WO2019131307A1 - Scanning device and light detection device - Google Patents

Scanning device and light detection device Download PDF

Info

Publication number
WO2019131307A1
WO2019131307A1 PCT/JP2018/046472 JP2018046472W WO2019131307A1 WO 2019131307 A1 WO2019131307 A1 WO 2019131307A1 JP 2018046472 W JP2018046472 W JP 2018046472W WO 2019131307 A1 WO2019131307 A1 WO 2019131307A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
scanning
reflected
distance measuring
Prior art date
Application number
PCT/JP2018/046472
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 落合
佐藤 充
琢磨 柳澤
小笠原 昌和
琢也 白戸
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019561536A priority Critical patent/JPWO2019131307A1/en
Publication of WO2019131307A1 publication Critical patent/WO2019131307A1/en
Priority to JP2022108229A priority patent/JP2022125206A/en
Priority to JP2023216515A priority patent/JP2024019680A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a scanning device that performs light scanning and a light detection device that performs light detection.
  • the distance to the object can be measured by irradiating the object with light and detecting the light reflected by the object.
  • Such an optical distance measuring device can obtain two-dimensional distance information in the area scanned by the scanning device, for example, in combination with the scanning device.
  • the scanning distance measuring apparatus includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror as a scanning device, a light source for emitting light toward the mirror, and a light receiving unit for receiving light reflected from an object.
  • a MEMS (Micro Electro Mechanical Systems) mirror as a scanning device
  • a light source for emitting light toward the mirror
  • a light receiving unit for receiving light reflected from an object.
  • Patent Document 1 discloses a distance measuring device including a light projecting unit, a light detector, and a light quantity distribution conversion element.
  • the scanning device emits, for example, pulsed laser light toward the scanning region, receives and detects reflected light (light pulse) from the object, and acquires optical information in the scanning region. Also, for example, the distance measuring device measures the distance to the object based on the detection result of the reflected light.
  • the distance measuring device can accurately perform distance measurement even when the object is at a position far from the distance measuring device or when the light reflection characteristic of the object is small.
  • the scanning device can accurately detect even weak reflected light, for example.
  • the scanning device can detect the reflected light in a high dynamic range.
  • even weak reflected light it is preferable that even weak reflected light can be detected accurately. Therefore, it is preferable that the reflected light is uniformly irradiated to the light receiving element used for light detection, and the irradiation unevenness does not occur.
  • the present invention has been made in view of the above-described point, and it is an object of the present invention to provide a scanning device capable of accurately detecting reflected light from an object and performing accurate light scanning in a scanning region. I have one. Another object of the present invention is to provide a light detection device capable of accurately detecting reflected light from an object.
  • the invention according to claim 1 comprises a light source unit for emitting emitted light, a scanning unit for scanning a predetermined area with the emitted light, a light receiving unit for receiving the reflected light of the emitted light reflected by the object, and a light receiving unit. And a light separating unit configured to separate the reflected light received by the light receiving unit and to expand the reflected light on the light receiving unit in a predetermined extension direction.
  • a light source portion for emitting outgoing light, and a spectral portion for separating the reflected light of the outgoing light reflected by the object and outputting the light as spectral light expanded in a predetermined extending direction.
  • a light receiving unit in which a plurality of light receiving elements for detecting light are arranged along the extension direction of the spectral light.
  • FIG. 2 is a layout view of a distance measuring apparatus according to a first embodiment.
  • FIG. 2 is a layout view of a distance measuring apparatus according to a first embodiment.
  • FIG. 2 is a plan view of a light detector of the distance measuring apparatus according to the first embodiment.
  • FIG. 6 is a layout view of a light separating unit and a light separating unit of the distance measuring apparatus according to the first embodiment.
  • FIG. 6 is a top view of a scanning unit in the distance measuring apparatus according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a scanning unit in the distance measuring apparatus according to the first embodiment.
  • FIG. 5 is a view showing a scanning aspect of the distance measuring apparatus according to the first embodiment.
  • FIG. 1 is a layout view of a distance measuring apparatus according to a first embodiment.
  • FIG. 2 is a layout view of a distance measuring apparatus according to a first embodiment.
  • FIG. 2 is a plan view of a light detector of the distance measuring apparatus according to the
  • FIG. 6 is a layout view of a distance measuring apparatus according to a second embodiment.
  • FIG. 6 is a layout view of a distance measuring apparatus according to a second embodiment.
  • FIG. 6 is a plan view of a light detector of the distance measuring apparatus according to a second embodiment.
  • FIG. 1 is a schematic layout view of the distance measuring apparatus 10 according to the first embodiment.
  • the distance measuring apparatus 10 is a scanning type distance measuring apparatus which performs optical scanning of a predetermined area (hereinafter, referred to as a scanning area) R0 and measures the distance to an object OB present in the scanning area R0.
  • the distance measuring apparatus 10 will be described with reference to FIG.
  • the scanning region R0 and the object OB are schematically shown in FIG.
  • the distance measuring apparatus 10 includes the light source unit 11 that generates and emits pulsed light (hereinafter, referred to as outgoing light) L1.
  • the light source unit 11 generates pulsed laser light having a peak wavelength in the infrared region as the emitted light L1.
  • the distance measuring apparatus 10 has a scanning unit 12 that scans the scanning region R0 using the emitted light L1.
  • the scanning unit 12 has a movable light reflecting surface 12A that reflects the emitted light L1 toward the scanning region R0.
  • the scanning unit 12 has a movable mirror provided with the light reflecting surface 12A.
  • the scanning unit 12 changes the direction of the light reflection surface 12A to change the direction in which the outgoing light L1 is reflected continuously and periodically.
  • the scanning unit 12 emits the emitted light L1 reflected by the light reflecting surface 12A as a scanning light L2.
  • the scanning region R0 has a width and a height corresponding to the movable range of the light reflecting surface 12A, and a depth corresponding to a distance capable of receiving reflected light of a predetermined intensity when the scanning light L2 reaches and is reflected. It is a virtual three-dimensional space. In FIG. 1, the outer edge of the scanning area R0 is schematically shown by a broken line.
  • the scanning light L2 when the object OB is present on the optical path of the scanning light L2 in the scanning region R0, the scanning light L2 is irradiated to the object OB.
  • the scanning light L2 when the object OB is an object having reflectivity for the scanning light L2, the scanning light L2 is reflected (radiated) by the object OB.
  • the distance measuring apparatus 10 includes a light separating unit 13 that disperses light (hereinafter, referred to as reflected light) L3 reflected by the object OB by irradiating the object OB with the scanning light L2.
  • the light separating unit 13 comprises a diffraction grating.
  • the spectroscope unit 13 receives the reflected light L3 and generates light L4 (hereinafter referred to as spectral light) obtained by dispersing the reflected light L3 for each wavelength component.
  • the distance measuring apparatus 10 includes a light receiving unit 14 that receives and detects the spectral light L4 split by the splitting unit 13.
  • the light receiving unit 14 receives and detects, for example, light in the wavelength band of the spectral light L4 split by the splitting unit 13.
  • the light receiving unit 14 performs photoelectric conversion on the spectral light L4 to generate an electrical signal (hereinafter, referred to as a light receiving signal) SR according to the spectral light L4.
  • a beam splitter BS is provided on the optical path of the emitted light L1 between the light source unit 11 and the light reflecting surface 12A of the scanning unit 12.
  • the scanning light L2 is reflected by the object OB to become a reflected light L3, and returns toward the light reflecting surface 12A.
  • the reflected light L3 is reflected by the light reflecting surface 12A, separated by the beam splitter BS, separated by the separating unit 13, and then received by the light receiving unit 14.
  • the emitted light L1 emitted by the light source unit 11 passes through the beam splitter BS and travels toward the scanning unit 12.
  • the distance measuring apparatus 10 has a distance measuring unit 15 that measures the distance to the object OB based on the light reception signal SR.
  • the distance measuring unit 15 detects the pulse of the spectral light L4 from the light reception signal SR, and the object OB (and part of the surface thereof) by the time of flight method based on the time difference from the emission of the outgoing light L1. Measure the distance to the area).
  • the distance measuring unit 14 generates data (hereinafter referred to as distance measuring information) indicating the measured distance information.
  • the distance measuring unit 15 defines a predetermined area in the scanning area R0 as an effective scanning area (or a distance measuring area), and corresponds to the scanning light L2 emitted toward the effective scanning area.
  • the distance to the object OB is measured based on the light reception signal SR of the spectral light L4.
  • a virtual scan surface which is separated by a predetermined distance from the scan unit 12 in the scan region R0 is referred to as a scan surface R1.
  • the effective scan area is an area (i.e., space) excluding the outer edge portion of the scan area R0.
  • the effective scanning area is illustrated as an effective scanning surface R2 which is an area inside the outer edge portion of the scanning surface R1. The distance measurement operation of the distance measurement unit 15 is performed using the scanning light L2 emitted to the effective scanning surface R2.
  • the distance measuring unit 15 forms an image of the scanning region R0 based on the distance measuring information.
  • the distance measuring unit 15 generates one distance measuring image for each period in which the scanning unit 12 scans the scanning region R0 (hereinafter, referred to as a scanning period).
  • the scan cycle is again from the time of an arbitrary scan state (for example, the direction of the light reflection surface 12A that emits the scan light L2) It refers to the period until it returns to the state.
  • the distance measuring unit 15 associates the distance measuring information with the information indicating the direction of the light reflecting surface 12A, and generates a distance measuring image to be imaged as a two-dimensional or three-dimensional map. In the present embodiment, the distance measuring unit 15 generates a distance measuring image for each scanning cycle.
  • the distance measuring unit 15 may have a display unit (not shown) that displays a plurality of distance measuring images as a moving image in time series.
  • the distance measuring apparatus 10 further includes a control unit 16 that controls the operation of the light source unit 11, the scanning unit 12, the light receiving unit 14, and the distance measuring unit 15.
  • the control unit 16 supplies the drive signal DL to the light source unit 11, and drives and controls the light source unit 11.
  • the drive signal DL is also supplied to the distance measuring unit 15.
  • the control unit 16 also supplies drive signals DX and DY to the scanning unit 12 to drive the scanning unit 12 and control the same.
  • FIG. 2 is a view schematically showing a configuration example of the distance measuring apparatus 10.
  • the light source unit 11 uses the light source 11A for generating the primary light L11, the shaping optical system 11B for shaping the primary light L11 to generate the shaped light L12, and the shaped light L12 as the emitted light L1. It consists of the projection optical system 11C which projects light.
  • the light source 11A includes a laser device that generates pulsed laser light as the primary light L11.
  • the light source 11A generates and emits primary light L11 having a dot-like (point-like) spot shape.
  • the spot shape of light is, for example, a cross-sectional shape of the light in a direction perpendicular to the optical axis of the light.
  • the shaping optical system 11B includes, for example, a collimator lens and a cylindrical lens.
  • the shaping optical system 11B generates an intermediate image of the scanning light L2, that is, the light emitted toward the scanning region R0.
  • the light projecting optical system 11C is formed of, for example, a light projecting lens.
  • the light source unit 11 may be a point light source for emitting the emission light L1 having a dot shape from the light projection optical system 11C, or a line light source for emitting the emission light L1 having a linear spot shape. It may be
  • the light source unit 11 emits outgoing light L1 of a predetermined wavelength band.
  • the emitted light L1 includes light of six wavelength bands ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 having a predetermined width
  • the light source 11A of the light source unit 11 emits, as primary light L11, a laser beam within a wavelength range covering the wavelength bands ⁇ 1 to ⁇ 6.
  • the outgoing light L1 passes through the beam splitter BS, is reflected by the reflection optical system ML, and then is reflected by the light reflecting surface 12A of the scanning unit 12 and becomes the scanning region R0 as the scanning light L2. It is emitted to. Further, the reflected light L3 from the object OB is incident on the light reflecting surface 12A of the scanning unit 12 together with the background light (ambient light), and is reflected toward the reflecting optical system ML.
  • the light incident on the light reflection surface 12A of the scanning unit 12 may include not only the reflected light L3 which is the reflected light of the scanning light L2 from the object OB but also background light.
  • the reflected light L3 of the light incident on the light reflecting surface 12A will be described.
  • a part of the reflected light L 3 reflected by the reflection optical system ML is split (reflected) by the beam splitter BS and enters the light splitting unit 13.
  • the light splitting unit 13 splits the reflected light L3 into light of six wavelength bands (hereinafter referred to as spectral light) L41 to L46.
  • the light splitting unit 13 guides (reflects in the present embodiment) the light according to the wavelength.
  • the split beams L41 to L46 are emitted in different directions.
  • the spectral light L41 is light in the wavelength band ⁇ 1
  • the spectral lights L42 to L46 are light in the wavelength bands ⁇ 2 to ⁇ 6, respectively.
  • all of the spectral lights L41 to L46 will be referred to as a spectral light group L4.
  • the spectral light group L4 is distinguished into a plurality of spectral lights L41 to L46
  • the spectral lights L41 to L46 may be split seamlessly (steplessly) so as to have gradation. That is, the spectral lights L41 to L46 may be lights separated from one another or may be continuous lights whose boundaries are set for convenience.
  • the light receiving unit 14 includes a light receiving optical system 14A that receives the spectral light group L4, and a photodetector 14B that detects the spectral light group L4.
  • the light receiving optical system 14A includes, for example, a light receiving lens.
  • the photodetector 14B receives the spectral light group L4, performs photoelectric conversion on the spectral light group L4 (each of the spectral light L41 to L46), and generates a light reception signal SR.
  • the light reception signal SR is supplied to the distance measuring unit 15.
  • FIG. 3 is a plan view schematically showing the detection surface of the light detector 14B of the light receiving unit 14.
  • the photodetector 14B is a photon counter including a plurality of photoelectric conversion elements E11 to E46 arranged in a matrix.
  • the photodetector 14B constitutes the detection surface of the photodetector 14B as a whole of the photoelectric conversion elements E11 to E46.
  • the photodetector 14B includes 24 photoelectric conversion elements E11 to E24 arranged in 4 rows and 6 columns. Further, in the present embodiment, each of the photoelectric conversion elements E11 to E24 is an avalanche photodiode (APD). Therefore, in the present embodiment, the photodetector 14B is a multi-pixel photon counter (MPPC) that performs light detection in Geiger mode.
  • MPPC multi-pixel photon counter
  • the photodetectors 14B are arranged such that different spectral lights are incident to each row.
  • the split light L41 of the wavelength band ⁇ 1 is incident on each of the photoelectric conversion elements E11, E21, E31, and E41 in the first column (photoelectric conversion elements arranged in the row direction).
  • the spectral light L41 in the wavelength band ⁇ 2 is incident on each of the photoelectric conversion elements E12, E22, E32, and E42 in the second column. That is, the split light L4n of the wavelength band ⁇ n is configured to be incident on each of the photoelectric conversion elements E1n to E4n in the n-th column (n is 1 to 6).
  • the splitting unit 13 splits the reflected light L3 received by the light receiving unit 14 to expand (spread) the reflected light L3 on the light receiving unit 14 in a predetermined direction (stretching direction).
  • the light detector 14B is provided over the emission range from the light splitting unit 13 of the spectral light group L4 expanded by the light splitting unit 13.
  • the spectral lights L41 to L44 can be incident on all the photoelectric conversion elements E11 to E46.
  • the shape of the reflected light L3 is adjusted by the light separating unit 13 so as to maximize the detection function of the light detector 14B.
  • the light receiving unit 14 has a length in the arrangement direction between the photoelectric conversion elements E11 and E41 of the light detector 14B (array width WA), that is, a spectral direction of the reflected light L3 in the light receiving unit 14 (elongation).
  • the shape and the size are configured such that the length corresponding to the direction) is equal to or less than the length in the spectral direction (extension direction) of the reflected light L3 on the light receiving unit 14. Therefore, the whole of the dispersed reflected light L3 (spectral light group L4) can be reliably received by the light receiving unit 14.
  • the light detector 14B includes a photon counter as in the present embodiment, detection (photon counting) of the spectral light group L4 can be performed with all photodiodes. Therefore, even when only weak reflected light L3 (light to be detected) can be obtained from the object OB, accurate and high dynamic range detection is possible. Therefore, for example, the pulse position of the reflected light L3 can be accurately determined, and accurate scanning and distance measurement can be performed.
  • the distance measuring device 10 can be mounted, for example, on a vehicle, and can be used as a device that recognizes the surrounding situation of the vehicle. In this case, it is preferable that the range in which the distance measuring apparatus 10 can measure distance (in particular, the distance) is large. In addition to the case of being mounted on a vehicle, for example, in consideration of accurate recognition of an object OB moving in the distance, it is preferable that the receivable distance of the reflected light L3 be large and that detection be possible with a high dynamic range.
  • the distance measuring device 10 can be said to be suitable for use in such an environment, for example.
  • the reflected light L3 is made incident on all of the photoelectric conversion elements E11 to E46, for example, it is conceivable to provide a condensing lens instead of the light splitting unit 13 (diffraction grating).
  • a condensing lens instead of the light splitting unit 13 (diffraction grating).
  • unevenness occurs in the intensity of the reflected light L3 within the expanded area. Therefore, when entering the light detector 14B, the optical characteristics of the reflected light L3 may be broken. Therefore, for example, the reflected light L3 may not be incident on all the photoelectric conversion elements E11 to E46, and accurate light detection by the light detector 14B may not be performed.
  • the shape of the reflected light L3 can be adjusted with certainty and easily with less change in intensity, so that accurate light detection is performed by the light detector 14B. It becomes possible.
  • the light splitting unit 13 is formed of a reflective diffraction grating that reflects the reflected light L3 toward the light receiving unit 14.
  • the degree of freedom in the layout design of the device is increased as compared to the case of performing transmission-type spectroscopy.
  • FIG. 4 is a view showing a part of a light path in the distance measuring apparatus 10 when used under an actual use environment.
  • the light incident on the light splitting unit 13 is not only the reflected light L3 corresponding to the emitted light L1 from the light source unit 11, but also sunlight or light from other light emitting devices (hereinafter referred to as background light (Referred to as L0).
  • FIG. 4 is a view showing a preferable configuration of the light detector 14B which can accurately detect the reflected light L3 (spectral light group L4) also in this case.
  • the background light L0 includes light in wavelength bands (for example, wavelength bands ⁇ 0 and ⁇ 7) other than the wavelength bands ⁇ 1 to ⁇ 6 of the reflected light L3. Further, if the light is incident on the light separating unit 13, the light separating unit 13 emits light in the direction according to the wavelength. That is, the light emitted from the light separating unit 13 includes light (background light L0) in other wavelength bands ⁇ 0 and ⁇ 7 in addition to the light in the wavelength band ⁇ 1 to ⁇ 6 (spectral light group L4).
  • wavelength bands for example, wavelength bands ⁇ 0 and ⁇ 7
  • the light detector 14B is not provided in the direction in which the light separating unit 13 emits light other than the wavelength bands ⁇ 1 to ⁇ 6 of the emitted light L1. . That is, the light detector 14B is provided only over the direction range in which the light separating unit 13 emits light in the wavelength bands ⁇ 1 to ⁇ 6.
  • the photodetector 14B can receive and detect only the spectral light group L4, and can suppress, for example, noise generation or erroneous detection due to detection of the background light L0. Therefore, the reflected light L3 can be accurately received.
  • the background light L0 may be light of wavelength bands ⁇ 0 to ⁇ 7. However, of the background light L0, the background light L0 in the wavelength band ⁇ 1 to ⁇ 6 is incident on the light splitting unit 13 at any timing other than the designed light reception timing (for example, always for sunlight), and compared with the reflected light L3. The intensity (light reception level) is also low. Therefore, even if the background light L0 having the same wavelength as the spectral light group L4 is included, the spectral light group L4 corresponding to the reflected light L3 can be accurately detected by performing signal processing.
