WO2019132076A1 - Optical module having excellent thermal characteristics - Google Patents

Optical module having excellent thermal characteristics Download PDF

Info

Publication number
WO2019132076A1
WO2019132076A1 PCT/KR2017/015740 KR2017015740W WO2019132076A1 WO 2019132076 A1 WO2019132076 A1 WO 2019132076A1 KR 2017015740 W KR2017015740 W KR 2017015740W WO 2019132076 A1 WO2019132076 A1 WO 2019132076A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical
heat
optical element
optical module
Prior art date
Application number
PCT/KR2017/015740
Other languages
French (fr)
Korean (ko)
Inventor
정새한솔
이상수
송재호
Original Assignee
주식회사 옵텔라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 옵텔라 filed Critical 주식회사 옵텔라
Publication of WO2019132076A1 publication Critical patent/WO2019132076A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4273Thermal aspects, temperature control or temperature monitoring with heat insulation means to thermally decouple or restrain the heat from spreading
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4267Reduction of thermal stress, e.g. by selecting thermal coefficient of materials

Definitions

  • the present invention relates to an optical module, and more particularly, to an optical module, in which a heat terminal unit for interrupting heat is provided on a substrate between an optical element and an IC to prevent heat generated in the IC from being transmitted to the optical device, And more particularly to an optical module having excellent thermal characteristics that can prevent the optical module from being damaged.
  • FIG. 4 is a cross-sectional view of a conventional optical module disclosed in the prior art document 1.
  • a conventional optical module disclosed in the prior art document 1 includes a printed circuit board 600, a mount 100 formed on the printed circuit board 600, An arrayed waveguide grating (AWG) 200 for applying light to the plurality of photodetectors 310 and a plurality of photodetectors 310 provided in the photodetector 310, And a driver 700 for transmitting the electric signal.
  • the light incident through the AWG 200 is refracted by the end slope 240 of the waveguide 230 and is detected by the photodetector 310.
  • the light detected by the photodetector 310 is converted into an electric signal and transmitted to the driver 700 through the bonding wire M.
  • the optical module 10 is a photodetector for receiving light, and it may be a laser diode or the like which emits light if necessary.
  • the AWG 200 is mounted on the upper surface of the mount 100 and fixed to the AWG 200 by using a bonding pad 110.
  • the AWG 200 is mounted on the upper side of the optical detector 310, Respectively.
  • the conventional optical module disclosed in the prior art document 1 is a light emitting device rather than a photodetector
  • the heat generated in the IC is transmitted to the light emitting device through the printed circuit board and the mount to limit the operating temperature of the light emitting device, .
  • the present invention relates to a semiconductor device, which comprises a substrate, an IC provided on the substrate, a submount formed to protrude on the substrate, an optical element for outputting or receiving an optical signal provided on the submount,
  • an optical module including a block in which an optical waveguide is formed and a connecting means for electrically connecting the optical device and the IC, wherein a heat terminal means for interrupting heat is formed in the substrate between the optical device and the IC .
  • the heat terminal means is a trench formed in the substrate between the optical element and the IC.
  • the heat block means is a partition wall formed on the substrate between the optical element and the IC.
  • the heat spread is separately formed in the lower part of the optical element and the substrate under the IC.
  • the heat spread is preferably a flexible graphite sheet.
  • the trench is filled with a thermal barrier material.
  • the difference in thermal expansion coefficient between the thermal barrier material and the material constituting the substrate is less than 5%.
  • the heat shielding material is preferably a nanofiber web having a plurality of pores by electrospinning a polymer material.
  • the nanofiber may further include a heat insulating filler.
  • the heat insulating filler as SiO 2, SiON, Si 3 N 4, HfO 2, ZrO 2, Al 2 O 3, TiO 2, Ta 2 O 5, MgO, Y 2 O 3, BaTiO 3, ZrSiO 4, HfO 2 , Or one or more particles selected from the group consisting of glass fibers, graphite, rock wool, and clay.
  • the optical module according to the present invention is provided with the heat-shielding means for shielding heat from the substrate between the optical element and the IC, so that thermal noise is improved and thermal noise can be prevented.
  • the thermal noise of the optical element can be more easily prevented.
  • the optical module according to the present invention is formed with the partition wall by the heat block means and is discharged to the atmosphere through the upper end of the partition wall, the heat generated by the IC is prevented from being transferred to the optical device, so that the thermal noise can be prevented more easily.
  • the heat spread is separately formed in the lower part of the optical device and the substrate under the IC, so that the heat generated in the optical device can be easily released to the outside.
  • the heat spread is separately formed in the bottom of the IC and the substrate under the optical element, a path for emitting heat generated in the IC and a path for emitting heat generated in the optical element are separated The influence of the heat generated in the IC on the optical device can be effectively reduced.
  • the optical module according to the present invention can form a thermal via having a good thermal conductivity on the substrate under the IC and under the optical element, and can efficiently transmit the heat generated from each device to the respective heat spreads.
  • the optical module according to the present invention has the flexible graphite sheet as the heat spread, the thermal conductivity in the plane direction is excellent, and hot spots can be prevented from being generated.
  • the heat generated in the IC is transferred to the optical device, thereby preventing the occurrence of the operation temperature limitation and the thermal noise.
  • the optical module according to the present invention has a thermal differential material such that the difference in thermal expansion coefficient between the material constituting the substrate and the thermal expansion coefficient is less than 5%, the substrate can be prevented from being twisted by the heat shield material.
  • the optical module according to the present invention further includes a heat insulating filler for blocking heat transfer to the nanofiber
  • the optical module is provided in the form of a nanofiber web having a plurality of pores by electrospinning a polymer material with the thermal conductive material, It is possible to more reliably prevent the heat from being transmitted to the optical element.
  • FIG. 1 is a cross-sectional view showing a first embodiment of an optical module according to the present invention.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the optical module according to the present invention.
  • FIG 3 is a cross-sectional view showing a third embodiment of the optical module according to the present invention.
  • FIG. 4 is a cross-sectional view of a conventional optical module disclosed in the prior art document 1.
  • FIG. 1 is a cross-sectional view showing a first embodiment of an optical module according to the present invention.
  • the optical module 10 includes a substrate 12, an IC 13 mounted on the substrate 12, a submount 14 formed to protrude on the substrate 12, An optical element 15 for outputting or receiving an optical signal provided on the submount 14, a block 17 provided on the substrate 12 and provided with an optical waveguide 16, (15) and the IC (13).
  • the substrate 12 is preferably a PCB or FPCB capable of an electrical interface and is made of a material having a high thermal conductivity to smoothly discharge heat generated in the IC 13 to the outside. Therefore, the substrate 12 can be made of various materials having excellent thermal conductivity and being an insulating material, and can be made of materials such as silicon, silicon compounds such as Si, SiO, and SiO 2 , ceramics such as Al 2 O 3 and AlN, .
  • a thermal via (not shown) is formed at the lower end of the IC 13 and the optical element 15 placed on the substrate 12, so that the heat generated in each device can be more effectively radiated to the outside.
  • the substrate 12 includes a base layer 12a and cover layers 12b and 12c protruding upward from both sides of the base layer 12a.
  • the block 17 is fixed to the cover layer 12c on one side of the cover layers 12b and 12c.
  • the IC 13 is provided to supply power to the optical device 15 or to transmit an electric signal generated by the optical device 15 to a control unit (not shown).
  • the IC 13 is installed to be supported by the base layer 12a of the substrate.
  • the submount 14 is formed to protrude on the substrate 12, and an optical element 15 is mounted on the substrate 12.
  • the submount 14 may be attached to the substrate 12 or may be formed integrally with the substrate 12 as required.
  • the submount 14 is set to a height in consideration of the gap between the optical element 15 provided on the top and the tip of the optical waveguide 16 formed on the block 17.
  • the optical element 15 is installed on the submount 14 to output or receive an optical signal.
  • the optical element 15 may be a VCSEL or a laser diode for transmitting a laser used for optical communication.
  • the optical device 15 is a light receiving device for receiving an optical signal, the optical device is provided as a photodetector and the optical signal is transmitted in a direction opposite to that in the case where the optical device 15 is a light source.
  • a bonding wire 18 is provided to electrically connect the optical element 15 and the IC 13 to each other.
  • the block 17 is made of a glass material and is transparent. Needless to say, other materials can be used as needed.
  • the block 17 is installed on one side cover layer 12c of the substrate 12. [ In the block 17, an optical waveguide 16 is formed.
  • the optical waveguide 16 may be an optical fiber 16 as required.
  • the optical waveguide 16 formed in the block 17 extends parallel to the substrate 12 and has a tip end reaching directly above the optical device 15.
  • the front surface of the block 17 is cut along with the tip of the optical waveguide 16, and the total reflection is performed through the cut surface 16a to refract light.
  • the cut surface 16a is a VCSEL and is provided at 41 degrees in consideration of reflection. However, it is needless to say that it can be cut at various angles such as 45 degrees according to need.
  • the heat terminal means is formed on the substrate 12 between the optical element 15 and the IC 13 to block the heat generated in the IC 13 from being transmitted to the optical element 15.
  • the trench 19a and the separating wall 19b are formed by the heat block means.
  • the trench 19a is formed in a square shape on the optical device side of the IC 13.
  • the trench 19a may have a portion penetrating through the substrate 12 in the thickness direction, if necessary.
  • the trench 19a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 13 from being transmitted to the optical device 15 side.
  • the difference in thermal expansion coefficient between the material forming the substrate 12 and the substrate 12 is less than 5%.
  • the thermal conductive material is provided in the form of a nanofiber web having a plurality of pores by electrospinning a polymer material.
  • the diameter of the nanofibers is smaller, the specific surface area of the nanofibrous web is increased and the heat collecting ability of the nanofibrous web having a plurality of micropores is increased, thereby improving the heat insulating performance. Therefore, when the diameter of the nanofiber is 0.1um or less, the nanofiber property is degraded. When the diameter is more than 1.5um, the pore size becomes large and the heat trapping ability is low.
  • the method of spinning the nanofibers may be performed by conventional electrospinning, air-electrospinning (AES), electrospray, electrobrown spinning, centrifugal electrospinning, , And flash-electrospinning may be used.
  • AES air-electrospinning
  • electrospray electrospray
  • electrobrown spinning electrobrown spinning
  • centrifugal electrospinning centrifugal electrospinning
  • flash-electrospinning may be used.
  • the nanofibers may further include a heat insulating filler to improve the strength.
  • the heat insulating filler is made of SiO 2, SiON, Si 3 N 4, HfO 2, ZrO 2, Al 2 O 3, TiO 2, Ta 2 O 5, MgO, Y 2 O 3, BaTiO 3, ZrSiO 4, HfO 2 And at least one particle selected from the group consisting of glass fibers, graphite, rock wool, and clay.
  • heat spreads 11a and 11b for separating heat generated in the optical element 15 and heat generated in the IC 13 from the outside of the optical element 15 and the substrate 12 under the IC 13, 11b are separately formed.
  • the heat spreads 11a and 11b are preferably formed of a flexible graphite sheet.
  • the flexible graphite sheet may comprise compressed particles of exfoliated graphite.
  • the scraped flexible graphite sheet may have a thickness of about 0.010 mm to 3.75 mm and a typical density of about 1.0 to 2.0 g / cc or greater.
  • the flexible graphite sheet is commercially available as eGRAF® material from GrafTech International Holdings Inc., Independence, Ohio, USA.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the optical module according to the present invention.
  • the optical module 20 includes a substrate 22, an IC 23 mounted on the substrate 22, a submount 24 formed to protrude on the substrate 22, An optical element 25 for outputting or receiving an optical signal provided on the submount 24 and a bonding wire 28 for electrically connecting the optical element 25 and the IC 23 to each other, And a block 27 formed on the substrate 22 and having an optical waveguide 26 formed thereon, and a train 27 formed to block heat on the substrate 12 between the optical device 25 and the IC 23. [ End means.
  • the substrate 22, the IC 23, the submount 24, and the optical device 25 are similar to those of the first embodiment, and a detailed description thereof will be omitted and the characteristic configuration of the present embodiment will be mainly described .
  • the block 27 is provided on the cover layers 22b and 22c on both sides of the substrate 22 made up of the base layer 22a and the cover layers 22b and 22c protruding upward on both sides of the base layer 22a. And an optical waveguide 26 for guiding light is formed.
  • the block 27 is made of a glass material and is transparent. Needless to say, it is of course possible to use a block 27 of a different material as necessary.
  • the optical waveguide 16 formed on the block 27 extends vertically to the substrate 22 and has a tip end reaching directly above the optical element 25.
  • the optical element 25 is a VCSEL
  • light emitted from the VCSEL is directly transmitted to the outside through the optical waveguide.
  • the optical device 25 is a photodetector
  • light applied through the optical waveguide 26 is directly incident on the optical device 25 and receives the optical signal.
  • the heat terminal means is formed on the substrate 22 between the optical element 25 and the IC 23 to block the heat generated in the IC 23 from being transmitted to the optical element 15.
  • the trench 29a and the separating wall 29b are formed by the heat insulating means.
  • the trench 29a is formed in a square shape on the optical device side of the IC 23.
  • the trench 29a may have a portion penetrating through the substrate 22 in the thickness direction, if necessary.
  • the trench 29a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 23 from being transmitted to the optical device 25 side.
  • the heat spreads 21a and 21b for separating heat generated in the optical element 25 and heat generated in the IC 23 from the outside of the optical element 25 and the substrate 22 under the IC 23, 21b are separately formed.
  • the heat spreads 21a and 21b are preferably formed of a flexible graphite sheet.
  • composition of the thermal barrier material and the material forming the heat spread is similar to that of the first embodiment, and thus a detailed description thereof will be omitted.
  • FIG 3 is a cross-sectional view showing a third embodiment of the optical module according to the present invention.
  • the optical module 30 includes a substrate 32, an IC 33 mounted on the substrate 32, a sub- An optical device 35 for outputting or receiving an optical signal provided on the submount 34; a block 37 having an optical waveguide 36 formed on the substrate 32; (32) between the IC (35) and the IC (33).
  • the substrate 32 includes a base layer 32a and a cover layer 32b protruding upward from one side of the base layer 32a.
  • the block 37 is closely attached to the side surface of the cover layer 32.
  • the IC 33 is provided to supply power to the optical device 35 or to transmit an electrical signal generated by the optical device 35 to a control unit (not shown).
  • the IC 33 is installed to be supported by the base layer 12a of the substrate.
  • the submount 34 is formed to protrude on the substrate 32, and an optical element 35 is mounted on the substrate 32.
  • the submount 34 may be attached to the substrate 32 or may be integrally formed with the substrate 32 as required.
  • the height of the submount 34 is set so that the center of the optical waveguide 36 coincides with the center where the light of the optical device 35 enters or exits.
  • the optical element 35 is installed on the submount 34 to output or receive an optical signal.
  • the optical element 35 When the optical element 35 is provided as a light source for outputting an optical signal, it may be a laser diode that emits light used for optical communication to the side.
  • the optical detector When the optical element 35 is a light receiving element for receiving an optical signal, the optical detector is provided as a photodetector and the optical signal is transmitted in a direction opposite to that when the optical element 35 is a light source.
  • a bonding wire 38 is provided to electrically connect the optical element 35 and the IC 33 to each other.
  • the block 37 is closely attached to the submount 34 on the substrate 32 and has an optical waveguide 36 formed thereon.
  • the block 37 is made of a glass material and is transparent. Needless to say, it is of course possible to use the block 37 of a different material according to need.
  • the optical waveguide 36 formed in the block 37 extends parallel to the substrate 32 and has a tip end reaching a side surface of the optical device 35.
  • the optical waveguide 36 formed in the block 37 extends parallel to the substrate 32 and has a tip end reaching the side surface of the optical element 35.
  • the optical device 35 may be a laser diode that emits light to the side. When the optical device 35 is a photodetector, light applied through the optical waveguide 36 is directly incident on the optical device to receive the optical signal.
  • the heat terminal means is formed on the substrate 32 between the optical element 35 and the IC 33 to block the heat generated in the IC 33 from being transmitted to the optical element 35.
  • the trench 39a and the separating wall 39b are formed by the heat insulating means.
  • the trench 39a is formed in a square shape on the optical device side of the IC 33.
  • the trench 39a may have a portion penetrating the substrate 32 in the thickness direction, if necessary.
  • the trench 19a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 13 from being transmitted to the optical device 15 side.
  • heat spreads 31a and 31b for separating the heat generated in the optical device 35 and the heat generated in the IC 33 from the outside of the optical device 35 and the substrate 32 under the IC 33, 31b are separately formed.
  • the heat spreads 31a and 31b are preferably formed of a flexible graphite sheet.
  • composition of the thermal barrier material and the material forming the heat spread is similar to that of the first embodiment, and thus a detailed description thereof will be omitted.

