WO2019131937A1 - レドックスフロー電池及びその運転方法 - Google Patents

レドックスフロー電池及びその運転方法 Download PDF

Info

Publication number
WO2019131937A1
WO2019131937A1 PCT/JP2018/048307 JP2018048307W WO2019131937A1 WO 2019131937 A1 WO2019131937 A1 WO 2019131937A1 JP 2018048307 W JP2018048307 W JP 2018048307W WO 2019131937 A1 WO2019131937 A1 WO 2019131937A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
tank
tanks
redox flow
Prior art date
Application number
PCT/JP2018/048307
Other languages
English (en)
French (fr)
Inventor
賢太郎 渡邉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2019131937A1 publication Critical patent/WO2019131937A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery and a method of operating the same.
  • Priority is claimed on Japanese Patent Application No. 2017-253624, filed Dec. 28, 2017, the content of which is incorporated herein by reference.
  • the redox flow battery is used as a load leveling of electric power, an instantaneous stop measure, etc., and attracts attention as a new battery for electric power storage.
  • a redox flow battery using a vanadium salt as an active material is known (see, for example, Patent Document 1).
  • the redox flow battery 100 includes a battery cell 110 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 101 made of an ion exchange membrane, electrolyte solution tanks 104A and 104B for storing an electrolyte solution, and electrolyte solution tanks 104A and 104B. And circulation pipes 106A and 106B for circulating and supplying the electrolytic solution to the battery cell 110, and circulation pumps 105A and 105B connected to the circulation pipes 106A and 106B for circulating the electrolytic solution.
  • the positive electrode 102 is incorporated in the positive electrode cell 100A. Further, the negative electrode 103 is incorporated in the negative cell 100B. Further, a positive electrode electrolyte tank 104A for storing a positive electrode electrolyte is connected to the positive electrode cell 100A via a positive electrode electrolyte circulation pipe 106A. A negative electrode electrolyte tank 104B for storing a negative electrode electrolyte is connected to the negative electrode cell 100B via a negative electrode electrolyte circulation pipe 106B. Circulation pumps 105A and 105B are provided in the circulation pipes 106A and 106B, respectively. Each electrolytic solution is circulated between the respective tank and the cell via the positive electrode electrolytic solution circulation pipe 106A and the negative electrode electrolytic solution circulation pipe 106B.
  • V 4+ is present in VO 2+
  • V 5+ is estimated to be present in VO 2+, present in a state hydrated state or sulfate radical each is coordinated It is estimated that Positive electrode: V 4 + ⁇ V 5 + + e-(charge) V 4 + V V 5 + + e-(discharge)
  • the hydrogen ions (H + ) generated at the positive electrode at the time of charge move to the negative electrode side through the diaphragm to maintain the electrical neutrality of the electrolytic solution.
  • the power supplied from the power generation unit (for example, a power plant or the like) is stored in the electrolytic solution tank as a valence change of vanadium ions having different valences.
  • the time of discharge it is possible to take out the stored power by a reaction reverse to that at the time of charge and supply it to a load (such as a customer).
  • the state of charge (SOC: State Of Charge) of the electrolyte is determined by the ratio of the ion valences in the electrolyte.
  • SOC State Of Charge
  • V 4 + is oxidized to V 5 + at the positive electrode in the battery cell, and V 3 + is reduced to V 2 + at the negative electrode.
  • the battery reaction at the time of discharge is the reverse reaction at the time of charge.
  • a full charge voltage charge expiration voltage, charge termination voltage
  • a discharge end voltage are set in advance from the viewpoint of deterioration suppression, charge efficiency, and the like.
  • charge / discharge is performed within the chargeable / dischargeable range of the charge state from the discharge end (eg, charge state: 20%) to the full charge (eg, charge state: 80%).
  • the full charge voltage is a voltage set to stop charging from the power system
  • the discharge end voltage is a voltage set to stop discharging to the power system.
  • the terminal voltage of the battery cell is determined by the state of charge (SOC) of the electrolytic solution, the amount of electrolytic solution supplied, the current density, and the like.
  • SOC state of charge
  • SOC state of charge
  • it increases monotonically with the increase in the state of charge (SOC) of the electrolyte, and reaches a full charge when it reaches full charge. It becomes a charging voltage (hereinafter sometimes referred to as “rated charging end voltage”).
  • the ratio of V 5+ in V ions of the positive electrolyte (V 4+ / V 5+), or negative electrode electrolyte It depends on the ratio of V 2+ in the V ion (V 2+ / V 3+ ).