  • the emission direction of light for each wavelength of the spectroscopic unit 13 and the incident width of the spectral light group L4 to the light detector 14B by this can be determined from the spectral characteristic of the spectroscopic unit 13 and the position of the light detector 14B. it can.
  • the change range of the emission direction of the light of the light separating unit 13 can be obtained from the wavelength of the emitted light L1 and the spectral characteristics of the light separating unit 13.
  • light is emitted at an emission angle (in the present embodiment, a reflection angle on the diffractive surface) according to the grating constant d of the diffraction grating as the light splitting unit 13. Therefore, for example, the detection of the photodetector 14B at a position corresponding to the emission direction of the wavelength band ⁇ 1 to ⁇ 6 from the light separating unit 13 (that is, the position where the light of the wavelength band ⁇ 1 to ⁇ 6 emitted from the light separating unit 13 is irradiated) It suffices to arrange the faces.
  • the light emitted by the light separating unit 13 is condensed at a position corresponding to the focal length F1 of the light receiving optical system 14A. Therefore, for example, by disposing the light splitting unit 13 and the light detector 14B of an appropriate shape and size at a position corresponding to the focal length F of the lens of the light receiving optical system 14A, only the split light group L4 corresponding to the outgoing light L1 is It can be detected.
  • the light separating unit 13 in consideration of, for example, incidence of only light in the wavelength bands ⁇ 1 to ⁇ 6 to the photodetector 14B, it is conceivable to provide a wavelength selection filter such as a band pass filter.
  • a wavelength selection filter such as a band pass filter.
  • the light separating unit 13 by arranging the light separating unit 13 and the light detector 14B as described above, the light separating unit 13 also functions as a wavelength selection filter. Therefore, the provision of the spectroscope 13 miniaturizes and simplifies the apparatus.
  • the light separating unit 13 may be configured to completely separate the reflected light L3 for each wavelength (for example, to separate each of the spectral lights L41 to L46), for example, as a prism.
  • the light detector 14B may be provided at a position corresponding to the direction in which at least the light separating unit 13 emits light in the wavelength bands ⁇ 1 to ⁇ 6. That is, for example, the photodetector 14B may be separated into a plurality of detection segments, and each of the detection segments may be provided at a position to receive light in the wavelength bands ⁇ 1 to ⁇ 6.
  • the light source unit 11 preferably includes a temperature control unit (not shown) that adjusts the temperature of the light source 11A.
  • the oscillation wavelength of, for example, a laser light source as the light source 11A changes in accordance with a change in temperature. Therefore, the light source unit 11 has a function of adjusting the temperature of the light source 11A, whereby it is possible to stably emit the outgoing light L1 of the desired wavelength band ⁇ 1 to ⁇ 6.
  • the light detector 14B is described as being provided only over the direction range in which the light separating unit 13 emits light in the wavelength bands ⁇ 1 to ⁇ 6, but the size of the light detector 14B is Even if a part of the spectral light group L4, for example, the spectral light L42 to L45 in the wavelength band ⁇ 2 to ⁇ 5 is received, by slightly reducing the height or adjusting the installation position (for example, approaching the light separating unit 13). good. Even in this case, the light in the wavelength bands ⁇ 0 and ⁇ 7 that is the background light L0 does not enter the light detector 14B.
  • the light receiving unit 14 is disposed, for example, in the background light L0 irradiated to the light receiving unit 14 together with the reflected light L3 so that light other than the wavelength bands ⁇ 1 to ⁇ 6 of the reflected light L3 does not enter. Noise generation or false detection due to detection of L0 can be suppressed.
  • FIG. 5A is a schematic top view of the scanning unit 12.
  • FIG. 5B is a cross-sectional view of the scanning unit 12.
  • FIG. 5B is a cross-sectional view taken along the line VV of FIG. 5A.
  • a configuration example of the scanning unit 12 will be described using FIGS. 5A and 5B.
  • the scanning unit 12 is a micro electro mechanical systems (MEMS) mirror including a light reflecting film (movable mirror) 24 having a light reflecting surface 12A, and the light reflecting film 24 swings. Further, in the present embodiment, the scanning unit 12 is configured to oscillate the light reflecting film 24 electromagnetically.
  • MEMS micro electro mechanical systems
  • the scanning unit 12 includes a fixed unit (base unit) 21, a movable unit (rocking unit) 22, a driving force generation unit 23, and a light reflecting film 24. Further, in the present embodiment, the scanning unit 12 is configured such that the light reflecting film 24 swings around two swinging axes (first and second swinging axes) AX and AY orthogonal to each other. ing.
  • the fixed portion 21 includes a fixed substrate B1 and an annular fixed frame B2 formed on the fixed substrate B1.
  • the movable portion 22 includes a pair of torsion bars (first torsion bars) TX, one end of each of which is fixed to the inside of the fixed frame B2.
  • Each of the pair of torsion bars TX is made of a rod-like elastic member having at least circumferential elasticity, and is aligned along the swing axis AX.
  • the movable portion 22 has an annular swinging frame (movable frame) SX whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TX.
  • the movable portion 22 has a pair of torsion bars (one end connected to the side surface of the inner peripheral portion of the movable frame SX) and aligned in a direction (direction along the swing axis AY) orthogonal to the pair of torsion bars TX.
  • a second torsion bar TY and an oscillating plate (movable plate) SY whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TY.
  • Each of the pair of torsion bars TY is formed of a rod-like elastic member having at least circumferential elasticity.
  • the swing frame SX swings about the swing axis AX (as a swing center), and the swing plate SY swings around the swing axes AX and AY.
  • a light reflection film 24 is formed on the rocking plate SY. Accordingly, the light reflecting surface 24A of the light reflecting film 24 swings about the swing axes AX and AY orthogonal to each other together with the swing plate SY.
  • the driving force generation unit 23 shakes the permanent magnet MG disposed on the fixed substrate B1, the metal wire (first coil) CX wired along the outer periphery of the swing frame SX on the swing frame SX, and And a metal wire (second coil) CY wired along the outer periphery of the swing plate SY on the moving plate SY.
  • the permanent magnet MG is composed of a plurality of magnet pieces provided in the outer region of the fixed frame B2 on the fixed substrate B1.
  • four magnet pieces are disposed along the swing axes AX and AY, respectively, and at positions outside the pair of torsion bars TX and TY.
  • two magnet pieces facing each other in the direction along the swing axis AX are arranged such that parts showing opposite polarities face each other.
  • the two magnet pieces facing each other in the direction along the swing axis AY are arranged such that portions exhibiting opposite polarities face each other.
  • a pair of torsion bars TX is generated by the interaction with the magnetic field generated by the two magnet pieces of the permanent magnet MG aligned in the direction along the swing axis AY. Twisting in the circumferential direction, the swing frame SX swings around the swing axis AX. Similarly, the pair of torsion bars TY is twisted by the electric field by the current flowing through the metal wire CY and the magnetic field by the two magnetic pieces of the permanent magnet MG aligned in the direction along the swing frame AX, and the swing plate SY swings. Swing around the dynamic axis AY.
  • the metal wires CX and CY are connected to the control unit 16.
  • Control unit 16 supplies drive signals DX and DY to metal interconnections CX and CY.
  • the driving force generation unit 23 generates an electromagnetic force that causes the movable portion 22 and the light reflecting film 24 to swing by application of the driving signals DX and DY.
  • the light reflecting film 24 has a disk shape.
  • the light reflection film 24 has a central axis AC orthogonal to the swing axes AX and AY.
  • the movable portion 22 and the light reflecting film 24 are formed so as to be rotationally symmetric by 90 degrees with respect to the central axis AC of the light reflecting film 24.
  • the fixed substrate B1 of the fixed portion 21 has a recess.
  • the fixed frame B2 is fixed to the fixed substrate B1 so as to suspend the movable portion 22 in the recess of the fixed substrate B1.
  • the fixed frame B2 and the movable portion 22 are parts of the semiconductor substrate formed by processing, for example, a semiconductor substrate.
  • the light reflection film 24 is swingably suspended (supported) in the recess of the fixed substrate B1 together with the swing plate SY.
  • the permanent magnet MG is formed outside the recess on the fixed substrate B1.
  • the torsion bars TX and TY are twisted, so that both ends of the movable portion 22 sandwiching the torsion bars TX and TY in the inside of the fixed frame B2 move in the direction and toward the recess of the fixed substrate B1. Swing in the direction.
  • the light reflecting film 24 swings with respect to the fixed frame B2 with one point on the central axis AC as a swing center.
  • the scanning unit 12 scans the scanning region R0 using the scanning light L2. That is, in the present embodiment, the scanning unit 12 periodically scans the scanning region R0 at a predetermined cycle by continuously changing the emission direction of the outgoing light L1.
  • FIG. 6 is a diagram schematically showing the relationship between the drive signals DX and DY generated by the control unit 16 and the change in the swing state of the light reflecting film 24 based on this and the scanning trajectory of the scanning light L2. .
  • the scanning aspect of scanning area R0 by the scanning part 12 is demonstrated using FIG.
  • variable ⁇ 1 is set such that the drive signal DX is a sine wave of a frequency corresponding to the resonance frequency of the torsion bar TX of the scanning unit 12, the swing frame SX, the torsion bar TY and the swing plate SY. Ru.
  • the variable theta 2 is set to be a sine wave of a frequency corresponding to the resonance frequency of the torsion bar TY and the swinging plate SY scanning unit 12.
  • the light reflection film 24 (the swinging plate SY) resonates around the swing axis AX and resonates around the swing axis AY. Therefore, as shown in FIG. 6, when the scanning surface R1 of the scanning region R0 is viewed, the scanning light L2 which is the outgoing light L1 reflected by the light reflecting film 24 has a locus TR (L2) that draws a Lissajous curve.
  • the scanning unit 12 has the light reflecting surface 12A that reflects the emitted light L1 and swings about the first and second swing axes AX and AY orthogonal to each other. , And has a scanning aspect in which the scanning region R0 is scanned so as to draw a locus TR according to the Lissajous curve.
  • the configuration of the scanning unit 12 described above is merely an example.
  • the scanning unit 12 is not limited to the case of scanning the scanning region R0 in the trajectory according to the Lissajous curve.
  • the scanning unit 12 may have a trajectory for performing raster scan, or the scanning trajectory may be different for each scanning cycle.
  • the scanning unit 12 may be configured to scan the scanning region R0 with the outgoing light L1 (scanning light L2).
  • the light receiving unit 14 includes the photodetector 14B having the plurality of photoelectric conversion elements E11 to E46 arranged in a matrix.
  • the configuration of the light receiving unit 14 is not limited to this.
  • a plurality of light receiving elements for detecting light are arranged along the spectral direction (extension direction) of the reflected light L3 by the spectral unit 13. It should just be.
  • the light receiving unit 14 may not have a plurality of light receiving elements, and may be configured to receive part or all of the spectral light group L4.
  • the distance measuring apparatus 10 includes the light source unit 11 that emits the emitted light L1 in the predetermined wavelength band ⁇ 1 to ⁇ 6, the scanning unit 12 that scans the predetermined region R0 with the emitted light L1, and the emitted light L1.
  • the light receiving unit 14 receives the reflected light L3 reflected by the object OB present in the predetermined region R0, and the reflected light L3 received by the light receiving unit 14 is separated, and the reflected light L3 on the light receiving unit 14 is predetermined It has a light separating unit 13 which extends in the extending direction, and a distance measuring unit 15 which measures the distance to the object OB based on the light received by the light receiving unit 14. Therefore, it is possible to provide the distance measuring apparatus 10 capable of accurately detecting the reflected light L3 from the object OB and performing accurate distance measurement in the scanning region R0.
  • the light reception signal SR generated by the light reception unit 14 can be used for applications other than distance measurement. That is, the distance measuring apparatus 10 is not limited to the case where the distance measuring unit 15 is provided.
  • the light source unit 11, the scanning unit 12, the spectral unit 13, and the light receiving unit 14 constitute a scanning device. Also in this case, it is possible to provide a scanning device capable of accurately detecting the reflected light L3 from the object OB and performing accurate light scanning in the scanning region R0.
  • the distance measuring apparatus 10 is not limited to the case where the scanning unit 12 is provided.
  • the emitted light L1 from the light source unit 11 is emitted toward the object OB, and the reflected light is separated and detected to accurately receive the reflected light from the object OB, and the object OB is accurately detected. It is possible to provide a light detection device capable of detecting
  • the light source unit 11 for emitting the emitted light L1 and the reflected light L3 which the emitted light L1 is reflected by the object OB are dispersed and extended in a predetermined extension direction.
  • the light receiving unit 14 includes the light separating unit 13 that outputs light as the split light L41 to L46, and the light receiving unit 14 in which a plurality of light receiving elements for detecting light are arranged along the extension direction of the split light L41 to L46. Therefore, it is possible to provide a light detection device that performs accurate light detection.
  • FIG. 7 is a schematic layout view of the distance measuring apparatus 30 according to the second embodiment.
  • the distance measuring device 30 scans the scanning region R0 using the emission light L1A and the scanning light L2A having a linear (long and narrow shape) spot shape, and a point for separating and receiving the linear reflected light L3A. Except for this, the configuration is the same as that of the distance measuring apparatus 10.
  • the distance measuring device 30 includes a light source unit 31 that emits a linear emission light L1A, and a scanning unit 32 that scans the scanning region R0 using the linear emission light L1A as a scanning light L2A. Have. Therefore, it is assumed that a substantially linear reflected light L3A is returned from the object OB.
  • the distance measuring device 30 is configured to receive and detect a line-like spectral light group L4A separated by the light separating part 33 configured to separate the linear reflected light L3A and the light separating part 33. And the light receiving unit 34. In addition, the distance measuring device 30 has a control unit 36 that controls these operations.
  • the scanning unit 32 is a MEMS mirror configured to swing the light reflection film 12A around one swing axis. Therefore, the scanning region R0 is scanned in a one-dimensional direction by the scanning light L2 which is the light obtained by reflecting the outgoing light L1A.
  • FIG. 8 is a view schematically showing a configuration example of the distance measuring device 30.
  • FIG. 9 is a diagram showing the configuration of the light receiving unit 34 of the distance measuring device 30.
  • the configuration of the distance measuring device 30 and the path of light in the distance measuring device 10 will be described with reference to FIGS. 8 and 9.
  • the light source unit 31 outputs the light source 31A that generates the linear primary light L11A, the shaping optical system 31B that shapes the primary light L11A to generate the shaped light L12A, and the shaped light L12A. It is composed of a projection optical system 31C that emits light as the projection light L1A.
  • the shaping optical system 31B is, for example, an expander that expands the primary light L11A with a similar shape. That is, the shaping optical system 31B generates a line-shaped intermediate image. Therefore, the light source unit 31 emits, from the light projecting optical system 31C, light of a spot shape extending in a line along the first direction D1 as the emitted light L1A.
  • FIG. 8 shows the spot shape of the emitted light L1A, that is, the cross-sectional shape of the emitted light L1A in the direction perpendicular to the optical axis of the emitted light L1A.
  • the scanning unit 32 is configured to change the reflection direction of the emitted light L1A along a second direction D2 perpendicular to the first direction D1. That is, the scanning unit 32 has a light reflecting surface 12A that reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2.
  • the first direction D1 is referred to as the length direction of the emitted light L1A
  • the second direction D2 is referred to as the width direction of the emitted light L1A.
  • the scanning region R0 (scanning surface R1) corresponds to the swing range of the light reflecting surface 12A of the scanning unit 32.
  • the reflected light L3A from the object OB has a spot shape extending in a line in the direction corresponding to the longitudinal direction D1 of the outgoing light L1A.
  • the spectroscope 33 and the light receiver 34 have a shape and a size suitable for receiving the reflected light L3A.
  • the spectroscope 33 splits the light according to the wavelength in the direction range corresponding to the width direction D2 of the emitted light L1A, and emits the reflected light L3A as a separated light group L4A in different directions. Therefore, for example, when the light splitting unit 33 splits the reflected light L3A into six split lights L41A ( ⁇ 1) to L46A ( ⁇ 6), each of them has a linear spot shape. Further, each of the spectral lights L41A to L46A is arranged along its width direction.
  • the light receiving unit 34 includes a light receiving optical system 34A and a light detector 34B. As shown in FIG. 9, the photodetector 34B has a plurality of photon counters C1 to Cm aligned along a direction corresponding to the longitudinal direction D1 of the emitted light L1A.
  • each of the photon counters C1 to Cm has a plurality of photoelectric conversion elements E11 to E46 arranged in a matrix, similarly to the photodetector 14B.
  • the column direction of the photoelectric conversion elements E11 to E46 in each of the photon counters C1 to Cm corresponds to the lengthwise direction D1 of the emitted light L1A.
  • the photodetector 34B has a configuration in which a plurality of photon counters each including photoelectric conversion elements E11 to E46 of 4 rows and 6 columns are arranged along the row direction of the photoelectric conversion elements E11 to E46. It is a line sensor which it has. Also, in the present embodiment, each of the photon counters C1 to Cm independently performs the detection operation. As a result, different detection results are obtained from each of the photon counters C1 to Cm, and each of the detection results becomes a scanning result corresponding to each place in the scanning region R0.
  • the light splitting unit 33 splits the reflected light L3A by emitting light in different directions for each wavelength in the direction range corresponding to the width direction D2 of the emitted light L1A.
  • each of the photon counters C1 to Cm in the light detector 34B of the light receiving unit 34 is provided with a plurality of photoelectric conversion elements (along with a direction corresponding to the width direction D2 of the emitted light L1A
  • photoelectric conversion elements E11 to E16 are provided.
  • the six linear light beams L41A ( ⁇ 1) to L46A ( ⁇ 6) are arranged to be incident on the photoelectric conversion elements of the respective rows of the photon counters C1 to Cm.
  • the spectral light L41A is incident on the photoelectric conversion elements E11 to E41 in the first row of each of the photon counters C1 to Cm. That is, the spectral light group L4nA is incident on the nth photoelectric conversion elements E1n to E4n of the photon counters C1 to Cm (n is 2 to 6).
  • the distance measuring device 30 scans the scanning region R0 using linear light as the outgoing light L1A (scanning light L2A). Also in this case, by using the light separating unit 33, the reflected light L3A can be easily shaped, and for example, the reflected light L3A can be incident on the entire light detector 34B. Therefore, scanning within the scanning region R0 can be performed accurately and with a high dynamic range, and accurate distance measurement can be performed.
  • the light separating unit 33 may include background light of a wavelength band corresponding to the reflected light L3. Therefore, for example, as shown in FIG. 4, the light receiving unit 34 arranges the light detector 34B at the position where the light of the wavelength band .lambda.1 to .lambda.6 of the reflected light L3A split by the splitting unit 33 is irradiated.
  • the apparatus By configuring the apparatus so that light other than the bands ⁇ 1 to ⁇ 6 is not irradiated to the light detector 34B, it is possible to accurately detect the spectral light group L4A corresponding to the emitted light L1A.
  • the configuration of the scanning unit 12 is simplified, and the apparatus is miniaturized.
  • the scanning region R0 can be scanned with high sensitivity in a short time.
  • the second direction D2 is a direction perpendicular to the first direction D1, and the scanning unit 32 changes the reflection direction of the emitted light L1A along the second direction D2.
  • the second direction D2 may be a direction having an angle with respect to the first direction D1, for example, a direction different from the first direction D1 in the direction perpendicular to the optical axis of the scanning light L2A.
  • the scanning unit 32 has the light reflecting surface 12A that reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2 having an angle with respect to the first direction D1. It should just be.
  • the second direction D2 is a direction perpendicular to the first direction D1
  • the design of the scanning unit 32, the light separating unit 33, and the light receiving unit 34 is facilitated.
  • the light source unit 31 emits the light L1A having a spot shape extending in a line along the first direction D1.
  • the scanning unit 32 reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2 having an angle with respect to the first direction D1.
  • the light separating unit 33 separates the reflected light L3A by emitting light in different directions according to the wavelength in the direction range along the second direction D2, and the light detector 34B of the light receiving unit 34

