WO2019131609A1 - インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車 - Google Patents

インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車 Download PDF

Info

Publication number
WO2019131609A1
WO2019131609A1 PCT/JP2018/047520 JP2018047520W WO2019131609A1 WO 2019131609 A1 WO2019131609 A1 WO 2019131609A1 JP 2018047520 W JP2018047520 W JP 2018047520W WO 2019131609 A1 WO2019131609 A1 WO 2019131609A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
phase
current
abnormality diagnosis
conduction state
Prior art date
Application number
PCT/JP2018/047520
Other languages
English (en)
French (fr)
Inventor
明生 中島
岡田 浩一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017249180A external-priority patent/JP2019115238A/ja
Priority claimed from JP2017250734A external-priority patent/JP7100976B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019131609A1 publication Critical patent/WO2019131609A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter abnormality diagnosis device, an inverter device, an electric vehicle equipped with the inverter device, and an in-wheel motor drive device, such as an inverter using a semiconductor switching element such as an IGBT used in an electric vehicle.
  • the present invention relates to an abnormality diagnosis apparatus.
  • FIG. 8 is a block diagram showing a basic structure of a conventional inverter system.
  • this inverter system for example, when it is desired to flow a current from the U phase to the V phase of the motor 6, the switching element UP on the high side and the low side of the switching element 27 in the PWM operation by the command from the gate drive circuit 25.
  • the switching element VN on the side is turned on, and the others are turned off.
  • the voltage Vbat is supplied from the DC power supply 32, whereby the current flows from the U phase of the motor 6 to the V phase through the switching element UP. Further, the current passes through the switching element VN and returns to the GND of the DC power supply 32.
  • the other operation patterns are the same. Further, changing the magnitude of the current is realized by changing the pulse width in the PWM operation.
  • the IGBT does not turn on or the IGBT remains on. If there is an IGBT that does not turn on even when commanded, the motor can not be driven because current can not flow in that phase.
  • the IGBT is kept on, at the moment when the IGBT which is the pair of the phase is turned on, the power supply becomes short circuit and the inverter becomes abnormal. Therefore, if it can be confirmed whether the IGBT is operating reliably, the reliability will be improved.
  • FRD fast recovery diode
  • a pulse signal for measurement is provided to the primary side (gate side) of each switching element of the inverter, and an abnormality of each switching element is determined based on the current value detected by the current sensor (Patent Document 2).
  • Patent Document 1 only the operation of the primary side (gate side) of the IGBT can be confirmed, and further, only visual observation. It is desirable that the operation on the secondary side (load side) of the IGBT can be checked automatically.
  • Patent Document 2 since a pulse signal for measurement is given to each switching element to judge abnormality, abnormality can not be judged during operation of the inverter.
  • the technology of Patent Document 2 is applied to a vehicle drive inverter, abnormality diagnosis of the inverter can not be performed while the vehicle is traveling.
  • An object of the present invention is to provide an inverter abnormality diagnosis device capable of confirming the conduction state on the secondary side of each switching element and improving the reliability of the inverter.
  • Another object of the present invention is to provide an inverter abnormality diagnosis device capable of diagnosing an abnormality during operation, an inverter device, and an electric vehicle equipped with the inverter device.
  • the inverter abnormality diagnosis device has switching element 27 connected to the high side of DC power supply 32 and switching element 27 connected to the low side for each of the three phases.
  • a phase current output unit Uout, Vout, Wout is drawn from between both switching elements, and a device for diagnosing an abnormality in the inverter 24 which converts the current of the DC power supply 32 into three-phase AC power, Two resistors R and R for each phase which are respectively connected to the high side and low side of the DC power supply 32 and generate an intermediate potential of the DC power supply 32;
  • a monitor circuit 31 connected to each of the element conduction state detection means PC to monitor the detection state of the element conduction state detection means PC.
  • the monitoring circuit 31 monitors the detection state of the element conduction state detection means PC.
  • the two resistors R and R of each phase connected to the DC power supply 32 are at an intermediate potential of the DC power supply 32, and the two element conduction state detecting means PC and PC of each phase are connected to the two resistors R and R.
  • the switching element 27 on the high side of one phase, one element conduction state detecting means PC of the in-phase state, and one resistance R of the in-phase state become conductive.
  • the other-side low-side switching element 27, one in-phase one element conduction state detecting means PC, and one in-phase one resistance R are brought into conduction.
  • the monitoring circuit 31 constantly or periodically monitors the detection states of the two element conduction state detection means PC, PC, and when any of the element conduction state detection means PC is detected as the non-conduction state, Diagnose as abnormal. Thus, the conduction state of the secondary side of each switching element 27 can be confirmed, and the reliability of the inverter 24 can be improved.
  • the monitoring circuit 31 performs each of the switching operations from the drive command input to each of the switching elements 27 and the conduction state of the wiring on the secondary side of each of the switching elements 27 output from the element conduction state detection unit PC.
  • movement monitoring means 23 which monitors whether the element 27 is driving according to drive instruction.
  • the operation monitoring means 23 compares the drive command to each switching element 27 with the conduction state of each switching element 27.
  • the operation monitoring means 23 can diagnose that there is an abnormality in the switching element 27 when the switching element 27 is in a non-conductive state despite the drive command to the corresponding switching element 27.
  • the monitoring circuit 31 stops driving of all the switching elements 27 and initially diagnoses that the wiring on the secondary side of all the switching elements 27 is in a non-conduction state by the element conduction state detection unit PC. It may have a diagnostic function. In this case, in the initial diagnosis, the monitoring circuit 31 can diagnose that there is an abnormality in the switching element 27 in the conduction state when any of the switching elements 27 is in the conduction state.
  • the monitoring circuit 31 sequentially drives the high-side and low-side switching elements 27 in each phase one by one, and the element conduction state detection means PC turns on the wiring of the secondary side of the switching elements 27. It may have an initial diagnostic function to diagnose that. In this case, in the initial diagnosis, the monitoring circuit 31 can diagnose whether the switching element 27 driven in a test manner is actually in the conductive state. Thereby, the reliability of the inverter 24 can be further improved.
  • the element conduction state detection means PC may be a photocoupler. In this case, cost reduction can be achieved as compared with the application of, for example, a transformer as the element conduction state detection means.
  • the inverter abnormality diagnosis device of the present invention may be provided in the inverter 24 of the in-wheel motor drive device IWM. Further, the inverter abnormality diagnosis device of the present invention may be provided in the inverter 24 of the electric vehicle.
  • the inverter 24 converts DC power of the DC power source 32 into three-phase AC power used to drive the motor 6 by turning on and off the plurality of switching elements 27.
  • a device that diagnoses The arithmetic circuit unit 19 calculates a command value of current to be supplied to the motor 6 in accordance with a given torque command, and a current sensor 29 for detecting phase current of each phase flowing to the motor 6, Comparing means 33 for comparing the phase current detected by the current sensor 29 with the threshold every predetermined time while the absolute value of the command value of the current calculated by the arithmetic circuit unit 19 exceeds the threshold; If the phase current does not continuously exceed the threshold value by a predetermined number of times by the comparison means 33, the determination means 34 determines that the switching element 27 that drives the phase is an open abnormality.
  • the threshold, the predetermined time, the predetermined number of times is a threshold arbitrarily determined by design or the like, a predetermined time, a predetermined number of times, for example, an appropriate threshold according to one or both of a test and a simulation, a predetermined time, It is determined by asking for a prescribed number of times.
  • the comparison means 33 compares the phase current detected by the current sensor 29 with the threshold at regular intervals while the absolute value of the command value of the current exceeds the threshold. As described above, the comparison processing of the phase current is performed while the absolute value of the command value of the current exceeds the threshold value, so the influence of the offset error etc. is mitigated, and it is easy to judge whether it is normal or abnormal. It can be carried out.
  • the determination means 34 determines that the switching element 27 which drives the phase is an open abnormality (or an open failure) when the phase current is continuously lower than the threshold value more than a specified number of times. If the number of times the phase current falls below the threshold is continuously less than the specified number, it is determined that the switching element 27 that drives that phase is normal. This is because even if the switching element is normal, the phase current to be detected may instantaneously fall below the threshold due to an error or the like. As described above, it is possible to prevent an erroneous determination of normal or abnormal. Therefore, abnormality can be diagnosed easily and accurately while the inverter 24 is in operation.
  • the inverter apparatus of this invention is equipped with the abnormality-diagnosis apparatus of the inverter 24 of the said structure of this invention. According to this configuration, the redundancy of the inverter device 13 can be improved.
  • the electric vehicle of the present invention is equipped with the inverter device 13 of the above configuration of the present invention.
  • the electric vehicle since the open abnormality of the switching element 27 can be confirmed during the operation of the electric vehicle, the electric vehicle can be safely stopped at the road edge, the parking space or the like.
  • An in-wheel motor drive device of the present invention includes the inverter device of the present invention. Therefore, when an abnormality occurs in the inverter while driving the motor, the in-wheel motor drive can be treated early.
  • FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle equipped with the inverter abnormality diagnosis device according to this embodiment.
  • This electric vehicle is a four-wheel electric vehicle in which the wheels 2 serving as the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 serving as the left and right front wheels are driven wheels.
  • the front wheel 3 is a steered wheel.
  • the left and right wheels 2, 2 serving as drive wheels are driven by independent traveling motors 6, respectively.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2 and 3 is provided with a brake.
  • the wheels 3 which are steered wheels serving as the left and right front wheels are steerable via a steering mechanism (not shown), and are steered by the steering means 15 such as a steering wheel.
  • the left and right in-wheel motor drive devices IWM respectively have a motor 6, a reduction gear 7 and a wheel bearing 4, and a part or all of these are disposed in the wheel.
  • the rotation of the motor 6 is transmitted to the wheel 2 which is a driving wheel via the reduction gear 7 and the wheel bearing 4.
  • the brake rotor 5 constituting the brake is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2.
  • the motor 6 is a three-phase motor, and is, for example, an embedded magnet synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • the motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
  • a control device 16 for controlling each motor 6 is an electronic control unit (ECU) 14 which is an electric control unit for controlling the whole vehicle, and left and right motors 6 for traveling in accordance with instructions of the ECU 14 , And 6 and an inverter unit IU.
  • the inverter unit IU has inverter devices 13 and 13 that perform control corresponding to the left and right motors 6 and 6, respectively.
  • the ECU 14 is also referred to as a VCU (vehicle control unit) in the case of an electric vehicle.
  • FIG. 3 shows the basic structure of an inverter system for one axis.
  • the inverter device 13 has a power circuit unit 17 provided for each motor 6 and a motor control unit 18 that controls each power circuit unit 17.