Abstract

The present invention relates to an optical module and, more specifically, to an optical module having excellent thermal characteristics, wherein a heat-blocking means for blocking heat is formed in a substrate between an optical element and an IC, thereby preventing, in advance, a thermal noise which the heat generated in the IC may apply to the optical element. The present invention provides an optical module comprising: a substrate; an IC installed on the substrate; a submount formed on the substrate to protrude therefrom; an optical element installed on the submount and configured to output or receive an optical signal; a block installed on the substrate and having an optical waveguide formed therein; and a connection means electrically connecting the optical element and the IC, wherein a heat-blocking means for blocking heat is formed in the substrate between the optical element and the IC.

Description

열적특성이 우수한 광학모듈Optical module with excellent thermal characteristics
본 발명은 광학모듈에 관한 것으로, 더욱 상세하게는 광소자와 IC 사이의 기판에 열을 차단하기 위한 열차단수단을 설치하여 IC에서 발생한 열이 광소자로 전달되는 것을 차단하므로 이로 인한 광소자의 서멀노이즈를 미연에 방지할 수 있도록 된 열적특성이 우수한 광학모듈에 관한 것이다.The present invention relates to an optical module, and more particularly, to an optical module, in which a heat terminal unit for interrupting heat is provided on a substrate between an optical element and an IC to prevent heat generated in the IC from being transmitted to the optical device, And more particularly to an optical module having excellent thermal characteristics that can prevent the optical module from being damaged.
스마트폰 보급률의 급속한 증가로 대용량 콘텐츠 기반의 통신 서비스가 요청되고 이에 따라 데이터 트래픽 용량을 증가시키는 방안이 꾸준히 연구되고 있다. 이러한 연구개발 성과물의 호환을 위하여 통신관련 국제 표준화 기구는 동일 파장 멀티채널 기술 및 파장분할 다중화 기술에 대한 표준을 발표하였고, 많은 기관 및 연구자들이 이 표준에 따라 기술들의 실제적인 적용 방법을 연구하고 있다. With the rapid increase of smartphone penetration rate, large capacity contents based communication service has been requested and accordingly, a method of increasing the data traffic capacity has been researched steadily. In order to achieve compatibility between these research and development achievements, the International Organization for Standardization (IETF) has published standards for the same wavelength multi-channel technology and wavelength division multiplexing technology, and many organizations and researchers are studying the practical application of technologies according to this standard .
이러한 기술들은 저가화, 고속화, 소형화 및 저전력화를 목적으로 개발이 진행되고 있으며, 이를 위하여 네트워크를 구성하는 구성품으로 레이저 어레이 기반 광학모듈이 개발되었고 실제 응용 분야에 사용되고 있다.These technologies are being developed for the purpose of low cost, high speed, miniaturization and low power consumption. For this purpose, a laser array based optical module has been developed as a component of a network and is used in actual application fields.
이러한 광학모듈의 일예가 미국공개특허 제2016-0349451호(이하. '선행기술문헌 1'이라함)에 개시되어 있다.An example of such an optical module is disclosed in U.S. Published Patent Application No. 2016-0349451 (hereinafter referred to as "Prior Art Document 1").
도 4는 선행기술문헌 1에 개시된 종래의 광학모듈의 단면을 나타내는 도면이다.4 is a cross-sectional view of a conventional optical module disclosed in the prior art document 1.
도 4에 도시된 바와 같이 상기 선행기술문헌 1에 개시된 종래의 광학모듈은 인쇄회로기판(600)과, 상기 인쇄회로기판(600)의 상부에 형성된 마운트(100)와, 상기 마운트(100) 상에 설치된 복수의 광검출기(310)와 상기 복수의 광검출기(310)로 빛을 인가하는 기판 배열 도파로 격자(Arrayed Waveguide Grating, 이하 'AWG'라 함; 200) 및 상기 광검출기(310)에서 변환된 전기신호를 전달하는 드라이버(700)를 포함한다. 상기 AWG(200)를 통해 입사된 빛은 도파로(230) 단부 경사면(240)에 의해 굴절되어 광검출기(310)에서 검출하도록 구비된다. 또한 상기 광검출기(310)에서 검출된 빛은 전기신호로 변환되어 본딩와이어(M)를 통해 드라이버(700)로 전송된다. 상기 광학모듈(10)은 광을 수신하는 광검출기를 설명한 것으로 필요에 따라 광을 발산하는 레이저 다이오드 등을 설치할 수 있음은 물론이다.4, a conventional optical module disclosed in the prior art document 1 includes a printed circuit board 600, a mount 100 formed on the printed circuit board 600, An arrayed waveguide grating (AWG) 200 for applying light to the plurality of photodetectors 310 and a plurality of photodetectors 310 provided in the photodetector 310, And a driver 700 for transmitting the electric signal. The light incident through the AWG 200 is refracted by the end slope 240 of the waveguide 230 and is detected by the photodetector 310. The light detected by the photodetector 310 is converted into an electric signal and transmitted to the driver 700 through the bonding wire M. The optical module 10 is a photodetector for receiving light, and it may be a laser diode or the like which emits light if necessary.
상기와 같은 광학모듈은 AWG(200)를 마운트(100)의 상방으로 돌출시킨 후 본딩패드(110)를 이용해 고정한 후 AWG(200)를 광도파로(230)의 선단이 광검출기(310)의 상방으로 오도록 구비하였다.The AWG 200 is mounted on the upper surface of the mount 100 and fixed to the AWG 200 by using a bonding pad 110. The AWG 200 is mounted on the upper side of the optical detector 310, Respectively.
하지만 선행기술문헌 1에 개시된 종래의 광학모듈이 광검출기가 아니라 발광 소자일 경우 IC에서 발생한 열이 인쇄회로기판과 마운트를 통해 발광소자에 전달되어 발광소자의 동작온도가 제한되고 서멀노이즈가 발생하게 되는 문제점이 있다.However, when the conventional optical module disclosed in the prior art document 1 is a light emitting device rather than a photodetector, the heat generated in the IC is transmitted to the light emitting device through the printed circuit board and the mount to limit the operating temperature of the light emitting device, .
따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, IC에서 발생한 열이 광소자에 전달되어 서멀 노이즈가 되지 않도록 열을 차단하는 열적특성이 우수한 광학모듈을 제공하는 데 목적이 있다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical module having excellent thermal characteristics to block heat so that heat generated in an IC is transmitted to an optical device to prevent thermal noise.
본 발명은 기판과, 상기 기판상에 설치되는 IC와, 상기 기판상에 돌출되도록 형성된 서브마운트와, 상기 서브마운트 상에 설치된 광신호를 출력하거나 수신하는 광소자와, 상기 기판의 상부에 설치되고 광도파로가 형성된 블록과, 상기 광소자와 상기 IC 사이를 전기적으로 연결하는 연결수단을 포함하되, 상기 광소자와 상기 IC 사이의 기판에 열을 차단하기 위한 열차단수단이 형성된 광학모듈을 제공한다.The present invention relates to a semiconductor device, which comprises a substrate, an IC provided on the substrate, a submount formed to protrude on the substrate, an optical element for outputting or receiving an optical signal provided on the submount, There is provided an optical module including a block in which an optical waveguide is formed and a connecting means for electrically connecting the optical device and the IC, wherein a heat terminal means for interrupting heat is formed in the substrate between the optical device and the IC .
여기서 상기 열차단 수단은 상기 광소자와 상기 IC 사이의 기판에 형성된 트렌치인 것이 바람직하다.Wherein the heat terminal means is a trench formed in the substrate between the optical element and the IC.
아울러 상기 열차단 수단은 상기 광소자와 상기 IC 사이의 기판에 형성된 분리벽인 것이 바람직하다.In addition, it is preferable that the heat block means is a partition wall formed on the substrate between the optical element and the IC.
또한 상기 광소자 하부와 상기 IC 하부의 기판에 히트스프레드가 각각 분리되어 형성되는 것이 바람직하다.In addition, it is preferable that the heat spread is separately formed in the lower part of the optical element and the substrate under the IC.