Abstract

The present invention is provided with: a light source part that emits outgoing light; a scanning part that scans a prescribed region with the outgoing light; a light reception part that receives reflected light which is the outgoing light reflected from an object; and a spectral diffraction part that diffracts the reflected light received by the light reception part and that extends the reflected light on the light reception part in a prescribed extending direction.

Description

走査装置及び光検出装置Scanning device and light detection device
 本発明は、光走査を行う走査装置、及び光検出を行う光検出装置に関する。 The present invention relates to a scanning device that performs light scanning and a light detection device that performs light detection.
 例えば、光を対象物に照射し、当該対象物によって反射された光を検出することで、当該対象物までの距離を測定することができる。このような光学的な測距装置は、例えば、走査装置と組み合わせることで、当該走査装置が走査する領域内の2次元的な距離情報を得ることができる。 For example, the distance to the object can be measured by irradiating the object with light and detecting the light reflected by the object. Such an optical distance measuring device can obtain two-dimensional distance information in the area scanned by the scanning device, for example, in combination with the scanning device.
 当該走査型の測距装置は、例えば、走査装置として、MEMS(Micro Electro Mechanical Systems)ミラーと、当該ミラーに向けて光を出射する光源と、対象物からの反射光を受光する受光部とを有する。例えば、特許文献1には、光投光部、光検出器及び光量分布変換素子を含む距離測定装置が開示されている。 The scanning distance measuring apparatus includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror as a scanning device, a light source for emitting light toward the mirror, and a light receiving unit for receiving light reflected from an object. Have. For example, Patent Document 1 discloses a distance measuring device including a light projecting unit, a light detector, and a light quantity distribution conversion element.
特開2012-202776号公報JP 2012-202776 A
 走査装置は、例えば、パルス状のレーザ光を走査領域に向けて出射し、対象物からの反射光(光パルス)を受光及び検出することで、走査領域内の光学的な情報を取得する。また、例えば、測距装置は、当該反射光の検出結果に基づいて当該対象物までの距離を測定する。 The scanning device emits, for example, pulsed laser light toward the scanning region, receives and detects reflected light (light pulse) from the object, and acquires optical information in the scanning region. Also, for example, the distance measuring device measures the distance to the object based on the detection result of the reflected light.
 ここで、測距装置は、対象物が測距装置から遠い位置に存在する場合や、対象物の光反射特性が小さい場合においても、正確に測距できることが好ましい。このためには、走査装置は、例えば、微弱な反射光でも正確に検出できることが好ましい。また、走査装置は、反射光のパルスを正確に検出することを考慮すると、高いダイナミックレンジで反射光を検出できることが好ましい。また、走査装置に限らず、光検出を行う光検出装置においては、微弱な反射光でも正確に検出できることが好ましい。そのため、光検出に用いる受光素子には、当該反射光が均一に照射され、照射ムラが生じないことが好ましい。 Here, it is preferable that the distance measuring device can accurately perform distance measurement even when the object is at a position far from the distance measuring device or when the light reflection characteristic of the object is small. To this end, it is preferable that the scanning device can accurately detect even weak reflected light, for example. Further, in consideration of accurately detecting the pulse of the reflected light, it is preferable that the scanning device can detect the reflected light in a high dynamic range. In addition to the scanning device, in a light detection device that performs light detection, it is preferable that even weak reflected light can be detected accurately. Therefore, it is preferable that the reflected light is uniformly irradiated to the light receiving element used for light detection, and the irradiation unevenness does not occur.
 本発明は上記した点に鑑みてなされたものであり、対象物からの反射光を正確に検出し、走査領域内の正確な光走査を行うことが可能な走査装置を提供することを課題の1つとしている。また、本発明は、対象物からの反射光を正確に検出することが可能な光検出装置を提供することを課題の1つとしている。 The present invention has been made in view of the above-described point, and it is an object of the present invention to provide a scanning device capable of accurately detecting reflected light from an object and performing accurate light scanning in a scanning region. I have one. Another object of the present invention is to provide a light detection device capable of accurately detecting reflected light from an object.
 請求項1に記載の発明は、出射光を出射する光源部と、出射光によって所定の領域を走査する走査部と、出射光が対象物によって反射した反射光を受光する受光部と、受光部に受光される反射光を分光し、受光部上における反射光を所定の伸長方向に伸長させる分光部と、を有することを特徴とする。 The invention according to claim 1 comprises a light source unit for emitting emitted light, a scanning unit for scanning a predetermined area with the emitted light, a light receiving unit for receiving the reflected light of the emitted light reflected by the object, and a light receiving unit. And a light separating unit configured to separate the reflected light received by the light receiving unit and to expand the reflected light on the light receiving unit in a predetermined extension direction.
 また、請求項7に記載の発明は、出射光を出射する光源部と、出射光が対象物によって反射した反射光を分光して、所定の伸長方向に伸長させた分光光として出力する分光部と、光を検出する複数の受光素子が分光光の伸長方向に沿って配置された受光部と、を有することを特徴とする。 According to the seventh aspect of the present invention, there is provided a light source portion for emitting outgoing light, and a spectral portion for separating the reflected light of the outgoing light reflected by the object and outputting the light as spectral light expanded in a predetermined extending direction. And a light receiving unit in which a plurality of light receiving elements for detecting light are arranged along the extension direction of the spectral light.
実施例1に係る測距装置の配置図である。FIG. 2 is a layout view of a distance measuring apparatus according to a first embodiment. 実施例1に係る測距装置の配置図である。FIG. 2 is a layout view of a distance measuring apparatus according to a first embodiment. 実施例1に係る測距装置の光検出器の平面図である。FIG. 2 is a plan view of a light detector of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の分光部及び受光部の配置図である。FIG. 6 is a layout view of a light separating unit and a light separating unit of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置における走査部の上面図である。FIG. 6 is a top view of a scanning unit in the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置における走査部の断面図である。FIG. 5 is a cross-sectional view of a scanning unit in the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の走査態様を示す図である。FIG. 5 is a view showing a scanning aspect of the distance measuring apparatus according to the first embodiment. 実施例2に係る測距装置の配置図である。FIG. 6 is a layout view of a distance measuring apparatus according to a second embodiment. 実施例2に係る測距装置の配置図である。FIG. 6 is a layout view of a distance measuring apparatus according to a second embodiment. 実施例2に係る測距装置の光検出器の平面図である。FIG. 6 is a plan view of a light detector of the distance measuring apparatus according to a second embodiment.
 以下に本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.
 図1は、実施例1に係る測距装置10の模式的な配置図である。測距装置10は、所定の領域(以下、走査領域と称する)R0の光走査を行い、走査領域R0内に存在する対象物OBまでの距離を測定する走査型の測距装置である。図1を用いて、測距装置10について説明する。なお、図の明確さのため、図1には、走査領域R0及び対象物OBを模式的に示している。 FIG. 1 is a schematic layout view of the distance measuring apparatus 10 according to the first embodiment. The distance measuring apparatus 10 is a scanning type distance measuring apparatus which performs optical scanning of a predetermined area (hereinafter, referred to as a scanning area) R0 and measures the distance to an object OB present in the scanning area R0. The distance measuring apparatus 10 will be described with reference to FIG. In addition, in order to clarify the drawing, the scanning region R0 and the object OB are schematically shown in FIG.
 まず、測距装置10は、パルス化された光(以下、出射光と称する)L1を生成及び出射する光源部11を有する。本実施例においては、光源部11は、出射光L1として、赤外領域にピーク波長を有するパルス化されたレーザ光を生成する。 First, the distance measuring apparatus 10 includes the light source unit 11 that generates and emits pulsed light (hereinafter, referred to as outgoing light) L1. In the present embodiment, the light source unit 11 generates pulsed laser light having a peak wavelength in the infrared region as the emitted light L1.
 測距装置10は、出射光L1を用いて走査領域R0を走査する走査部12を有する。走査部12は、出射光L1を走査領域R0に向けて反射させる可動式の光反射面12Aを有する。本実施例においては、走査部12は、光反射面12Aが設けられた可動ミラーを有する。 The distance measuring apparatus 10 has a scanning unit 12 that scans the scanning region R0 using the emitted light L1. The scanning unit 12 has a movable light reflecting surface 12A that reflects the emitted light L1 toward the scanning region R0. In the present embodiment, the scanning unit 12 has a movable mirror provided with the light reflecting surface 12A.
 走査部12は、光反射面12Aの向きを変化させることで、出射光L1が反射する方向を連続的かつ周期的に変化させる。走査部12は、この光反射面12Aによって反射された出射光L1を走査光L2として出射する。 The scanning unit 12 changes the direction of the light reflection surface 12A to change the direction in which the outgoing light L1 is reflected continuously and periodically. The scanning unit 12 emits the emitted light L1 reflected by the light reflecting surface 12A as a scanning light L2.
 なお、走査領域R0は、光反射面12Aの可動範囲に対応する幅及び高さを有し、走査光L2が到達及び反射したときに所定強度の反射光を受光可能な距離に対応する奥行を有する仮想の3次元空間である。図1においては、走査領域R0の外縁を破線で模式的に示した。 The scanning region R0 has a width and a height corresponding to the movable range of the light reflecting surface 12A, and a depth corresponding to a distance capable of receiving reflected light of a predetermined intensity when the scanning light L2 reaches and is reflected. It is a virtual three-dimensional space. In FIG. 1, the outer edge of the scanning area R0 is schematically shown by a broken line.
 例えば、図1に示すように、走査領域R0内における走査光L2の光路上に対象物OBが存在する場合、対象物OBに走査光L2が照射される。また、対象物OBが走査光L2に対して反射性を有する物体である場合、対象物OBによって走査光L2が反射(放射)される。 For example, as shown in FIG. 1, when the object OB is present on the optical path of the scanning light L2 in the scanning region R0, the scanning light L2 is irradiated to the object OB. In addition, when the object OB is an object having reflectivity for the scanning light L2, the scanning light L2 is reflected (radiated) by the object OB.
 測距装置10は、走査光L2が対象物OBに照射されることで対象物OBによって反射された光(以下、反射光と称する)L3を分光する分光部13を有する。本実施例においては、分光部13は、回折格子からなる。分光部13は、反射光L3を受け、反射光L3を波長成分毎に分光した光(以下、分光光と称する)L4を生成する。 The distance measuring apparatus 10 includes a light separating unit 13 that disperses light (hereinafter, referred to as reflected light) L3 reflected by the object OB by irradiating the object OB with the scanning light L2. In the present embodiment, the light separating unit 13 comprises a diffraction grating. The spectroscope unit 13 receives the reflected light L3 and generates light L4 (hereinafter referred to as spectral light) obtained by dispersing the reflected light L3 for each wavelength component.
 測距装置10は、分光部13によって分光された分光光L4を受光して検出する受光部14を有する。受光部14は、例えば、分光部13によって分光された分光光L4の波長帯域の光を受光して検出する。また、受光部14は、分光光L4に対して光電変換を行い、分光光L4に応じた電気信号(以下、受光信号と称する)SRを生成する。 The distance measuring apparatus 10 includes a light receiving unit 14 that receives and detects the spectral light L4 split by the splitting unit 13. The light receiving unit 14 receives and detects, for example, light in the wavelength band of the spectral light L4 split by the splitting unit 13. The light receiving unit 14 performs photoelectric conversion on the spectral light L4 to generate an electrical signal (hereinafter, referred to as a light receiving signal) SR according to the spectral light L4.
 なお、光源部11と走査部12の光反射面12Aとの間の出射光L1の光路上には、ビームスプリッタBSが設けられている。走査光L2は、対象物OBによって反射されて反射光L3となり、光反射面12Aに向かって戻る。そして、反射光L3は、光反射面12Aによって反射され、ビームスプリッタBSによって分離され、分光部13によって分光された後、受光部14によって受光される。なお、光源部11によって出射された出射光L1は、ビームスプリッタBSを透過して走査部12に向かって進む。 A beam splitter BS is provided on the optical path of the emitted light L1 between the light source unit 11 and the light reflecting surface 12A of the scanning unit 12. The scanning light L2 is reflected by the object OB to become a reflected light L3, and returns toward the light reflecting surface 12A. Then, the reflected light L3 is reflected by the light reflecting surface 12A, separated by the beam splitter BS, separated by the separating unit 13, and then received by the light receiving unit 14. The emitted light L1 emitted by the light source unit 11 passes through the beam splitter BS and travels toward the scanning unit 12.
 次に、測距装置10は、受光信号SRに基づいて、対象物OBまでの距離を測定する測距部15を有する。本実施例においては、測距部15は、受光信号SRから分光光L4のパルスを検出し、出射光L1の出射からの時間差に基づくタイムオブフライト法によって対象物OB(及びその一部の表面領域)までの距離を測定する。測距部14は、測定した距離情報を示すデータ(以下、測距情報と称する)を生成する。 Next, the distance measuring apparatus 10 has a distance measuring unit 15 that measures the distance to the object OB based on the light reception signal SR. In the present embodiment, the distance measuring unit 15 detects the pulse of the spectral light L4 from the light reception signal SR, and the object OB (and part of the surface thereof) by the time of flight method based on the time difference from the emission of the outgoing light L1. Measure the distance to the area). The distance measuring unit 14 generates data (hereinafter referred to as distance measuring information) indicating the measured distance information.
 また、本実施例においては、測距部15は、走査領域R0内の所定の領域を有効走査領域(又は測距領域)とし、この有効走査領域内に向けて出射された走査光L2に対応する分光光L4の受光信号SRに基づいて、対象物OBまでの距離を測定する。 Further, in the present embodiment, the distance measuring unit 15 defines a predetermined area in the scanning area R0 as an effective scanning area (or a distance measuring area), and corresponds to the scanning light L2 emitted toward the effective scanning area. The distance to the object OB is measured based on the light reception signal SR of the spectral light L4.
 なお、本明細書においては、説明上、走査領域R0内における走査部12から所定の距離だけ離れた仮想の被走査面を走査面R1と称する。また、本実施例においては、有効走査領域は、走査領域R0の外縁部分を除いた領域(すなわち空間)である。図1には、有効走査領域を、走査面R1の外縁部分を除いた内側の領域である有効走査面R2として例示した。測距部15の測距動作は、有効走査面R2に出射される走査光L2を用いて行われる。 In the present specification, for convenience of explanation, a virtual scan surface which is separated by a predetermined distance from the scan unit 12 in the scan region R0 is referred to as a scan surface R1. Further, in the present embodiment, the effective scan area is an area (i.e., space) excluding the outer edge portion of the scan area R0. In FIG. 1, the effective scanning area is illustrated as an effective scanning surface R2 which is an area inside the outer edge portion of the scanning surface R1. The distance measurement operation of the distance measurement unit 15 is performed using the scanning light L2 emitted to the effective scanning surface R2.