  • the motor control unit 18 includes an arithmetic circuit unit 19 corresponding to each motor 6, a current monitoring unit 22, and an operation monitoring unit 23 described later.
  • the motor control unit 18 has a function of outputting each information such as each detection value and control value regarding the in-wheel motor drive device IWM (FIG. 1) that the motor control unit 18 has to the ECU 14 (FIG. 1).
  • the power circuit unit 17 includes an inverter 24 that converts the current of the DC power supply 32 into three-phase AC power used to drive the motor 6, and a gate drive circuit 25 that drives the inverter 24.
  • the inverter 24 has a smoothing capacitor 26 for stabilizing power, and U-phase, V-phase and W-phase switching elements 27.
  • Each phase has switching elements UP, VP, WP connected to the high side of DC power supply 32 and switching elements UN, VN, WN connected to the low side, and between both the high side and low side switching elements Phase current output units Uout, Vout, Wout of U, V, W phases are drawn out.
  • an insulated gate bipolar transistor (abbreviated as IGBT) is applied as each switching element 27.
  • the gate drive circuit 25 drives each switching element 27 based on the input on / off command.
  • a fast recovery diode 28 is attached for protection of the switching element 27 and for return current from the motor 6.
  • another switching element such as a field effect transistor (abbreviation: FET) or a transistor may be used instead of the IGBT.
  • the motor control unit 18 includes a computer having a processor, a ROM (Read Only Memory) having a program executed by the processor, and electronic circuits such as a RAM (Random Access Memory) and a coprocessor (Co-Processor).
  • the arithmetic circuit unit 19 is provided as a control unit that is the basis of the above.
  • the ECU 14 shown in FIG. 1 outputs the acceleration command and the deceleration command and the steering means 15 from the signal of the accelerator opening (acceleration command) output from the accelerator operation unit 20 and the deceleration command output from the brake operation unit 21. From the turning command, “acceleration / deceleration command” given to the motors 6, 6 of the left and right rear wheels 2, 2 is generated as “torque command” and is output to each inverter device 13.
  • the arithmetic circuit unit 19 of FIG. 3 converts the acceleration / deceleration command into a current command value in accordance with the acceleration / deceleration command by the above-mentioned torque command (command value) or the like given from the ECU 14 which is the host control means.
  • the current monitoring means 22 obtains from the current sensors 29, 29, 29 the current (motor drive current) to be supplied to the motor 6 from each phase of the inverter 24, and determines whether the current is appropriate for the current command value. The determination result is given to the arithmetic circuit unit 19.
  • the number of current sensors 29 is normally two, but in this example, three are provided including the spare.
  • Arithmetic circuit unit 19 further increases the current command value if the measured current is smaller than the calculated current command value, and further increases the current command value if the measured current is larger than the calculated current command value.
  • Feedback control of the motor current by reducing The arithmetic circuit unit 19 calculates a command voltage by feedback control, converts the command voltage into a pulse width modulation signal, and gives an on / off command to the gate drive circuit 25.
  • FIG. 3 is a block diagram of a control system of the inverter device 13 with an IGBT monitoring circuit, and the operation confirmation means 30 and the operation monitoring means 23 of the switching element 27 are added to the basic structure (FIG. 8) of the conventional inverter system.
  • the operation check means 30 has two resistances R and R for each phase, and two element conduction state detection means PC using the two resistances R and R for each phase as loads. .
  • the two resistors R and R of each phase have the same resistance value.
  • the abnormality diagnosis device is a device that diagnoses an abnormality of the inverter 24 and is provided in the inverter device 13 in this example.
  • the abnormality of the inverter 24 includes, for example, the switching element 27 does not turn on, remains on, a short circuit of the switching element 27 or a short circuit of the fast recovery diode 28 accompanying the switching element 27.
  • the abnormality diagnosis apparatus comprises operation check means 30 of each phase, and a monitoring circuit 31 connected to each element conduction state detection means PC and monitoring the detection state of the element conduction state detection means PC.
  • the two resistors R and R for each phase in the operation check means 30 are connected in series between both terminals of the DC power supply 32, and the middle point (point a) of the two resistors R and R is the middle of the DC power supply 32. Let it be the potential.
  • Photocouplers are applied to the two element conduction state detection means PC and PC of each phase in the operation confirmation means 30 in this example.
  • the monitoring circuit 31 is a drive command that is an on / off command input from the gate drive circuit 25 to each switching element 27 and a conduction state of the wiring on the secondary side of each switching element 27 output from the element conduction state detection unit PC.
  • operation monitoring means 23 for monitoring whether or not each switching element 27 is driven according to the drive command for example, a magnetic coupler, a transformer, a pulse transformer or the like can be applied as the element conduction state detection means PC.
  • the voltage Vbat of the DC power supply 32 (FIG. 4) is bisected by two resistors Rup and Run having the same resistance value. Therefore, the voltage at point a between the two resistors Rup and Run is half of Vbat.
  • the switching elements UP and UN are off, the U-phase phase power output unit Uout is not connected anywhere and the two element conduction state detection means PCup and PCun do not operate.
  • the phase power output unit Uout of the U phase becomes substantially a voltage Vbat, and from Vbat the high side A current flowing to the ground GND is generated passing through the switching element UP, the U-phase power output unit Uout, the element conduction state detecting means PCup, the point a, and the resistor Run. Therefore, the element conduction state detection means PCup operates, and the operation monitoring means 23 can monitor whether the switching element UP is driven according to the drive command. If the switching element UP does not turn on normally even though there is a drive command to the switching element UP, the element conduction state detecting means PCup does not operate, so that it can be confirmed by the operation monitoring means 23 as an abnormal operation.
  • the phase power output unit Uout of U phase becomes substantially the same as the ground GND.
  • the current flowing to the ground GND is generated through the point a, the element conduction state detection means PCun, the U-phase phase power output unit Uout, and the switching element UN. Therefore, the element conduction state detection means PCun operates, and the operation monitoring means 23 can monitor whether the switching element UN is driven according to the drive command. If the switching element UN does not turn on normally even though there is a drive command to the switching element UN, the element conduction state detecting means PCun does not operate, so that the operation monitoring means 23 can confirm as abnormal operation.
  • the fast recovery diode 28 causes a short abnormality, the voltage Vbat and the ground GND may be shorted. Therefore, it is preferable that the abnormality of the fast recovery diode 28 can also be detected.
  • the fast recovery diode 28 on the switching element UP side when the fast recovery diode 28 on the switching element UP side has a short abnormality, the fast recovery diode 28 on the switching element UP side from the Vbat in a state where none of the switching elements UP and UN are turned on. A current flowing to the ground GND is generated passing through the U-phase power output unit Uout, the element conduction state detection means PCup, the point a, and the resistor Run. Therefore, the element conduction state detection means PCup operates and can be confirmed by the operation monitoring means 23 as an abnormal operation.
  • the element conduction state detecting means PCun operates in a state where none of the switching elements UP and UN are turned on.
  • the operation monitoring means 23 can confirm as an abnormal operation.
  • Table 1 shows all combinations of operation of each switching element and combinations of operating element detection means.
  • the patterns 1 to 13 are used.
  • the element conduction state detection means that operate are PCup and PCun, respectively.
  • the element conduction state detecting means which operate with respect to the V phase switching elements VP and VN are PCvp and PCvn, respectively.
  • the element conduction state detecting means which operate with respect to the W phase switching elements WP and WN are PCwp and PCwn, respectively.
  • the element conduction state detection means PCup or the element conduction state detection means PCvn does not operate, it is usually considered that the corresponding switching element is not operating.
  • the output of the W-phase power output Wout is in the high impedance state because both WP and WN are off on the switching element side, but it is connected to the power output Uout and the power output Vout by the motor 6 It becomes an electric potential.
  • the corresponding element conduction state detection means PCwp, PCwn do not operate because they have substantially the same potential as the point a between the resistors Rwp, Rwn.
  • the operation judgment of the element conduction state detection means PC in the operation monitoring means 23 is performed after a fixed time after changing the command in consideration of the stabilization time of various output voltages and the delay time of the element conduction state detection means PC.
  • the predetermined time is determined by either or both of test and simulation.
  • This monitoring circuit 31 stops driving of all the switching elements 27 and performs initial diagnosis to diagnose that the wiring on the secondary side of all the switching elements 27 is in non-conduction state by the element conduction state detection means PC. It has a function (No. 13 in Table 1). Furthermore, the monitoring circuit 31 sequentially drives the high-side and low-side switching elements 27 in each phase one by one, and the element conduction state detection means PC makes the wiring on the secondary side of each switching element 27 conductive. Have an initial diagnostic function to diagnose (No. 14 to 19 in Table 1).
  • the operation monitoring means 31 can monitor that the state 13 is generated and that none of the element conduction state detection means PC is activated. If any element conduction state detection means PC is activated at this time, it is considered that the corresponding switching element 27 is shorted or the fast recovery diode 28 is shorted, and the operation is abandoned as an abnormality.
  • the states 14 to 19 can be sequentially generated, and monitored by the operation monitoring means 23 whether the corresponding element conduction state detecting means PC operates as shown in Table 1. If the element conduction state detection means PC indicated by the white circle does not operate, it is determined that the corresponding switching element 27 is not turned on. Further, when the element conduction state detection means PC indicated by the black circle does not operate, it is considered that the motor 6 is not wired, disconnected or a connection failure of the motor 6 and the operation is abandoned as an abnormality. These initial diagnoses are collectively performed within, for example, 0.3 seconds.
  • the operation of the inverter 24 is started.
  • the element conduction state detection means PC to be operated is confirmed, and if different from the case assumed in advance, each is judged to be abnormal.
  • the confirmation of the activated element conduction state detection means PC may be performed continuously or periodically.
  • the operation judgment of the element conduction state detection means PC is performed after a fixed time after changing the command in consideration of the stabilization time of various output voltages and the delay time of the element conduction state detection means PC.
  • the operation judgment may be a procedure in which it is judged as abnormal only when there is a problem several times in a row, instead of one judgment in consideration of the influence of noise and the like.
  • an intermediate point (point a) of the two resistors R and R of each phase connected to the DC power supply 32 has an intermediate potential, and furthermore, two element conduction states of each phase are detected Since the means PC and PC load the two resistors R and R respectively, the switching element 27 on the high side of one phase, one element conduction state detecting means PC of the same phase, and the same phase when the inverter 24 operates One of the resistors R is turned on. At the same time, the switching element 27 on the low side of the other phase, one element conduction state detecting means PC of the in phase, and one resistance R of the in phase are brought into conduction.
  • the monitoring circuit 31 constantly or periodically monitors the detection states of the two element conduction state detection means PC, PC, and when any of the element conduction state detection means PC is detected as the non-conduction state, Diagnose as abnormal.