여기서 상기 히트스프레드는 가요성 흑연시트인 것이 바람직하다.The heat spread is preferably a flexible graphite sheet.
또한 상기 트렌치에 열차단 물질이 충전되는 것이 바람직하다.It is also preferable that the trench is filled with a thermal barrier material.
여기서 상기 열차단 물질은 상기 기판을 구성하는 물질과 열팽창계수의 차이가 5% 미만인 것이 바람직하다.It is preferable that the difference in thermal expansion coefficient between the thermal barrier material and the material constituting the substrate is less than 5%.
또한 상기 열차단 물질은 고분자 물질을 전기 방사하여 다수의 기공을 갖는 나노섬유 웹 형태인 것이 바람직하다.Also, the heat shielding material is preferably a nanofiber web having a plurality of pores by electrospinning a polymer material.
여기서 상기 나노 섬유는 단열성 필러를 더 포함하는 것이 바람직하다.The nanofiber may further include a heat insulating filler.
아울러 상기 단열성 필러는 SiO2, SiON, Si3N4, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, MgO, Y2O3, BaTiO3, ZrSiO4, HfO2로 이루어진 군으로부터 선택된 1종 이상의 입자, 또는 유리 섬유, 흑연, 암면, 클레이(clay)로 이루어진 군으로부터 선택된 1종 이상의 입자인 것이 바람직하다.In addition, the heat insulating filler as SiO 2, SiON, Si 3 N 4, HfO 2, ZrO 2, Al 2 O 3, TiO 2, Ta 2 O 5, MgO, Y 2 O 3, BaTiO 3, ZrSiO 4, HfO 2 , Or one or more particles selected from the group consisting of glass fibers, graphite, rock wool, and clay.
상기와 같이 본 발명에 따른 광학모듈은 상기 광소자와 상기 IC 사이의 기판에 열을 차단하기 위한 열차단수단이 형성되므로 열특성이 개선되어 서멀노이즈를 방지할 수 있다.As described above, the optical module according to the present invention is provided with the heat-shielding means for shielding heat from the substrate between the optical element and the IC, so that thermal noise is improved and thermal noise can be prevented.
또한 본 발명에 따른 광학모듈은 상기 열차단 수단으로 트렌치가 형성되어 IC에서 발생한 열이 광소자로 전달되는 것을 차단하므로 더욱 용이하게 광소자의 서멀 노이즈를 방지할 수 있다.In the optical module according to the present invention, since the heat generated by the IC is prevented from being transferred to the optical element by forming the trench by the heat-conducting end means, the thermal noise of the optical element can be more easily prevented.
아울러 본 발명에 따른 광학모듈은 열차단수단으로 분리벽이 형성되어 분리벽의 상단을 통하여 대기중으로 방출되므로 IC에서 발생한 열이 광소자로 전달되는 것을 차단하여 더욱 용이하게 서멀 노이즈를 방지할 수 있다.In addition, since the optical module according to the present invention is formed with the partition wall by the heat block means and is discharged to the atmosphere through the upper end of the partition wall, the heat generated by the IC is prevented from being transferred to the optical device, so that the thermal noise can be prevented more easily.
또한 본 발명에 따른 광학모듈은 상기 광소자 하부와 상기 IC 하부의 기판에 히트스프레드가 분리되어 각각 형성되므로 광소자에서 발생한 열을 외부로 용이하게 방출할 수 있다.In the optical module according to the present invention, the heat spread is separately formed in the lower part of the optical device and the substrate under the IC, so that the heat generated in the optical device can be easily released to the outside.
또한 본 발명에 따른 광학모듈은 상기 IC 하부와 상기 광소자 하부의 기판에 히트스프레드가 분리되어 각각 형성되므로 IC에서 발생한 열을 방출하는 경로와 상기 광소자에서 발생하는 열을 방출하는 경로가 분리되어 IC에서 발생한 열이 광소자에 미치는 영향을 효과적으로 줄일수 있다. In the optical module according to the present invention, since the heat spread is separately formed in the bottom of the IC and the substrate under the optical element, a path for emitting heat generated in the IC and a path for emitting heat generated in the optical element are separated The influence of the heat generated in the IC on the optical device can be effectively reduced.
또한 본 발명에 따른 광학모듈은 상기 IC하부와 상기 광소자 하부에 있는 상기 기판에 열전도도가 우수한 서멀비아를 형성하여 각 소자에서 발생한 열을 상기 각각의 히트스프레드로 효과적으로 전달할수 있다. In addition, the optical module according to the present invention can form a thermal via having a good thermal conductivity on the substrate under the IC and under the optical element, and can efficiently transmit the heat generated from each device to the respective heat spreads.
또한 본 발명에 따른 광학모듈은 상기 히트스프레드로 가요성 흑연시트를 구비하므로 면방향으로 열전도도가 우수하므로 핫스팟이 발생하는 것을 방지할 수 있다.Further, since the optical module according to the present invention has the flexible graphite sheet as the heat spread, the thermal conductivity in the plane direction is excellent, and hot spots can be prevented from being generated.
또한 본 발명에 따른 광학모듈은 상기 트렌치에 열차단 물질이 충전되므로 IC에서 발생한 열이 광소자로 전달되어 동작온도 제한 및 서멀노이즈의 발생을 미연에 방지할 수 있다.In the optical module according to the present invention, since the trenches are filled with the thermal material, the heat generated in the IC is transferred to the optical device, thereby preventing the occurrence of the operation temperature limitation and the thermal noise.
또한 본 발명에 따른 광학모듈은 상기 열차단 물질로 상기 기판을 구성하는 물질과 열팽창계수의 차이가 5% 미만이 되도록 구비하므로 열차단 물질에 의한 기판의 비틀림을 미연에 방지할 수 있다.In addition, since the optical module according to the present invention has a thermal differential material such that the difference in thermal expansion coefficient between the material constituting the substrate and the thermal expansion coefficient is less than 5%, the substrate can be prevented from being twisted by the heat shield material.
또한 본 발명에 따른 광학모듈은 상기 열차단 물질로 고분자 물질을 전기 방사하여 다수의 기공을 갖는 나노섬유 웹 형태로 구비되고, 상기 나노 섬유에 열전달을 차단하기 위한 단열성 필러를 더 포함하므로 IC에서 발생하는 열이 광소자에 전달되는 것을 더욱 확실하게 차단할 수 있다.Further, since the optical module according to the present invention further includes a heat insulating filler for blocking heat transfer to the nanofiber, the optical module is provided in the form of a nanofiber web having a plurality of pores by electrospinning a polymer material with the thermal conductive material, It is possible to more reliably prevent the heat from being transmitted to the optical element.
도 1은 본 발명에 따른 광학모듈의 제1실시예를 나타내는 단면도이다.1 is a cross-sectional view showing a first embodiment of an optical module according to the present invention.
도 2는 본 발명에 따른 광학모듈의 제2실시예를 나타내는 단면도이다.2 is a cross-sectional view showing a second embodiment of the optical module according to the present invention.
도 3은 본 발명에 따른 광학모듈의 제3실시예를 나타내는 단면도이다.3 is a cross-sectional view showing a third embodiment of the optical module according to the present invention.
도 4는 선행기술문헌 1에 개시된 종래의 광학모듈의 단면을 나타내는 도면이다.4 is a cross-sectional view of a conventional optical module disclosed in the prior art document 1.
이하 본 발명에 따른 광학모듈의 실시예들을 첨부도면을 참조하여 설명하면 다음과 같다.Hereinafter, embodiments of the optical module according to the present invention will be described with reference to the accompanying drawings.
[제1실시예][First Embodiment]
도 1은 본 발명에 따른 광학모듈의 제1실시예를 나타내는 단면도이다.1 is a cross-sectional view showing a first embodiment of an optical module according to the present invention.
도 1에 도시된 바와 같이 광학모듈(10)은 기판(12)과, 상기 기판(12)상에 설치되는 IC(13)와, 상기 기판(12)상에 돌출되도록 형성된 서브마운트(14)와, 상기 서브마운트(14) 상부에 설치된 광신호를 출력하거나 수신하는 광소자(15)와, 상기 기판(12)의 상부에 설치되고 광도파로(16)가 형성된 블록(17)과, 상기 광소자(15)와 상기 IC(13) 사이의 기판에 열을 차단하기 위해 설치된 열차단 수단을 포함한다.1, the optical module 10 includes a substrate 12, an IC 13 mounted on the substrate 12, a submount 14 formed to protrude on the substrate 12, An optical element 15 for outputting or receiving an optical signal provided on the submount 14, a block 17 provided on the substrate 12 and provided with an optical waveguide 16, (15) and the IC (13).