 また、本実施例においては、測距部15は、当該測距情報に基づいて走査領域R0の画像化を行う。測距部15は、走査部12が走査領域R0を走査する周期(以下、走査周期と称する)毎に1つの測距画像を生成する。なお、走査周期とは、例えば、走査領域R0に対する走査を周期的に行う場合において、任意の走査状態(例えば走査光L2を出射する光反射面12Aの向き)の時点から、その後に再度当該走査状態に戻る時点までの期間をいう。 Further, in the present embodiment, the distance measuring unit 15 forms an image of the scanning region R0 based on the distance measuring information. The distance measuring unit 15 generates one distance measuring image for each period in which the scanning unit 12 scans the scanning region R0 (hereinafter, referred to as a scanning period). Note that, for example, in the case of periodically performing a scan on the scan region R0, the scan cycle is again from the time of an arbitrary scan state (for example, the direction of the light reflection surface 12A that emits the scan light L2) It refers to the period until it returns to the state.
 本実施例においては、測距部15は、当該測距情報を光反射面12Aの向きを示す情報と対応付け、2次元又は3次元のマップとして画像化する測距画像を生成する。本実施例においては、測距部15は、走査周期毎に測距画像を生成する。なお、測距部15は、複数の測距画像を時系列に沿って動画として表示する表示部(図示せず)を有していてもよい。 In the present embodiment, the distance measuring unit 15 associates the distance measuring information with the information indicating the direction of the light reflecting surface 12A, and generates a distance measuring image to be imaged as a two-dimensional or three-dimensional map. In the present embodiment, the distance measuring unit 15 generates a distance measuring image for each scanning cycle. The distance measuring unit 15 may have a display unit (not shown) that displays a plurality of distance measuring images as a moving image in time series.
 また、測距装置10は、光源部11、走査部12、受光部14及び測距部15の動作制御を行う制御部16を有する。例えば、本実施例においては、制御部16は、光源部11に駆動信号DLを供給し、光源部11の駆動及びその制御を行う。なお、駆動信号DLは、測距部15にも供給される。また、制御部16は、走査部12に駆動信号DX及びDYを供給し、走査部12の駆動及びその制御を行う。 The distance measuring apparatus 10 further includes a control unit 16 that controls the operation of the light source unit 11, the scanning unit 12, the light receiving unit 14, and the distance measuring unit 15. For example, in the present embodiment, the control unit 16 supplies the drive signal DL to the light source unit 11, and drives and controls the light source unit 11. The drive signal DL is also supplied to the distance measuring unit 15. The control unit 16 also supplies drive signals DX and DY to the scanning unit 12 to drive the scanning unit 12 and control the same.
 図2は、測距装置10の構成例を模式的に示す図である。図2を用いて、測距装置10の構成及び測距装置10内の光の進路について説明する。まず、本実施例においては、光源部11は、一次光L11を生成する光源11Aと、一次光L11を整形して整形光L12を生成する整形光学系11Bと、整形光L12を出射光L1として投光する投光光学系11Cとからなる。 FIG. 2 is a view schematically showing a configuration example of the distance measuring apparatus 10. As shown in FIG. The configuration of the distance measuring apparatus 10 and the path of light in the distance measuring apparatus 10 will be described with reference to FIG. First, in the present embodiment, the light source unit 11 uses the light source 11A for generating the primary light L11, the shaping optical system 11B for shaping the primary light L11 to generate the shaped light L12, and the shaped light L12 as the emitted light L1. It consists of the projection optical system 11C which projects light.
 例えば、光源11Aは、一次光L11としてパルス状のレーザ光を生成するレーザ装置を含む。光源11Aは、本実施例においては、ドット状(点状)のスポット形状を有する一次光L11を生成及び出射する。なお、光のスポット形状とは、例えば、当該光の光軸に垂直な方向における当該光の断面形状である。整形光学系11Bは、例えば、コリメートレンズ及びシリンドリカルレンズからなる。整形光学系11Bは、走査光L2、すなわち走査領域R0に向けて出射される光の中間像を生成する。また、投光光学系11Cは、例えば投光レンズからなる。 For example, the light source 11A includes a laser device that generates pulsed laser light as the primary light L11. In the present embodiment, the light source 11A generates and emits primary light L11 having a dot-like (point-like) spot shape. The spot shape of light is, for example, a cross-sectional shape of the light in a direction perpendicular to the optical axis of the light. The shaping optical system 11B includes, for example, a collimator lens and a cylindrical lens. The shaping optical system 11B generates an intermediate image of the scanning light L2, that is, the light emitted toward the scanning region R0. The light projecting optical system 11C is formed of, for example, a light projecting lens.
 なお、光源部11は、投光光学系11Cからドット状のスポット形状を有する出射光L1を出射する点光源であってもよいし、ライン状のスポット形状を有する出射光L1を出射する線光源であってもよい。 The light source unit 11 may be a point light source for emitting the emission light L1 having a dot shape from the light projection optical system 11C, or a line light source for emitting the emission light L1 having a linear spot shape. It may be
 また、光源部11は、所定の波長帯域の出射光L1を出射する。本実施例においては、例えば、説明のため、出射光L1が所定の幅を持つ6つの波長帯λ1、λ2、λ3、λ4、λ5及びλ6の光を含む場合について説明する。例えば、光源部11の光源11Aは、当該波長帯域λ1~λ6に亘る波長範囲内のレーザ光を一次光L11として出射する。 Further, the light source unit 11 emits outgoing light L1 of a predetermined wavelength band. In the present embodiment, for example, the case where the emitted light L1 includes light of six wavelength bands λ1, λ2, λ3, λ4, λ5, and λ6 having a predetermined width will be described. For example, the light source 11A of the light source unit 11 emits, as primary light L11, a laser beam within a wavelength range covering the wavelength bands λ1 to λ6.
 次に、本実施例においては、出射光L1は、ビームスプリッタBSを透過し、反射光学系MLに反射された後、走査部12の光反射面12Aによって反射され、走査光L2として走査領域R0に出射される。また、対象物OBからの反射光L3は、背景光(環境光)と共に走査部12の光反射面12Aに入射し、反射光学系MLに向けて反射される。 Next, in the present embodiment, the outgoing light L1 passes through the beam splitter BS, is reflected by the reflection optical system ML, and then is reflected by the light reflecting surface 12A of the scanning unit 12 and becomes the scanning region R0 as the scanning light L2. It is emitted to. Further, the reflected light L3 from the object OB is incident on the light reflecting surface 12A of the scanning unit 12 together with the background light (ambient light), and is reflected toward the reflecting optical system ML.
 すなわち、走査部12の光反射面12Aに入射する光には、対象物OBからの走査光L2の反射光である反射光L3だけでなく、背景光が含まれる場合がある。しかし、特に明記しない限り、以下の説明においては、光反射面12Aに入射する光のうち、反射光L3について説明する。 That is, the light incident on the light reflection surface 12A of the scanning unit 12 may include not only the reflected light L3 which is the reflected light of the scanning light L2 from the object OB but also background light. However, unless otherwise stated, in the following description, the reflected light L3 of the light incident on the light reflecting surface 12A will be described.
 反射光学系MLによって反射された反射光L3は、ビームスプリッタBSによってその一部が分離(反射)され、分光部13に入射する。 A part of the reflected light L 3 reflected by the reflection optical system ML is split (reflected) by the beam splitter BS and enters the light splitting unit 13.
 分光部13は、反射光L3を6つの波長帯の光(以下、分光光と称する)L41~L46に分光する。本実施例においては、分光部13は、光をその波長に応じた方向に導く(本実施例においては反射する)。これによって、分光光L41~L46は、それぞれ異なる方向に出射される。分光光L41は波長帯λ1の光であり、分光光L42~L46はそれぞれ波長帯λ2~λ6の光である。なお、説明のため、分光光L41~L46の全体を分光光群L4と称する。 The light splitting unit 13 splits the reflected light L3 into light of six wavelength bands (hereinafter referred to as spectral light) L41 to L46. In the present embodiment, the light splitting unit 13 guides (reflects in the present embodiment) the light according to the wavelength. As a result, the split beams L41 to L46 are emitted in different directions. The spectral light L41 is light in the wavelength band λ1, and the spectral lights L42 to L46 are light in the wavelength bands λ2 to λ6, respectively. Incidentally, for the sake of explanation, all of the spectral lights L41 to L46 will be referred to as a spectral light group L4.
 なお、本実施例においては、分光光群L4が複数の分光光L41~L46に区別される場合について説明する。しかし、分光光L41~L46は、グラデーションを有するように切れ目なく(無段階で)分光されていてもよい。すなわち、分光光L41~L46は、互いに分離された光もあってもよいし、その各々の境界が便宜上設定された連続的な光であってもよい。 In the present embodiment, the case where the spectral light group L4 is distinguished into a plurality of spectral lights L41 to L46 will be described. However, the spectral lights L41 to L46 may be split seamlessly (steplessly) so as to have gradation. That is, the spectral lights L41 to L46 may be lights separated from one another or may be continuous lights whose boundaries are set for convenience.
 また、受光部14は、本実施例においては、分光光群L4を受光する受光光学系14Aと、分光光群L4を検出する光検出器14Bとを含む。受光光学系14Aは、例えば受光レンズからなる。また、光検出器14Bは、分光光群L4を受けて、分光光群L4(分光光L41~L46の各々)に対して光電変換を行い、受光信号SRを生成する。受光信号SRは、測距部15に供給される。 Further, in the present embodiment, the light receiving unit 14 includes a light receiving optical system 14A that receives the spectral light group L4, and a photodetector 14B that detects the spectral light group L4. The light receiving optical system 14A includes, for example, a light receiving lens. Further, the photodetector 14B receives the spectral light group L4, performs photoelectric conversion on the spectral light group L4 (each of the spectral light L41 to L46), and generates a light reception signal SR. The light reception signal SR is supplied to the distance measuring unit 15.
 図3は、受光部14の光検出器14Bの検出面を模式的に示す平面図である。本実施例においては、光検出器14Bは、マトリクス状に配置された複数の光電変換素子E11~E46からなるフォトンカウンタである。光検出器14Bは、光電変換素子E11~E46の全体で光検出器14Bの検出面を構成する。 FIG. 3 is a plan view schematically showing the detection surface of the light detector 14B of the light receiving unit 14. As shown in FIG. In the present embodiment, the photodetector 14B is a photon counter including a plurality of photoelectric conversion elements E11 to E46 arranged in a matrix. The photodetector 14B constitutes the detection surface of the photodetector 14B as a whole of the photoelectric conversion elements E11 to E46.
 本実施例においては、光検出器14Bは、4行6列で配列された24個の光電変換素子E11~E24を含む。また、本実施例においては、光電変換素子E11~E24の各々は、アバランシェフォトダイオード(APD)である。従って、本実施例においては、光検出器14Bは、ガイガーモードで光検出を行うマルチピクセルフォトンカウンタ(MPPC)である。 In the present embodiment, the photodetector 14B includes 24 photoelectric conversion elements E11 to E24 arranged in 4 rows and 6 columns. Further, in the present embodiment, each of the photoelectric conversion elements E11 to E24 is an avalanche photodiode (APD). Therefore, in the present embodiment, the photodetector 14B is a multi-pixel photon counter (MPPC) that performs light detection in Geiger mode.
 また、本実施例においては、光検出器14Bは、1列毎に異なる分光光が入射されるように配置されている。例えば、図3に示すように、1列目の光電変換素子(行方向に配列された光電変換素子)E11、E21、E31及びE41の各々には、波長帯λ1の分光光L41が入射する。また、2列目の光電変換素子E12、E22、E32及びE42の各々には、波長帯λ2の分光光L41が入射する。すなわち、n列目の光電変換素子E1n~E4nの各々には、波長帯λnの分光光L4nが入射するように構成されている(nは1~6)。 Further, in the present embodiment, the photodetectors 14B are arranged such that different spectral lights are incident to each row. For example, as illustrated in FIG. 3, the split light L41 of the wavelength band λ1 is incident on each of the photoelectric conversion elements E11, E21, E31, and E41 in the first column (photoelectric conversion elements arranged in the row direction). Further, the spectral light L41 in the wavelength band λ2 is incident on each of the photoelectric conversion elements E12, E22, E32, and E42 in the second column. That is, the split light L4n of the wavelength band λn is configured to be incident on each of the photoelectric conversion elements E1n to E4n in the n-th column (n is 1 to 6).
 本実施例においては、分光部13は、受光部14に受光される反射光L3を分光することで、受光部14上の反射光L3を所定の方向(伸長方向)に伸長させる(広げる)部分として機能する。また、光検出器14Bは、分光部13によって広げられた分光光群L4の分光部13からの出射範囲に亘って設けられている。これによって、例えば光電変換素子E11~E46の全てに分光光L41~L44を入射させることができる。 In the present embodiment, the splitting unit 13 splits the reflected light L3 received by the light receiving unit 14 to expand (spread) the reflected light L3 on the light receiving unit 14 in a predetermined direction (stretching direction). Act as. Further, the light detector 14B is provided over the emission range from the light splitting unit 13 of the spectral light group L4 expanded by the light splitting unit 13. Thus, for example, the spectral lights L41 to L44 can be incident on all the photoelectric conversion elements E11 to E46.
 すなわち、反射光L3は、分光部13によって、光検出器14Bの検出機能を最大化するように、その形状が調節されている。また、本実施例においては、受光部14は、光検出器14Bの光電変換素子E11及びE41間の配列方向の長さ(配列幅WA)、すなわち受光部14における反射光L3の分光方向(伸長方向)に対応する長さが、受光部14上における反射光L3の分光方向(伸長方向)の長さ以下となるように、その形状及びサイズが構成されている。従って、分光された反射光L3(分光光群L4)の全体を受光部14によって確実に受光することができる。 That is, the shape of the reflected light L3 is adjusted by the light separating unit 13 so as to maximize the detection function of the light detector 14B. Further, in the present embodiment, the light receiving unit 14 has a length in the arrangement direction between the photoelectric conversion elements E11 and E41 of the light detector 14B (array width WA), that is, a spectral direction of the reflected light L3 in the light receiving unit 14 (elongation The shape and the size are configured such that the length corresponding to the direction) is equal to or less than the length in the spectral direction (extension direction) of the reflected light L3 on the light receiving unit 14. Therefore, the whole of the dispersed reflected light L3 (spectral light group L4) can be reliably received by the light receiving unit 14.
 従って、例えば本実施例のように光検出器14Bがフォトンカウンタからなる場合、全てのフォトダイオードで分光光群L4の検出(フォトン計数)を行うことができる。従って、微弱な反射光L3(検出対象の光)しか対象物OBから得られない場合であっても正確にかつ高いダイナミックレンジで検出することができる。従って、例えば反射光L3のパルス位置を正確に判定することができ、正確な走査及び測距を行うことができる。 Therefore, for example, when the light detector 14B includes a photon counter as in the present embodiment, detection (photon counting) of the spectral light group L4 can be performed with all photodiodes. Therefore, even when only weak reflected light L3 (light to be detected) can be obtained from the object OB, accurate and high dynamic range detection is possible. Therefore, for example, the pulse position of the reflected light L3 can be accurately determined, and accurate scanning and distance measurement can be performed.
 また、測距装置10は、例えば車両に搭載され、車両の周辺状況を認識する装置として用いられることができる。この場合、測距装置10の測距可能な範囲(特に距離)は大きいことが好ましい。また車両に搭載される場合のみならず、例えば遠方で動く対象物OBを正確に認識することを考慮すると、反射光L3の受光可能距離が大きく、また高いダイナミックレンジで検出できることが好ましい。測距装置10は、例えばこのような環境下での使用に適しているといえる。 Further, the distance measuring device 10 can be mounted, for example, on a vehicle, and can be used as a device that recognizes the surrounding situation of the vehicle. In this case, it is preferable that the range in which the distance measuring apparatus 10 can measure distance (in particular, the distance) is large. In addition to the case of being mounted on a vehicle, for example, in consideration of accurate recognition of an object OB moving in the distance, it is preferable that the receivable distance of the reflected light L3 be large and that detection be possible with a high dynamic range. The distance measuring device 10 can be said to be suitable for use in such an environment, for example.