  • the conduction state of the secondary side of each switching element 27 can be confirmed, and the reliability of the inverter 24 can be improved.
  • the element conduction state detection means PC is a photo coupler, cost can be reduced as compared with the application of, for example, a transformer as the element conduction state detection means PC.
  • the second embodiment of the present invention is basically the same as the contents described above with reference to FIGS. 1 to 3 except for the contents described below.
  • the inverter unit IU that controls the left and right motors 6, 6 for traveling is a two-shaft integrated type.
  • the motor control unit 18 has an abnormality reporting unit ANR, which will be described later, in place of the operation monitoring unit 23 described above.
  • the arithmetic circuit unit 19 converts a torque command given from the ECU 14 which is a higher control means into a current command value (a command value of current).
  • the current monitoring means 22 obtains the phase current of each phase flowing from each phase of the inverter 24 to the motor 6 from the current sensors 29, 29, 29 and determines whether the current is appropriate for the current command value. The determination result is given to the arithmetic circuit unit 19.
  • the number of current sensors 29 is normally two, but in this example, three are provided including the spare.
  • the switching element UP on the side and the switching element VN on the low side of the V phase are turned on, and the others are turned off.
  • the voltage Vbat is supplied from the DC power supply 32, whereby the current flows from the U phase of the motor 6 to the V phase through the U phase current output unit Uout through the switching element UP. Further, the current passes through the switching element VN and returns to the ground GND of the DC power supply 32.
  • the switching element UN on the low side of the U phase of the plurality of switching elements 27 is The switching element VP on the high side of the phase is turned on, and the others are turned off.
  • the voltage Vbat is supplied from the DC power supply 32, whereby the current flows from the V phase of the motor 6 to the U phase through the switching element VP and the phase current output section Vout of the V phase. Further, the current passes through the switching element UN and returns to the ground GND of the DC power supply 32.
  • the other four operation patterns are similar. Further, changing the current is realized by changing the pulse width in the PWM operation.
  • the abnormality diagnosis device is a device that diagnoses an abnormality of the inverter 24 and is provided in the inverter device 13 in this example. To diagnose the abnormality of the inverter 24 is to determine whether or not the secondary side (load side) of the switching element 27 is operating properly according to the drive command.
  • This abnormality diagnosis device has comparison means 33 and determination means 34.
  • the comparison means 33 compares the phase current detected by the current sensor 29 with the threshold at regular intervals while the absolute value of the current command value calculated by the arithmetic circuit unit 19 exceeds the threshold. When the phase current does not continuously exceed the threshold value by the comparison means 33, the determination means 34 determines that the switching element 27 for driving the phase is open abnormality.
  • the comparison means 33 and the determination means 34 are provided in the arithmetic circuit unit 19.
  • the abnormality reporting means ANR When the judging means 34 judges that the switching element 27 is an open abnormality, the abnormality reporting means ANR outputs the abnormality occurrence information to the ECU 14. In response to the abnormality occurrence information output from the abnormality reporting means ANR, the ECU 14 performs, for example, control of causing a display device (not shown) at the driver's seat (not shown) to display an indication of the abnormality. Instead of the display device or together with the display device, an output device may be provided which reports an abnormality by an alarm or the like. As a result, the driver can check the abnormality of the inverter 24 and safely stop the electric vehicle at the road edge, the parking space or the like.
  • FIG. 10 is a diagram showing a current waveform at the time of normality determination in the abnormality diagnosis device.
  • U-phase phase current the measured current actually detected by the current sensor 29
  • the threshold value for determination the relationship between the U-phase command current (current command value) of the motor 6, the measured current actually detected by the current sensor 29 (U-phase phase current), and the threshold value for determination.
  • the measurement current does not conform to the command current because it contains errors such as offset or gain errors and noise.
  • this abnormality diagnostic device sets thresholds with equal absolute values on the plus side and minus side. If it is in between, it does not judge whether it is normal or abnormal.
  • the threshold may be one for determination and one for pass / fail determination, and different values may be used. Also, the values may be changed on the plus side and the minus side.
  • the abnormality diagnosis device compares the value of the command current with the value of the measurement current at each sampling time interval of the inverter 24 (every predetermined time).
  • the sampling time interval is usually several tens of microseconds to several hundreds of microseconds.
  • the judgment criterion is that if the absolute value of the command current exceeds the threshold, the sign of the measured current is the same as the sign of the command current, and if the absolute value of the command current exceeds the threshold, it is a pass, otherwise Is a failure. If the rejection continues more than the specified number of times set in advance, it is determined that the switching element 27 driving the phase (in this example, the U phase) is an open abnormality.
  • the sampling order is (1) to (11).
  • the command current is within the threshold, and therefore the judgment of pass or fail is not made.
  • the command current exceeds the threshold and the measurement current is rejected because it is within the threshold.
  • the sampling orders (3), (4), and (5) the command current exceeds the positive threshold, and the measured current also exceeds the positive threshold.
  • the sampling orders (8), (9) and (10) the command current exceeds the negative threshold and the measured current also exceeds the negative threshold.
  • the sampling order is (1) to (11).
  • the command current is within the threshold, and therefore the judgment of pass or fail is not made.
  • the command current exceeds the threshold and the measurement current is rejected because it is within the threshold.
  • the command current exceeds the negative threshold and the measured current also exceeds the negative threshold.
  • the set number of rejections is four or less, four consecutive rejections indicate that the switching element of the target phase is determined to be abnormal.
  • the set number of rejections is more than that, it is determined that the switching element is abnormal after occurrence of rejections of the set number of times consecutively after sample (12) not shown.
  • the failure status to be abnormal in the determination means 34 is separately counted for each sign (+ or ⁇ ) of the command current, and is separately determined.
  • the set number of rejections may be changed according to the number of revolutions of the motor 6.
  • the threshold may be different from the threshold used for comparison with the command current and the threshold used for comparison with the measured current. Also, the threshold may be changed on the plus side and the minus side. Since the sum of the three phase currents is zero, two current sensors may be used to detect the phase current of any two phases in the U phase, the V phase and the W phase. In this case, the number of parts can be reduced, and the cost of the inverter device 13 can be reduced.
  • both positive and negative sides become abnormal in each phase, it is possible that both the high side and low side switching elements 27 and 27 simultaneously have an open abnormality, but the motor 6 is out of phase. Or a defect in the phase, such as a wiring defect, can be considered.
  • a defect in the phase such as a wiring defect, can be considered.
  • FIG. 12 shows a flow of abnormality determination for one phase, and the procedure of the process will be described below.
  • This judgment flow is started simultaneously with the start of driving of the motor (step S1).
  • the abnormality diagnosis device clears the high side counter and the low side counter, which are counters for failure errors (step S2).
  • the abnormality diagnosis device determines whether the command current is greater than or equal to the + side threshold (step S3). If it is determined that the command current is equal to or more than the + side threshold (step S3: Yes), the abnormality diagnosis device determines whether the measured current is equal to or more than the + side threshold (step S4). If it is determined that the measured current is equal to or higher than the positive threshold (step S4: Yes), the high side counter is cleared (step S5).
  • the abnormality diagnosis device increments the high side counter (step S6) by judging that the measured current is not higher than the + side threshold (step S4: No) (step S6) and determines whether the high side counter is equal to or more than the specified number of consecutive settings. It judges (step S7). If it is determined that the value is equal to or more than the set value (step S7: Yes), an error process is performed as an abnormality of the switching element on the high side (step S8).
  • step S3 If it is determined in step S3 that the command current is not greater than or equal to the + side threshold (step S3: No), and if the command current is less than or equal to the-side threshold (step S9: Yes) It is determined whether it is below the threshold (step S10). If it is determined that the measured current is equal to or less than the negative threshold (step S10: Yes), the low side counter is cleared (step S11).
  • the abnormality diagnosis device increments the low side counter (step S12) by judging that the measured current is not lower than the negative threshold (step S10: No) and judges whether the low side counter is equal to or more than the specified number of consecutive set values. (Step S13). If it is determined that the value is equal to or more than the set value (step S13: Yes), an error process is performed as an abnormality of the low side switching element (step S14).
  • steps S4 and S10 are respectively Yes and steps S7, S9 and S13 are respectively No, after a predetermined time, the process returns to step S3 and a series of determination is performed again. These judgments are made in the other two phases as well.
  • the phase current to be detected includes an error such as an offset or gain error or noise, it does not conform to the command value of the current.
  • the comparison means 33 compares the phase current detected by the current sensor 29 and the threshold every predetermined time while the absolute value of the command value of the current exceeds the threshold. Compare to. As described above, the comparison processing of the phase current is performed while the absolute value of the command value of the current exceeds the threshold value, so the influence of the offset error etc. is mitigated, and it is easy to judge whether it is normal or abnormal. It can be carried out.
  • the determination means 34 determines that the switching element 27 for driving the phase is in the open abnormality state when the phase current is continuously lower than the threshold value more than the specified number of times. If the number of times the phase current falls below the threshold is continuously less than the specified number, it is determined that the switching element 27 that drives that phase is normal. This is because even if the switching element is normal, the phase current to be detected may instantaneously fall below the threshold due to an error or the like. As described above, it is possible to prevent an erroneous determination of normal or abnormal. Therefore, abnormality can be diagnosed easily and accurately while the inverter 24 is in operation.
  • the inverter device 13 includes the abnormality diagnosis device for the inverter configured as described above, the redundancy of the inverter device 13 can be improved.
  • This electric vehicle is equipped with the inverter device of the above configuration. In this case, since the open abnormality of the switching element can be confirmed during the operation of the electric vehicle, the electric vehicle can be safely stopped at the road edge, the parking space or the like.
  • a cycloid reducer In the in-wheel motor drive device, a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers are applicable. Moreover, in the in-wheel motor drive device of the said embodiment, although rear-wheel drive was shown, it is good also as front-wheel drive or four-wheel drive.
  • the abnormality diagnosis device may be provided in a two-motor on-board type electric vehicle provided with reduction gears 7 corresponding to 6 and driving the left and right wheels 3 by the motors 6, 6.
  • the left and right wheels driven by the motor 6 may be any of the front and rear wheels 3 and 2.
  • four-wheel drive may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