상기 기판(12)은 전기적인 인터페이스가 가능한 PCB 또는 FPCB로서 IC(13)에서 발생하는 열을 외부로 원활하게 방출하기 위하여 열전도도가 좋은 물질로 이루어지는 것이 바람직하다. 따라서 상기 기판(12)은 열전도도가 우수하고 절연성 물질인 다양한 소재가 사용될 수 있으며 Si, SiO, SiO2 등의 실리콘 및 실리콘 화합물, Al2O3, AlN 등의 세라믹 또는 이들을 혼합한 재질을 사용할 수 있다. 또한 상기 기판(12)의 상부에 놓인 상기 IC(13)와 상기 광소자(15) 하단에 서멀비아(미도시)를 형성하여 각 소자에서 발생한 열을 더욱 효과적으로 외부로 방출할 수 있도록 한다. 아울러 상기 기판(12)의 상부에 놓인 상기 IC(13)와 상기 광소자(15) 하단에 서멀비아(미도시)를 형성하여 각 소자에서 발생한 열을 더욱 효과적으로 외부로 방출할 수 있도록 한다. 본 실시예에서 상기 기판(12)은 베이스층(12a)과 상기 베이스층(12a)의 양측에 상방으로 돌출된 커버층(12b, 12c)으로 이루어진다. 상기 커버층(12b, 12c) 중 일측의 커버층(12c) 상부에 상기 블록(17)이 고정 설치된다.The substrate 12 is preferably a PCB or FPCB capable of an electrical interface and is made of a material having a high thermal conductivity to smoothly discharge heat generated in the IC 13 to the outside. Therefore, the substrate 12 can be made of various materials having excellent thermal conductivity and being an insulating material, and can be made of materials such as silicon, silicon compounds such as Si, SiO, and SiO 2 , ceramics such as Al 2 O 3 and AlN, . In addition, a thermal via (not shown) is formed at the lower end of the IC 13 and the optical element 15 placed on the substrate 12, so that the heat generated in each device can be more effectively radiated to the outside. In addition, thermal vias (not shown) are formed at the lower end of the IC 13 and the optical device 15 located on the upper side of the substrate 12 so that the heat generated from each device can be more effectively radiated to the outside. In this embodiment, the substrate 12 includes a base layer 12a and cover layers 12b and 12c protruding upward from both sides of the base layer 12a. The block 17 is fixed to the cover layer 12c on one side of the cover layers 12b and 12c.
상기 IC(13)는 상기 광소자(15)에 전원을 공급하거나 광소자(15)에서 발생한 전기신호를 제어부(미도시)에 전송하도록 구비된다. 여기서 상기 IC(13)는 기판 중 베이스층(12a)에 지지되도록 설치된다. The IC 13 is provided to supply power to the optical device 15 or to transmit an electric signal generated by the optical device 15 to a control unit (not shown). Here, the IC 13 is installed to be supported by the base layer 12a of the substrate.
상기 서브마운트(14)는 상기 기판(12)상에 돌출되도록 형성되며 상부에 광소자(15)가 장착된다. 상기 서브마운트(14)는 필요에 따라 상기 기판(12)에 부착할 수도 있고, 상기 기판(12)과 일체로 형성할 수도 있다. 여기서 상기 서브마운트(14)는 상부에 설치되는 광소자(15)와 상기 블록(17)에 형성된 광도파로(16) 선단 사이의 간극을 고려하여 높이를 설정하게 된다.The submount 14 is formed to protrude on the substrate 12, and an optical element 15 is mounted on the substrate 12. The submount 14 may be attached to the substrate 12 or may be formed integrally with the substrate 12 as required. Here, the submount 14 is set to a height in consideration of the gap between the optical element 15 provided on the top and the tip of the optical waveguide 16 formed on the block 17.
상기 광소자(15)는 상기 서브마운트(14)의 상부에 설치되어 광신호를 출력하거나 수신하게 된다. 상기 광소자(15)가 광신호를 출력하는 광원으로 구비될 경우 광통신에 사용되는 레이저를 송신하는 VCSEL 또는 레이저 다이오드일 수 있다. 아울러 상기 광소자(15)가 광신호를 수신하는 수광소자일 경우 광검출기로 구비되며 광소자(15)가 광원일 경우와 반대 방향으로 광신호가 전달된다. 상기 광소자(15)와 상기 IC(13)는 둘 사이를 전기적으로 연결하기 위하여 본딩와이어(18)가 구비된다.The optical element 15 is installed on the submount 14 to output or receive an optical signal. When the optical element 15 is provided as a light source for outputting an optical signal, it may be a VCSEL or a laser diode for transmitting a laser used for optical communication. In addition, when the optical device 15 is a light receiving device for receiving an optical signal, the optical device is provided as a photodetector and the optical signal is transmitted in a direction opposite to that in the case where the optical device 15 is a light source. A bonding wire 18 is provided to electrically connect the optical element 15 and the IC 13 to each other.
상기 블록(17)은 글래스재질로 이루어져 속이 투명하게 비치는 상태이다. 물론 필요에 따라 다른 재질을 사용할 수 있음은 물론이다. 상기 블록(17)은 상기 기판(12)의 일측 커버층(12c)에 설치된다. 또한 상기 블록(17)에는 광도파로(16)가 형성된다. 이 광도파로(16)는 필요에 따라 광섬유(16)일 수 있다.The block 17 is made of a glass material and is transparent. Needless to say, other materials can be used as needed. The block 17 is installed on one side cover layer 12c of the substrate 12. [ In the block 17, an optical waveguide 16 is formed. The optical waveguide 16 may be an optical fiber 16 as required.
여기서 상기 블록(17)에 형성된 광도파로(16)는 상기 기판(12)과 평행하게 연장되고 그 선단이 상기 광소자(15)의 직상부까지 도달하도록 구비된다. 본 실시예에서 상기 블록(17)의 전면은 광도파로(16)의 선단과 함께 사면으로 절취되어 절취면(16a)을 통해 전반사가 일어나 빛이 굴절된다. 본 실시예에서 상기 절취면(16a)은 VCSEL이고 반사를 고려하여 41°로 구비된다. 하지만 필요에 따라 45°등 다양한 각도로 절취될 수 있음은 물론이다.The optical waveguide 16 formed in the block 17 extends parallel to the substrate 12 and has a tip end reaching directly above the optical device 15. [ In this embodiment, the front surface of the block 17 is cut along with the tip of the optical waveguide 16, and the total reflection is performed through the cut surface 16a to refract light. In the present embodiment, the cut surface 16a is a VCSEL and is provided at 41 degrees in consideration of reflection. However, it is needless to say that it can be cut at various angles such as 45 degrees according to need.
상기 열차단 수단은 상기 광소자(15)와 상기 IC(13) 사이의 기판(12)에 형성되어 IC(13)에서 발생한 열이 상기 광소자(15)로 전달되는 것을 차단한다.The heat terminal means is formed on the substrate 12 between the optical element 15 and the IC 13 to block the heat generated in the IC 13 from being transmitted to the optical element 15. [
구체적으로 상기 열차단 수단으로 트렌치(19a)와 분리벽(19b)이 형성된다.Specifically, the trench 19a and the separating wall 19b are formed by the heat block means.
여기서 상기 트렌치(19a)는 상기 IC(13)의 광소자 측에 사각형으로 형성된다. 상기 트렌치(19a)는 필요에 따라 기판(12)을 두께방향으로 관통하는 부분이 형성될 수 있다.Here, the trench 19a is formed in a square shape on the optical device side of the IC 13. The trench 19a may have a portion penetrating through the substrate 12 in the thickness direction, if necessary.
상기 트렌치(19a)에는 열차단 물질이 충진하여 구조적 안정성을 향상시킬 뿐만 아니라 IC(13)에서 발생한 열이 광소자(15) 측으로 전달되는 것을 더욱 확실하게 차단할 수 있다. 여기서 상기 열차단 물질은 기판(12)에 변형이 생기는 것을 방지하기 위하여 기판(12)을 구성하는 물질과 열팽창계수의 차이가 5% 미만인 것이 바람직하다. The trench 19a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 13 from being transmitted to the optical device 15 side. In order to prevent deformation of the substrate 12, it is preferable that the difference in thermal expansion coefficient between the material forming the substrate 12 and the substrate 12 is less than 5%.
본 실시예에서 상기 열차단 물질은 고분자 물질을 전기 방사하여 다수의 기공을 갖는 나노 섬유 웹 형태로 구비된다. 상기 나노 섬유 웹은 나노 섬유의 직경이 작을수록 비표면적이 증대되고 다수의 미세 기공을 구비하는 나노섬유 웹의 열 포집 능력이 커지게 되어 단열 성능을 향상시키게 된다. 따라서, 나노 섬유의 직경은 0.1um 이하는 나노 섬유 특성이 저하되고, 1.5um 이상에서는 기공이 커져 열 포집 능력이 낮아 단열 특성이 저하되므로 0.1um-1.5um범위가 바람직하다.In the present embodiment, the thermal conductive material is provided in the form of a nanofiber web having a plurality of pores by electrospinning a polymer material. As the diameter of the nanofibers is smaller, the specific surface area of the nanofibrous web is increased and the heat collecting ability of the nanofibrous web having a plurality of micropores is increased, thereby improving the heat insulating performance. Therefore, when the diameter of the nanofiber is 0.1um or less, the nanofiber property is degraded. When the diameter is more than 1.5um, the pore size becomes large and the heat trapping ability is low.