  • the time required to fully charge is determined by the amount of electrolyte, assuming that all the amount of electricity that has been supplied is used for charging.
  • a redox flow battery In a redox flow battery, it is common to use one each as an electrolytic solution tank in a positive electrode and a negative electrode. In the case of a pair of redox flow batteries as such an electrolytic solution tank, when the electrolytic solution is in a low charged state (SOC), it has not been possible to meet the sudden high output demand.
  • SOC low charged state
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a redox flow battery capable of high-power discharge even when the state of charge of the electrolyte is low, and a method of operating the same. .
  • the present invention provides the following means in order to solve the above problems.
  • a redox flow battery includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, a plurality of positive electrode tanks for storing the positive electrode electrolyte, and a negative electrode electrolyte.
  • Each of positive electrode tank switching means for switching between a plurality of negative electrode tanks and the plurality of positive electrode tanks, negative electrode tank switching means for switching the plurality of negative electrode tanks, and each of the positive electrode tank switching means and the negative electrode tank switching means And control means for controlling switching.
  • control means may further control switching between charging from the external power system and discharging to the external power system.
  • the method of operating a redox flow battery according to one aspect of the present invention uses the redox flow battery according to any one of the above (1) to (3), wherein the plurality of positive electrode tanks and the plurality of negative electrodes Among the tanks, at least one tank pair is fully charged, and when a request for discharge to an external power system is received, the pair of fully charged tanks is switched to discharge.
  • the method of operating a redox flow battery according to one aspect of the present invention uses the redox flow battery according to any one of the above (1) to (3) and provides a request for discharge to an external power system. When receiving, it discharges by switching to the pair of the tank with the highest charging state of the electrolyte among the plurality of positive electrode tanks and the plurality of negative electrode tanks.
  • the redox flow battery of the present invention it is possible to provide a redox flow battery capable of high-power discharge even when the state of charge of all the electrolytes is low.
  • FIG. 1 the longitudinal cross-section schematic diagram of the redox flow battery of an example of one Embodiment of this invention is shown.
  • the redox flow battery 1 shown in FIG. 1 includes a battery cell 10 to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, two positive electrode tanks 14A1 and 14A2 for storing the positive electrode electrolyte, and a negative electrode electrolyte 2
  • One negative electrode tank 14B1 and 14B2 positive electrode tank switching means 11A1 and 11A2 for switching between two positive electrode tanks 14A1 and 14A2
  • Negative electrode tank switching means 11B1 and 11B2 for switching between two negative electrode tanks 14B1 and 14B2
  • the control means (not shown) which controls each switching of switching means 11A1, 11A2 and negative electrode tank switching means 11B1, 11B2 is provided.
  • a first positive electrode tank 14A1 for storing a positive electrode electrolyte is connected to the positive electrode cell 100A via a positive electrode electrolyte circulation pipe 16A1 and a positive electrode electrolyte circulation pipe 16A2, and a second positive electrode tank 14A2 for storing a positive electrode electrolyte.
  • a first negative electrode tank 14A1 for storing a negative electrode electrolyte is connected to the negative electrode cell 100B via a negative electrode electrolyte circulation pipe 16B1 and a negative electrode electrolyte circulation pipe 16B2, and a first negative electrode tank 14A2 for storing a negative electrode electrolyte.
  • the positive electrode electrolyte solution circulation pipe 16A1 includes all parts of the connected positive electrode electrolyte solution circulation pipe disposed between the positive electrode tank switching means 11A1 and 11A2 and the positive electrode cell 100A.
  • the negative electrode electrolyte solution circulation pipe 16A1 includes all parts of the connected negative electrode electrolyte solution circulation pipe disposed between the negative electrode tank switching means 11A1 and 11A2 and the negative electrode cell 100A.
  • a circulation pump 15A is provided in the positive electrode electrolyte solution circulation pipe 16A1 connected to the positive electrode cell 100A.
  • the electrolyte solution of the first positive electrode tank 14A1 is switched between the first positive electrode tank 14A1 and the positive electrode through the positive electrode electrolyte solution circulation pipe 16A1 and the positive electrode electrolyte solution circulation pipe 16A2 by switching by the positive electrode tank switching means 11A1 and 11A2 using the circulation pump 15A.
  • the electrolyte of the second positive electrode tank 14A2 is circulated between the second positive electrode tank 14A2 and the positive electrode cell 100A, which is circulated between the cell 100A or through the positive electrode electrolyte circulation pipe 16A1 and the positive electrode electrolyte circulation pipe 16A3. Be done.