 なお、反射光L3を光電変換素子E11~E46の全体に入射させることを考慮すると、例えば、分光部13(回折格子)に代えて、集光レンズを設けることが考えられる。しかし、例えば集光レンズを用いて反射光L3を広げた場合、当該広がった範囲内で反射光L3の強度にムラが生ずる。従って、光検出器14Bに入射する際に反射光L3の光学特性が崩れる場合がある。従って、例えば光電変換素子E11~E46の全てに反射光L3が入射せず、光検出器14Bによる正確な光検出が行えない場合がある。 In consideration of the fact that the reflected light L3 is made incident on all of the photoelectric conversion elements E11 to E46, for example, it is conceivable to provide a condensing lens instead of the light splitting unit 13 (diffraction grating). However, when the reflected light L3 is expanded using, for example, a condenser lens, unevenness occurs in the intensity of the reflected light L3 within the expanded area. Therefore, when entering the light detector 14B, the optical characteristics of the reflected light L3 may be broken. Therefore, for example, the reflected light L3 may not be incident on all the photoelectric conversion elements E11 to E46, and accurate light detection by the light detector 14B may not be performed.
 しかし、本実施例においては、分光部13を用いることで、強度変化が少なく、確実にかつ容易に反射光L3の形状調節を行うことができるため、光検出器14Bによって正確な光検出を行うことが可能となる。 However, in the present embodiment, by using the light separating unit 13, the shape of the reflected light L3 can be adjusted with certainty and easily with less change in intensity, so that accurate light detection is performed by the light detector 14B. It becomes possible.
 また、本実施例においては、分光部13は、反射光L3を受光部14に向けて反射させる反射型の回折格子からなる。これによって、例えば、透過型の分光を行う場合に比べて装置のレイアウト設計の自由度が上がる。 Further, in the present embodiment, the light splitting unit 13 is formed of a reflective diffraction grating that reflects the reflected light L3 toward the light receiving unit 14. As a result, for example, the degree of freedom in the layout design of the device is increased as compared to the case of performing transmission-type spectroscopy.
 図4は、実際の使用環境下で使用した場合の測距装置10内の光の進路の一部を示す図である。図4に示すように、分光部13に入射する光は、光源部11からの出射光L1に対応する反射光L3のみならず、太陽光や他の発光装置からの光(以下、背景光と称する)L0を含む。図4は、この場合についても正確に反射光L3(分光光群L4)を検出できるような光検出器14Bの好ましい構成を示す図である。 FIG. 4 is a view showing a part of a light path in the distance measuring apparatus 10 when used under an actual use environment. As shown in FIG. 4, the light incident on the light splitting unit 13 is not only the reflected light L3 corresponding to the emitted light L1 from the light source unit 11, but also sunlight or light from other light emitting devices (hereinafter referred to as background light (Referred to as L0). FIG. 4 is a view showing a preferable configuration of the light detector 14B which can accurately detect the reflected light L3 (spectral light group L4) also in this case.
 図4に示すように、例えば背景光L0は、反射光L3の波長帯域λ1~λ6以外の波長帯(例えば波長帯λ0及びλ7)の光を含む。また、分光部13は、分光部13に入射した光であればその波長に応じた方向に光を出射する。すなわち、分光部13が出射する光には、波長帯域λ1~λ6の光(分光光群L4)の他に、他の波長帯λ0及びλ7の光(背景光L0)が含まれる。 As shown in FIG. 4, for example, the background light L0 includes light in wavelength bands (for example, wavelength bands λ0 and λ7) other than the wavelength bands λ1 to λ6 of the reflected light L3. Further, if the light is incident on the light separating unit 13, the light separating unit 13 emits light in the direction according to the wavelength. That is, the light emitted from the light separating unit 13 includes light (background light L0) in other wavelength bands λ0 and λ7 in addition to the light in the wavelength band λ1 to λ6 (spectral light group L4).
 これに対し、図4に示すように、本実施例においては、光検出器14Bは、分光部13が出射光L1の波長帯域λ1~λ6以外の光を出射する方向上には設けられていない。すなわち、光検出器14Bは、分光部13が波長帯域λ1~λ6の光を出射する方向範囲に亘ってのみ設けられている。 On the other hand, as shown in FIG. 4, in the present embodiment, the light detector 14B is not provided in the direction in which the light separating unit 13 emits light other than the wavelength bands λ1 to λ6 of the emitted light L1. . That is, the light detector 14B is provided only over the direction range in which the light separating unit 13 emits light in the wavelength bands λ1 to λ6.
 これによって、背景光L0である波長体λ0及びλ7の光は、光検出器14Bに入射せずに減衰又は消失する可能性が高い。従って、光検出器14Bは、分光光群L4のみを受光及び検出することができ、例えば背景光L0を検出することによるノイズ発生又は誤検出を抑制することができる。従って、正確に反射光L3を受光することができる。 As a result, the light of the wavelength bodies λ0 and λ7, which is the background light L0, is highly likely to be attenuated or eliminated without being incident on the light detector 14B. Therefore, the photodetector 14B can receive and detect only the spectral light group L4, and can suppress, for example, noise generation or erroneous detection due to detection of the background light L0. Therefore, the reflected light L3 can be accurately received.
 なお、背景光L0は、波長帯域λ0~λ7の光からなる場合がある。しかし、当該背景光L0のうち、波長帯域λ1~λ6の背景光L0は、設計上の受光タイミング以外でも(例えば太陽光であれば常に)分光部13に入射し、また反射光L3に比べて強度(受光レベル)も低い。従って、分光光群L4と同一波長の背景光L0が含まれていても、信号処理を行うことによって、反射光L3に対応する分光光群L4を正確に検出することができる。 The background light L0 may be light of wavelength bands λ0 to λ7. However, of the background light L0, the background light L0 in the wavelength band λ1 to λ6 is incident on the light splitting unit 13 at any timing other than the designed light reception timing (for example, always for sunlight), and compared with the reflected light L3. The intensity (light reception level) is also low. Therefore, even if the background light L0 having the same wavelength as the spectral light group L4 is included, the spectral light group L4 corresponding to the reflected light L3 can be accurately detected by performing signal processing.
 また、例えば、分光部13の波長毎の光の出射方向及びこれによる分光光群L4の光検出器14Bへの入射幅は、分光部13の分光特性及び光検出器14Bの位置から求めることができる。例えば、分光部13の光の出射方向の変化範囲は、出射光L1の波長及び分光部13の分光特性から求めることができる。 In addition, for example, the emission direction of light for each wavelength of the spectroscopic unit 13 and the incident width of the spectral light group L4 to the light detector 14B by this can be determined from the spectral characteristic of the spectroscopic unit 13 and the position of the light detector 14B. it can. For example, the change range of the emission direction of the light of the light separating unit 13 can be obtained from the wavelength of the emitted light L1 and the spectral characteristics of the light separating unit 13.
 例えば、光は、分光部13としての回折格子の格子定数dに応じた出射角度(本実施例においては回折面での反射角度)で出射される。従って、例えば波長帯域λ1~λ6の分光部13からの出射方向に対応する位置(すなわち、分光部13から出射された波長帯域λ1~λ6の光が照射される位置)に光検出器14Bの検出面を配置すればよい。 For example, light is emitted at an emission angle (in the present embodiment, a reflection angle on the diffractive surface) according to the grating constant d of the diffraction grating as the light splitting unit 13. Therefore, for example, the detection of the photodetector 14B at a position corresponding to the emission direction of the wavelength band λ1 to λ6 from the light separating unit 13 (that is, the position where the light of the wavelength band λ1 to λ6 emitted from the light separating unit 13 is irradiated) It suffices to arrange the faces.
 また、分光部13によって出射された光は、受光光学系14Aの焦点距離F1に対応する位置に集光される。従って、例えば受光光学系14Aのレンズの焦点距離Fに対応する位置に分光部13及び適切な形状及びサイズの光検出器14Bを配置することで、出射光L1に対応する分光光群L4のみを検出することができる。 The light emitted by the light separating unit 13 is condensed at a position corresponding to the focal length F1 of the light receiving optical system 14A. Therefore, for example, by disposing the light splitting unit 13 and the light detector 14B of an appropriate shape and size at a position corresponding to the focal length F of the lens of the light receiving optical system 14A, only the split light group L4 corresponding to the outgoing light L1 is It can be detected.
 また、例えば光検出器14Bに波長帯域λ1~λ6の光のみを入射させることを考慮すると、バンドパスフィルタなどの波長選択フィルタを設けることが考えられる。しかし、本実施例においては、上記したように分光部13及び光検出器14Bを配置することで、分光部13が波長選択フィルタとしても機能する。従って、分光部13を設けることによって、装置が小型化及び単純化する。 Further, in consideration of, for example, incidence of only light in the wavelength bands λ1 to λ6 to the photodetector 14B, it is conceivable to provide a wavelength selection filter such as a band pass filter. However, in the present embodiment, by arranging the light separating unit 13 and the light detector 14B as described above, the light separating unit 13 also functions as a wavelength selection filter. Therefore, the provision of the spectroscope 13 miniaturizes and simplifies the apparatus.
 また、分光部13は、例えばプリズムなどのように、反射光L3を波長毎に完全に分離する(分光光L41~L46の各々を離間させる)ように構成されていれもよい。このことを考慮すると、光検出器14Bは、少なくとも分光部13が波長帯域λ1~λ6の光を出射する方向に対応する位置に設けられていればよい。すなわち、例えば、光検出器14Bが複数の検出セグメントに分離され、当該検出セグメントの各々がそれぞれ波長帯域λ1~λ6の光を受光するような位置に設けられていてもよい。 Further, the light separating unit 13 may be configured to completely separate the reflected light L3 for each wavelength (for example, to separate each of the spectral lights L41 to L46), for example, as a prism. Taking this into consideration, the light detector 14B may be provided at a position corresponding to the direction in which at least the light separating unit 13 emits light in the wavelength bands λ1 to λ6. That is, for example, the photodetector 14B may be separated into a plurality of detection segments, and each of the detection segments may be provided at a position to receive light in the wavelength bands λ1 to λ6.
 なお、光源部11は、光源11Aの温度調節を行う調温部(図示せず)を有することが好ましい。光源11Aとしての例えばレーザ光源は、温度の変化に応じて発振波長が変化する。従って、光源部11が光源11Aの温度調節を行う機能を有することで、安定して所望の波長帯域λ1~λ6の出射光L1を出射することができる。 The light source unit 11 preferably includes a temperature control unit (not shown) that adjusts the temperature of the light source 11A. The oscillation wavelength of, for example, a laser light source as the light source 11A changes in accordance with a change in temperature. Therefore, the light source unit 11 has a function of adjusting the temperature of the light source 11A, whereby it is possible to stably emit the outgoing light L1 of the desired wavelength band λ1 to λ6.
 なお、本実施例においては、光検出器14Bは、分光部13が波長帯域λ1~λ6の光を出射する方向範囲に亘ってのみ設けられているものとして説明したが、光検出器14Bの大きさを少し小さくする又はその設置位置を調整する(例えば分光部13に近づける)ことで、分光光群L4の一部、例えば波長帯域λ2~λ5の分光光L42~L45を受光するようにしても良い。この場合でも、背景光L0である波長帯λ0及びλ7の光は、光検出器14Bに入射しない。すなわち、受光部14は、反射光L3と共に受光部14に照射される背景光L0のうち、反射光L3の波長帯域λ1~λ6以外の光が入射しないように配置されることで、例えば背景光L0を検出することによるノイズ発生又は誤検出を抑制することができる。 In the present embodiment, the light detector 14B is described as being provided only over the direction range in which the light separating unit 13 emits light in the wavelength bands λ1 to λ6, but the size of the light detector 14B is Even if a part of the spectral light group L4, for example, the spectral light L42 to L45 in the wavelength band λ2 to λ5 is received, by slightly reducing the height or adjusting the installation position (for example, approaching the light separating unit 13). good. Even in this case, the light in the wavelength bands λ0 and λ7 that is the background light L0 does not enter the light detector 14B. That is, the light receiving unit 14 is disposed, for example, in the background light L0 irradiated to the light receiving unit 14 together with the reflected light L3 so that light other than the wavelength bands λ1 to λ6 of the reflected light L3 does not enter. Noise generation or false detection due to detection of L0 can be suppressed.
 次に、図5A及び図5B並びに図6を用いて、走査部12の構成例について説明する。まず、図5Aは、走査部12の模式的な上面図である。図5Bは、走査部12の断面図である。図5Bは、図5AのV-V線に沿った断面図である。図5A及び図5Bを用いて、走査部12の構成例について説明する。 Next, a configuration example of the scanning unit 12 will be described using FIGS. 5A and 5B and FIG. First, FIG. 5A is a schematic top view of the scanning unit 12. FIG. 5B is a cross-sectional view of the scanning unit 12. FIG. 5B is a cross-sectional view taken along the line VV of FIG. 5A. A configuration example of the scanning unit 12 will be described using FIGS. 5A and 5B.
 本実施例においては、走査部12は、光反射面12Aを有する光反射膜(可動ミラー)24を含み、この光反射膜24が揺動するMEMS(Micro Electro Mechanical Systems)ミラーである。また、本実施例においては、走査部12は、電磁気的に光反射膜24を揺動させるように構成されている。 In the present embodiment, the scanning unit 12 is a micro electro mechanical systems (MEMS) mirror including a light reflecting film (movable mirror) 24 having a light reflecting surface 12A, and the light reflecting film 24 swings. Further, in the present embodiment, the scanning unit 12 is configured to oscillate the light reflecting film 24 electromagnetically.
 より具体的には、走査部12は、固定部(ベース部)21、可動部(揺動部)22、駆動力生成部23及び光反射膜24を有する。また、本実施例においては、走査部12は、互いに直交する2つの揺動軸(第1及び第2の揺動軸)AX及びAYを中心に光反射膜24が揺動するように構成されている。 More specifically, the scanning unit 12 includes a fixed unit (base unit) 21, a movable unit (rocking unit) 22, a driving force generation unit 23, and a light reflecting film 24. Further, in the present embodiment, the scanning unit 12 is configured such that the light reflecting film 24 swings around two swinging axes (first and second swinging axes) AX and AY orthogonal to each other. ing.
 本実施例においては、固定部21は、固定基板B1及び固定基板B1上に形成された環状の固定枠B2を含む。可動部22は、各々の一端が固定枠B2の内側に固定された一対のトーションバー(第1のトーションバー)TXを含む。一対のトーションバーTXの各々は、少なくとも周方向の弾性を有する棒状の弾性部材からなり、揺動軸AXに沿って整列している。また、可動部22は、外周部側面が一対のトーションバーTXの各々の他端に接続された環状の揺動枠(可動枠)SXを有する。 In the present embodiment, the fixed portion 21 includes a fixed substrate B1 and an annular fixed frame B2 formed on the fixed substrate B1. The movable portion 22 includes a pair of torsion bars (first torsion bars) TX, one end of each of which is fixed to the inside of the fixed frame B2. Each of the pair of torsion bars TX is made of a rod-like elastic member having at least circumferential elasticity, and is aligned along the swing axis AX. Further, the movable portion 22 has an annular swinging frame (movable frame) SX whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TX.