본 실시예에서 나노 섬유를 방사하는 방법은 일반적인 전기방사(electrospinning), 에어 전기방사(AES: Air-Electrospinning), 전기분사(electrospray), 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning) 중 어느 하나를 사용할 수 있다. In this embodiment, the method of spinning the nanofibers may be performed by conventional electrospinning, air-electrospinning (AES), electrospray, electrobrown spinning, centrifugal electrospinning, , And flash-electrospinning may be used.
여기서 상기 나노 섬유는 강도를 향상시키기 위하여 단열성 필러를 더 포함 할 수 있다. 상기 단열성 필러는 SiO2, SiON, Si3N4, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, MgO, Y2O3, BaTiO3, ZrSiO4, HfO2로 이루어진 군으로부터 선택된 1종 이상의 입자, 또는 유리 섬유, 흑연, 암면, 클레이(clay)로 이루어진 군으로부터 선택된 1종 이상의 입자인 것이 바람직하다.Here, the nanofibers may further include a heat insulating filler to improve the strength. The heat insulating filler is made of SiO 2, SiON, Si 3 N 4, HfO 2, ZrO 2, Al 2 O 3, TiO 2, Ta 2 O 5, MgO, Y 2 O 3, BaTiO 3, ZrSiO 4, HfO 2 And at least one particle selected from the group consisting of glass fibers, graphite, rock wool, and clay.
아울러 상기 광소자(15) 하부와 상기 IC(13)하부의 기판(12)에 광소자(15)에서 발생한 열과 상기 IC(13)에서 발생한 열을 외부로 분리하여 배출하기 위한 히트스프레드(11a, 11b)가 분리되어 각각 형성된다. 여기서 상기 히트스프레드(11a, 11b)는 가요성 흑연시트로 구비되는 것이 바람직하다. And heat spreads 11a and 11b for separating heat generated in the optical element 15 and heat generated in the IC 13 from the outside of the optical element 15 and the substrate 12 under the IC 13, 11b are separately formed. The heat spreads 11a and 11b are preferably formed of a flexible graphite sheet.
상기 가요성 흑연시트는 박리된(exfoliated) 흑연의 압축된 입자를 포함할 수 있다. 사기 가요성 흑연시트는 약 0.010 mm 내지 3.75 mm의 두께 및 약 1.0 내지 2.0 g/cc 이상의 전형적인 밀도를 가질 수 있다. 본 실시예에서 상기 가요성 흑연시트는 그래프테크 인터내셔널 홀딩스 인크.(GrafTech International Holdings Inc., 미국 오하이오주 인디펜던스)로부터 이그래프(eGRAF)® 물질로서 상업적으로 입수가능하다. The flexible graphite sheet may comprise compressed particles of exfoliated graphite. The scraped flexible graphite sheet may have a thickness of about 0.010 mm to 3.75 mm and a typical density of about 1.0 to 2.0 g / cc or greater. In this embodiment, the flexible graphite sheet is commercially available as eGRAF® material from GrafTech International Holdings Inc., Independence, Ohio, USA.
[제2실시예][Second Embodiment]
도 2는 본 발명에 따른 광학모듈의 제2실시예를 나타내는 단면도이다.2 is a cross-sectional view showing a second embodiment of the optical module according to the present invention.
도 2에 도시된 바와 같이 광학모듈(20)은 기판(22)과, 상기 기판(22)상에 설치되는 IC(23)와, 상기 기판(22)상에 돌출되도록 형성된 서브마운트(24)와, 상기 서브마운트(24) 상부에 설치된 광신호를 출력하거나 수신하는 광소자(25)와, 상기 광소자(25)와 상기 IC(23)는 둘 사이를 전기적으로 연결하기 위하여 본딩와이어(28) 및 상기 기판(22)의 상부에 설치되고 광도파로(26)가 형성된 블록(27)과, 상기 광소자(25)와 상기 IC(23) 사이의 기판(12)에 열을 차단하기 위해 형성된 열차단 수단을 포함한다.2, the optical module 20 includes a substrate 22, an IC 23 mounted on the substrate 22, a submount 24 formed to protrude on the substrate 22, An optical element 25 for outputting or receiving an optical signal provided on the submount 24 and a bonding wire 28 for electrically connecting the optical element 25 and the IC 23 to each other, And a block 27 formed on the substrate 22 and having an optical waveguide 26 formed thereon, and a train 27 formed to block heat on the substrate 12 between the optical device 25 and the IC 23. [ End means.
본 실시예에서는 기판(22), IC(23)와, 서브마운트(24) 및 광소자(25) 제1실시예와 유사하므로 자세한 설명은 생략하고 본 실시예의 특징적인 구성을 중심으로 설명하도록 한다.In this embodiment, the substrate 22, the IC 23, the submount 24, and the optical device 25 are similar to those of the first embodiment, and a detailed description thereof will be omitted and the characteristic configuration of the present embodiment will be mainly described .
상기 블록(27)은 베이스층(22a)과 상기 베이스층(22a)의 양측에 상방으로 돌출된 커버층(22b, 22c)으로 이루어진 기판(22) 양측의 커버층(22b, 22c) 상부에 지지되도록 설치되며 빛을 안내하는 광도파로(26)가 형성되어 있다. 상기 블록(27)은 모두 글래스재질로 이루어져 속이 투명하게 비치는 상태이다. 물론 필요에 따라 다른 재질의 블록(27)을 사용할 수 있음은 물론이다. The block 27 is provided on the cover layers 22b and 22c on both sides of the substrate 22 made up of the base layer 22a and the cover layers 22b and 22c protruding upward on both sides of the base layer 22a. And an optical waveguide 26 for guiding light is formed. The block 27 is made of a glass material and is transparent. Needless to say, it is of course possible to use a block 27 of a different material as necessary.
여기서 상기 블록(27)에 형성된 광도파로(16)는 상기 기판(22)과 수직으로 연장되고 그 선단이 상기 광소자(25)의 직상부까지 도달하도록 구비된다. 본 실시예에서 상기 광소자(25)가 VCSEL인 경우 VCSEL에서 발광한 빛은 광도파로를 통하여 바로 외부로 전달된다. 아울러 상기 광소자(25)가 광검출기일 경우 광도파(26)를 통하여 인가된 빛은 바로 광소자(25)로 입사되어 광신호를 수신하게 된다.The optical waveguide 16 formed on the block 27 extends vertically to the substrate 22 and has a tip end reaching directly above the optical element 25. In the present embodiment, when the optical element 25 is a VCSEL, light emitted from the VCSEL is directly transmitted to the outside through the optical waveguide. When the optical device 25 is a photodetector, light applied through the optical waveguide 26 is directly incident on the optical device 25 and receives the optical signal.
상기 열차단 수단은 상기 광소자(25)와 상기 IC(23) 사이의 기판(22)에 형성되어 상기 IC(23)에서 발생한 열이 상기 광소자(15)로 전달되는 것을 차단한다.The heat terminal means is formed on the substrate 22 between the optical element 25 and the IC 23 to block the heat generated in the IC 23 from being transmitted to the optical element 15. [
구체적으로 상기 열차단 수단으로 트렌치(29a)와 분리벽(29b)이 형성된다.Specifically, the trench 29a and the separating wall 29b are formed by the heat insulating means.
여기서 상기 트렌치(29a)는 상기 IC(23)의 광소자 측에 사각형으로 형성된다. 상기 트렌치(29a)는 필요에 따라 기판(22)을 두께방향으로 관통하는 부분이 형성될 수 있다.Here, the trench 29a is formed in a square shape on the optical device side of the IC 23. The trench 29a may have a portion penetrating through the substrate 22 in the thickness direction, if necessary.
상기 트렌치(29a)에는 열차단 물질이 충진하여 구조적 안정성을 향상시킬 뿐만 아니라 IC(23)에서 발생한 열이 광소자(25) 측으로 전달되는 것을 더욱 확실하게 차단할 수 있다. The trench 29a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 23 from being transmitted to the optical device 25 side.
아울러 상기 광소자(25) 하부와 상기 IC(23) 하부의 기판(22)에 광소자(25)에서 발생한 열과 상기 IC(23)에서 발생한 열을 외부로 분리하여 배출하기 위한 히트스프레드(21a, 21b)가 분리되어 각각 형성된다. 여기서 상기 히트스프레드(21a, 21b)는 가요성 흑연시트로 구비되는 것이 바람직하다. The heat spreads 21a and 21b for separating heat generated in the optical element 25 and heat generated in the IC 23 from the outside of the optical element 25 and the substrate 22 under the IC 23, 21b are separately formed. The heat spreads 21a and 21b are preferably formed of a flexible graphite sheet.
상기 열차단물질과 상기 히트스프레드를 이루는 물질의 조성은 상기 제1실시예와 유사하므로 자세한 설명은 생략하도록 한다.The composition of the thermal barrier material and the material forming the heat spread is similar to that of the first embodiment, and thus a detailed description thereof will be omitted.
[제3실시예][Third Embodiment]
도 3은 본 발명에 따른 광학모듈의 제3실시예를 나타내는 단면도이다.3 is a cross-sectional view showing a third embodiment of the optical module according to the present invention.
도 3에 도시된 바와 같이 본 실시예에 따른 광학모듈(30)은 기판(32)과, 상기 기판(32)상에 설치되는 IC(33)와, 상기 기판(32)상에 돌출되도록 형성된 서브마운트(34)와, 상기 서브마운트(34) 상부에 설치된 광신호를 출력하거나 수신하는 광소자(35)와, 상기 기판(32)에 광도파로(36)가 형성된 블록(37) 및 상기 광소자(35)와 상기 IC(33) 사이의 기판(32)에 열을 차단하기 위해 형성된 열차단 수단을 포함한다.3, the optical module 30 according to the present embodiment includes a substrate 32, an IC 33 mounted on the substrate 32, a sub- An optical device 35 for outputting or receiving an optical signal provided on the submount 34; a block 37 having an optical waveguide 36 formed on the substrate 32; (32) between the IC (35) and the IC (33).
상기 기판(32)은 베이스층(32a)과 상기 베이스층(32a)의 일측에 상방으로 돌출된 커버층(32b)으로 이루어진다. 상기 커버층(32)의 측면에 상기 블록(37)이 밀착 설치된다.The substrate 32 includes a base layer 32a and a cover layer 32b protruding upward from one side of the base layer 32a. The block 37 is closely attached to the side surface of the cover layer 32.
상기 IC(33)는 상기 광소자(35)에 전원을 공급하거나 광소자(35)에서 발생한 전기신호를 제어부(미도시)에 전송하도록 구비된다. 여기서 상기 IC(33)는 기판 중 베이스층(12a)에 지지되도록 설치된다. The IC 33 is provided to supply power to the optical device 35 or to transmit an electrical signal generated by the optical device 35 to a control unit (not shown). Here, the IC 33 is installed to be supported by the base layer 12a of the substrate.
상기 서브마운트(34)는 상기 기판(32)상에 돌출되도록 형성되며 상부에 광소자(35)가 장착된다. 상기 서브마운트(34)는 필요에 따라 상기 기판(32)에 부착할 수도 있고, 상기 기판(32)과 일체로 형성할 수도 있다. 여기서 상기 서브마운트(34)의 높이는 상기 광소자(35)의 빛이 입사되거나 출사되는 중심과 상기 광도파로(36)의 중심이 일치하도록 설정하게 된다.The submount 34 is formed to protrude on the substrate 32, and an optical element 35 is mounted on the substrate 32. The submount 34 may be attached to the substrate 32 or may be integrally formed with the substrate 32 as required. The height of the submount 34 is set so that the center of the optical waveguide 36 coincides with the center where the light of the optical device 35 enters or exits.
상기 광소자(35)는 상기 서브마운트(34)의 상부에 설치되어 광신호를 출력하거나 수신하게 된다. 상기 광소자(35)가 광신호를 출력하는 광원으로 구비될 경우 광통신에 사용되는 빛을 측면으로 출사하는 레이저다이오드일 수 있다. 또한 상기 광소자(35)가 광신호를 수신하는 수광소자일 경우 광검출기로 구비되며 광소자(35)가 광원일 경우와 반대 방향으로 광신호가 전달된다. 상기 광소자(35)와 상기 IC(33)는 둘 사이를 전기적으로 연결하기 위하여 본딩와이어(38)가 구비된다. The optical element 35 is installed on the submount 34 to output or receive an optical signal. When the optical element 35 is provided as a light source for outputting an optical signal, it may be a laser diode that emits light used for optical communication to the side. When the optical element 35 is a light receiving element for receiving an optical signal, the optical detector is provided as a photodetector and the optical signal is transmitted in a direction opposite to that when the optical element 35 is a light source. A bonding wire 38 is provided to electrically connect the optical element 35 and the IC 33 to each other.
상기 블록(37)은 기판(32) 상의 서브마운트(34)에 밀착 설치되며 광도파로(36)가 형성되어 있다. 상기 블록(37)은 모두 글래스재질로 이루어져 속이 투명하게 비치는 상태이다. 물론 필요에 따라 다른 재질의 블록(37)을 사용할 수 있음은 물론이다. 여기서 상기 블록(37)에 형성된 광도파로(36)는 상기 기판(32)과 평행하게 연장되고 그 선단이 상기 광소자(35)의 측면까지 도달하도록 구비된다. 본 실시예에서 상기 블록(37)에 형성된 광도파로(36)는 상기 기판(32)과 평행하게 연장되고 그 선단이 상기 광소자(35)의 측면까지 도달하도록 구비된다. 본 실시예에서 상기 광소자(35)는 빛을 측면으로 발사하는 레이저다이오드일 수 있다. 아울러 상기 광소자(35)는 광검출기인 경우 광도파로(36)를 통하여 인가된 빛이 바로 광소자로 입사되어 광신호를 수신하게 된다.The block 37 is closely attached to the submount 34 on the substrate 32 and has an optical waveguide 36 formed thereon. The block 37 is made of a glass material and is transparent. Needless to say, it is of course possible to use the block 37 of a different material according to need. The optical waveguide 36 formed in the block 37 extends parallel to the substrate 32 and has a tip end reaching a side surface of the optical device 35. The optical waveguide 36 formed in the block 37 extends parallel to the substrate 32 and has a tip end reaching the side surface of the optical element 35. In this embodiment, In this embodiment, the optical device 35 may be a laser diode that emits light to the side. When the optical device 35 is a photodetector, light applied through the optical waveguide 36 is directly incident on the optical device to receive the optical signal.
상기 열차단 수단은 상기 광소자(35)와 상기 IC(33) 사이의 기판(32)에 형성되어 상기 IC(33)에서 발생한 열이 상기 광소자(35)로 전달되는 것을 차단한다.The heat terminal means is formed on the substrate 32 between the optical element 35 and the IC 33 to block the heat generated in the IC 33 from being transmitted to the optical element 35.
구체적으로 상기 열차단 수단으로 트렌치(39a)와 분리벽(39b)이 형성된다.Specifically, the trench 39a and the separating wall 39b are formed by the heat insulating means.
여기서 상기 트렌치(39a)는 상기 IC(33)의 광소자 측에 사각형으로 형성된다. 상기 트렌치(39a)는 필요에 따라 기판(32)을 두께방향으로 관통하는 부분이 형성될 수 있다. 상기 트렌치(19a)에는 열차단 물질이 충진하여 구조적 안정성을 향상시킬 뿐만 아니라 IC(13)에서 발생한 열이 광소자(15) 측으로 전달되는 것을 더욱 확실하게 차단할 수 있다. Here, the trench 39a is formed in a square shape on the optical device side of the IC 33. The trench 39a may have a portion penetrating the substrate 32 in the thickness direction, if necessary. The trench 19a is filled with the thermal conductive material to improve the structural stability and further reliably prevent the heat generated in the IC 13 from being transmitted to the optical device 15 side.
아울러 상기 광소자(35) 하부와 상기 IC(33) 하부의 기판(32)에 광소자(35)에서 발생한 열과 상기 IC(33)에서 발생한 열을 외부로 분리하여 배출하기 위한 히트스프레드(31a, 31b)가 분리되어 각각 형성된다. 여기서 상기 히트스프레드(31a, 31b)는 가요성 흑연시트로 구비되는 것이 바람직하다. And heat spreads 31a and 31b for separating the heat generated in the optical device 35 and the heat generated in the IC 33 from the outside of the optical device 35 and the substrate 32 under the IC 33, 31b are separately formed. The heat spreads 31a and 31b are preferably formed of a flexible graphite sheet.
상기 열차단물질과 상기 히트스프레드를 이루는 물질의 조성은 상기 제1실시예와 유사하므로 자세한 설명은 생략하도록 한다.The composition of the thermal barrier material and the material forming the heat spread is similar to that of the first embodiment, and thus a detailed description thereof will be omitted.
[부호의 설명][Description of Symbols]
10, 20, 30 : 광학모듈10, 20, 30: optical module
11a, 11b, 21a, 21b, 31a, 31b : 히트스프레드11a, 11b, 21a, 21b, 31a, 31b: heat spread
12, 22, 32 : 기판 12, 22, 32: substrate
13, 23, 33 : IC13, 23, 33: IC
14, 24, 34 : 서브마운트14, 24, 34: Submount
15, 25, 35 : 광소자15, 25, 35: optical element
16, 26, 36 : 광도파로16, 26, 36: optical waveguide
17, 27, 37 : 블록17, 27, 37: block
18, 28, 38 : 본딩와이어18, 28, 38: bonding wire
12a, 22a, 32a : 베이스층12a, 22a, 32a: a base layer
12b, 12c, 22b, 22c, 32b : 커버층12b, 12c, 22b, 22c, and 32b:
19a, 29a, 39a : 트렌치19a, 29a, 39a: trenches
19b, 29b, 39b : 분리벽19b, 29b, 39b:

Claims (10)

  1. 기판과, 상기 기판상에 설치되는 IC와, 상기 기판상에 돌출되도록 형성된 서브마운트와, 상기 서브마운트 상에 설치된 광신호를 출력하거나 수신하는 광소자와, 상기 기판에 광도파로가 형성된 블록과, 상기 광소자와 상기 IC 사이를 전기적으로 연결하는 연결수단을 포함하되,An optical module comprising: a substrate; an IC mounted on the substrate; a submount formed to protrude on the substrate; an optical device for outputting or receiving an optical signal provided on the submount; a block having an optical waveguide formed on the substrate; And connection means for electrically connecting the optical element and the IC,
    상기 광소자와 상기 IC 사이의 기판에 열을 차단하기 위한 열차단수단이 형성된 것을 특징으로 하는 광학모듈.And a heat shielding means for shielding heat from the substrate between the optical element and the IC is formed.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 열차단 수단은 상기 광소자와 상기 IC 사이의 기판에 형성된 트렌치인 것을 특징으로 하는 광학모듈.Wherein the heat terminal means is a trench formed in the substrate between the optical element and the IC.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 열차단 수단은 상기 광소자와 상기 IC 사이의 기판에 형성된 분리벽인 것을 특징으로 하는 광학모듈.Wherein the heat terminal means is a separating wall formed on the substrate between the optical element and the IC.
  4. 청구항 1 내지 청구항 3의 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 광소자 하부와 상기 IC 하부의 기판에 서로 분리되어 히트스프레드가 각각 형성된 것을 특징으로 하는 광학모듈.Wherein a heat spread is formed on the lower portion of the optical element and the substrate on the lower portion of the IC, respectively.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 히트스프레드는 가요성 흑연시트인 것을 특징으로 하는 광학모듈.Wherein the heat spread is a flexible graphite sheet.
  6. 청구항 2에 있어서,The method of claim 2,
    상기 트렌치에 열차단 물질이 충전된 것을 특징으로 하는 광학모듈.Wherein the trench is filled with a thermal conductive material.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 열차단 물질은 상기 기판을 구성하는 물질과 열팽창계수의 차이가 5% 미만인 것을 특징으로 하는 광학모듈.Wherein the thermal barrier material has a difference in thermal expansion coefficient from a material constituting the substrate to less than 5%.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 열차단 물질은 고분자 물질을 전기 방사하여 다수의 기공을 갖는 나노섬유 웹 형태인 것을 특징으로 하는 광학모듈.Wherein the thermal barrier material is a nanofiber web having a plurality of pores by electrospinning a polymer material.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 나노 섬유는 강도를 향상시키 위한 단열성 필러를 더 포함하는 것을 특징으로 하는 광학모듈.Wherein the nanofibers further comprise an insulating filler for enhancing strength.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 단열성 필러는 SiO2, SiON, Si3N4, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, MgO, Y2O3, BaTiO3, ZrSiO4, HfO2로 이루어진 군으로부터 선택된 1종 이상의 입자, 또는 유리 섬유, 흑연, 암면, 클레이(clay)로 이루어진 군으로부터 선택된 1종 이상의 입자인 것을 특징으로 하는 광학모듈.The heat insulating filler is made of SiO 2, SiON, Si 3 N 4, HfO 2, ZrO 2, Al 2 O 3, TiO 2, Ta 2 O 5, MgO, Y 2 O 3, BaTiO 3, ZrSiO 4, HfO 2 And at least one particle selected from the group consisting of glass fibers, graphite, rock wool, and clay.
PCT/KR2017/015740 2017-12-28 2017-12-29 Optical module having excellent thermal characteristics WO2019132076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0182577 2017-12-28
KR1020170182577A KR102031651B1 (en) 2017-12-28 2017-12-28 Optical Module