  • a circulation pump 15B is provided in the negative electrode electrolyte solution circulation pipe 16B1 connected to the negative electrode cell 100B.
  • the electrolytic solution of the first negative electrode tank 14B1 is transmitted through the negative electrode electrolyte solution circulation pipe 16B1 and the negative electrode electrolyte solution circulation pipe 16B2 to the first negative electrode tank 14B1 and the negative electrode
  • the electrolyte of the second negative electrode tank 14B2 is circulated between the second negative electrode tank 14B2 and the negative electrode cell 100B, which is circulated between the cell 100B or through the negative electrode electrolyte circulation pipe 16B1 and the negative electrode electrolyte circulation pipe 16B3. Be done.
  • redox flow battery 1 In the redox flow battery 1 shown in FIG. 1, although there are two positive electrode tanks and two negative electrode tanks, the number is not limited to two, and may be plural. In a redox flow battery (hereinafter sometimes referred to as "single tank redox flow battery") in which there is one pair of positive electrode tank and negative electrode tank, the SOC of the electrolyte decreases due to discharge to the external power system. If the demand for high-output (high terminal voltage) discharge is suddenly generated in the off state, it can not be immediately dealt with.
  • the state of charge (SOC) of the electrolytic solution in the tank used for discharging can be obtained by fully charging the electrolytic solution in the tank not used for discharging. Even if it is low, by switching to the fully charged tank by the tank switching means, high-power discharge can be made immediately.
  • double tank type redox flow battery ie, electrolysis capable of storing each tank
  • the liquid volume is 1/2 of the electrolyte volume of the tank of the single tank redox flow battery
  • the same electrolyte volume as that of the single tank redox flow battery is fully charged in one tank.
  • the time required for the battery can be one half of the time required to fully charge the empty tank of the single tank redox flow battery.
  • the essence of the technical idea of the present invention is not simply to provide a plurality of pairs of positive electrode tank and negative electrode tank, but by storing the same amount of electrolytic solution as a single tank redox flow battery in a plurality of tanks. Even if it corresponds to a low state of charge (SOC) in view of the amount of liquid, it is possible to perform discharge at high output using a fully charged electrolyte. If it is a single tank type redox flow battery, it is not possible to discharge at high output unless charging is performed in a low state of charge (SOC). On the other hand, in the redox flow battery of the present invention, high output discharge is possible even when the state of charge (SOC) corresponds.
  • SOC state of charge
  • the positive electrode tank switching means and the negative electrode tank switching means for example, known means such as a solenoid valve can be used. There are no particular limitations on the places where the positive electrode tank switching means and the negative electrode tank switching means are installed as long as tank switching is possible. As a positive electrode tank switching means and a negative electrode tank switching means, you may be able to operate manually.
  • control means can further control switching between charging from the external power system and discharging to the external power system.
  • the control means can further control switching between charging from the external power system and discharging to the external power system.
  • the tank to be used when the tank to be used is fully charged, it is possible to immediately switch from charging to discharging to start discharging to the external power system.
  • measuring means for measuring the charged states of the positive electrode electrolytes of the plurality of positive electrode tanks and the negative electrode electrolyte of the negative electrode tank.
  • SOC state of charge
  • the method of operating the redox flow battery uses the redox flow battery of the present invention, and at least one pair of tanks among the plurality of positive electrode tanks and the plurality of negative electrode tanks is fully charged
  • discharge is performed by switching to a fully charged tank pair.
  • discharge may be performed by switching to a fully charged tank pair.
  • the method of operating a redox flow battery according to another embodiment of the present invention uses the redox flow battery of the present invention, and when receiving a request for discharging to an external power system, it comprises a plurality of positive electrode tanks and a plurality of negative electrode tanks. Among them, discharge is performed by switching to a pair of positive electrode tank and negative electrode tank in which the charged state of the electrolyte solution is the highest. When there is no request for discharge to the external power system, discharge may be performed by switching to a pair of positive electrode tank and negative electrode tank having the highest state of charge of the electrolyte among the plurality of positive electrode tanks and the plurality of negative electrode tanks. .
  • Example 1 As a positive electrode electrolyte solution and a negative electrode electrolyte solution, vanadium ion-based electrolyte solutions (both of which have an average valence of vanadium ion + 3.5) were placed in 50 ml of two positive electrode tanks and two negative electrode tanks, respectively. The electrolyte solution in one pair of tanks was charged to a voltage of 1.60 V while being circulated to the redox flow battery cell at an amount of 50 ml / min. Next, discharge was performed until the voltage was 1.00V. (2) Charge was performed again until the voltage reached 1.60 V, and then discharge was performed. The terminal voltage of the battery cell immediately after the start of the discharge was measured. The terminal voltage of the battery cell at this time was 1.28V. In addition, in Example 1 and Comparative Example 1 described later, the current density at the time of charge and discharge was all 200 mA / cm 2 .