 また、可動部22は、各々の一端が可動枠SXの内周部側面に接続され、一対のトーションバーTXに直交する方向(揺動軸AYに沿った方向)に整列した一対のトーションバー(第2のトーションバー)TYと、外周部側面が一対のトーションバーTYの各々の他端に接続された揺動板(可動板)SYと、を有する。一対のトーションバーTYの各々は、少なくとも周方向の弾性を有する棒状の弾性部材からなる。 The movable portion 22 has a pair of torsion bars (one end connected to the side surface of the inner peripheral portion of the movable frame SX) and aligned in a direction (direction along the swing axis AY) orthogonal to the pair of torsion bars TX. A second torsion bar TY and an oscillating plate (movable plate) SY whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TY. Each of the pair of torsion bars TY is formed of a rod-like elastic member having at least circumferential elasticity.
 本実施例においては、揺動枠SXは揺動軸AXを中心に(揺動中心として)揺動し、揺動板SYは揺動軸AX及びAYを中心に揺動する。また、揺動板SY上には光反射膜24が形成されている。従って、光反射膜24の光反射面24Aは、揺動板SYと共に、互いに直交する揺動軸AX及びAYを中心に揺動する。 In the present embodiment, the swing frame SX swings about the swing axis AX (as a swing center), and the swing plate SY swings around the swing axes AX and AY. In addition, a light reflection film 24 is formed on the rocking plate SY. Accordingly, the light reflecting surface 24A of the light reflecting film 24 swings about the swing axes AX and AY orthogonal to each other together with the swing plate SY.
 駆動力生成部23は、固定基板B1上に配置された永久磁石MGと、揺動枠SX上において揺動枠SXの外周に沿って配線された金属配線(第1のコイル)CXと、揺動板SY上において揺動板SYの外周に沿って配線された金属配線(第2のコイル)CYと、を含む。 The driving force generation unit 23 shakes the permanent magnet MG disposed on the fixed substrate B1, the metal wire (first coil) CX wired along the outer periphery of the swing frame SX on the swing frame SX, and And a metal wire (second coil) CY wired along the outer periphery of the swing plate SY on the moving plate SY.
 本実施例においては、永久磁石MGは、固定基板B1上における固定枠B2の外側領域に設けられた複数の磁石片からなる。本実施例においては、4つの磁石片が、それぞれ、揺動軸AX及びAYの各々に沿ってかつ一対のトーションバーTX及びTYの外側の位置に配置されている。 In the present embodiment, the permanent magnet MG is composed of a plurality of magnet pieces provided in the outer region of the fixed frame B2 on the fixed substrate B1. In the present embodiment, four magnet pieces are disposed along the swing axes AX and AY, respectively, and at positions outside the pair of torsion bars TX and TY.
 また、揺動軸AXに沿った方向において互いに対向する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。同様に、揺動軸AYに沿った方向において互いに対向する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。 Further, two magnet pieces facing each other in the direction along the swing axis AX are arranged such that parts showing opposite polarities face each other. Similarly, the two magnet pieces facing each other in the direction along the swing axis AY are arranged such that portions exhibiting opposite polarities face each other.
 本実施例においては、金属配線CXに電流が流れると、揺動軸AYに沿った方向に並んだ永久磁石MGの2つの磁石片によって生じた磁界との相互作用により、一対のトーションバーTXが周方向にねじれ、揺動枠SXが揺動軸AXを中心に揺動する。同様に、金属配線CYに流れた電流による電界と揺動枠AXに沿った方向に並んだ永久磁石MGの2つの磁石片による磁界とによって一対のトーションバーTYがねじれ、揺動板SYが揺動軸AYを中心に揺動する。 In the present embodiment, when current flows in the metal wire CX, a pair of torsion bars TX is generated by the interaction with the magnetic field generated by the two magnet pieces of the permanent magnet MG aligned in the direction along the swing axis AY. Twisting in the circumferential direction, the swing frame SX swings around the swing axis AX. Similarly, the pair of torsion bars TY is twisted by the electric field by the current flowing through the metal wire CY and the magnetic field by the two magnetic pieces of the permanent magnet MG aligned in the direction along the swing frame AX, and the swing plate SY swings. Swing around the dynamic axis AY.
 また、図5Aに示すように、金属配線CX及びCYは、制御部16に接続されている。制御部16は、金属配線CX及びCYに駆動信号DX及びDYを供給する。駆動力生成部23は、駆動信号DX及びDYの印加によって、可動部22及び光反射膜24を揺動させる電磁気力を生成する。 Further, as shown in FIG. 5A, the metal wires CX and CY are connected to the control unit 16. Control unit 16 supplies drive signals DX and DY to metal interconnections CX and CY. The driving force generation unit 23 generates an electromagnetic force that causes the movable portion 22 and the light reflecting film 24 to swing by application of the driving signals DX and DY.
 なお、本実施例においては、光反射膜24は、円板形状を有する。また、光反射膜24は、揺動軸AX及びAYに直交する中心軸ACを有する。可動部22及び光反射膜24は、光反射膜24の中心軸ACに関して90度回転対称に形成されている。 In the present embodiment, the light reflecting film 24 has a disk shape. The light reflection film 24 has a central axis AC orthogonal to the swing axes AX and AY. The movable portion 22 and the light reflecting film 24 are formed so as to be rotationally symmetric by 90 degrees with respect to the central axis AC of the light reflecting film 24.
 また、図5Bを参照すると、本実施例においては、固定部21の固定基板B1は、凹部を有する。また、固定枠B2は、固定基板B1の当該凹部に可動部22を懸架するように固定基板B1に固定されている。また、固定枠B2及び可動部22(揺動枠SX、揺動板SY並びにトーションバーTX及びTY)は、例えば半導体基板を加工することで形成された当該半導体基板の部分である。 Further, referring to FIG. 5B, in the present embodiment, the fixed substrate B1 of the fixed portion 21 has a recess. The fixed frame B2 is fixed to the fixed substrate B1 so as to suspend the movable portion 22 in the recess of the fixed substrate B1. The fixed frame B2 and the movable portion 22 (the swing frame SX, the swing plate SY, and the torsion bars TX and TY) are parts of the semiconductor substrate formed by processing, for example, a semiconductor substrate.
 光反射膜24は、揺動板SYと共に、固定基板B1の凹部に揺動可能に懸架(支持)されている。また、永久磁石MGは、固定基板B1上における凹部の外側に形成されている。また、本実施例においては、トーションバーTX及びTYがねじれることで、固定枠B2の内側において、トーションバーTX及びTYを挟んだ可動部22の両端部が固定基板B1の凹部に向かう方向及び離れる方向に揺動する。また、光反射膜24は、中心軸AC上の1点を揺動中心とし、固定枠B2に対して傾斜するように揺動する。 The light reflection film 24 is swingably suspended (supported) in the recess of the fixed substrate B1 together with the swing plate SY. The permanent magnet MG is formed outside the recess on the fixed substrate B1. Further, in the present embodiment, the torsion bars TX and TY are twisted, so that both ends of the movable portion 22 sandwiching the torsion bars TX and TY in the inside of the fixed frame B2 move in the direction and toward the recess of the fixed substrate B1. Swing in the direction. In addition, the light reflecting film 24 swings with respect to the fixed frame B2 with one point on the central axis AC as a swing center.
 光反射膜24(光反射面24A)が揺動することで、出射光L1の反射方向、すなわち走査光L2の出射方向が変化する。このようにして、走査部12は、走査光L2を用いて走査領域R0の走査を行う。すなわち、本実施例においては、走査部12は、出射光L1の出射方向を連続的に変化させることで走査領域R0を所定の周期で周期的に走査する。 As the light reflecting film 24 (light reflecting surface 24A) swings, the reflection direction of the outgoing light L1, that is, the outgoing direction of the scanning light L2 changes. Thus, the scanning unit 12 scans the scanning region R0 using the scanning light L2. That is, in the present embodiment, the scanning unit 12 periodically scans the scanning region R0 at a predetermined cycle by continuously changing the emission direction of the outgoing light L1.
 図6は、制御部16が生成する駆動信号DX及びDYと、これに基づいた光反射膜24の揺動状態の変化及び走査光L2の走査軌道と、の関係を模式的に示す図である。図6を用いて、走査部12による走査領域R0の走査態様について説明する。 FIG. 6 is a diagram schematically showing the relationship between the drive signals DX and DY generated by the control unit 16 and the change in the swing state of the light reflecting film 24 based on this and the scanning trajectory of the scanning light L2. . The scanning aspect of scanning area R0 by the scanning part 12 is demonstrated using FIG.
 まず、制御部16が生成する駆動信号DXは、A1及びB1を定数とし、θ1を変数としたとき、DX(θ1)=A1sin(θ1+B1)の式で示される正弦波の信号である。また、駆動信号DYは、A2及びB2を定数とし、θ2を変数としたとき、DY(θ2)=A2sin(θ2+B2)の式で示される正弦波の信号である。 First, the drive signal DX generated by the control unit 16 is expressed by the equation DX (θ 1 ) = A 1 sin (θ 1 + B 1 ), where A 1 and B 1 are constant and θ 1 is a variable. It is a sine wave signal. The drive signal DY is a sine wave signal represented by the equation DY (θ 2 ) = A 2 sin (θ 2 + B 2 ), where A 2 and B 2 are constants and θ 2 is a variable. .
 また、変数θ1には、駆動信号DXが、走査部12のトーションバーTX、揺動枠SX、トーションバーTY及び揺動板SYの共振周波数に対応する周波数の正弦波となるように設定される。また、変数θ2は、駆動信号DYが、走査部12のトーションバーTY及び揺動板SYの共振周波数に対応する周波数の正弦波となるように設定される。 Further, the variable θ 1 is set such that the drive signal DX is a sine wave of a frequency corresponding to the resonance frequency of the torsion bar TX of the scanning unit 12, the swing frame SX, the torsion bar TY and the swing plate SY. Ru. Further, the variable theta 2, the drive signal DY is set to be a sine wave of a frequency corresponding to the resonance frequency of the torsion bar TY and the swinging plate SY scanning unit 12.
 従って、光反射膜24(揺動板SY)は、揺動軸AXを中心に共振し、かつ揺動軸AYを中心に共振する。従って、図6に示すように、走査領域R0の走査面R1を見たとき、光反射膜24に反射された出射光L1である走査光L2は、リサージュ曲線を描くような軌跡TR(L2)を示す。 Accordingly, the light reflection film 24 (the swinging plate SY) resonates around the swing axis AX and resonates around the swing axis AY. Therefore, as shown in FIG. 6, when the scanning surface R1 of the scanning region R0 is viewed, the scanning light L2 which is the outgoing light L1 reflected by the light reflecting film 24 has a locus TR (L2) that draws a Lissajous curve. Indicates
 換言すれば、本実施例においては、走査部12は、出射光L1を反射させかつ互いに直交する第1及び第2の揺動軸AX及びAYを中心に揺動する光反射面12Aを有し、リサージュ曲線に従った軌跡TRを描くように走査領域R0を走査する走査態様を有する。 In other words, in the present embodiment, the scanning unit 12 has the light reflecting surface 12A that reflects the emitted light L1 and swings about the first and second swing axes AX and AY orthogonal to each other. , And has a scanning aspect in which the scanning region R0 is scanned so as to draw a locus TR according to the Lissajous curve.
 なお、上記した走査部12の構成は一例に過ぎない。例えば、走査部12は、リサージュ曲線に従った軌道で走査領域R0を走査する場合に限定されない。例えば、走査部12は、ラスタースキャンを行う軌道を有していてもよいし、走査周期毎にその走査軌道が異なっていてもよい。走査部12は、出射光L1(走査光L2)によって走査領域R0を走査するように構成されていればよい。 The configuration of the scanning unit 12 described above is merely an example. For example, the scanning unit 12 is not limited to the case of scanning the scanning region R0 in the trajectory according to the Lissajous curve. For example, the scanning unit 12 may have a trajectory for performing raster scan, or the scanning trajectory may be different for each scanning cycle. The scanning unit 12 may be configured to scan the scanning region R0 with the outgoing light L1 (scanning light L2).
 また、本実施例においては、受光部14がマトリクス状に配置された複数の光電変換素子E11~E46を有する光検出器14Bを有する場合について説明した。しかし、受光部14の構成はこれに限定されない。例えば分光光L41~L46の各々を異なる素子によって検出する場合、受光部14は、光を検出する複数の受光素子が、分光部13による反射光L3の分光方向(伸長方向)に沿って配置されていればよい。また、受光部14は、複数の受光素子を有していなくてもよく、分光光群L4の一部又は全部を受光するように構成されていればよい。 Further, in the present embodiment, the case has been described where the light receiving unit 14 includes the photodetector 14B having the plurality of photoelectric conversion elements E11 to E46 arranged in a matrix. However, the configuration of the light receiving unit 14 is not limited to this. For example, when each of the spectral lights L41 to L46 is detected by a different element, a plurality of light receiving elements for detecting light are arranged along the spectral direction (extension direction) of the reflected light L3 by the spectral unit 13. It should just be. In addition, the light receiving unit 14 may not have a plurality of light receiving elements, and may be configured to receive part or all of the spectral light group L4.
 上記したように、測距装置10は、所定の波長帯域λ1~λ6の出射光L1を出射する光源部11と、出射光L1によって所定の領域R0を走査する走査部12と、出射光L1が所定の領域R0内に存在する対象物OBによって反射した反射光L3を受光する受光部14と、受光部14に受光される反射光L3を分光し、受光部14上における反射光L3を所定の伸長方向に伸長させる分光部13と、受光部14によって受光された光に基づいて、対象物OBまでの距離を測定する測距部15と、を有する。従って、対象物OBからの反射光L3を正確に検出し、走査領域R0内の正確な測距を行うことが可能な測距装置10を提供することができる。 As described above, the distance measuring apparatus 10 includes the light source unit 11 that emits the emitted light L1 in the predetermined wavelength band λ1 to λ6, the scanning unit 12 that scans the predetermined region R0 with the emitted light L1, and the emitted light L1. The light receiving unit 14 receives the reflected light L3 reflected by the object OB present in the predetermined region R0, and the reflected light L3 received by the light receiving unit 14 is separated, and the reflected light L3 on the light receiving unit 14 is predetermined It has a light separating unit 13 which extends in the extending direction, and a distance measuring unit 15 which measures the distance to the object OB based on the light received by the light receiving unit 14. Therefore, it is possible to provide the distance measuring apparatus 10 capable of accurately detecting the reflected light L3 from the object OB and performing accurate distance measurement in the scanning region R0.
 また、本実施例においては、受光部14が生成した受光信号SRは測距以外の用途にも用いられることができる。すなわち、測距装置10は、測距部15を有する場合に限定されない。例えば、光源部11、走査部12、分光部13及び受光部14は、走査装置を構成する。この場合においても、対象物OBからの反射光L3を正確に検出し、走査領域R0内の正確な光走査を行うことが可能な走査装置を提供することができる。 Further, in the present embodiment, the light reception signal SR generated by the light reception unit 14 can be used for applications other than distance measurement. That is, the distance measuring apparatus 10 is not limited to the case where the distance measuring unit 15 is provided. For example, the light source unit 11, the scanning unit 12, the spectral unit 13, and the light receiving unit 14 constitute a scanning device. Also in this case, it is possible to provide a scanning device capable of accurately detecting the reflected light L3 from the object OB and performing accurate light scanning in the scanning region R0.
 また、測距装置10は、走査部12を有する場合に限定されない。例えば、光源部11からの出射光L1を対象物OBに向けて出射し、この反射光を分光して検出することで、対象物OBからの反射光を正確に受光し、対象物OBを正確に検出することが可能な光検出装置を提供することができる。 Further, the distance measuring apparatus 10 is not limited to the case where the scanning unit 12 is provided. For example, the emitted light L1 from the light source unit 11 is emitted toward the object OB, and the reflected light is separated and detected to accurately receive the reflected light from the object OB, and the object OB is accurately detected. It is possible to provide a light detection device capable of detecting
 すなわち、本発明に係る光検出装置は、例えば、出射光L1を出射する光源部11と、出射光L1が対象物OBによって反射した反射光L3を分光して、所定の伸長方向に伸長させた分光光L41~L46として出力する分光部13と、光を検出する複数の受光素子が分光光L41~L46の伸長方向に沿って配置された受光部14と、を有する。従って、正確な光検出を行う光検出装置を提供することができる。 That is, in the light detection device according to the present invention, for example, the light source unit 11 for emitting the emitted light L1 and the reflected light L3 which the emitted light L1 is reflected by the object OB are dispersed and extended in a predetermined extension direction. The light receiving unit 14 includes the light separating unit 13 that outputs light as the split light L41 to L46, and the light receiving unit 14 in which a plurality of light receiving elements for detecting light are arranged along the extension direction of the split light L41 to L46. Therefore, it is possible to provide a light detection device that performs accurate light detection.