各スイッチング素子の二次側の導通状態を確認し、インバータの信頼性の向上を図ることができるインバータの異常診断装置を提供する。このインバータの異常診断装置は、直流電源(32)の電流を三相の交流電力に変換するインバータ(24)であり、各相につき直流電流のハイサイドに接続されたスイッチング素子(27)とローサイドに接続されたスイッチング素子(27)とを有し、両スイッチング素子間から相電流出力部(Uout),(Vout),(Wout)が引き出された前記インバータ(24)の異常を診断する。直流電源(32)に接続され、インバータ(24)における直流電源(32)の中間電位とする各相毎の二つの抵抗(R),(R)と、各相の二つの抵抗(R),(R)をそれぞれ負荷とする二つの素子導通状態検出手段(PC),(PC)と、各素子導通状態検出手段(PC)に結線されて素子導通状態検出手段(PC)の検出状態を監視する監視回路(31)とを備えた。

Description

インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車 関連出願
 本出願は、2017年12月26日出願の特願2017-249180、および、2017年12月27日出願の特願2017-250734の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車、並びにインホイールモータ駆動装置に関し、例えば、電気自動車等で使用されるIGBT等の半導体スイッチング素子を使用したインバータの異常診断装置に関する。
 図8は、従来例のインバータシステムの基本構造を示すブロック図である。このインバータシステムにおいて、例えば、モータ6のU相からV相に電流を流したい場合、ゲート駆動回路25からの指令により、PWM動作で、スイッチング素子27のうち、ハイサイド側のスイッチング素子UPとローサイド側のスイッチング素子VNをオンさせ、その他はオフとする。この場合、直流電源32より電圧Vbatが供給され、それにより、電流はスイッチング素子UPを通り、モータ6のU相からV相に流れる。さらに電流はスイッチング素子VNを通過し、直流電源32のGNDに戻る。その他の動作パターンも同様である。また電流の大きさを変える場合は、PWM動作でパルス幅を変更することにより、実現される。
 ここで、スイッチング素子として採用されうるIGBTに異常が発生した場合、主な異常モードは、IGBTがオンしない、またはIGBTがオンしたままになる、の二つである。指令してもオンしないIGBTがある場合は、その相に電流を流すことができないため、モータを駆動することができない。また、IGBTがオンしたままになると、その相の対となるIGBTをオンさせた瞬間に、電源の短絡となり、インバータの異常となる。そこで、IGBTが確実に動作しているか確認できると信頼性の向上に繋がる。またIGBTに付随したファストリカバリダイオード(Fast Recovery Diode,略称:FRD)のショート異常も考えられるため、この検出も行うのが好ましい。
 また、インバータの異常診断を行う技術が種々提案されている。例えば、インバータの各スイッチング素子の一次側(ゲート側)に測定用のパルス信号を与え、電流センサで検出した電流値で各スイッチング素子の異常を判断する(特許文献2)。
特開2016-146578号公報 特開平8-308244号公報
 特許文献1の技術では、IGBTの一次側(ゲート側)の動作しか確認することができず、さらに目視でしか確認できない。IGBTの二次側(負荷側)の動作を、自動的にチェックできることが望まれる。
 また、特許文献2では、測定用のパルス信号を各スイッチング素子に与えて異常判断するため、インバータの動作中は異常を判断することができない。この特許文献2の技術を車両駆動用インバータに適用する場合、車両の走行中にはインバータの異常診断を行うことができない。
 この発明の目的は、各スイッチング素子の二次側の導通状態を確認し、インバータの信頼性の向上を図ることができるインバータの異常診断装置を提供することである。
 また、この発明の他の目的は、動作中に異常を診断することができるインバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車を提供することである。
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の第1の構成に係るインバータの異常診断装置は、三相のうちの各相につき、直流電源32のハイサイドに接続されるスイッチング素子27とローサイドに接続されるスイッチング素子27とを有し、両スイッチング素子間から相電流出力部Uout,Vout,Woutが引き出され、前記直流電源32の電流を三相の交流電力に変換するインバータ24の異常を診断する装置であって、
 前記直流電源32の前記ハイサイドおよびローサイドにそれぞれ接続され、前記直流電源32の中間電位を生成する各相毎の二つの抵抗R,Rと、
 前記各相の前記二つの抵抗R,Rをそれぞれ負荷とする二つの素子導通状態検出手段PC,PCと、
 前記各素子導通状態検出手段PCに結線されて前記素子導通状態検出手段PCの検出状態を監視する監視回路31と、を備えた。
 この構成によると、このインバータ24において、ある一相から他の一相に電流を流すとき、これら二つの相のうち、ハイサイド側に接続された一方の相のスイッチング素子27とローサイド側に接続された他方の相のスイッチング素子27をオンにする。監視回路31は、素子導通状態検出手段PCの検出状態を監視する。
 特に、直流電源32に接続された各相の二つの抵抗R,Rが、直流電源32の中間電位とし、さらに各相の二つの素子導通状態検出手段PC,PCが二つの抵抗R,Rをそれぞれ負荷とするため、このインバータ24の動作時において、一方の相のハイサイド側のスイッチング素子27、同相の一つの素子導通状態検出手段PCおよび同相の一つの抵抗Rが導通された状態となる。これと共に、他方の相のローサイド側のスイッチング素子27、同相の一つの素子導通状態検出手段PCおよび同相の一つの抵抗Rが導通された状態となる。監視回路31は、二つの素子導通状態検出手段PC,PCの検出状態を常時にまたは定期的に監視し、いずれかの素子導通状態検出手段PCが非導通状態と検出されたとき、インバータ24の異常と診断する。このように各スイッチング素子27の二次側の導通状態を確認し、インバータ24の信頼性の向上を図ることができる。
 前記監視回路31は、前記各スイッチング素子27に入力される駆動指令と、前記素子導通状態検出手段PCから出力される前記各スイッチング素子27の二次側の配線の導通状態とから、前記各スイッチング素子27が駆動指令通りに駆動しているか否かを監視する動作監視手段23を有してもよい。この場合、動作監視手段23は、各スイッチング素子27への駆動指令と、各スイッチング素子27の導通状態とを比較する。動作監視手段23は、対応するスイッチング素子27への駆動指令があるにもかかわらず、前記スイッチング素子27が非導通状態となる場合、前記スイッチング素子27の異常ありと診断することができる。
 前記監視回路31は、全てのスイッチング素子27の駆動を停止させ、前記素子導通状態検出手段PCにより前記全てのスイッチング素子27の二次側の配線が非導通状態になっていることを診断する初期診断機能を有してもよい。この場合、監視回路31は、初期診断において、いずれかのスイッチング素子27が導通状態になっている場合、導通状態のスイッチング素子27の異常ありと診断することができる。
 前記監視回路31は、前記各相におけるハイサイドおよびローサイドの前記スイッチング素子27を一個ずつ順次駆動させ、前記素子導通状態検出手段PCにより前記各スイッチング素子27の二次側の配線が導通状態になっていることを診断する初期診断機能を有してもよい。この場合、監視回路31は、初期診断において、試験的に駆動させたスイッチング素子27が実際に導通状態になっているか否かを診断することができる。これによりインバータ24の信頼性の向上をさらに図ることができる。
 前記素子導通状態検出手段PCがフォトカプラであってもよい。この場合、素子導通状態検出手段として例えばトランス等を適用するよりもコスト低減を図れる。
 この発明のインバータの異常診断装置は、インホイールモータ駆動装置IWMのインバータ24に設けてもよい。また、この発明のインバータの異常診断装置は、電気自動車のインバータ24に設けてもよい。
 この発明の第2の構成に係るインバータの異常診断装置は、直流電源32の直流電力を複数のスイッチング素子27のオンオフにより、モータ6の駆動に用いる三相の交流電力に変換するインバータ24の異常を診断する装置であって、
 与えられるトルク指令に従って、前記モータ6に流す電流の指令値を演算する演算回路部19と、前記モータ6に流れる各相の相電流をそれぞれ検出する電流センサ29とを備え、
 前記演算回路部19で演算される前記電流の指令値の絶対値が閾値を超えている間、前記電流センサ29で検出された相電流と閾値とを一定時間毎に比較する比較手段33と、
 この比較手段33により規定回数以上連続して相電流が前記閾値を超えない場合、その相を駆動するスイッチング素子27がオープン異常であると判定する判定手段34と、を有する。
 前記閾値、前記一定時間、前記規定回数は、それぞれ設計等によって任意に定める閾値、一定時間、規定回数であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な閾値、一定時間、規定回数を求めて定められる。
 検出される相電流は、オフセットまたはゲイン誤差、ノイズ等の誤差を含むため、電流の指令値通りにはならない。特に、電流の指令値が小さい場合は、オフセット誤差等の影響が大きく、正常か異常かの判断が困難である。そこで、この構成によると、比較手段33は、電流の指令値の絶対値が閾値を超えている間、電流センサ29で検出された相電流と閾値とを一定時間毎に比較する。このように、電流の指令値の絶対値が閾値を超えている間に、相電流の比較処理を行っているため、オフセット誤差等の影響を緩和して、正常か異常かの判断を容易に行うことができる。