  • Example 1 The same vanadium ion-based electrolyte as that used in Example 1 was placed in each of 100 ml of one positive electrode tank and one negative electrode tank as a positive electrode electrolyte and a negative electrode electrolyte. Charging was performed until the voltage reached 1.60 V while circulating the electrolyte solution in each tank at an amount of 50 ml / min. Next, discharge was performed until the voltage was 1.00V. (2) The battery was recharged with the same amount of electricity (same charging time) as that used for the charge in Example 1 (2), and then discharged. The terminal voltage of the battery cell immediately after the start of the discharge was measured. The terminal voltage of the battery cell at this time was 1.15V.
  • Example 1 shows that the terminal voltage of the battery cell immediately after the start of discharge is higher by 0.13 V (10% or more) compared to Comparative Example 1 of the same charge amount, and can be discharged at a higher output. all right.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

このレドックスフロー電池では、正極電解液及び負極電解液が供給される電池セルと、正極電解液が貯留される2つの正極タンクと、負極電解液が貯留される2つの負極タンクと、2つの正極タンクの切り替えを行う正極タンク切り替え手段と、2つの負極タンクの切り替えを行う負極タンク切り替え手段と、正極タンク切り替え手段及び負極タンク切り替え手段のそれぞれの切り替えを制御する制御手段と、を備えている。

Description

レドックスフロー電池及びその運転方法
 本発明は、レドックスフロー電池及びその運転方法に関する。
 本願は、2017年12月28日に、日本に出願された特願2017-253624号に基づき優先権を主張し、その内容をここに援用する。
レドックスフロー電池は、電力の負荷平準化や瞬間停止対策などとして利用され、新規の電力貯蔵用電池として注目されている。特に、バナジウム塩を活物質にしたレドックスフロー電池が知られている(例えば、特許文献1参照)。
 レドックスフロー電池の動作原理を図2に基づいて説明する。
レドックスフロー電池100は、イオン交換膜からなる隔膜101で正極セル100Aと負極セル100Bとに分離された電池セル110と、電解液を貯留する電解液タンク104A、104Bと、電解液タンク104A、104Bから電池セル110に電解液を循環供給する循環配管106A、106Bと、循環配管106A、106Bに接続されて電解液を循環させる循環ポンプ105A、105Bと、を備える。
正極セル100Aには正極電極102が内蔵されている。また、負極セル100Bには負極電極103が内蔵されている。
  また、正極セル100Aには、正極電解液を貯留する正極電解液タンク104Aが正極電解液循環配管106Aを介して接続されている。負極セル100Bには、負極電解液を貯留する負極電解液タンク104Bが負極電解液循環配管106Bを介して接続されている。循環配管106A、106Bにはそれぞれ、循環ポンプ105A、105Bが設けられている。各電解液は、正極電解液循環配管106A、負極電解液循環配管106Bを介して、それぞれのタンクとセルとの間で循環される。
各極電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液が用いられる。ポンプ105A、105Bで電解液を循環させながら、正極電極102、負極電極103におけるイオンの価数変化反応に伴って充放電が行われる。
例えば、バナジウムイオンを含む電解液を用いた場合、セル内の正極および負極で充放電時に生じる反応は次の通りになる。なお、実際には、V4+はVO2+で存在し、V5+ はVO2+で存在していると推定され、それぞれ水和した状態や硫酸根が配位した状態で存在していると推定される。
  正極:V4+  →  V5+  +  e-(充電)   V4+  ←  V5+  +  e-(放電)
  負極:V3+  +  e-  →  V2+(充電)   V3+  +  e-  ←  V2+(放電)