 図7は、実施例2に係る測距装置30の模式的な配置図である。測距装置30は、ライン状(細長い形状)のスポット形状を有する出射光L1A及び走査光L2Aを用いて走査領域R0を走査する点、及びライン状の反射光L3Aを分光して受光する点を除いては、測距装置10と同様の構成を有する。 FIG. 7 is a schematic layout view of the distance measuring apparatus 30 according to the second embodiment. The distance measuring device 30 scans the scanning region R0 using the emission light L1A and the scanning light L2A having a linear (long and narrow shape) spot shape, and a point for separating and receiving the linear reflected light L3A. Except for this, the configuration is the same as that of the distance measuring apparatus 10.
 本実施例においては、測距装置30は、ライン状の出射光L1Aを出射する光源部31と、当該ライン状の出射光L1Aを走査光L2Aとして用い、走査領域R0を走査する走査部32とを有する。従って、対象物OBからは、略ライン状の反射光L3Aが戻って来ることが想定される。 In the present embodiment, the distance measuring device 30 includes a light source unit 31 that emits a linear emission light L1A, and a scanning unit 32 that scans the scanning region R0 using the linear emission light L1A as a scanning light L2A. Have. Therefore, it is assumed that a substantially linear reflected light L3A is returned from the object OB.
 また、測距装置30は、ライン状の反射光L3Aを分光するように構成された分光部33と、分光部33によって分光されたライン状の分光光群L4Aを受光及び検出するように構成された受光部34と、を有する。また、測距装置30は、これらの動作制御を行う制御部36を有する。 In addition, the distance measuring device 30 is configured to receive and detect a line-like spectral light group L4A separated by the light separating part 33 configured to separate the linear reflected light L3A and the light separating part 33. And the light receiving unit 34. In addition, the distance measuring device 30 has a control unit 36 that controls these operations.
 本実施例においては、例えば、走査部32は、1つの揺動軸を中心に光反射膜12Aを揺動させるように構成されたMEMSミラーからなる。従って、走査領域R0は、出射光L1Aが反射された光である走査光L2によって、1次元方向に走査される。 In the present embodiment, for example, the scanning unit 32 is a MEMS mirror configured to swing the light reflection film 12A around one swing axis. Therefore, the scanning region R0 is scanned in a one-dimensional direction by the scanning light L2 which is the light obtained by reflecting the outgoing light L1A.
 図8は、測距装置30の構成例を模式的に示す図である。また、図9は、測距装置30の受光部34の構成を示す図である。図8及び図9を用いて、測距装置30の構成及び測距装置10内の光の進路について説明する。 FIG. 8 is a view schematically showing a configuration example of the distance measuring device 30. As shown in FIG. FIG. 9 is a diagram showing the configuration of the light receiving unit 34 of the distance measuring device 30. As shown in FIG. The configuration of the distance measuring device 30 and the path of light in the distance measuring device 10 will be described with reference to FIGS. 8 and 9.
 まず、本実施例においては、光源部31は、ライン状の一次光L11Aを生成する光源31Aと、一次光L11Aを整形して整形光L12Aを生成する整形光学系31Bと、整形光L12Aを出射光L1Aとして投光する投光光学系31Cとからなる。 First, in the present embodiment, the light source unit 31 outputs the light source 31A that generates the linear primary light L11A, the shaping optical system 31B that shapes the primary light L11A to generate the shaped light L12A, and the shaped light L12A. It is composed of a projection optical system 31C that emits light as the projection light L1A.
 本実施例においては、整形光学系31Bは、例えば、一次光L11Aを相似形状で拡大するエキスパンダからなる。すなわち、整形光学系31Bは、ライン状の中間像を生成する。従って、光源部31は、投光光学系31Cから、第1の方向D1に沿ってライン状に延びたスポット形状の光を出射光L1Aとして出射する。なお、図8には、出射光L1Aのスポット形状、すなわち出射光L1Aの光軸に垂直な方向における出射光L1Aの断面形状を示した。 In the present embodiment, the shaping optical system 31B is, for example, an expander that expands the primary light L11A with a similar shape. That is, the shaping optical system 31B generates a line-shaped intermediate image. Therefore, the light source unit 31 emits, from the light projecting optical system 31C, light of a spot shape extending in a line along the first direction D1 as the emitted light L1A. FIG. 8 shows the spot shape of the emitted light L1A, that is, the cross-sectional shape of the emitted light L1A in the direction perpendicular to the optical axis of the emitted light L1A.
 また、走査部32は、第1の方向D1に垂直な第2の方向D2に沿って出射光L1Aの反射方向を変化させるように構成されている。すなわち、走査部32は、出射光L1Aを反射させかつ出射光L1Aの反射方向を第2の方向D2に沿って変化させる光反射面12Aを有する。以下においては、第1の方向D1を出射光L1Aの長さ方向と称し、第2の方向D2を出射光L1Aの幅方向と称する。 In addition, the scanning unit 32 is configured to change the reflection direction of the emitted light L1A along a second direction D2 perpendicular to the first direction D1. That is, the scanning unit 32 has a light reflecting surface 12A that reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2. Hereinafter, the first direction D1 is referred to as the length direction of the emitted light L1A, and the second direction D2 is referred to as the width direction of the emitted light L1A.
 なお、例えば図7に示すように、本実施例においては、走査領域R0(走査面R1)は、走査部32の光反射面12Aの揺動範囲に対応する。 For example, as shown in FIG. 7, in the present embodiment, the scanning region R0 (scanning surface R1) corresponds to the swing range of the light reflecting surface 12A of the scanning unit 32.
 本実施例においては、対象物OBからの反射光L3Aは、出射光L1Aの長さ方向D1に対応する方向にライン状に延びたスポット形状を有する。分光部33及び受光部34は、この反射光L3Aを受光するのに適した形状及びサイズを有する。 In the present embodiment, the reflected light L3A from the object OB has a spot shape extending in a line in the direction corresponding to the longitudinal direction D1 of the outgoing light L1A. The spectroscope 33 and the light receiver 34 have a shape and a size suitable for receiving the reflected light L3A.
 分光部33は、出射光L1Aの幅方向D2に対応する方向範囲内において波長に応じて分光することで、異なる方向に向けて反射光L3Aを分光光群L4Aとして出射する。従って、例えば分光部33が反射光L3Aを6つの分光光L41A(λ1)~L46A(λ6)に分光する場合、その各々がライン状のスポット形状を有する。また、分光光L41A~L46Aの各々は、その幅方向に沿って配列される。 The spectroscope 33 splits the light according to the wavelength in the direction range corresponding to the width direction D2 of the emitted light L1A, and emits the reflected light L3A as a separated light group L4A in different directions. Therefore, for example, when the light splitting unit 33 splits the reflected light L3A into six split lights L41A (λ1) to L46A (λ6), each of them has a linear spot shape. Further, each of the spectral lights L41A to L46A is arranged along its width direction.
 受光部34は、受光光学系34Aと、光検出器34Bとを有する。図9に示すように、光検出器34Bは、出射光L1Aの長さ方向D1に対応する方向に沿って整列した複数のフォトンカウンタC1~Cmを有する。 The light receiving unit 34 includes a light receiving optical system 34A and a light detector 34B. As shown in FIG. 9, the photodetector 34B has a plurality of photon counters C1 to Cm aligned along a direction corresponding to the longitudinal direction D1 of the emitted light L1A.
 また、当該フォトンカウンタC1~Cmの各々は、光検出器14Bと同様に、マトリクス状の配置された複数の光電変換素子E11~E46を有する。本実施例においては、フォトンカウンタC1~Cmの各々における光電変換素子E11~E46の列方向が、出射光L1Aの長さ方向D1に対応する。 Further, each of the photon counters C1 to Cm has a plurality of photoelectric conversion elements E11 to E46 arranged in a matrix, similarly to the photodetector 14B. In the present embodiment, the column direction of the photoelectric conversion elements E11 to E46 in each of the photon counters C1 to Cm corresponds to the lengthwise direction D1 of the emitted light L1A.
 従って、本実施例においては、光検出器34Bは、4行6列の光電変換素子E11~E46からなるフォトンカウンタが当該光電変換素子E11~E46の行方向に沿って複数個配列された構成を有するラインセンサである。また、本実施例においては、フォトンカウンタC1~Cmの各々は、独立して検出動作を行う。これによって、フォトンカウンタC1~Cmの各々から異なる検出結果が得られ、この検出結果の各々が走査領域R0内の各場所に応じた走査結果となる。 Therefore, in the present embodiment, the photodetector 34B has a configuration in which a plurality of photon counters each including photoelectric conversion elements E11 to E46 of 4 rows and 6 columns are arranged along the row direction of the photoelectric conversion elements E11 to E46. It is a line sensor which it has. Also, in the present embodiment, each of the photon counters C1 to Cm independently performs the detection operation. As a result, different detection results are obtained from each of the photon counters C1 to Cm, and each of the detection results becomes a scanning result corresponding to each place in the scanning region R0.
 また、本実施例においては、分光部33は、出射光L1Aの幅方向D2に対応する方向範囲において波長毎に異なる方向に光を出射することで反射光L3Aを分光する。また、図9に示すように、受光部34の光検出器34BにおけるフォトンカウンタC1~Cmの各々は、出射光L1Aの幅方向D2に対応する方向に沿って設けられた複数の光電変換素子(例えば光電変換素子E11~E16)を有する。ライン状の6つの分光光L41A(λ1)~L46A(λ6)は、フォトンカウンタC1~Cmの各々の各列の光電変換素子に入射するように配置されている。例えば、分光光L41Aは、フォトンカウンタC1~Cmの各々の1列目の光電変換素子E11~E41に入射する。すなわち、分光光群L4nAは、フォトンカウンタC1~Cmの各々のn列目の光電変換素子E1n~E4nに入射する(nは2~6)。 Further, in the present embodiment, the light splitting unit 33 splits the reflected light L3A by emitting light in different directions for each wavelength in the direction range corresponding to the width direction D2 of the emitted light L1A. Further, as shown in FIG. 9, each of the photon counters C1 to Cm in the light detector 34B of the light receiving unit 34 is provided with a plurality of photoelectric conversion elements (along with a direction corresponding to the width direction D2 of the emitted light L1A For example, photoelectric conversion elements E11 to E16) are provided. The six linear light beams L41A (λ1) to L46A (λ6) are arranged to be incident on the photoelectric conversion elements of the respective rows of the photon counters C1 to Cm. For example, the spectral light L41A is incident on the photoelectric conversion elements E11 to E41 in the first row of each of the photon counters C1 to Cm. That is, the spectral light group L4nA is incident on the nth photoelectric conversion elements E1n to E4n of the photon counters C1 to Cm (n is 2 to 6).
 本実施例に示すように、測距装置30は、出射光L1A(走査光L2A)としてライン状の光を用いて走査領域R0を走査する。この場合においても、分光部33を用いることで、反射光L3Aを容易に整形し、例えば光検出器34Bの全体に反射光L3Aを入射させることができる。従って、正確にかつ高いダイナミックレンジで走査領域R0内の走査を行うことができ、正確な測距を行うことができる。 As shown in the present embodiment, the distance measuring device 30 scans the scanning region R0 using linear light as the outgoing light L1A (scanning light L2A). Also in this case, by using the light separating unit 33, the reflected light L3A can be easily shaped, and for example, the reflected light L3A can be incident on the entire light detector 34B. Therefore, scanning within the scanning region R0 can be performed accurately and with a high dynamic range, and accurate distance measurement can be performed.
 また、本実施例においても、分光部33は反射光L3に対応する波長帯の背景光を含む場合がある。従って、例えば図4に示すように、受光部34は、分光部33によって分光された反射光L3Aのうちの波長帯域λ1~λ6の光が照射される位置に光検出器34Bを配置し、波長帯域λ1~λ6以外の光が光検出器34Bに照射されないように装置を構成することで、正確に出射光L1Aに対応する分光光群L4Aを検出することができる。 Further, also in the present embodiment, the light separating unit 33 may include background light of a wavelength band corresponding to the reflected light L3. Therefore, for example, as shown in FIG. 4, the light receiving unit 34 arranges the light detector 34B at the position where the light of the wavelength band .lambda.1 to .lambda.6 of the reflected light L3A split by the splitting unit 33 is irradiated. By configuring the apparatus so that light other than the bands λ1 to λ6 is not irradiated to the light detector 34B, it is possible to accurately detect the spectral light group L4A corresponding to the emitted light L1A.
 また、ライン状の出射光L1Aを用いることで、走査部12の構成が単純なものとなり、装置が小型化される。また、ラインセンサとしてフォトンカウンタC1~Cmの各々を用いることで、走査領域R0を短時間かつ高感度で走査することができる。 Further, by using the linear emission light L1A, the configuration of the scanning unit 12 is simplified, and the apparatus is miniaturized. In addition, by using each of the photon counters C1 to Cm as a line sensor, the scanning region R0 can be scanned with high sensitivity in a short time.
 なお、本実施例においては、第2の方向D2が第1の方向D1に垂直な方向であり、走査部32が出射光L1Aの反射方向を第2の方向D2に沿った方向に沿って変化させる場合について説明した。しかし、第2の方向D2は、第1の方向D1に対して角度を持った方向、例えば走査光L2Aの光軸に垂直な方向において第1の方向D1とは異なる方向であればよい。 In the present embodiment, the second direction D2 is a direction perpendicular to the first direction D1, and the scanning unit 32 changes the reflection direction of the emitted light L1A along the second direction D2. The case was described. However, the second direction D2 may be a direction having an angle with respect to the first direction D1, for example, a direction different from the first direction D1 in the direction perpendicular to the optical axis of the scanning light L2A.
 すなわち、走査部32は、出射光L1Aを反射させかつ出射光L1Aの反射方向を第1の方向D1に対して角度を持った第2の方向D2に沿って変化させる光反射面12Aを有していればよい。なお、第2の方向D2が第1の方向D1に垂直な方向であると、走査部32、分光部33及び受光部34の設計が容易となる。 That is, the scanning unit 32 has the light reflecting surface 12A that reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2 having an angle with respect to the first direction D1. It should just be. When the second direction D2 is a direction perpendicular to the first direction D1, the design of the scanning unit 32, the light separating unit 33, and the light receiving unit 34 is facilitated.
 このように、測距装置30(走査装置又は光検出装置についても同様である)においては、光源部31は、第1の方向D1に沿ってライン状に延びたスポット形状の光を出射光L1Aとして出射し、走査部32は、出射光L1Aを反射させかつ出射光L1Aの反射方向を第1の方向D1に対して角度を持った第2の方向D2に沿って変化させる光反射面12Aを有する。 As described above, in the distance measuring device 30 (the same applies to the scanning device or the light detecting device), the light source unit 31 emits the light L1A having a spot shape extending in a line along the first direction D1. And the scanning unit 32 reflects the emitted light L1A and changes the reflection direction of the emitted light L1A along the second direction D2 having an angle with respect to the first direction D1. Have.
 また、分光部33は、第2の方向D2に沿った方向範囲において波長に応じて異なる方向に光を出射することで反射光L3Aを分光し、受光部34の光検出器34Bは、第1の方向D1に沿って整列した複数のフォトンカウンタC1~Cmを有する。従って、対象物OBからの反射光L3Aを正確に検出し、対象物OBまでの距離を正確に測定することが可能な測距装置30を提供することができる。 Further, the light separating unit 33 separates the reflected light L3A by emitting light in different directions according to the wavelength in the direction range along the second direction D2, and the light detector 34B of the light receiving unit 34 The plurality of photon counters C1 to Cm aligned along the direction D1 of Therefore, it is possible to provide the distance measuring apparatus 30 capable of accurately detecting the reflected light L3A from the object OB and accurately measuring the distance to the object OB.
10、30 測距装置
11、31 光源部
12、32 走査部
13、33 分光部
14、34 受光部
15、35 測距部
10, 30 distance measuring device 11, 31 light source unit 12, 32 scanning unit 13, 33 spectral unit 14, 34 light receiving unit 15, 35 distance measuring unit