 判定手段34は、規定回数以上連続して相電流が閾値よりも下回ったとき、その相を駆動するスイッチング素子27がオープン異常(または、オープン故障)であると判定する。相電流が閾値よりも下回る回数が連続して規定回数未満であれば、その相を駆動するスイッチング素子27は正常と判定される。スイッチング素子が正常な場合であっても、検出される相電流が瞬間的に誤差等により閾値よりも下回る可能性があるためである。このように正常、異常の誤判定を未然に防止することが可能となる。したがって、インバータ24を動作中に容易に且つ精度よく異常診断することができる。
 この発明のインバータ装置は、この発明の上記構成のインバータ24の異常診断装置を備える。この構成によれば、インバータ装置13の冗長性を向上することができる。
 この発明の電気自動車は、この発明の上記構成のインバータ装置13を搭載している。この場合、電気自動車の運転中、スイッチング素子27のオープン異常を確認することができるため、電気自動車を道路端または駐車スペース等に安全に停止させることができる。
 この発明のインホイールモータ駆動装置は、この発明のインバータ装置を備える。このため、モータ駆動中にインバータに異常が発生した場合に、インホイールモータ駆動装置の早期の処置が行える。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係るインバータの異常診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車におけるインホイールモータ駆動装置の断面図である。 IGBT監視回路付きのインバータ装置の制御系のブロック図である。 同インバータの異常診断装置を詳細に示すブロック図である。 同異常診断装置の使用状態を説明するブロック図である。 同異常診断装置の別の使用状態を説明するブロック図である。 この発明の他のインバータの異常診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 従来例のインバータシステムの基本構造を示すブロック図である。 この発明の第2の実施形態に係るインバータの主要部を示すブロック図である。 同インバータの異常診断装置における正常判定時の電流波形を示す図である。 同異常診断装置における異常判定時の電流波形を示す図である。 同異常診断装置における異常判断フローを示すフローチャートである。
 この発明の第1の実施形態を図1ないし図6と共に説明する。この実施形態に係るインバータの異常診断装置は電気自動車に搭載される。
 <この電気自動車の概念構成について>
 図1は、この実施形態に係るインバータの異常診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の電気自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、ブレーキが設けられている。また左右の前輪となる操舵輪である車輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
 <インホイールモータ駆動装置IWMの概略構成について>
 図2に示すように、左右のインホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪である車輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は、車輪2と一体に回転する。
 モータ6は、三相のモータであり、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定したステータ6bと、回転出力軸9に取り付けたロータ6aとの間にラジアルギャップを設けたモータである。
 <制御系について>
 図1に示すように、各モータ6を制御する制御装置16は、自動車全般の制御を行う電気制御ユニットであるECU(電子制御ユニット)14と、このECU14の指令に従って走行用の左右のモータ6,6の制御を行うインバータユニットIUとを有する。インバータユニットIUは、左右のモータ6,6にそれぞれ対応して制御を行うインバータ装置13,13を有する。ECU14は、電気自動車の場合、VCU(車両制御ユニット)とも称される。
 図3は、一軸分のインバータシステムの基本構造である。図1では、この基本構造を二組使用する。図3に示すように、インバータ装置13は、各モータ6に対してそれぞれ設けられたパワー回路部17と、各パワー回路部17を制御するモータコントロール部18とを有する。モータコントロール部18は、各モータ6に対応する演算回路部19と、電流監視手段22と、後述する動作監視手段23とを有する。モータコントロール部18は、このモータコントロール部18が持つインホイールモータ駆動装置IWM(図1)に関する各検出値および制御値等の各情報をECU14(図1)に出力する機能を有する。
 パワー回路部17は、直流電源32の電流をモータ6の駆動に用いる三相の交流電力に変換するインバータ24と、このインバータ24を駆動するゲート駆動回路25とを有する。インバータ24は、電力を安定化する平滑コンデンサ26と、U相,V相,W相のスイッチング素子27とを有する。各相につき直流電源32のハイサイド側に接続されたスイッチング素子UP,VP,WPと、ローサイドに接続されたスイッチング素子UN,VN,WNとを有し、ハイサイドおよびローサイドの両スイッチング素子間からU,V,W各相の相電流出力部Uout,Vout,Woutが引き出されている。
 各スイッチング素子27として、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、略称:IGBT)が適用される。ゲート駆動回路25は、入力されたオンオフ指令を基に各スイッチング素子27を駆動する。各スイッチング素子27において、ファストリカバリダイオード28は、スイッチング素子27の保護、モータ6からの還流のために取り付けられる。なお各スイッチング素子27として、前記IGBTの代わりに電界効果トランジスタ(Field effect transistor、略称:FET)またはトランジスタ等、別のスイッチング素子を使用してもよい。
 モータコントロール部18は、プロセッサを有するコンピュータと、前記プロセッサで実行されるプログラムを有するROM(Read Only Memory)、およびRAM(Random Access Memory)やコプロセッサ(Co-Processor)等の電子回路により構成され、その基本となる制御部として演算回路部19を有する。図1に示すECU14は、アクセル操作部20の出力するアクセル開度の信号(加速指令)と、ブレーキ操作部21の出力する減速指令とから、あるいは加速指令と減速指令と操舵手段15の出力する旋回指令とから、左右の後輪2,2のモータ6,6に与える「加速・減速指令」を「トルク指令」として生成し、各インバータ装置13へ出力する。
 図3の演算回路部19は、上位制御手段であるECU14から与えられる上記トルク指令(指令値)等による加速・減速指令に従い、加速・減速指令を電流指令値に変換する。電流監視手段22は、インバータ24の各相からモータ6に流す電流(モータ駆動電流)を電流センサ29,29,29から得て、電流が電流指令値に対し適正になっているかを判断する。この判断結果は演算回路部19に与えられる。なお電流センサ29は、通常二個であるが、この例では予備を含めて三個設けられている。
 演算回路部19は、計算された電流指令値より計測された電流が小さければ、さらに電流指令値を大きくし、また、計算された電流指令値より計測された電流が大きければ、さらに電流指令値を小さくすることによってモータ電流をフィードバック制御する。演算回路部19は、フィードバック制御により指令電圧を算出し、この指令電圧をパルス幅変調信号に変換して、ゲート駆動回路25にオンオフ指令を与える。
 図3は、IGBT監視回路付きのインバータ装置13の制御系のブロック図であり、従来例のインバータシステムの基本構造(図8)に、スイッチング素子27の動作確認手段30および動作監視手段23を追加して、各スイッチング素子27の駆動指令に対する実際の動作を確認することができる構成である。図4に示すように、動作確認手段30は、各相毎の二つの抵抗R,Rと、各相の二つの抵抗R,Rをそれぞれ負荷とする二つの素子導通状態検出手段PCとを有する。前記各相の二つの抵抗R,Rは、同じ抵抗値である。
 <本実施形態の異常診断装置について>
 この異常診断装置は、インバータ24の異常を診断する装置であって、この例ではインバータ装置13に設けられている。インバータ24の異常は、例えば、スイッチング素子27がオンしない、オンしたままになる、スイッチング素子27のショート、またはスイッチング素子27に付随するファストリカバリダイオード28のショート等が挙げられる。異常診断装置は、各相の動作確認手段30と、各素子導通状態検出手段PCに結線されて素子導通状態検出手段PCの検出状態を監視する監視回路31とを備える。
 前記動作確認手段30における各相毎の二つの抵抗R,Rは、直流電源32の両端子間に直列に接続され、二つの抵抗R,Rの中点(a点)を直流電源32の中間電位とする。動作確認手段30における、各相の二つの素子導通状態検出手段PC,PCは、この例では、フォトカプラが適用される。監視回路31は、ゲート駆動回路25から各スイッチング素子27に入力されるオンオフの指令である駆動指令と、素子導通状態検出手段PCから出力される各スイッチング素子27の二次側の配線の導通状態とから、各スイッチング素子27が駆動指令通りに駆動しているか否かを監視する動作監視手段23を有する。なお素子導通状態検出手段PCとして、例えば、磁気カプラ、トランス、パルストランス等を適用することも可能である。
 U相を例とする図5および図6において、直流電源32(図4)の電圧Vbatは、同じ抵抗値の二つの抵抗Rup,Runによって電圧を二等分される。したがって、二つの抵抗Rup,Run間のa点での電圧はVbatの半分である。スイッチング素子UP,UNがオフの場合は、U相の相電力出力部Uoutは、どこにも接続されず二つの素子導通状態検出手段PCup,PCunは動作しない。
 図5に示すように、ゲート駆動回路25の駆動指令により、ハイサイド側のスイッチング素子UPのみがオンすると、U相の相電力出力部Uoutは、略電圧Vbatとなり、Vbatから、ハイサイド側のスイッチング素子UP、U相の相電力出力部Uout、素子導通状態検出手段PCup、a点、抵抗Runを通過してグランドGNDに流れる電流が発生する。そのため、素子導通状態検出手段PCupが作動し、動作監視手段23によって、スイッチング素子UPが駆動指令通りに駆動しているかを監視し得る。スイッチング素子UPへの駆動指令があるにもかかわらず、スイッチング素子UPが正常にオンしない場合は、素子導通状態検出手段PCupが作動しないため、動作監視手段23により異常動作として確認し得る。
 図6に示すように、ゲート駆動回路25の駆動指令により、ローサイド側のスイッチング素子UNのみがオンすると、U相の相電力出力部Uoutは、略グランドGNDと同じになり、Vbatから、抵抗Rup、a点、素子導通状態検出手段PCun、U相の相電力出力部Uout、スイッチング素子UNを通過してグランドGNDに流れる電流が発生する。そのため、素子導通状態検出手段PCunが作動し、動作監視手段23によって、スイッチング素子UNが駆動指令通りに駆動しているかを監視し得る。スイッチング素子UNへの駆動指令があるにもかかわらず、スイッチング素子UNが正常にオンしない場合は、素子導通状態検出手段PCunが作動しないため、動作監視手段23により異常動作として確認し得る。
 図5において、ファストリカバリダイオード28がショート異常を起こすと、電圧VbatとグランドGNDがショートする事態になることもあるため、ファストリカバリダイオード28の異常も検出できた方がよい。
 図5において、例えば、スイッチング素子UP側のファストリカバリダイオード28がショート異常を起こしている場合、どのスイッチング素子UP,UNもオンしていない状態で、Vbatからスイッチング素子UP側のファストリカバリダイオード28、U相の相電力出力部Uout、素子導通状態検出手段PCup、a点、抵抗Runを通過してグランドGNDに流れる電流が発生する。そのため、素子導通状態検出手段PCupが作動し、動作監視手段23によって、異常動作として確認し得る。
 同様に、スイッチング素子UN側のファストリカバリダイオード28がショート異常を起こしている場合、図6に示すように、どのスイッチング素子UP,UNもオンしていない状態で、素子導通状態検出手段PCunが作動し、動作監視手段23によって、異常動作として確認し得る。
 <動作組み合わせについて>
 各スイッチング素子の全ての動作組み合わせと、作動する素子導通状態検出手段の組み合わせは、表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 図4に示すインバータ24のスイッチング素子27は、通常、表1におけるNo.1~13までのパターンが使用される。図4のU相のスイッチング素子UP,UNに対し、作動する素子導通状態検出手段は、それぞれPCup,PCunである。V相のスイッチング素子VP,VNに対し、作動する素子導通状態検出手段は、それぞれPCvp,PCvnである。W相のスイッチング素子WP,WNに対し、作動する素子導通状態検出手段は、それぞれPCwp,PCwnである。
 <表1のNo.1の動作について>
 例えば、表1のNo.1の動作では、スイッチング素子UP,VNを導通させる。これにより、U相の相電力出力部Uoutは略電圧Vbatとなり、V相の相電力出力部Voutは略グランドGNDの電位になり、電流はモータのU相からV相に流れる。このとき、素子導通状態検出手段PCupおよび素子導通状態検出手段PCvnが作動し、動作監視手段23によって、スイッチング素子UP,VNが駆動指令通りに駆動しているかを監視し得る。
 素子導通状態検出手段PCupまたは素子導通状態検出手段PCvnが作動しなければ、通常は、対応するスイッチング素子が作動していないと考えられる。W相の相電力出力部Woutの出力は、スイッチング素子側はWP,WN共にオフのため、ハイインピーダンス状態となるが、モータ6により相電力出力部Uoutおよび相電力出力部Voutに接続され、中間電位となる。W相の相電力出力部Woutの出力が中間電位の場合、抵抗Rwp,Rwn間のa点と略同電位のため、対応する素子導通状態検出手段PCwp,PCwnはいずれも作動しない。
 動作監視手段23における素子導通状態検出手段PCの動作判断は、各種出力電圧の安定時間と、素子導通状態検出手段PCの遅れ時間を考慮し、指令を変化させた後、一定時間たってから行う。前記一定時間は、試験およびシミュレーションのいずれか一方または両方により定められる。
 この監視回路31は、全てのスイッチング素子27の駆動を停止させ、素子導通状態検出手段PCにより前記全てのスイッチング素子27の二次側の配線が非導通状態になっていることを診断する初期診断機能を有する(表1のNo.13)。さらにこの監視回路31は、各相におけるハイサイドおよびローサイドのスイッチング素子27を一個ずつ順次駆動させ、素子導通状態検出手段PCにより各スイッチング素子27の二次側の配線が導通状態になっていることを診断する初期診断機能を有する(表1のNo.14~19)。
 <動作監視手段31の一般的な使用方法について>
 1.初期診断で、No.13の状態を発生させ、いずれの素子導通状態検出手段PCも作動しないことを動作監視手段31によって監視し得る。この時点でいずれかの素子導通状態検出手段PCが作動すれば、対応するスイッチング素子27のショートまたはファストリカバリダイオード28のショートと考えられ、異常として運転を断念する。
 2.初期診断で、No.14~19の状態を順次発生させ、対応する素子導通状態検出手段PCが表1のように作動するか動作監視手段23によって監視し得る。白丸印の素子導通状態検出手段PCが動作しない場合は、対応するスイッチング素子27がオンしない異常と判断される。また、黒丸印の素子導通状態検出手段PCが動作しない場合は、モータ6の未配線、断線または配線の接続不良と考えられ、異常として運転を断念する。これらの初期診断は、併せて例えば0.3秒以内に実行される。
 3.初期診断で問題がなければ、インバータ24の動作を開始し、No.1~13までのパターンの組み合わせに従って、作動する素子導通状態検出手段PCを確認し、予め想定された場合と違う場合は、それぞれ異常と判断する。この作動する素子導通状態検出手段PCの確認は、連続して行ってもよいし、定期的に行ってもよい。但し、素子導通状態検出手段PCの動作判断は、各種出力電圧の安定時間と、素子導通状態検出手段PCの遅れ時間を考慮し、指令を変化させた後、一定時間たってから行う。前記動作判断は、ノイズ等の影響を考慮し、一回の判定ではなく、連続して数回問題があった場合のみ、異常と判断するような手順でもよい。
 <作用効果について>
 以上説明したインバータの異常診断装置によれば、直流電源32に接続された各相の二つの抵抗R,Rの中間点(a点)が中間電位となり、さらに各相の二つの素子導通状態検出手段PC,PCが二つの抵抗R,Rをそれぞれ負荷とするため、このインバータ24の動作時において、一の相のハイサイド側のスイッチング素子27、同相の一つの素子導通状態検出手段PCおよび同相の一つの抵抗Rが導通された状態となる。これと共に、他の相のローサイド側のスイッチング素子27、同相の一つの素子導通状態検出手段PCおよび同相の一つの抵抗Rが導通された状態となる。
 監視回路31は、二つの素子導通状態検出手段PC,PCの検出状態を常時にまたは定期的に監視し、いずれかの素子導通状態検出手段PCが非導通状態と検出されたとき、インバータ24の異常と診断する。このように各スイッチング素子27の二次側の導通状態を確認し、インバータ24の信頼性の向上を図ることができる。また素子導通状態検出手段PCがフォトカプラであるため、素子導通状態検出手段PCとして例えばトランス等を適用するよりもコスト低減を図れる。
 次に、この発明の第2の実施形態を説明する。この発明の第2の実施形態は、以下で述べる内容を除いて、図1ないし図3と共に先に説明した内容と、基本的に同じである。
 <制御系について>
 走行用の左右のモータ6,6の制御を行うインバータユニットIUは、二軸一体型である。
 モータコントロール部18は、先に説明した動作監視手段23に代えて、後述する異常報告手段ANRを有する。
 演算回路部19は、上位制御手段であるECU14から与えられるトルク指令を電流指令値(電流の指令値)に変換する。電流監視手段22は、インバータ24の各相からモータ6に流す各相の相電流を電流センサ29,29,29から得て、電流が電流指令値に対し適正になっているかを判断する。この判断結果は演算回路部19に与えられる。なお電流センサ29は、通常二個であるが、この例では予備を含めて三個設けられている。
 図9に示すように、例えば、モータ6のU相からV相に電流を流したい場合、ゲート駆動回路25からの指令により、PWM動作で、複数のスイッチング素子27のうち、U相のハイサイド側のスイッチング素子UPと、V相のローサイド側のスイッチング素子VNをオンさせ、その他はオフとする。直流電源32より電圧Vbatが供給され、それにより、電流はスイッチング素子UPを通り、U相の相電流出力部Uoutを経てモータ6のU相からV相に流れる。さらに電流はスイッチング素子VNを通過し、直流電源32のグランドGNDに戻る。
 例えば、モータ6のV相からU相に電流を流したい場合、ゲート駆動回路25からの指令により、PWM動作で、複数のスイッチング素子27のうち、U相のローサイド側のスイッチング素子UNと、V相のハイサイド側のスイッチング素子VPをオンさせ、その他はオフとする。直流電源32より電圧Vbatが供給され、それにより、電流はスイッチング素子VPを通り、V相の相電流出力部Voutを経てモータ6のV相からU相に流れる。さらに電流はスイッチング素子UNを通過し、直流電源32のグランドGNDに戻る。その他の四つの動作パターンも同様である。また電流を変える場合は、PWM動作でパルス幅を変更することにより実現される。
 <本実施形態の異常診断装置について>
 この異常診断装置は、インバータ24の異常を診断する装置であって、この例ではインバータ装置13に設けられている。インバータ24の異常を診断するとは、駆動指令に従ってスイッチング素子27の二次側(負荷側)が適正に動作しているか否かを判断することである。この異常診断装置は、比較手段33と、判定手段34とを有する。
 比較手段33は、演算回路部19で演算される電流指令値の絶対値が閾値を超えている間、電流センサ29で検出された相電流と閾値とを一定時間毎に比較する。判定手段34は、比較手段33により規定回数以上連続して相電流が前記閾値を超えない場合、その相を駆動するスイッチング素子27がオープン異常であると判定する。本実施形態では、これら比較手段33および判定手段34は、演算回路部19に設けられている。
 異常報告手段ANRは、判定手段34によりスイッチング素子27がオープン異常であると判定したとき、その異常発生情報をECU14に出力する。ECU14は、異常報告手段ANRから出力された異常発生情報を受けて、例えば、運転席の表示装置等(図示せず)に異常を知らせる表示を行わせる制御を行う。前記表示装置に代えてまたは前記表示装置と共に警報等により異常を報知する出力装置を備えてもよい。これにより、運転者は、インバータ24の異常を確認して電気自動車を道路端または駐車スペース等に安全に停止させることができる。
 <正常判定時の電流波形>
 図10は、異常診断装置における正常判定時の電流波形を示す図である。以下、図9と共に説明する。図10は、例えば、モータ6のU相の指令電流(電流指令値)と実際に電流センサ29で検出された測定電流(U相の相電流)、および判定用の閾値の関係を示す。測定電流は、オフセットまたはゲイン誤差、ノイズ等の誤差を含むため、指令電流通りにはならない。特に電流指令値が小さい場合は、オフセット誤差等の影響が大きく、正常か異常かの判断が困難なため、この異常診断装置はプラス側とマイナス側に絶対値の等しい閾値を設け、指令電流がその間にある場合は、正常か異常かの判断を行わない。なお、閾値は、判定用と合否判断用のもので違う値を使用してもよい。また、プラス側とマイナス側で値を変更してもよい。
 具体的には、異常診断装置は、インバータ24のサンプリング時間間隔毎(前記一定時間毎)に、指令電流の値と測定電流の値を比較する。前記サンプリング時間間隔は、通常、数十μsから数百μsである。判断基準は、指令電流の絶対値が閾値を超えた場合において、測定電流の符号が指令電流の符号と同じで、且つ、指令電流の絶対値が閾値を超えた場合は合格で、その他の場合は不合格である。不合格が予め設定された規定回数以上連続した場合は、その相(この例ではU相)を駆動するスイッチング素子27のオープン異常と判断される。
 図10において、スイッチング素子が正常と判断される場合の例を説明する。サンプリングの順番は(1)~(11)である。サンプリングの順番(1)、(6)、(7)、(11)では、指令電流が閾値内のため合格、不合格の判断はしない。サンプリングの順番(2)では、指令電流が閾値を超え、測定電流が閾値内のため不合格である。サンプリングの順番(3)、(4)、(5)では、指令電流が+側閾値を超え、測定電流も+側閾値を超えているため合格である。また、サンプリングの順番(8)、(9)、(10)では、指令電流が-側閾値を超え、測定電流も-側閾値を超えているため合格である。全体としては、不合格が規定回数以上連続していないので、対象とする相のスイッチング素子は正常である。
 <異常判定時の電流波形>
 図11において、スイッチング素子が異常と判断される場合の例を説明する。サンプリングの順番は(1)~(11)である。サンプリングの順番(1)、(6)、(7)、(11)では、指令電流が閾値内のため合格、不合格の判断はしない。サンプリングの順番(2)、(3)、(4)、(5)では、指令電流が閾値を超え、測定電流が閾値内のため不合格である。
 またサンプリングの順番(8)、(9)、(10)では、指令電流が-側閾値を超え、測定電流も-側閾値を超えているため合格である。全体としては、不合格の設定回数が4回以下の場合、不合格が4回連続したため対象とする相のスイッチング素子が異常と判断される。但し、不合格の設定回数がそれ以上の場合は、図示外の(12)サンプル以降で連続して設定回数の不合格が発生した後、スイッチング素子が異常と判断される。
 判定手段34において異常とする不合格の状態は、指令電流の符号(+または-)毎に別々にカウントし、別々に判断する。不合格の設定回数は、モータ6の回転数により変更してもよい。閾値は、指令電流との比較に用いる閾値と、測定電流との比較に用いる閾値とで違う値を使用してもよい。また閾値は、プラス側とマイナス側で値を変えてもよい。三相電流の合計は零となるため、U相,V相,W相におけるいずれか二つの相の相電流を検出する二個の電流センサでもよい。この場合、部品点数の低減を図り、インバータ装置13のコスト低減を図れる。
 各相において、+側、-側の双方が異常となった場合は、ハイサイド側およびローサイド側両方のスイッチング素子27,27が同時にオープン異常となった場合も考えられるが、モータ6が欠相または配線不良等、その相の不良が考えられる。モータ6の回転が高速で回生動作中は、スイッチング素子27が異常となっても、ファストリカバリダイオード28による還流で正常と誤検出される場合もあるため、モータ6が高速で回生動作中はスイッチング素子27の異常判定は行わない等の処置が必要となる場合がある。
 <異常判断フロー>
 図12に一相分の異常判断フローを示し、以下に処理の手順を説明する。
 モータを駆動開始すると同時にこの判断フローを開始する(ステップS1)。次に、異常診断装置は、不合格エラー用のカウンタである、ハイサイドカウンタ、ローサイドカウンタをそれぞれクリアする(ステップS2)。次に、異常診断装置は、指令電流が+側閾値以上か否かを判断する(ステップS3)。指令電流が+側閾値以上であるとの判断で(ステップS3:Yes)、異常診断装置は、測定電流が+側閾値以上か否かを判断する(ステップS4)。測定電流が+側閾値以上であるとの判断で(ステップS4:Yes)、ハイサイドカウンタをクリアする(ステップS5)。
 異常診断装置は、測定電流が+側閾値以上でないとの判断で(ステップS4:No)、ハイサイドカウンタをインクリメントし(ステップS6)、そのハイサイドカウンタが規定回数以上連続した設定値以上かを判断する(ステップS7)。設定値以上であるとの判断で(ステップS7:Yes)、ハイサイド側のスイッチング素子の異常としてエラー処理を行う(ステップS8)。
 ステップS3において、指令電流が+側閾値以上でないとの判断で(ステップS3:No)、指令電流が-側閾値以下であれば(ステップS9:Yes)、異常診断装置は、測定電流が-側閾値以下か否かを判断する(ステップS10)。測定電流が-側閾値以下であるとの判断で(ステップS10:Yes)、ローサイドカウンタをクリアする(ステップS11)。
 異常診断装置は、測定電流が-側閾値以下でないとの判断で(ステップS10:No)、ローサイドカウンタをインクリメントし(ステップS12)、そのローサイドカウンタが規定回数以上連続した設定値以上かを判断する(ステップS13)。設定値以上であるとの判断で(ステップS13:Yes)、ローサイド側のスイッチング素子の異常としてエラー処理を行う(ステップS14)。
 ステップS4,S10がそれぞれYesの場合、およびステップS7,S9,S13がそれぞれNoの場合は、それぞれ一定時間後にステップS3に戻り、再度一連の判定を行う。これらの判断を、他の二相も同様に行う。
 <作用効果について>
 検出される相電流は、オフセットまたはゲイン誤差、ノイズ等の誤差を含むため、電流の指令値通りにはならない。特に、電流の指令値が小さい場合は、オフセット誤差等の影響が大きく、正常か異常かの判断が困難である。そこで、以上説明したインバータの異常診断装置によれば、比較手段33は、電流の指令値の絶対値が閾値を超えている間、電流センサ29で検出された相電流と閾値とを一定時間毎に比較する。このように、電流の指令値の絶対値が閾値を超えている間に、相電流の比較処理を行っているため、オフセット誤差等の影響を緩和して、正常か異常かの判断を容易に行うことができる。
 判定手段34は、規定回数以上連続して相電流が閾値よりも下回ったとき、その相を駆動するスイッチング素子27がオープン異常であると判定する。相電流が閾値よりも下回る回数が連続して規定回数未満であれば、その相を駆動するスイッチング素子27は正常と判定される。スイッチング素子が正常な場合であっても、検出される相電流が瞬間的に誤差等により閾値よりも下回る可能性があるためである。このように正常、異常の誤判定を未然に防止することが可能となる。したがって、インバータ24を動作中に容易に且つ精度よく異常診断することができる。
 インバータ装置13は、上記構成のインバータの異常診断装置を備えるため、インバータ装置13の冗長性を向上することができる。
 この電気自動車は、上記構成のインバータ装置を搭載している。この場合、電気自動車の運転中、スイッチング素子のオープン異常を確認することができるため、電気自動車を道路端または駐車スペース等に安全に停止させることができる。
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能である。また、前記の実施形態のインホイールモータ駆動装置においては、後輪駆動を示したが、前輪駆動でも4輪駆動としてもよい。
 前記の実施形態においては、インホイールモータ駆動装置を備えた電気自動車に異常診断装置を適用した例を説明したが、図7に示すように、車体1に二台のモータ6,6および各モータ6に対応する減速機7,7を設け、これらモータ6,6により左右の車輪3,3を駆動する二モータオンボードタイプの電気自動車に、異常診断装置を備えてもよい。図7において、モータ6で駆動する左右の車輪は前後輪3,2のいずれであってもよい。また、4輪駆動としてもよい。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
6…モータ
13…インバータ装置
19…演算回路部
23…動作監視手段
24…インバータ
27…スイッチング素子
29…電流センサ
31…監視回路
32…直流電源
33…比較手段
34…判定手段
Uout,Vout,Wout…相電流出力部
R…抵抗
PC…素子導通状態検出手段

Claims (11)

  1.  三相のうちの各相につき、直流電源のハイサイドに接続されるスイッチング素子とローサイドに接続されるスイッチング素子とを有し、両スイッチング素子間から相電流出力部が引き出され、前記直流電源の電流を三相の交流電力に変換するインバータの異常を診断する装置であって、
     前記直流電源の前記ハイサイドおよびローサイドにそれぞれ接続され、前記直流電源の中間電位を生成する各相毎の二つの抵抗と、
     前記各相の前記二つの抵抗をそれぞれ負荷とする二つの素子導通状態検出手段と、
     前記各素子導通状態検出手段に結線されて前記素子導通状態検出手段の検出状態を監視する監視回路と、を備えたインバータの異常診断装置。
  2.  請求項1に記載のインバータの異常診断装置において、前記監視回路は、前記各スイッチング素子に入力される駆動指令と、前記素子導通状態検出手段から出力される前記各スイッチング素子の二次側の配線の導通状態とから、前記各スイッチング素子が駆動指令通りに駆動しているか否かを監視する動作監視手段を有するインバータの異常診断装置。
  3.  請求項1または請求項2に記載のインバータの異常診断装置において、前記監視回路は、全てのスイッチング素子の駆動を停止させ、前記素子導通状態検出手段により前記全てのスイッチング素子の二次側の配線が非導通状態になっていることを診断する初期診断機能を有するインバータの異常診断装置。
  4.  請求項1ないし請求項3のいずれか1項に記載のインバータの異常診断装置において、前記監視回路は、前記各相におけるハイサイドおよびローサイドの前記スイッチング素子を一個ずつ順次駆動させ、前記素子導通状態検出手段により前記各スイッチング素子の二次側の配線が導通状態になっていることを診断する初期診断機能を有するインバータの異常診断装置。
  5.  請求項1ないし請求項4のいずれか1項に記載のインバータの異常診断装置において、前記素子導通状態検出手段がフォトカプラであるインバータの異常診断装置。
  6. 請求項1ないし、請求項5のいずれか1項に記載のインバータの異常診断装置において、
    インホイールモータの前記インバータに設けられるインバータの異常診断装置。
  7. 請求項1ないし、請求項5のいずれか1項に記載のインバータの異常診断装置において、
    電気自動車の前記インバータに設けられるインバータの異常診断装置。
  8.  直流電源の直流電力を複数のスイッチング素子のオンオフにより、モータの駆動に用いる三相の交流電力に変換するインバータの異常を診断する装置であって、
     与えられるトルク指令に従って、前記モータに流す電流の指令値を演算する演算回路部と、前記モータに流れる各相の相電流をそれぞれ検出する電流センサとを備え、
     前記演算回路部で演算される前記電流の指令値の絶対値が閾値を超えている間、前記電流センサで検出された相電流と閾値とを一定時間毎に比較する比較手段と、
     この比較手段により規定回数以上連続して相電流が前記閾値を超えない場合、その相を駆動するスイッチング素子がオープン異常であると判定する判定手段と、を有するインバータの異常診断装置。
  9.  請求項8に記載のインバータの異常診断装置を備えたインバータ装置。
  10.  請求項9に記載のインバータ装置を搭載した電気自動車。
  11.  請求項9に記載のインバータ装置を備えたインホイールモータ駆動装置。
PCT/JP2018/047520 2017-12-26 2018-12-25 インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車 WO2019131609A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-249180 2017-12-26
JP2017249180A JP2019115238A (ja) 2017-12-26 2017-12-26 インバータの異常診断装置
JP2017250734A JP7100976B2 (ja) 2017-12-27 2017-12-27 インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車
JP2017-250734 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131609A1 true WO2019131609A1 (ja) 2019-07-04

Family

ID=67067423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047520 WO2019131609A1 (ja) 2017-12-26 2018-12-25 インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車

Country Status (1)

Country Link
WO (1) WO2019131609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907859A (zh) * 2019-11-28 2020-03-24 广西电网有限责任公司南宁供电局 一种ups系统中电压源型逆变器开路故障诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123469A (ja) * 1982-12-28 1984-07-17 Fuji Electric Co Ltd インバ−タにおける故障ア−ム検知回路
JP2006158182A (ja) * 2004-10-26 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動システム
JP2010166671A (ja) * 2009-01-14 2010-07-29 Toyota Motor Corp 車両の故障検出装置
JP2015089294A (ja) * 2013-10-31 2015-05-07 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
JP2015142462A (ja) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 インバータ制御装置およびそれを用いた冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123469A (ja) * 1982-12-28 1984-07-17 Fuji Electric Co Ltd インバ−タにおける故障ア−ム検知回路
JP2006158182A (ja) * 2004-10-26 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動システム
JP2010166671A (ja) * 2009-01-14 2010-07-29 Toyota Motor Corp 車両の故障検出装置
JP2015089294A (ja) * 2013-10-31 2015-05-07 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
JP2015142462A (ja) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 インバータ制御装置およびそれを用いた冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907859A (zh) * 2019-11-28 2020-03-24 广西电网有限责任公司南宁供电局 一种ups系统中电压源型逆变器开路故障诊断方法

Similar Documents

Publication Publication Date Title
JP6683152B2 (ja) 異常診断装置
US9020704B2 (en) Electronic control apparatus
EP2684731B1 (en) Diagnostic method for motor
CN112351933B (zh) 具有冗余配置的控制单元的机动车辆转向系统
US8660755B2 (en) Electric power steering system
JP6979767B2 (ja) モータ駆動装置および電動パワーステアリング装置
US8847536B2 (en) Electric power steering apparatus
JP6220696B2 (ja) 電動モータの駆動制御装置
US10003294B2 (en) Control apparatus of rotary electric machine and electric power steering apparatus using the same
DE102011051233A1 (de) Motoransteuervorrichtung und -verfahren und elektrisches Lenkhilfesystem, welches dieselben verwendet
CN106031020A (zh) 电动机的驱动控制装置及驱动控制方法
US11183963B2 (en) Abnormality detection device
JP2019110720A (ja) 異常検出装置
US20210044245A1 (en) Motor control device and failure detection method for motor control device
EP1650863A1 (en) Electric power steering apparatus and electricity supply system
WO2019131609A1 (ja) インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車
CN220291899U (zh) 电机控制器、车辆制动系统及电动汽车
WO2019065545A1 (ja) モータ駆動制御装置、モータ駆動装置およびこのモータ駆動装置を備えた電気自動車
JP7100976B2 (ja) インバータの異常診断装置、インバータ装置およびこのインバータ装置を搭載した電気自動車
JP2000125586A (ja) 故障診断方法および装置
WO2018056381A1 (ja) 2軸型インバータ装置
JP2019115238A (ja) インバータの異常診断装置
JP5724913B2 (ja) 電力変換装置
US6486626B1 (en) Apparatus and a method for controlling an electric vehicle
JP2021184677A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897709

Country of ref document: EP

Kind code of ref document: A1