 充電時に正極で生成される水素イオン(H+)は、隔膜を通って負極側に移動し、電解液の電気的中性が保たれる。発電部(例えば、発電所など)から供給された電力は、価数の異なるバナジウムイオンの価数変化として電解液タンクに貯蔵される。
一方、放電時には、充電時とは逆の反応によって貯蔵した電力を取り出し、負荷(需要家など)に供給することができる。
 レドックスフロー電池では、電解液の充電状態(SOC:State  Of  Charge)は、電解液中のイオン価数の比率によって決まる。例えば、バナジウム系レドックスフロー電池の場合、正極電解液では、正極電解液中のVイオン(V4+/V5+)におけるV5+の比率、負極電解液では、負極電解液中のVイオン(V2+/V3+)におけるV2+の比率で表される。充電時の電池反応は、電池セル内で正極ではV4+がV5+に酸化され、負極ではV3+がV2+に還元される。放電時の電池反応は、充電時と逆の反応になる。
バナジウム系レドックスフロー電池においては、劣化抑制や充電効率等の観点から満充電電圧(充電満了電圧、充電終了電圧)と放電末電圧が予め設定されている。電池の通常の運転時には、充電状態が放電末(例、充電状態:20%)から満充電(例、充電状態:80%)の充放電可能範囲内で充放電が行われる。ここで、満充電電圧は電力系統からの充電を停止するように設定された電圧であり、放電末電圧は電力系統への放電を停止するように設定された電圧である。
特開昭62-186473号公報
電池セルの端子電圧は、電解液の充電状態(SOC)、電解液の送液量、電流密度等により決定される。特に電解液の充電状態(SOC)との関係でいうと、一般的には、電解液の充電状態(SOC)の増大に対して単調に増大して、満充電に達すると予め設定された満充電電圧(以下、「定格充電終了電圧」ということがある)となる。
 ここで、電解液のSOCは上記の通り、例えばバナジウム系レドックスフロー電池の場合では、正極電解液中のVイオン(V4+/V5+)におけるV5+の比率、あるいは、負極電解液中のVイオン(V2+/V3+)におけるV2+の比率で決まる。同じ充電電流で充電を行った場合、通電した電気量がすべて充電に使用されたと仮定すると、満充電までに要する時間は電解液の量で決まる。
 レドックスフロー電池では、正極・負極で電解液タンクとして1つずつを使用するのが一般的である。
 このような電解液タンクとして一対のレドックスフロー電池では、電解液が低い充電状態(SOC)になっていた場合に、突発的な高出力の需要に対応することができなかった。
 本発明は上記問題に鑑みてなされたものであり、電解液の充電状態が低い場合であっても、高出力の放電を可能にするレドックスフロー電池及びその運転方法を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るレドックスフロー電池は、正極電解液及び負極電解液が供給される電池セルと、正極電解液が貯留される複数の正極タンクと、負極電解液が貯留される複数の負極タンクと、前記複数の正極タンクの切り替えを行う正極タンク切り替え手段と、前記複数の負極タンクの切り替えを行う負極タンク切り替え手段と、前記正極タンク切り替え手段及び前記負極タンク切り替え手段のそれぞれの切り替えを制御する制御手段と、を備えている。
(2)上記(1)のレドックスフロー電池において、前記制御手段はさらに、外部の電力系統からの充電と外部の電力系統への放電との切り替えを制御してもよい。
(3)上記(1)又は(2)のいずれかのレドックスフロー電池において、前記複数の正極タンクの正極電解液、及び、前記負極タンクの負極電解液の充電状態を測定する測定手段をさらに備えてもよい。
(4)本発明の一態様に係るレドックスフロー電池の運転方法は、上記(1)~(3)のいずれか一つに記載のレドックスフロー電池を用い、前記複数の正極タンク及び前記複数の負極タンクのうち、少なくとも一つのタンクのペアは満充電にしておき、外部の電力系統への放電の要請を受けたときに、前記満充電のタンクのペアに切り替えて放電を行う。
(5)本発明の一態様に係るレドックスフロー電池の運転方法は、上記(1)~(3)のいずれか一つに記載のレドックスフロー電池を用い、外部の電力系統への放電の要請を受けたときに、前記複数の正極タンク及び前記複数の負極タンクのうち、最も電解液の充電状態が高いタンクのペアに切り替えて放電を行う。
本発明のレドックスフロー電池によれば、全電解液の充電状態が低い場合であっても、高出力の放電を可能にするレドックスフロー電池を提供できる。
本発明の一実施形態の一例のレドックスフロー電池の縦断面模式図である。 従来のレドックスフロー電池の縦断面模式図である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
(レドックスフロー電池)
 図1に、本発明の一実施形態の一例のレドックスフロー電池の縦断面模式図を示す。
 図1に示すレドックスフロー電池1は、正極電解液及び負極電解液が供給される電池セル10と、正極電解液が貯留される2つの正極タンク14A1、14A2と、負極電解液が貯留される2つの負極タンク14B1、14B2と、2つの正極タンク14A1、14A2の切り替えを行う正極タンク切り替え手段11A1、11A2と、2つの負極タンク14B1、14B2の切り替えを行う負極タンク切り替え手段11B1、11B2と、正極タンク切り替え手段11A1、11A2及び負極タンク切り替え手段11B1、11B2のそれぞれの切り替えを制御する制御手段(不図示)と、を備えている。