Claims (7)

  1.  出射光を出射する光源部と、
     前記出射光によって所定の領域を走査する走査部と、
     前記出射光が対象物によって反射した反射光を受光する受光部と、
     前記受光部に受光される前記反射光を分光し、前記受光部上における前記反射光を所定の伸長方向に伸長させる分光部と、を有することを特徴とする走査装置。
    A light source unit that emits outgoing light;
    A scanning unit configured to scan a predetermined area by the emitted light;
    A light receiving unit that receives the reflected light that the outgoing light has reflected by the object;
    A scanning unit that separates the reflected light received by the light receiving unit and expands the reflected light on the light receiving unit in a predetermined extension direction;
  2.  前記受光部の前記伸長方向の長さは、前記受光部上における前記反射光の前記伸長方向の長さ以下であることを特徴とする請求項1に記載の走査装置。 The scanning device according to claim 1, wherein a length of the light receiving portion in the extension direction is equal to or less than a length of the reflected light on the light receiving portion in the extension direction.
  3.  前記受光部には、光を検出する複数の受光素子が、前記受光部上における前記反射光の前記伸長方向に沿って配置されていることを特徴とする請求項1又は2に記載の走査装置。 The scanning device according to claim 1 or 2, wherein a plurality of light receiving elements for detecting light are arranged in the light receiving portion along the extending direction of the reflected light on the light receiving portion. .
  4.  前記複数の受光素子は、マトリクス状に配置されていることを特徴とする請求項3に記載の走査装置。 The scanning device according to claim 3, wherein the plurality of light receiving elements are arranged in a matrix.
  5.  前記分光部は、光をその波長に応じた方向に導くことで、前記反射光を前記伸長方向へ伸長させることを特徴とする請求項1乃至4のいずれか1つに記載の走査装置。 The scanning device according to any one of claims 1 to 4, wherein the light separating unit extends the reflected light in the extending direction by guiding the light in a direction according to a wavelength of the light.
  6.  前記受光部は、前記反射光と共に前記受光部に照射される背景光のうち、前記反射光の波長帯域以外の光が入射しないように配置されていることを特徴とする請求項1乃至5のいずれか1つに記載の走査装置。 6. The light receiving unit according to claim 1, wherein among the background light irradiated to the light receiving unit along with the reflected light, light other than the wavelength band of the reflected light is not incident. The scanning device according to any one.
  7.  出射光を出射する光源部と、
     前記出射光が対象物によって反射した反射光を分光して、所定の伸長方向に伸長させた分光光として出力する分光部と、
     光を検出する複数の受光素子が前記分光光の前記伸長方向に沿って配置された受光部と、を有することを特徴とする光検出装置。
    A light source unit that emits outgoing light;
    A spectroscope unit that spectrally separates the reflected light that the outgoing light has reflected by the object, and outputs it as spectral light that is expanded in a predetermined extension direction;
    And a light receiving unit in which a plurality of light receiving elements for detecting light are arranged along the extension direction of the spectral light.
PCT/JP2018/046472 2017-12-25 2018-12-18 Scanning device and light detection device WO2019131307A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561536A JPWO2019131307A1 (en) 2017-12-25 2018-12-18 Scanning device and photodetector
JP2022108229A JP2022125206A (en) 2017-12-25 2022-07-05 Scanning device and light detection device
JP2023216515A JP2024019680A (en) 2017-12-25 2023-12-22 Scanning device and photodetection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247395 2017-12-25
JP2017-247395 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131307A1 true WO2019131307A1 (en) 2019-07-04

Family

ID=67067212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046472 WO2019131307A1 (en) 2017-12-25 2018-12-18 Scanning device and light detection device

Country Status (2)

Country Link
JP (3) JPWO2019131307A1 (en)
WO (1) WO2019131307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023018951A (en) * 2021-07-28 2023-02-09 株式会社リコー Optical detector and distance measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (en) * 2012-12-07 2014-06-26 Shimadzu Corp Photodiode array detector
CN106125090A (en) * 2016-06-16 2016-11-16 中国科学院光电研究院 Spectral apparatus is selected in a kind of light splitting for EO-1 hyperion laser radar
JP2017015403A (en) * 2015-06-26 2017-01-19 株式会社デンソー Laser distance metering device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187484A1 (en) * 2016-04-25 2017-11-02 株式会社日立製作所 Object imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (en) * 2012-12-07 2014-06-26 Shimadzu Corp Photodiode array detector
JP2017015403A (en) * 2015-06-26 2017-01-19 株式会社デンソー Laser distance metering device
CN106125090A (en) * 2016-06-16 2016-11-16 中国科学院光电研究院 Spectral apparatus is selected in a kind of light splitting for EO-1 hyperion laser radar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023018951A (en) * 2021-07-28 2023-02-09 株式会社リコー Optical detector and distance measuring device
JP7310859B2 (en) 2021-07-28 2023-07-19 株式会社リコー Photodetector and rangefinder

Also Published As

Publication number Publication date
JP2022125206A (en) 2022-08-26
JP2024019680A (en) 2024-02-09
JPWO2019131307A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US10305247B2 (en) Radiation source with a small-angle scanning array
JP4978515B2 (en) Probe apparatus and terahertz spectrometer
JP2018529102A (en) LIDAR sensor
JPH10332326A (en) Photoelectronic sensor
US10151629B2 (en) Spectral imaging sensors and methods with time of flight sensing
JP2009210421A (en) Terahertz spectrometer
US9816868B2 (en) Device for measuring temperature distribution
US20230251084A1 (en) Optical device
JP2024019680A (en) Scanning device and photodetection device
JPH06331441A (en) Measuring device for fluorescence spectral image
US20210173051A1 (en) Optoelectronic sensor and method for detecting an object
US20210311193A1 (en) Lidar sensor for optically detecting a field of vision, working device or vehicle including a lidar sensor, and method for optically detecting a field of vision
CN110312947B (en) Lidar sensor for detecting objects
JP2022534950A (en) Active illumination system that changes the illumination wavelength according to the angle of view
CN108885260B (en) Time-of-flight detector with single axis scanning
WO2019031403A1 (en) Optical device
WO2019031327A1 (en) Optical apparatus
CN207541269U (en) All band three-dimensional EO-1 hyperion laser radar
JP2022545013A (en) Light receiving unit for lidar equipment
EP3879304A1 (en) Laser radar device
CN112888975B (en) Bandpass filter for light with variable upper and lower limiting wavelengths
JP6876811B2 (en) Optical device
JP2020046340A (en) Light projection device, light projection/reception device, ranging device, method of controlling light projection device, program, and recording medium
WO2019172166A1 (en) Scanning device and distance measuring device
CN113597569A (en) Lidar system with holographic imaging optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896127

Country of ref document: EP

Kind code of ref document: A1