare a hard coating solution IV.
실시예 1 내지 3 및 비교예 1 내지 3Examples 1 to 3 and Comparative Examples 1 to 3
실시예 1Example 1
3㎜ 두께의 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 I로 스핀코팅(spin Coating)하여 500nm 두께의 무기층을 형성하였다. 이 때, 코팅액은 DBE(dibuthyl ether)로 고형분이 9.5%가 되도록 희석하여 사용하였고, 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였으며, UV 조사기(SMT社 CR403)에서 조사강도 14mW/cm2으로 143초 동안 노광하여 2,000mJ/cm2으로 UV 조사한 후, 상온에서 24시간 방치하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.The inorganic coating having a thickness of 500 nm was formed by spin coating a hard coating layer coating solution I on one surface of a polycarbonate substrate (LEXAN, GE) having a thickness of 3 mm. At this time, the coating solution was used to dilute the solid content to 9.5% with DBE (dibuthyl ether), spin coating was coated at 1,000rpm for 20 seconds, dried for 3 minutes at 80 ℃ convection oven, UV irradiation (SMT Co., Ltd.) CR403) was exposed to irradiation intensity of 14mW / cm 2 for 143 seconds, UV irradiation at 2,000mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing, and the measured values were measured in Table 1 below. Indicated.
실시예 2Example 2
3㎜ 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 I로 스핀코팅(spin Coating)하여 500nm 두께의 무기층을 형성하였다. 이 때, 코팅액은 DBE(dibuthyl ether)로 고형분이 9.5%가 되도록 희석하여 사용하였고, 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였으며, UV 조사기(SMT社 CR403)에서 조사강도 14mW/cm2으로 214초 동안 노광하여 4,000 mJ/cm2으로 UV 조사한 후, 상온에서 24시간 방치하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.On one surface of a 3 mm polycarbonate substrate (LEXAN, GE, Inc.), an inorganic layer having a thickness of 500 nm was formed by spin coating with a hard coating layer coating solution I. At this time, the coating solution was used to dilute the solid content to 9.5% with DBE (dibuthyl ether), spin coating was coated at 1,000rpm for 20 seconds, dried for 3 minutes at 80 ℃ convection oven, UV irradiation (SMT Co., Ltd.) CR403) was exposed to irradiation intensity of 14 mW / cm 2 for 214 seconds, UV irradiation at 4,000 mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing, and the measured values were measured in Table 1 below. Indicated.
실시예 3Example 3
3㎜ 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 I로 스핀코팅(spin Coating)하여 1,000nm 두께의 무기층을 형성하였다. 이 때, 코팅액은 DBE(dibuthyl ether)로 고형분이 9.5%가 되도록 희석하여 사용하였다. 상기 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하고, 다시 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였다.On one surface of a 3 mm polycarbonate substrate (LEXAN, GE, Inc.), an inorganic layer having a thickness of 1,000 nm was formed by spin coating with a hard coating layer coating solution I. At this time, the coating solution was diluted with DBE (dibuthyl ether) so that the solid content was 9.5%. The spin coating was coated for 20 seconds at 1,000 rpm, then dried for 3 minutes in an 80 ° C. convection oven, and again for 20 seconds at 1,000 rpm, followed by drying for 3 minutes in an 80 ° C. convection oven.
스핀코팅 후 UV 조사기(SMT社 CR403)에서 조사강도 14mW/cm2으로 143초 동안 노광하여 2,000mJ/cm2으로 UV 조사한 후, 상온에서 24시간 방치하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.After spin coating, UV irradiation was performed at 14mW / cm 2 for 143 seconds using UV irradiator (SMT CR403) and UV irradiation at 2,000mJ / cm 2 , and then left at room temperature for 24 hours to prepare polycarbonate glazing. The measured values are shown in Table 1 below.
비교예 1Comparative Example 1
3㎜ 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 Ⅱ로 스핀코팅(spin Coating)하여 500nm 두께의 코팅층을 형성하였다. 이 때, 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였으며, UV 조사기(SMT社 CR403)에서 조사강도 14mW/cm2으로 143초 동안 노광하여 2,000 mJ/cm2으로 UV 조사한 후, 상온에서 24시간 방치하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.On one surface of a 3 mm polycarbonate substrate (LEXAN, GE), a coating layer having a thickness of 500 nm was formed by spin coating with a hard coating layer coating solution II. At this time, the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes at 80 ℃ convection oven, 2,000mJ / cm 2 by exposure for 14 minutes at 14mW / cm 2 irradiation intensity in a UV irradiator (CR403) SMT After irradiating with UV, and left at room temperature for 24 hours to prepare a polycarbonate glazing, the measured values are shown in Table 1 after measuring the physical properties.
비교예 2Comparative Example 2
3㎜ 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 Ⅲ으로 스핀코팅(spin Coating)하여 1,000nm 두께의 코팅층을 형성하였다. 이 때, 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였으며, 고압 수은등을 이용하여 350mJ/cm 광량으로 자외선 조사하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.On one surface of a 3 mm polycarbonate substrate (LEXAN, GE), a coating layer having a thickness of 1,000 nm was formed by spin coating the hard coating layer coating solution III. At this time, the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes in an 80 ℃ convection oven, polycarbonate glazing was prepared by UV irradiation at 350mJ / cm light using a high-pressure mercury lamp, measured physical properties The measured values are shown in Table 1 below.
비교예 3Comparative Example 3
3㎜ 폴리카보네이트 기재(LEXAN, GE社) 일면에 하드코팅층 코팅액 Ⅳ로 스핀코팅(spin Coating)하여 1,000nm 두께의 코팅층을 형성하였다. 이 때, 스핀코팅은 1,000rpm으로 20초 동안 코팅 후, 80℃ convection oven에서 3분 동안 건조하였으며, 고압 수은등을 이용하여 350mJ/cm 광량으로 자외선 조사하여 폴리카보네이트 글래이징을 제조하였으며, 물성을 측정 후 측정 값을 하기 표 1에 나타내었다.On one surface of a 3 mm polycarbonate substrate (LEXAN, GE, Inc.), a coating layer having a thickness of 1,000 nm was formed by spin coating with a hard coating layer coating solution IV. At this time, the spin coating was coated for 20 seconds at 1,000rpm, dried for 3 minutes in an 80 ℃ convection oven, polycarbonate glazing was prepared by UV irradiation at 350mJ / cm light using a high-pressure mercury lamp, measured physical properties The measured values are shown in Table 1 below.
물성 평가 방법 Property evaluation method
(1) 내마모성 : 테이버 마모시험기(Taber Abraser)를 이용하여 CS-10F 마모휠과 500g 하중 조건에서 500회 마모시, 헤이즈미터(NHD 2000N, Nippon Denshoku)로 마모 전·후의 헤이즈(Haze), 투과도(Transmittance)를 각각 측정하였다.(1) Abrasion resistance: Haze before and after abrasion with haze meter (NHD 2000N, Nippon Denshoku) when wear 500 times under CS-10F wear wheel and 500g load condition using Taber Abraser Transmittance was measured respectively.
(2) 크랙 : 상기 실시예 및 비교예에서 제조한 폴리카보네이트 글래이징을 상온에서 1시간 동안 방치 후, 육안으로 유무를 판단하였다. (2) Cracks: After leaving the polycarbonate glazing prepared in the above Examples and Comparative Examples for 1 hour at room temperature, it was determined by the naked eye.
*우수(표 중, 「×」 표시로 표기하였다.): 코팅층의 갈라진 부분이 보이지 않는다.* Excellent (it represents with "x" mark in a table.): The crack part of a coating layer is not seen.
*불량(표 중, 「○」표시로 표기하였다.): 코팅층의 일부 또는 전체에 갈라진 부분이 보인다.* Defective (marked with "○" in the table.): A cracked part is seen in part or the whole of the coating layer.
(3) 밀착성(개수/개수): 시편에 2mm 간격으로 선을 그어 바둑판 형태의 눈금을 만들어 100개의 점을 표시하였다. 테이프 접착하고, 수직방향으로 강하게 1회 당겨서 박리가 일어나지 않는 개수를 측정하였다.(3) Adhesion (number / number): 100 points were made by making a checkerboard scale by drawing lines on the specimen at 2mm intervals. The number of times where peeling did not occur was carried out by tape-taking and pulling once strongly in a vertical direction.
(4) 모듈러스: 나노인덴터 Ti 750 Ubi(Hysitron社 제조)를 사용하여 25℃에서 측정하였다.(4) Modulus: Measured at 25 ° C using a nanoindenter Ti 750 Ubi (manufactured by Hysitron).
(5) 수분투과도(WVTR)(g/m2/day): Aquatran Model1(Mocon社)을 사용하여 ASTM F-1249 규격에 의거하여 측정하였다. 시편의 크기는 100*100mm이다.(5) Moisture Permeability (WVTR) (g / m 2 / day): Measured according to ASTM F-1249 standard using Aquatran Model1 (Mocon). Specimen size is 100 * 100mm.
(7) 표면조도(Ra): veeco社의 표면조도계 NT1100을 사용하여 측정하였다.(7) Surface roughness (Ra): Measured using a veeco surface roughness meter NT1100.
표 1
구 분 실시예1 실시예2 실시예3 비교예 1 비교예 2 비교예 3
하드코팅층(nm) 코팅액 Ⅰ 500 500 1,000 - - -
코팅액 Ⅱ - - - 500 - -
코팅액 Ⅲ - - - - 1,000 -
코팅액 Ⅳ - - - - - 1,000
내마모성 헤이즈(%) 마모前 0.4 0.4 0.4 0.5 0.4 0.5
마모後 5.4 4.2 3.8 9.2 27.0 35.4
△H 5.0 3.8 3.2 8.8 26.6 29.9
투과도(%) 마모前 88.0 88.1 88.1 89.0 88.0 88.0
마모後 88.4 88.0 88.1 86.1 85.9 85.0
△T 0.4 0.1 0.0 0.9 2.1 3.0
크랙 X X X O X O
밀착성 100/100 100/100 100/100 0/100 0/100 0/100
모듈러스(G) 53 54 58 44 32 30
WVTR(g/m2/day) <1.0 <1.0 <1.0 35 44 38
표면조도(Ra) 3.9nm 4.1nm 3.7nm 11nm 3.7nm 10.3nm
Table 1
division Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3
Hard Coating Layer (nm) Coating solution Ⅰ 500 500 1,000 - - -
Coating solution Ⅱ - - - 500 - -
Coating solution Ⅲ - - - - 1,000 -
Coating solution Ⅳ - - - - - 1,000
Wear resistance Haze (%) Pre-wear 0.4 0.4 0.4 0.5 0.4 0.5
Wear 5.4 4.2 3.8 9.2 27.0 35.4
△ H 5.0 3.8 3.2 8.8 26.6 29.9
Permeability (%) Pre-wear 88.0 88.1 88.1 89.0 88.0 88.0
Wear 88.4 88.0 88.1 86.1 85.9 85.0
△ T 0.4 0.1 0.0 0.9 2.1 3.0
crack X X X O X O
Adhesiveness
100/100 100/100 100/100 0/100 0/100 0/100
Modulus (G) 53 54 58 44 32 30
WVTR (g / m 2 / day) <1.0 <1.0 <1.0 35 44 38
Surface roughness (Ra) 3.9 nm 4.1nm 3.7 nm 11nm 3.7 nm 10.3 nm
상기 표 1의 결과값에서 보듯이, 폴리실라잔 또는 폴리실록사잔으로부터 유래되고 습식 공정으로 형성된 하드코팅층을 포함하는 실시예의 PC 글래이징은 마모 전·후의 헤이즈 차이(△Haze) 및 투과도 차이(△Transmittance)가 비교예보다 낮으며, 이로부터 내마모성이 우수한 것을 알 수 있다. 또한, 실시예의 PC 글래이징은 별도의 프라이머층을 구비하지 않고서도 기재와 하드코팅층 간의 밀착성이 우수하고, 수분투과도(WVTR)가 낮아 배리어성이 우수하고, 표면조도가 낮아 하드코팅층의 표면 평탄성이 우수한 것을 알 수 있다.As shown in the results of Table 1, the PC glazing of the embodiment including a hard coating layer derived from polysilazane or polysiloxane and formed by a wet process has a haze difference (ΔHaze) and a transmittance difference (ΔTransmittance) before and after wear. ) Is lower than the comparative example, and it can be seen from this that the wear resistance is excellent. In addition, the PC glazing of the embodiment is excellent in adhesion between the substrate and the hard coating layer without having a separate primer layer, low moisture permeability (WVTR), excellent barrier properties, low surface roughness, surface flatness of the hard coating layer It can be seen that it is excellent.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains has the technical idea of the present invention. However, it will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (10)

  1. 폴리카보네이트계 기재; 및 상기 기재의 일면에 형성된 실리콘계 하드코팅층을 포함하고,Polycarbonate-based substrates; And a silicon-based hard coating layer formed on one surface of the substrate,
    테이버 마모시험기(Taber Abraser)를 이용하여 CS-10F 마모휠과 500g 하중 조건에서 500회 마모시, 마모 전·후의 헤이즈 차이(△Haze)가 약 6.0이하이고, 투과도 차이(△Transmittance)가 약 0.8이하인 폴리카보네이트 글래이징.When wear 500 times under CS-10F wear wheel and 500g load condition using Taber Abraser, haze difference (△ Haze) before and after wear is about 6.0 or less and permeability difference (△ Transmittance) is about Polycarbonate glazing less than 0.8.
  2. 제1항에 있어서,The method of claim 1,
    상기 하드코팅층은 폴리실라잔 또는 폴리실록사잔으로부터 유래된 것인 폴리카보네이트 글래이징.Wherein said hard coating layer is derived from polysilazane or polysiloxane.
  3. 제1항에 있어서, The method of claim 1,
    상기 폴리카보네이트계 기재의 두께는 약 1㎜ 내지 10㎜이고,The polycarbonate-based substrate has a thickness of about 1 mm to 10 mm,
    상기 하드코팅층의 두께는 약 100nm 내지 1000nm인 폴리카보네이트 글래이징.The hard coating layer has a thickness of about 100nm to 1000nm polycarbonate glazing.
  4. 제1항에 있어서,The method of claim 1,
    상기 하드코팅층의 표면조도(Ra)는 약 1 내지 20nm인 폴리카보네이트 글래이징.Surface roughness (Ra) of the hard coating layer is about 1 to 20nm polycarbonate glazing.
  5. 제1항에 있어서,The method of claim 1,
    모듈러스가 약 45 내지 60GPa인 폴리카보네이트 글래이징.Polycarbonate glazing with a modulus of about 45 to 60 GPa.
  6. 제1항에 있어서,The method of claim 1,
    상기 하드코팅층은 ASTM F-1249에 따라 측정된 수분투과도(WVTR)가 약 (1.0)g/(m2ㆍday)이하인 폴리카보네이트 글래이징.The hard coating layer is a polycarbonate glazing having a moisture permeability (WVTR) of about (1.0) g / (m 2 ㆍ day) or less measured according to ASTM F-1249.
  7. 제1항에 있어서,The method of claim 1,
    상기 하드코팅층은 상기 폴리카보네이트계 기재상에 직접 코팅되어 형성된 폴리카보네이트 글래이징.The hard coating layer is a polycarbonate glazing formed by coating directly on the polycarbonate-based substrate.
  8. 폴리카보네이트계 기재의 일 면에 폴리실라잔 또는 폴리실록사잔을 포함하는 코팅액으로 하드코팅층을 형성하는 것을 포함하는 폴리카보네이트 글래이징의 제조방법.Method for producing a polycarbonate glazing comprising forming a hard coating layer with a coating liquid containing polysilazane or polysiloxane on one side of the polycarbonate-based substrate.
  9. 제8항에 있어서, The method of claim 8,
    상기 하드코팅층을 형성하는 것은, 상기 폴리카보네이트계 기재의 적어도 일면에 상기 코팅액을 도포한 후 자외선을 조사하여 실리콘 다이옥사이드로 전환시키는 것을 포함하는 폴리카보네이트 글래이징의 제조방법.Forming the hard coating layer, the method of manufacturing a polycarbonate glazing comprising applying the coating solution to at least one surface of the polycarbonate-based substrate and converting it into silicon dioxide by irradiation with ultraviolet rays.
  10. 제9항에 있어서, The method of claim 9,
    상기 자외선을 조사하는 것은 자외선 조사강도 약 10 내지 200mW/㎠ 및 조사량 약 100 내지 6,000mJ/㎠으로 자외선을 조사하는 것을 포함하는 폴리카보네이트 글래이징의 제조방법.The irradiating the ultraviolet rays is a method of producing a polycarbonate glazing comprising irradiating ultraviolet rays with an ultraviolet irradiation intensity of about 10 to 200mW / ㎠ and an irradiation amount of about 100 to 6,000mJ / ㎠.
PCT/KR2014/006570 2013-07-19 2014-07-18 Polycarbonate glazing and method for producing same WO2015009114A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130085674 2013-07-19
KR10-2013-0085674 2013-07-19
KR10-2013-0101338 2013-08-26
KR1020130101338A KR20150010540A (en) 2013-07-19 2013-08-26 Polycarbonate glazing and the method for preparing the same

Publications (1)

Publication Number Publication Date
WO2015009114A1 true WO2015009114A1 (en) 2015-01-22

Family

ID=52346483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006570 WO2015009114A1 (en) 2013-07-19 2014-07-18 Polycarbonate glazing and method for producing same

Country Status (1)

Country Link
WO (1) WO2015009114A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574024A (en) * 2018-02-01 2018-09-25 横店集团东磁股份有限公司 A kind of water squeezing idler wheel for wet etching
US11307329B1 (en) 2021-07-27 2022-04-19 Racing Optics, Inc. Low reflectance removable lens stack
US11364715B2 (en) 2019-05-21 2022-06-21 Racing Optics, Inc. Polymer safety glazing for vehicles
US11490667B1 (en) 2021-06-08 2022-11-08 Racing Optics, Inc. Low haze UV blocking removable lens stack
US11524493B2 (en) 2019-02-01 2022-12-13 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11548356B2 (en) 2020-03-10 2023-01-10 Racing Optics, Inc. Protective barrier for safety glazing
US11622592B2 (en) 2014-06-17 2023-04-11 Racing Optics, Inc. Adhesive mountable stack of removable layers
US11625072B2 (en) 2010-05-14 2023-04-11 Racing Optics, Inc. Touch screen shield
US11648723B2 (en) 2019-12-03 2023-05-16 Racing Optics, Inc. Method and apparatus for reducing non-normal incidence distortion in glazing films
US11709296B2 (en) 2021-07-27 2023-07-25 Racing Optics, Inc. Low reflectance removable lens stack
US11808952B1 (en) 2022-09-26 2023-11-07 Racing Optics, Inc. Low static optical removable lens stack
US11846788B2 (en) 2019-02-01 2023-12-19 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11933943B2 (en) 2022-06-06 2024-03-19 Laminated Film Llc Stack of sterile peelable lenses with low creep

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919572A (en) * 1992-11-19 1999-07-06 Sri International Temperature-resistant and/or nonwetting coating of cured, silicon-containing polymers
US20030083453A1 (en) * 2001-05-07 2003-05-01 Kion Corporation Thermally stable, moisture curable polysilazanes and polysiloxazanes
KR20070010025A (en) * 2004-03-09 2007-01-19 엑사테크 엘.엘.씨. Plasma coating system for non-planar substrates
KR20070043849A (en) * 2004-08-20 2007-04-25 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Semiconductor element and process for producing the same
KR20090047885A (en) * 2007-11-08 2009-05-13 경북대학교 산학협력단 Method of fabricating passivation layer on plastic film with reduced water vapor permeation and flexible organic light emitting diode device using the same
KR20110123306A (en) * 2010-05-07 2011-11-15 한국세라믹기술원 Method for forming plastic substrate coated with layer for prevening vapor permeability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919572A (en) * 1992-11-19 1999-07-06 Sri International Temperature-resistant and/or nonwetting coating of cured, silicon-containing polymers
US20030083453A1 (en) * 2001-05-07 2003-05-01 Kion Corporation Thermally stable, moisture curable polysilazanes and polysiloxazanes
KR20070010025A (en) * 2004-03-09 2007-01-19 엑사테크 엘.엘.씨. Plasma coating system for non-planar substrates
KR20070043849A (en) * 2004-08-20 2007-04-25 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Semiconductor element and process for producing the same
KR20090047885A (en) * 2007-11-08 2009-05-13 경북대학교 산학협력단 Method of fabricating passivation layer on plastic film with reduced water vapor permeation and flexible organic light emitting diode device using the same
KR20110123306A (en) * 2010-05-07 2011-11-15 한국세라믹기술원 Method for forming plastic substrate coated with layer for prevening vapor permeability

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11625072B2 (en) 2010-05-14 2023-04-11 Racing Optics, Inc. Touch screen shield
US11622592B2 (en) 2014-06-17 2023-04-11 Racing Optics, Inc. Adhesive mountable stack of removable layers
CN108574024A (en) * 2018-02-01 2018-09-25 横店集团东磁股份有限公司 A kind of water squeezing idler wheel for wet etching
US11845249B2 (en) 2019-02-01 2023-12-19 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold and method
US11524493B2 (en) 2019-02-01 2022-12-13 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11846788B2 (en) 2019-02-01 2023-12-19 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11833790B2 (en) 2019-05-21 2023-12-05 Racing Optics, Inc. Polymer safety glazing for vehicles
US11364715B2 (en) 2019-05-21 2022-06-21 Racing Optics, Inc. Polymer safety glazing for vehicles
US12017398B2 (en) 2019-12-03 2024-06-25 Ro Technologies, Llc Method and apparatus for reducing non-normal incidence distortion in glazing films
US11648723B2 (en) 2019-12-03 2023-05-16 Racing Optics, Inc. Method and apparatus for reducing non-normal incidence distortion in glazing films
US11548356B2 (en) 2020-03-10 2023-01-10 Racing Optics, Inc. Protective barrier for safety glazing
US11807078B2 (en) 2020-03-10 2023-11-07 Racing Optics, Inc. Protective barrier for safety glazing
US11723420B2 (en) 2021-06-08 2023-08-15 Racing Optics, Inc. Low haze UV blocking removable lens stack
US11490667B1 (en) 2021-06-08 2022-11-08 Racing Optics, Inc. Low haze UV blocking removable lens stack
US11709296B2 (en) 2021-07-27 2023-07-25 Racing Optics, Inc. Low reflectance removable lens stack
US11624859B2 (en) 2021-07-27 2023-04-11 Racing Optics, Inc. Low reflectance removable lens stack
US11988850B2 (en) 2021-07-27 2024-05-21 Laminated Film Llc Low reflectance removable lens stack
US11307329B1 (en) 2021-07-27 2022-04-19 Racing Optics, Inc. Low reflectance removable lens stack
US11933943B2 (en) 2022-06-06 2024-03-19 Laminated Film Llc Stack of sterile peelable lenses with low creep
US11808952B1 (en) 2022-09-26 2023-11-07 Racing Optics, Inc. Low static optical removable lens stack

Similar Documents

Publication Publication Date Title
WO2015009114A1 (en) Polycarbonate glazing and method for producing same
KR100630433B1 (en) Process for preparing aqueous resin, aqueous curable resin composition, aqueous paint, and method for formation of coating therefrom
WO2014104669A1 (en) Gas barrier film, and method for manufacturing same
JP2015093990A (en) Resin laminate for glazing and method of producing the same
US20020015851A1 (en) Polysilazane composition and coated molded product having its cured material
WO2013180531A1 (en) Gas barrier film and method for manufacturing same
US7569644B2 (en) Paint composition, process for producing transparent protective film using the same, and organic glass provided with transparent protective film
KR20160060876A (en) Coating composition, barrier film comprising the same and manufacturing method of the barrier film
KR101622001B1 (en) Hard coating film and method for preparing the same
CN113613904A (en) Polyamic acid composition and method for producing same, polyamic acid solution, polyimide film, laminate and method for producing same, and flexible device and method for producing same
WO2015053500A1 (en) Polycarbonate glazing and manufacturing method therefor
EP3403801A1 (en) Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
WO2014193199A1 (en) Gas barrier film, and preparation method therefor
JPWO2010140688A1 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR MANUFACTURING SAME
KR20140011506A (en) Gas barrier film, method for preparing thereof and display display member comprising the same
KR101489959B1 (en) Gas barrier film, method for preparing thereof and display display member comprising the same
US20160177131A1 (en) Siloxane Resin and Coating Solution Composition Comprising the Same
JP2003192987A (en) Solventless polysiloxane-based coating agent and release film
WO2015080397A1 (en) Gas barrier film and manufacturing method therefor
KR20150010540A (en) Polycarbonate glazing and the method for preparing the same
WO2019083136A1 (en) Self-healing polyurea/sol-gel silica nanohybrid cured product, and preparation method therefor
WO2013176459A1 (en) Display member and method for manufacturing same
KR20160082478A (en) Polyimide Substrate And Display Substrate Module Including The Same
KR20150109221A (en) Hard coating solution composition and polycarbonate glazing using the same
US20230082265A1 (en) Articles having inorganic substrates and polymer film layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826465

Country of ref document: EP

Kind code of ref document: A1