 また、正極セル100Aには、正極電解液を貯留する第1正極タンク14A1が正極電解液循環配管16A1及び正極電解液循環配管16A2を介して接続され、正極電解液を貯留する第2正極タンク14A2が正極電解液循環配管16A1及び正極電解液循環配管16A3を介して接続されている。一方、負極セル100Bには、負極電解液を貯留する第1負極タンク14A1が負極電解液循環配管16B1及び負極電解液循環配管16B2を介して接続され、負極電解液を貯留する第1負極タンク14A2が負極電解液循環配管16B1及び負極電解液循環配管16B3を介して接続されている。
 なお、正極電解液循環配管16A1は、正極タンク切り替え手段11A1、11A2と正極セル100Aとの間に配置する接続している正極電解液循環配管の部分をすべて含む。同様に、負極電解液循環配管16A1は、負極タンク切り替え手段11A1、11A2と負極セル100Aとの間に配置する接続している負極電解液循環配管の部分をすべて含む。
また、正極セル100Aに接続する正極電解液循環配管16A1には、循環ポンプ15Aが設けられている。循環ポンプ15Aを用いて、正極タンク切り替え手段11A1及び11A2による切り替えにより、正極電解液循環配管16A1及び正極電解液循環配管16A2を介して第1正極タンク14A1の電解液が第1正極タンク14A1と正極セル100Aとの間で循環され、または、正極電解液循環配管16A1及び正極電解液循環配管16A3を介して第2正極タンク14A2の電解液が第2正極タンク14A2と正極セル100Aとの間で循環される。
同様に、負極セル100Bに接続する負極電解液循環配管16B1には、循環ポンプ15Bが設けられている。循環ポンプ15Bを用いて、負極タンク切り替え手段11B1及び11B2による切り替えにより、負極電解液循環配管16B1及び負極電解液循環配管16B2を介して第1負極タンク14B1の電解液が第1負極タンク14B1と負極セル100Bとの間で循環され、または、負極電解液循環配管16B1及び負極電解液循環配管16B3を介して第2負極タンク14B2の電解液が第2負極タンク14B2と負極セル100Bとの間で循環される。
 図1に示すレドックスフロー電池1では、正極タンク及び負極タンクはそれぞれ2つであるが、2つに限らず、複数であればよい。
 正極タンク及び負極タンクのペアが1つであるレドックスフロー電池(以下、「単タンク型レドックスフロー電池」ということがある)においては、外部の電力系統への放電によって電解液のSOCが低くなっている状態で、突発的に高出力(高端子電圧)の放電の需要があった際に直ちには対応することができない。
 これに対して、本発明のレドックスフロー電池を用いれば、放電に使用していないタンクの電解液を満充電にしておけば、放電に使用しているタンクの電解液の充電状態(SOC)が低い場合でも、タンク切り替え手段で満充電状態にあるタンクに切り替えることによって、直ちに高出力の放電が可能になる。
 また、正極タンク及び負極タンクのそれぞれ2つの同じ容量のタンクで貯留する構成のレドックスフロー電池(以下、「複タンク型レドックスフロー電池」ということがある)の場合(すなわち、各タンクが貯留できる電解液量が単タンク型レドックスフロー電池のタンクの電解液量の1/2である場合)において、単タンク型レドックスフロー電池の電解液量と同じ電解液量を、1つのタンクを満充電するのに要する時間は、単タンク型レドックスフロー電池の空のタンクを満充電するのに要する時間の1/2で済む。
 ここで、本発明の技術思想の本質は、単に正極タンク及び負極タンクのペアを複数備えることではなく、単タンク型レドックスフロー電池と同じ電解液量を複数のタンクに貯留することによって、全電解液量で考えれば低い充電状態(SOC)に相当する場合であっても、満充電状態にある電解液を用いて高出力での放電が可能になることにある。単タンク型レドックスフロー電池であれば、低い充電状態(SOC)であるときは充電をしない限り、高出力での放電はできない。これに対して、本発明のレドックスフロー電池では、低い充電状態(SOC)に相当する場合でも高出力放電が可能になる。
 例えば50%の充電状態(SOC)で放電を行ったとき、単タンク型レドックスフロー電池の場合、端子電圧が1.2Vとなる場合でも、本発明のレドックスフロー電池では、電解液が満充電状態にあるタンクに切り替えることによって1.4Vの端子電圧を得ることができる。
 正極タンク切り替え手段及び負極タンク切り替え手段としては、例えば、電磁バルブ等の公知の手段を用いることができる。
 正極タンク切り替え手段及び負極タンク切り替え手段を設置する場所は、タンク切り替えが可能である限り、特に制限はない。
 正極タンク切り替え手段及び負極タンク切り替え手段として、手動で作動することができてもよい。
 制御手段はさらに、外部の電力系統からの充電と外部の電力系統への放電との切り替えを制御することができることが好ましい。
 この場合、使用するタンクの充電が満充電になったら、直ちに充電から放電に切り替えて、外部の電力系統への放電を開始することができる。
 さらに、前記複数の正極タンクの正極電解液、及び、前記負極タンクの負極電解液の充電状態を測定する測定手段をさらに備えることが好ましい。
この場合、電解液のうち、充電状態(SOC)が最も高いタンクを、正極タンク切り替え手段及び負極タンク切り替え手段によって選択して、より短時間で満充電にすることが可能になる。