Publications (1)

Publication Number Publication Date
WO2019132076A1 true WO2019132076A1 (en) 2019-07-04

Family

ID=67063914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015740 WO2019132076A1 (en) 2017-12-28 2017-12-29 Optical module having excellent thermal characteristics

Country Status (2)

Country Link
KR (1) KR102031651B1 (en)
WO (1) WO2019132076A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228371A (en) * 2000-02-18 2001-08-24 Nec Eng Ltd Optical module
KR20050078358A (en) * 2004-01-29 2005-08-05 삼성전자주식회사 Bi-directional optical transceiver module and bi-directional optical transceiver package using the same
KR20140019735A (en) * 2012-08-06 2014-02-17 주식회사 아모그린텍 Heat insulation sheet and manufacturing method thereof
KR20140066636A (en) * 2012-11-23 2014-06-02 한국전자통신연구원 Multi-channel optical module and manufacturing method of the same
KR20150043051A (en) * 2013-10-14 2015-04-22 주식회사 아모그린텍 Hybrid Heat Insulation Sheet and Manufacturing Method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532114B2 (en) * 1999-03-25 2004-05-31 京セラ株式会社 Optical semiconductor element storage package
JP5654317B2 (en) * 2010-10-29 2015-01-14 パナソニックIpマネジメント株式会社 Optical module
JP2016014780A (en) * 2014-07-02 2016-01-28 日立金属株式会社 Heat insulation structure of optical module, and optical active cable
CN106199854A (en) 2015-05-25 2016-12-07 源杰科技股份有限公司 Optical connection module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228371A (en) * 2000-02-18 2001-08-24 Nec Eng Ltd Optical module
KR20050078358A (en) * 2004-01-29 2005-08-05 삼성전자주식회사 Bi-directional optical transceiver module and bi-directional optical transceiver package using the same
KR20140019735A (en) * 2012-08-06 2014-02-17 주식회사 아모그린텍 Heat insulation sheet and manufacturing method thereof
KR20140066636A (en) * 2012-11-23 2014-06-02 한국전자통신연구원 Multi-channel optical module and manufacturing method of the same
KR20150043051A (en) * 2013-10-14 2015-04-22 주식회사 아모그린텍 Hybrid Heat Insulation Sheet and Manufacturing Method thereof

Also Published As

Publication number Publication date
KR20190080238A (en) 2019-07-08
KR102031651B1 (en) 2019-10-14

Similar Documents

Publication Publication Date Title
WO2009142391A2 (en) Light-emitting device package and method of manufacturing the same
TWI583086B (en) Heat dissipation structure of optical transmitter, and optical transmitter comprising thereof
WO2017090858A1 (en) Optical module and optical engine comprising same
WO2016190644A1 (en) Light-emitting device and vehicular lamp comprising same
WO2012141541A2 (en) Interposer for optical module, optical module using the same, method for manufacturing the same
US20140348462A1 (en) Optical Circuit Board
CN106954102B (en) Optical back plate sub-frame device
WO2013062289A1 (en) Light emitting diode package and light emitting module comprising the same
WO2020105779A1 (en) Multi-channel, bi-directional optical communication module
WO2016117878A1 (en) Heat dissipation sheet-integrated antenna module
JP6558192B2 (en) Optical device
WO2018074672A1 (en) Optical module
WO2014014220A1 (en) Edge-type led lighting apparatus
WO2018074705A1 (en) Wavelength multiplexing optical receiver module
WO2013122358A1 (en) Light emitting module having lens
WO2016178487A1 (en) Ultraviolet ray emitting device
WO2018128313A1 (en) Optical cable and optical cable assembly having the same
WO2019132076A1 (en) Optical module having excellent thermal characteristics
WO2011078506A2 (en) Light emitting diode package and method for fabricating the same
WO2017111405A1 (en) Phosphor plate package, light-emitting package, and vehicle head lamp comprising same
WO2013115578A1 (en) Light emitting diode package
WO2013081390A1 (en) Photoelectric wiring module
WO2011055868A1 (en) Optical printed circuit board and manufacturing method thereof
WO2010137841A2 (en) Light-emitting diode package and backlight unit
JP2003014994A (en) Multi-channel optical element mounting substrate and optical communication module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935978

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17935978

Country of ref document: EP

Kind code of ref document: A1