(レドックスフロー電池の運転方法)
 本発明の一態様であるレドックスフロー電池の運転方法は、本発明のレドックスフロー電池を用い、複数の正極タンク及び複数の負極タンクのうち、少なくとも一つのタンクのペアは満充電にしておき、外部の電力系統への放電の要請を受けたときに、満充電のタンクのペアに切り替えて放電を行う。
 外部の電力系統への放電の要請がないときに、満充電のタンクのペアに切り替えて放電を行ってもよい。
 本発明の他の態様であるレドックスフロー電池の運転方法は、本発明のレドックスフロー電池を用い、外部の電力系統への放電の要請を受けたときに、複数の正極タンク及び複数の負極タンクのうち、最も電解液の充電状態が高い正極タンク及び負極タンクのペアに切り替えて放電を行う。
 外部の電力系統への放電の要請がないときに、複数の正極タンク及び複数の負極タンクのうち、最も電解液の充電状態が高い正極タンク及び負極タンクのペアに切り替えて放電を行ってもよい。
(実施例1)
(1)正極電解液および負極電解液として、バナジウムイオン系の電解液(いずれもバナジウムイオンの平均価数+3.5)を、それぞれ50mlの2つの正極タンク及び2つの負極タンクに入れた。一方の対のタンク内の電解液を50ml/minの量でレドックスフロー電池セルに循環しながら電圧が1.60Vになるまで充電を行った。次に、電圧が1.00Vになるまで放電を行った。
(2)再度、電圧が1.60Vになるまで充電を行い、次に、放電を行った。放電開始直後の電池セルの端子電圧を測定した。このときの電池セルの端子電圧は、1.28Vであった。
 なお、実施例1及び後述の比較例1で、充放電時の電流密度はすべて200mA/cmとした。
(比較例1)
(1)正極電解液および負極電解液として、実施例1で用いたのと同じバナジウムイオン系の電解液を、それぞれ100mlの1つの正極タンク及び1つの負極タンクに入れた。各タンク内の電解液を50ml/minの量で循環しながら電圧が1.60Vになるまで充電を行った。次に、電圧が1.00Vになるまで放電を行った。
(2)実施例1(2)の充電に用いられたのと同じ電気量(同じ充電時間)で再度充電し、次に、放電を行った。放電開始直後の電池セルの端子電圧を測定した。このときの電池セルの端子電圧は、1.15Vであった。
 実施例1は、同じ充電量の比較例1と比較して、放電開始直後の電池セルの端子電圧が0.13V(10%以上)高いことがわかり、より高い出力で放電可能であることがわかった。
 1 レドックスフロー電池
 10 電池セル
 11A1、11A2 正極タンク切り替え手段
 11B1、11B2 負極タンク切り替え手段
14A1、14A2 正極タンク
14B1、14B2 負極タンク
16A1、16A2、16A3 正極電解液循環配管
16B1、16B2、16B3 負極電解液循環配管
100A 正極セル
100B 負極セル

Claims (5)

  1.   正極電解液及び負極電解液が供給される電池セルと、
    正極電解液が貯留される複数の正極タンクと、
    負極電解液が貯留される複数の負極タンクと、
    前記複数の正極タンクの切り替えを行う正極タンク切り替え手段と、
    前記複数の負極タンクの切り替えを行う負極タンク切り替え手段と、
    前記正極タンク切り替え手段及び前記負極タンク切り替え手段のそれぞれの切り替えを制御する制御手段と、を備えたレドックスフロー電池。
  2.  前記制御手段はさらに、外部の電力系統からの充電と外部の電力系統への放電との切り替えを制御する、請求項1に記載のレドックスフロー電池。
  3. 前記複数の正極タンクの正極電解液、及び、前記負極タンクの負極電解液の充電状態を測定する測定手段をさらに備える、請求項1又は2のいずれかに記載のレドックスフロー電池。
  4.  請求項1~3のいずれか一項に記載のレドックスフロー電池を用い、
     前記複数の正極タンク及び前記複数の負極タンクのうち、少なくとも一つのタンクのペアは満充電にしておき、
     外部の電力系統への放電の要請を受けたときに、前記満充電のタンクのペアに切り替えて放電を行う、レドックスフロー電池の運転方法。
  5.  請求項1~3のいずれか一項に記載のレドックスフロー電池を用い、
    外部の電力系統への放電の要請を受けたときに、前記複数の正極タンク及び前記複数の負極タンクのうち、最も電解液の充電状態が高いタンクのペアに切り替えて放電を行う、レドックスフロー電池の運転方法。
PCT/JP2018/048307 2017-12-28 2018-12-27 レドックスフロー電池及びその運転方法 WO2019131937A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253624 2017-12-28
JP2017253624 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131937A1 true WO2019131937A1 (ja) 2019-07-04

Family

ID=67063887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048307 WO2019131937A1 (ja) 2017-12-28 2018-12-27 レドックスフロー電池及びその運転方法

Country Status (2)

Country Link
TW (1) TW201931657A (ja)
WO (1) WO2019131937A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124862U (ja) * 1984-01-31 1985-08-22 住友電気工業株式会社 レドツクスフロ−電池
JPS6286667A (ja) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol 電解液流通型電池システム及びその運転方法
JP2002329522A (ja) * 2001-05-01 2002-11-15 Sumitomo Electric Ind Ltd 二次電池およびその運転方法
JP2007188731A (ja) * 2006-01-12 2007-07-26 Kansai Electric Power Co Inc:The 電解液循環型電池システム
US20140320061A1 (en) * 2013-04-30 2014-10-30 Ashlawn Energy, LLC Apparatus and method controlling sequencings for multiple electrolyte storage tanks in a reduction-oxidation flow battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124862U (ja) * 1984-01-31 1985-08-22 住友電気工業株式会社 レドツクスフロ−電池
JPS6286667A (ja) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol 電解液流通型電池システム及びその運転方法
JP2002329522A (ja) * 2001-05-01 2002-11-15 Sumitomo Electric Ind Ltd 二次電池およびその運転方法
JP2007188731A (ja) * 2006-01-12 2007-07-26 Kansai Electric Power Co Inc:The 電解液循環型電池システム
US20140320061A1 (en) * 2013-04-30 2014-10-30 Ashlawn Energy, LLC Apparatus and method controlling sequencings for multiple electrolyte storage tanks in a reduction-oxidation flow battery

Also Published As

Publication number Publication date
TW201931657A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
CA2446213C (en) Secondary battery system allowing a high overload operation
EP2795709B1 (en) Flow battery system with standby mode
JP6117373B2 (ja) 電圧制限装置を有するフローバッテリ
US20140099520A1 (en) Liquid Flow Battery System and Repairing Device Thereof
WO2019131944A1 (ja) レドックスフロー電池及びその運転方法
KR102357651B1 (ko) 레독스 흐름 전지의 모듈 시스템
CN105702994B (zh) 一种液流电池系统结构
US20200266465A1 (en) Advanced electrolyte mixing method for all vanadium flow batteries
GB2372875A (en) Process for operating a regenerative fuel cell
WO2019131937A1 (ja) レドックスフロー電池及びその運転方法
WO2020130014A1 (ja) レドックスフロー電池及びその運転方法並びにレドックスフロー電池システム
US10673089B2 (en) Reduction-oxidation flow battery
JP2003007326A (ja) 蓄電システム
WO2019208431A1 (ja) レドックスフロー電池及びその運転方法
JP2003086228A (ja) レドックスフロー電池の運転方法
JP2021007066A (ja) レドックスフロー電池システム
JP2003036880A (ja) レドックスフロー電池
WO2023027643A2 (en) Flow battery charging initiation method, controller for flow battery system and flow battery system
KR20220096867A (ko) Dc 펌프가 적용된 레독스 흐름전지 시스템
JPH0159706B2 (ja)
JPH01124965A (ja) 電解液流通型電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP