WO2019172166A1 - Scanning device and distance measuring device - Google Patents

Scanning device and distance measuring device Download PDF

Info

Publication number
WO2019172166A1
WO2019172166A1 PCT/JP2019/008322 JP2019008322W WO2019172166A1 WO 2019172166 A1 WO2019172166 A1 WO 2019172166A1 JP 2019008322 W JP2019008322 W JP 2019008322W WO 2019172166 A1 WO2019172166 A1 WO 2019172166A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
unit
scanning
transmitted
Prior art date
Application number
PCT/JP2019/008322
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 落合
佐藤 充
柳澤 琢麿
小笠原 昌和
亮 出田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019172166A1 publication Critical patent/WO2019172166A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a scanning device that performs optical scanning and a ranging device that performs optical ranging.
  • distance measuring devices that measure the distance to an object by irradiating the object with light and detecting the light reflected by the object are known.
  • an optical scanning type distance measuring device that performs optical scanning of an object and obtains information related to the shape and orientation of the object in addition to the distance to the object.
  • the scanning type distance measuring device includes, as a scanning device, a MEMS (Micro Electro Mechanical Systems) mirror, a light source that emits light toward the mirror, and a light receiving unit that receives reflected light from an object.
  • a MEMS Micro Electro Mechanical Systems
  • Patent Document 1 discloses a distance measuring unit that measures a distance to an object to be measured based on an elapsed time from when light is emitted from a light projecting unit to when reflected light is received by a light receiving unit
  • An optical radar device is disclosed that includes a bandpass filter that guides light of a certain wavelength to a light receiving unit.
  • a scanning distance measuring device projects, for example, a pulsed laser beam toward a scanning region, and receives and detects reflected light (light pulse) from an object, thereby optically detecting in the scanning region. Get information. Considering that accurate scanning information (light information) is obtained, the light received by the device has little noise light, for example, light that is not caused by light emitted from the device such as ambient light is reflected in the reflected light. On the other hand, a small amount is preferable. Therefore, for example, it is conceivable to use high output light for scanning.
  • the characteristics of a light source that generates light emitted from the apparatus often change depending on the usage environment (for example, temperature, humidity, usage time, etc.). Therefore, for example, even when a part of the received optical signal is removed by a filter, not only the noise component but also the signal component (pulse component) may be removed, or the noise component may not be sufficiently removed.
  • the present invention has been made in view of the above points, and projects an appropriate amount of light onto an object and appropriately removes a noise component of the received light so that accurate light within a scanning region can be obtained.
  • An object is to provide a scanning device and a distance measuring device capable of performing scanning.
  • the invention according to claim 1 is a light source unit, a first filter that transmits only a part of the wavelength band of light emitted from the light source unit as the first transmitted light, and the first transmitted light.
  • a first filter that transmits only a part of the wavelength band of light emitted from the light source unit as the first transmitted light
  • the first transmitted light Of the wavelength region that overlaps the wavelength region of the first transmitted light among the reflected light reflected by the object in the predetermined region It has the 2nd filter which permeate
  • the invention according to claim 9 includes the scanning device according to claim 1, and a distance measuring unit that measures the distance to the object based on the result of receiving the second transmitted light by the light receiving unit. It is characterized by that.
  • a light source unit a deflecting unit for projecting light emitted from the light source unit toward a predetermined region while deflecting light emitted from the light source unit in a variable direction, and the scanning light in a predetermined region.
  • a light receiving unit that receives reflected light reflected by the object inside, and a filter provided on the optical path of the emitted light and on the optical path of the reflected light.
  • FIG. 3 is a diagram illustrating an arrangement example of distance measuring apparatuses according to the first embodiment.
  • 1 is a diagram illustrating a configuration example of a scanning device in a distance measuring device according to Embodiment 1.
  • FIG. It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1.
  • FIG. FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. It is a figure which shows the example of a characteristic of the light which the ranging apparatus which concerns on Example 1 light-receives. It is a figure which shows the characteristic of the light which permeate
  • FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. It is a figure which shows the example of a characteristic of the light which the ranging apparatus which concerns on Example 1 light-receives. It is a figure which shows the characteristic of the light which permeate
  • FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1.
  • FIG. 6 is a top view of a deflecting unit in the distance measuring apparatus according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of a deflection unit in the distance measuring apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the structural example of the scanning apparatus in the ranging apparatus which concerns on the modification of Example 1.
  • FIG. FIG. 10 is a diagram illustrating an arrangement example of distance measuring apparatuses according to a second embodiment.
  • FIG. 10 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the second embodiment. It is a figure which shows the example of a characteristic of the light which the ranging device which concerns on Example 2 receives. It is a figure which shows the characteristic of the light which permeate
  • FIG. 10 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the second embodiment. It is a figure which shows the example of a characteristic of the light which the ranging device which concerns on Example 2 receives. It is a figure which shows the characteristic of the light which permeate
  • FIG. 1 is a schematic layout diagram of the distance measuring apparatus 10 according to the first embodiment.
  • the distance measuring device 10 is a scanning distance measuring device that performs optical scanning of a predetermined region (hereinafter referred to as a scanning region) R0 and measures the distance to the object OB existing in the scanning region R0.
  • the distance measuring device 10 will be described with reference to FIG. For clarity of illustration, FIG. 1 schematically shows the scanning region R0 and the object OB.
  • the distance measuring device 10 includes a light source unit 11 that generates and emits pulsed light (hereinafter referred to as emission light) L1.
  • the light source unit 11 generates pulsed laser light having a peak wavelength in the infrared region as the emitted light L1.
  • the distance measuring device 10 includes a filter (hereinafter referred to as a first filter) 12 that transmits a part of the wavelength range of the outgoing light L1 from the light source unit 11 as the first transmitted light L11.
  • the first filter 12 is a variable wavelength band-pass filter capable of changing the transmission wavelength region (the wavelength region of the first transmitted light L11 in the present embodiment).
  • the first filter 12 has a pair of reflective films (not shown) that face each other and whose facing interval changes.
  • the pair of reflective films constitutes a Fabry-Perot etalon.
  • the distance measuring device 10 includes a light projecting unit 13 that projects the first transmitted light L11 toward the scanning region R0 as the scanning light (light projection signal) L2.
  • the light projecting unit 13 is a deflecting unit that generates the scanning light L2 by changing the emission direction of the first transmitted light L11 and projects the scanning light L2 toward the scanning region R0. is there.
  • the distance measuring device 10 includes a deflecting unit as the light projecting unit 13 will be described.
  • the deflecting unit 13 includes a movable mirror having a movable light reflecting surface 13A that reflects the first transmitted light L11 toward the scanning region R0.
  • the deflecting unit 13 changes the direction in which the first transmitted light L11 is reflected continuously and periodically by changing the direction of the light reflecting surface 13A.
  • the deflecting unit 13 functions as a scanning unit (sweep unit) that scans (sweeps) the scanning region R0 with the scanning light L2.
  • the scanning region R0 is a virtual three-dimensional space having a width and a height corresponding to the movable range of the light reflecting surface 13A. In FIG. 1, the outer edge of the scanning region R0 is schematically shown by a broken line.
  • the object OB when the object OB is present on the optical path of the scanning light L2 in the scanning region R0, the object OB is irradiated with the scanning light L2, and the scanning light L2 is reflected by the object OB ( Scatter).
  • the distance measuring device 10 includes light (hereinafter, referred to as reflected light) L3 reflected by the object OB when the scanning light L2 is applied to the object OB (light incident on the distance measuring device 10, hereinafter referred to as “light”).
  • a filter hereinafter referred to as a second filter 14 that performs filtering on the LS (referred to as incident light) and transmits light in a part of the wavelength band included in the incident light LS as the second transmitted light L31.
  • the incident light LS refers to light incident on the second filter 14.
  • the second filter 14 has the same configuration as the first filter 12.
  • the second filter 14 is a wavelength-variable type bandpass filter capable of changing the transmission wavelength region (that is, the wavelength region of the second transmitted light L31).
  • the 2nd filter 14 should just be comprised so that the light of all or one part wavelength range of the light which permeate
  • the concrete structure is not limited. .
  • the second filter 14 is configured to transmit, as the second transmitted light L31, light in a wavelength range in which at least a part of the reflected light L3 overlaps the wavelength range of the first transmitted light L11.
  • the second filter 14 has the same transmission wavelength range as the first filter 12, or is included in the transmission wavelength range of the first filter 12 and narrower than this.
  • the light transmission characteristic is changed in conjunction with the first filter 12 so as to have
  • the distance measuring device 10 includes a light receiving unit 15 that receives and detects the second transmitted light L31.
  • the light receiving unit 15 performs photoelectric conversion on the second transmitted light L31 and generates an electrical signal (a signal indicating a scanning result, hereinafter referred to as a scanning information signal) SR according to the second transmitted light L31. To do.
  • the second filter 14 receives the light including the reflected light L3 reflected by the object OB and returned to the deflecting unit 13 as the incident light LS, and the second light 14 is generated from the incident light LS.
  • the transmitted light L31 is generated.
  • the distance measuring device 10 is provided on the optical path of the first transmitted light L11 between the first filter 12 and the light reflecting surface 13A of the deflecting unit 13, and the deflecting unit 13 includes a light projecting / receiving separation unit BS that guides the incident light LS having passed through 13 to the second filter 14.
  • the light projecting / receiving separation unit BS is a beam splitter.
  • the distance measuring device 10 has a beam splitter as the light projecting / receiving separation unit BS will be described.
  • the first transmitted light L11 which is the emitted light L1 that has passed through the first filter 12, passes through the beam splitter BS and travels toward the deflecting unit 13, and as the scanning light L2, the scanning region R0. Will be flooded.
  • the scanning light L2 is reflected by the object OB existing in the scanning region R0 to become reflected light L3, and a part thereof returns toward the light reflecting surface 13A of the deflecting unit 13.
  • the reflected light L3 is reflected by the light reflecting surface 13A, then reflected by the beam splitter BS, and enters the second filter 14. Therefore, in this embodiment, the light receiving unit 15 receives the reflected light L3 transmitted through the deflecting unit 13 and the second filter 14 as the second transmitted light L31.
  • the distance measuring device 10 includes a distance measuring unit 16 that measures the distance to the object OB based on the scanning information signal SR.
  • the distance measuring unit 16 detects the pulse of the second transmitted light L31 from the scanning information signal SR, and performs the object OB (or its object) by the time-of-flight method based on the time difference from the emission of the emission light L1. Measure the distance to some surface area.
  • the distance measuring unit 16 generates data (ranging data) indicating the measured distance information.
  • FIG. 1 exemplarily shows the scanning plane R1. Scanning and ranging of the scanning region R0 by the distance measuring device 10 are performed using the scanning light L2 emitted toward the scanning surface R1 with the scanning surface R1 as a target.
  • the distance measuring unit 16 generates data (ranging image data) for imaging the scanning region R0 based on the distance measurement data obtained by the scanning light L2 that is pulsed and projected. .
  • the distance measurement unit 16 has one distance measurement image data for every change period of the light projecting direction of the scanning light L2 by the deflecting unit 13, that is, every period of scanning the scanning region R0 (hereinafter sometimes referred to as a scanning period). Is generated.
  • the scanning cycle is, for example, in the case where light sweeping is periodically performed on the scanning region R0, from the time of an arbitrary device state (for example, the direction of the light reflecting surface 13A in the deflection unit 13), and then the device state again. The period up to the point of returning to.
  • an arbitrary device state for example, the direction of the light reflecting surface 13A in the deflection unit 13
  • the distance measurement unit 16 associates the distance measurement data with information indicating the direction of the light reflecting surface 13A, and forms an image as a two-dimensional or three-dimensional map. In the present embodiment, the distance measuring unit 16 generates the map image for each scanning cycle.
  • the distance measuring unit 16 may include a display unit (not shown) that displays a plurality of map images as moving images in time series.
  • the distance measuring device 10 includes a control unit 17 that performs operation control of the light source unit 11, the first filter 12, the deflecting unit 13, the second filter 14, the light receiving unit 15, and the distance measuring unit 16.
  • the control unit 17 supplies a drive signal DL to the light source unit 11 to drive and control the light source unit 11.
  • the control unit 17 supplies the drive signal DF to the first and second filters 12 and 14 and controls the transmission wavelength ranges of the first and second filters 12 and 14.
  • the control unit 17 supplies drive signals DX and DY to the deflecting unit 13 and controls the displacement of the light reflecting surface 13 ⁇ / b> A in the deflecting unit 13.
  • FIG. 2 is a diagram illustrating a detailed configuration example of the distance measuring device 10.
  • the light source unit 11 includes a light emitting element 11A that generates laser light and a shaping lens 11B that condenses and shapes the laser light.
  • the light emitting element 11A is made of, for example, a semiconductor laser.
  • the light receiving unit 15 includes a condenser lens 15A that receives and collects the second transmitted light L2, and a detection element 15B that detects the collected second transmitted light L2.
  • the detection element 15B includes, for example, at least one photoelectric conversion element.
  • the distance measuring device 10 includes a wavelength monitoring unit M1 that monitors the wavelength of the emitted light L1.
  • the wavelength monitoring unit M1 includes, for example, a device (not shown) that detects and stores the spectrum of the emitted light L1 and changes thereof.
  • the distance measuring device 10 includes a light amount monitoring unit M2 that monitors the light amount of the first transmitted light L11.
  • the light quantity monitoring unit M2 includes, for example, a device (not shown) that calculates and stores a light quantity (total light quantity) per unit time of the first transmitted light L11.
  • the outgoing light L1 is separated and guided to the wavelength monitoring unit M1 on the optical path of the outgoing light L1 between the light source unit 11 and the first filter 12.
  • a beam splitter is provided.
  • a beam splitter is provided on the optical path of the first transmitted light L11 between the first filter 12 and the beam splitter BS to separate the first transmitted light L11 and guide it to the light quantity monitoring unit M2. .
  • the control unit 17 includes a light source control unit 17A that controls the light source unit 11 so as to adjust the light amount of the emitted light L1 based on the wavelength of the emitted light L1 and the light amount of the first transmitted light L11.
  • the light source control unit 17A acquires the wavelength of the emitted light L1 and the monitoring result of the first transmitted light L11 from the wavelength monitoring unit M1 and the light amount monitoring unit M2, respectively.
  • the light source control unit 17A adjusts the drive signal DL that drives the light emitting element 11A in the light source unit 11 based on the monitoring result. Thereby, for example, the output of the emitted light L1 changes.
  • control unit 17 controls the light transmission characteristics of the first and second filters 12 and 14 based on the wavelength of the emitted light L1 and the light amount of the first transmitted light L11, thereby the first and second filters.
  • the filter control unit 17B adjusts the wavelength range of the transmitted light L11 and L31. For example, the filter control unit 17B changes the transmission wavelength region of the first filter 12 based on the change in the wavelength of the emitted light L1. As a result, the wavelength range of the first transmitted light L11 changes.
  • the control unit 17 constitutes the scanning device SC.
  • FIG. 3A, FIG. 3B, FIG. 3C, and FIG. 3D are diagrams showing examples of spectra of the emitted light L1, the first transmitted light L11 (light projection signal), the incident light LS, and the second transmitted light L31, respectively. It is.
  • the portions corresponding to the respective light amounts are hatched.
  • the first filter 12 transmits only part of the wavelength range of the outgoing light L1 including, for example, the peak wavelength (wavelength value corresponding to the maximum intensity) of the outgoing light L1 by the filter control unit 17B. It is adjusted to the wavelength band B1. Therefore, the first transmitted light L11 has a spectrum indicated by a solid line in FIG. 3B, for example.
  • the incident light LS including the reflected light L3 may exhibit the spectrum illustrated in FIG. 3C, for example. is assumed.
  • the incident light LS to the second filter 14 is a signal component that is a component corresponding to the reflected light L3 from the object OB, that is, a light component resulting from the reflection of the scanning light L2 by the object OB. Include as. Further, the incident light LS includes a component irrelevant to the reflected light L3, for example, a component corresponding to the environmental light L0 such as sunlight as a noise component. In many cases, the incident light LS is, for example, an optical signal in which these lights are superimposed.
  • the second filter 14 is adjusted to the transmission wavelength band B2 corresponding to the transmission wavelength band B1 of the first filter 12 by the filter control unit 17B.
  • the second filter 14 is adjusted to a transmission wavelength band B2 that transmits only a part of the wavelength band of the first transmission light L11 as the second transmission light L31.
  • the second transmitted light L31 has a spectrum indicated by a solid line in FIG. 3D. Such second transmitted light L31 is incident on the light receiving unit 15.
  • FIGS. 4A to 4D respectively show the emitted light L1 and the first transmitted light L11 after the timing t1 when the wavelength (spectrum) of the emitted light L1 is different between the timing t0 and the timing t1. It is a figure which shows the example of the spectrum of incident light LS and the 2nd transmitted light L31.
  • the emitted light L1 (t0) at the timing t0 and the emitted light L1 (t1) at the timing t1 have a spectrum as shown in FIG. 4A, for example.
  • the spectrum of the emitted light L1 (t0) is indicated by a broken line.
  • the incident light LS (caused by the first transmitted light L11 (t2) received at the timing t31 after the timing t2
  • t31 shows the spectrum shown in FIG. 4C. That is, the incident light LS (t31) is reflected light L3 (t31) caused by the first transmitted light L11 (t2), and the ambient light L0 (t0) incident on the second filter 14 simultaneously with the reflected light L3 (t31).
  • the spectrum of the incident light LS (t30) incident on the second filter 14 at the timing t30 due to the emitted light L1 (t0) at the timing t0, which is the timing before the change, is indicated by a broken line. .
  • the transmission wavelength band B2 of the second filter 14 is also set by the filter control unit 17B at the timing t2 (that is, the timing at which the transmission wavelength band B1 of the first filter 12 is adjusted) or the subsequent timing. Adjusted.
  • the transmission wavelength band B2 is adjusted to the long wavelength side at a timing immediately after the timing t2. Therefore, at the timing t31 when the incident light LS enters the second filter 14, the second transmitted light L31 (t31) has a spectrum as shown in FIG. 4D.
  • the first and second filters 12 and 14 are transmitted through the transmission wavelength region according to the characteristic change. B1 and B2 are changed. Further, the transmission wavelength ranges B1 and B2 of the first and second filters 12 and 14 are adjusted as needed in accordance with the characteristic change of the light source unit 11.
  • the light quantity of the first transmitted light L11 (that is, the scanning light L2) can be stabilized by adjusting the characteristics of the first filter 12.
  • the incident light LS including the reflected light L3 (signal component) and the ambient light L0 (noise component) can be appropriately selected.
  • the ambient light L0 can be removed.
  • the transmission wavelength band B2 of the second filter 12 is completely included in the transmission wavelength band B1 of the first filter 12, and the first filter 12 is used.
  • the transmission wavelength region B2 of the second filter 12 is adjusted so as to be narrower than the transmission wavelength region B1.
  • the second filter 12 transmits only light in a part of the wavelength band B1 of the first filter 12 as the second transmitted light L31.
  • the environmental light L0 having a wavelength different from that of the reflected light L3 can be removed. Therefore, the reflected light L3 can be extracted appropriately, and the scanning accuracy and distance measurement accuracy are improved.
  • transmission wavelength region B2 of the second filter 12 and the transmission wavelength region B1 of the first filter 12 may be completely the same.
  • the distance measuring device 10 has a wavelength monitoring unit (not shown) that monitors the wavelength of the second transmitted light L31. You may do it.
  • the filter control unit 17B may control the first and second filters 12 and 14 while monitoring the wavelengths of the first and second transmitted lights L11 and L31.
  • FIGS. 5A to 5C when only the light amount of the emitted light L1 is adjusted by the light source unit 11 and the characteristics of the first filter 12 are not adjusted (that is, the wavelength of the emitted light L1 is (Assuming no change).
  • the light amount adjustment of the emitted light L1 is performed as an initial setting before actual scanning is performed will be described.
  • FIG. 5A is a diagram showing an example of the spectrum of the outgoing light L1 before adjustment.
  • FIG. 5B is a diagram illustrating an example of a spectrum of the first transmitted light L11 (t0) when the emitted light L1 (t01) is incident on the first filter 12.
  • the first filter 12 is set to the transmission wavelength region B1 shown in FIG. 3B as an initial setting
  • the light amount AM11 (t01) of the first transmitted light L11 (t01) is the area shown by hatching in FIG. 5B. The amount corresponds to.
  • the light source control unit 17A drives the light source unit 11 so that the light amount AM (t01) of the first transmitted light L11 (t01) becomes a light amount (predetermined light amount) that satisfies safety standards. Take control. That is, the light source unit 11 is driven so as to emit the emitted light L1 controlled based on the light amount AM11 of the first transmitted light L11.
  • the scanning light L2 projected onto the scanning region R0 has a light amount corresponding to the first transmitted light L11 that is a part of the emitted light L1 from the light source unit 11. It becomes. Therefore, for example, the restriction condition of the light quantity of the scanning light L2, such as the safety standard of the laser light, may be calculated based on the first transmitted light L11. For example, the light quantity of the 1st transmitted light L11 should just satisfy
  • the output of the light source unit 11 is adjusted so that the light amount AM1 of the emitted light L1 is increased.
  • the light source unit 11 emits the emitted light L1 (t02) having a higher output than the emitted light L1 (t01) at the timing t01. . Therefore, the light amount AM1 (t02) of the emitted light L1 (t02) is larger than the light amount AM1 (t02) of the emitted light L1 (t01) at the timing t01.
  • the light source unit 11 is configured to adjust the light amount of the emitted light L1 based on the light amount AM11 of the first transmitted light L11 that has passed through the first filter 12. . Therefore, for example, the scanning region R0 can be scanned with the scanning light L2 having a sufficient amount of light within a range that satisfies the constraint conditions such as safety standards.
  • the light source unit 11 may adjust the light amount AM1 of the emitted light L1 even during the operation of the distance measuring device 10 (scanning device SC). For example, the light amount adjustment of the emitted light L1 by the light source unit 11 is performed when the light amount AM1 of the first transmitted light L11 changes by a predetermined amount or more, such as when the transmission wavelength range B1 of the first filter 12 is adjusted. May be performed again. Further, for example, when the light amount AM1 of the emitted light L1 is expected to approach the upper limit of the safety standard by adjusting the transmission wavelength band B1, the light source unit 11 may perform adjustment to lower the output by the light source control unit 17A. Good.
  • the transmission wavelength ranges B1 and B2 of the first and second filters 12 and 14 are adjusted has been described. Further, a case has been described in which the light amount monitoring unit M2 measures (calculates) the light amount AM11 of the first transmitted light L11 and the light amount AM1 of the emitted light L1 is adjusted so that the result is fed back to the light source unit 11.
  • the first filter 12 is a wavelength tunable filter that changes the transmission wavelength band B1 according to the wavelength of the outgoing light L1.
  • the second filter 14 is a wavelength tunable filter that changes the transmission wavelength range B2 based on the transmission wavelength range B1 of the first filter 12.
  • the light source unit 11 emits light of the light amount AM1 based on the light amount AM11 of the first transmitted light L11 as the emitted light L1.
  • the first and second filters 12 and 14 are not limited to being wavelength tunable filters.
  • the wavelength characteristics are often hardly changed. Therefore, for example, if the characteristics of the emitted light L1 from the designed light source unit 11 are acquired in advance, the first and second filters 12 and 14 correspond to the characteristics of the designed emitted light L1.
  • a fixed wavelength filter having transmission wavelength ranges B1 and B2 may be used.
  • the first filter 12 is a filter configured to transmit only light in a partial wavelength region of the emitted light (pulse light) L1 from the light source unit 11 as the first transmitted light L11. If it is. Further, the second filter 14 emits light in a wavelength region that overlaps or coincides with the wavelength region of the first transmitted light L11 out of the reflected light L3 reflected by the scanning light L2 from the object OB in the scanning region R0. Any filter configured to transmit the second transmitted light L31 may be used.
  • the light amount AM11 of the first transmitted light L11 can be calculated without actually measuring if the wavelength (spectrum) of the emitted light L1 is known. be able to. Accordingly, in consideration of projecting a sufficient amount of scanning light L2, for example, the light source unit 11 is configured to emit light having a light amount corresponding to the wavelength region of the emitted light L1 as the emitted light L1. Also good.
  • the light source unit 11, the first filter 12, and the second filter 14 may be configured to independently adjust the characteristics without being controlled by the control unit 17.
  • the control program of the control unit 17 may be installed in the light source unit 11, the first filter 12, or the second filter 14.
  • all the characteristics of the light source unit 11, the first filter 12, and the second filter 14 may be fixed. Specifically, as described above, it is assumed that the characteristics of the light source unit 11 hardly change under a design environment. Therefore, each of the light source unit 11, the first filter 12, and the second filter 14 may be fixed to design characteristics. That is, the light source unit 11 may be a light source configured to emit the emitted light L1.
  • FIG. 6A is a schematic top view of the deflecting unit 13.
  • FIG. 6B is a cross-sectional view of the deflection unit 13.
  • 6B is a cross-sectional view taken along line VV in FIG. 6A.
  • the deflecting unit 13 is a MEMS (Micro Electro Mechanical Systems) mirror that includes a oscillating mirror 24 having a light reflecting surface 13A and that the oscillating mirror 24 oscillates.
  • MEMS Micro Electro Mechanical Systems
  • the deflecting unit 13 is configured to electromagnetically oscillate the oscillating mirror 24. More specifically, the deflection unit 13 includes a fixed unit (base unit) 21, a swing unit (movable unit) 22, a driving force generation unit 23, and a swing mirror 24. In the present embodiment, the deflection unit 13 is configured such that the oscillating mirror 24 oscillates around two oscillating shafts (first and second oscillating shafts) AX and AY orthogonal to each other. ing.
  • the fixing portion 21 includes a fixed substrate B1 and an annular fixed frame B2 formed on the fixed substrate B1.
  • the swing part 22 includes a pair of torsion bars (first torsion bars) TX each having one end fixed inside the fixed frame B2.
  • Each of the pair of torsion bars TX is composed of a rod-shaped elastic member having at least circumferential elasticity, and is aligned along the swing axis AX.
  • the swing part 22 has an annular swing frame (movable frame) SX whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TX.
  • Each of the swinging portions 22 is connected to a side surface of the inner peripheral portion of the swinging frame SX and has a pair of torsion lines aligned in a direction perpendicular to the pair of torsion bars TX (a direction along the swinging axis AY). It has a bar (second torsion bar) TY and a swing plate (movable plate) SY whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TY.
  • Each of the pair of torsion bars TY is composed of a rod-like elastic member having at least circumferential elasticity.
  • the swing frame SX swings about the swing axis AX (with the swing center), and the swing plate SY swings about the swing axes AX and AY.
  • a swing mirror 24 is formed on the swing plate SY.
  • the oscillating mirror 24 is a light reflective film formed on the oscillating plate SY.
  • the light reflecting surface 13A of the oscillating mirror 24 oscillates around the oscillating axes AX and AY orthogonal to each other together with the oscillating plate SY.
  • the driving force generation unit 23 includes a magnet MG disposed on the fixed substrate B1, a metal wiring (first coil) CX wired along the outer periphery of the swing frame SX on the swing frame SX, and a swing And a metal wiring (second coil) CY wired along the outer periphery of the swing plate SY on the plate SY.
  • the magnet MG is composed of a plurality of magnet pieces provided in the outer region of the fixed frame B2 on the fixed substrate B1.
  • four magnet pieces are respectively disposed along the swing axes AX and AY and at positions outside the pair of torsion bars TX and TY.
  • the two magnet pieces facing each other in the direction along the swing axis AX are arranged so that portions having opposite polarities face each other.
  • the two magnet pieces facing each other in the direction along the swing axis AY are arranged so that the portions having opposite polarities face each other.
  • the pair of torsion bars TX are rotated by the interaction with the magnetic field generated by the two magnet pieces of the magnet MG aligned in the direction along the swing axis AY.
  • the swing frame SX swings about the swing axis AX.
  • the pair of torsion bars TY is twisted and the swing plate SY swings due to the electric field generated by the current flowing through the metal wiring CY and the magnetic field generated by the two magnet pieces of the magnet MG aligned in the direction along the swing frame AX. It swings around the axis AY.
  • the metal wirings CX and CY are connected to the control unit 17.
  • the control unit 17 supplies drive signals DX and DY to the metal wirings CX and CY.
  • the driving force generation unit 23 generates an electromagnetic force that swings the swinging unit 22 and the swinging mirror 24 by applying the drive signals DX and DY.
  • the oscillating mirror 24 has a disk shape.
  • the oscillating mirror 24 has a central axis AC orthogonal to the oscillating axes AX and AY.
  • the oscillating portion 22 and the oscillating mirror 24 are formed to be 90-degree rotationally symmetric with respect to the central axis AC of the oscillating mirror 24.
  • the fixed substrate B1 of the fixed portion 21 has a recess.
  • the fixed frame B2 is fixed to the fixed substrate B1 so that the swinging portion 22 is suspended in the concave portion of the fixed substrate B1.
  • the fixed frame B2 and the swinging portion 22 are portions of the semiconductor substrate formed by processing the semiconductor substrate, for example.
  • the oscillating mirror 24 is suspended (supported) together with the oscillating plate SY so as to be able to oscillate in the concave portion of the fixed substrate B1. Moreover, the magnet MG is formed outside the concave portion on the fixed substrate B1. Further, in the present embodiment, the torsion bars TX and TY are twisted, so that both ends of the swinging part 22 sandwiching the torsion bars TX and TY are directed toward the recesses of the fixed substrate B1 inside the fixed frame B2. Swings away. Further, the oscillating mirror 24 oscillates so as to be inclined with respect to the fixed frame B2 with one point on the central axis AC as the oscillating center.
  • the deflecting unit 13 includes the oscillating mirror 24 that deflects the first transmitted light L11 in a variable direction, and the deflected first transmitted light L11 is used as the scanning light L2. Light is projected toward the scanning region R0.
  • the deflecting unit 13 includes the oscillating mirror 24 that reflects the first transmitted light L11 and oscillates around the oscillating axes AX and AY orthogonal to each other.
  • the deflecting unit 13 oscillates the oscillating mirror 24 so as to project the scanning light L2 onto the scanning region R0 in a manner according to a scanning method such as raster scanning or Lissajous scanning.
  • fluctuation mirror 24 is not limited to the case where it rock
  • the swing axes AX and AY do not have to be orthogonal to each other, and may be axes that are along different directions.
  • the oscillating mirror 24 is not limited to oscillating around the two oscillating axes AX and AY.
  • the oscillating mirror 24 oscillates around one oscillating axis (for example, only the oscillating axis AX). It may be configured.
  • the deflecting unit 13 may have, for example, the oscillating mirror 24 that reflects the first transmitted light L11 and oscillates around at least one axis.
  • the distance measuring device 10 includes the light source unit 11 and the first filter 12 that transmits only light in a partial wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11.
  • a light projecting unit 13 that projects the first transmitted light L11 as the scanning light L2 toward the predetermined region R0, and the reflected light L3 reflected by the object OB in the predetermined region R0.
  • the second filter 14 that transmits the light in the wavelength region overlapping the wavelength region of the first transmitted light L11 as the second transmitted light L31, the light receiving unit 15 that receives the second transmitted light L31, and the light reception
  • a distance measuring unit 16 that measures the distance to the object OB based on the light reception result of the second transmitted light L31 by the unit 15. Therefore, a scanning type measurement capable of performing accurate optical scanning in the scanning region R0 by projecting an appropriate amount of light onto the object OB and appropriately removing noise components of the received light.
  • a distance device 10 can be provided.
  • the scanning information signal SR generated by the light receiving unit 15 can be used for purposes other than ranging. That is, the distance measuring device 10 operates as the scanning device SC when the distance measuring unit 15 is not provided.
  • the scanning device SC includes, for example, the light source unit 11, the first filter 12 that transmits only the light in the partial wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11, Of the light projecting unit 13 that projects the first transmitted light L11 toward the predetermined region R0 as the scanning light L2, and the reflected light L3 reflected by the object OB in the predetermined region R0, It has the 2nd filter 14 which permeate
  • FIG. 7 is a diagram illustrating a schematic configuration example of a distance measuring apparatus 10A according to a modification of the first embodiment.
  • FIG. 7 shows only the configuration of the scanning device SC1 included in the distance measuring device 10A.
  • the distance measuring device 10A has a single filter 18 provided on a common optical path for the emitted light L1 and the reflected light L3 in place of the first and second filters 12 and 14, and the configuration of the control unit 19
  • the configuration is the same as that of the distance measuring device 10 except for.
  • the scanning device SC1 of the distance measuring device 10A includes the light source unit 11 and a deflecting unit that projects the emitted light L1 from the light source unit 11 toward the predetermined region R0 as the scanning light L2 while deflecting the emitted light L1 in a variable direction. 13 and the light receiving unit 15 that receives the reflected light L3 reflected by the object OB in the predetermined region R0, and the optical path of the outgoing light L1 and the optical path of the reflected light L3.
  • the scanning device SC1 is provided on the optical path of the outgoing light L1 between the light source unit 11 and the deflecting unit 13, and is reflected light L3 that has passed through the deflecting unit 13 (reflected light returning to the deflecting unit 13).
  • a beam splitter BS is provided as a light projecting / receiving separation unit for guiding L3) to the light receiving unit 15.
  • the filter 18 is provided on a common optical path for the outgoing light L1 and the reflected light L3 between the beam splitter BS and the deflecting unit 13.
  • the filter 18 has the same configuration as the first filter 12 in the distance measuring device 10.
  • the filter 18 is a wavelength tunable filter that changes the transmission wavelength band B ⁇ b> 1 according to the wavelength of the emitted light L ⁇ b> 1 from the light source unit 11.
  • the filter 18 is controlled by a filter control unit 19A of the control unit 19.
  • a common optical path is provided for the optical path of the emitted light L1 between the light source unit 11 and the deflecting unit 13 and the optical path of the reflected light L3 between the deflecting unit 13 and the light receiving unit 15.
  • the same operation as that of the scanning device SC can be performed by arranging one filter 18 in the common optical path.
  • the scanning device SC1 can perform the same operation with a simple configuration as compared with the case where the scanning device SC1 has two filters (first and second filters 12 and 14) as in the scanning device SC.
  • the emitted light L1 from the light source unit 11 is deflected by the deflecting unit 13 (or before being projected toward the scanning region R0 as the scanning light L2). It is converted into first transmitted light L11 which is light in a part of the wavelength range. Further, the incident light LS including the reflected light L3 from the object OB is converted into the second transmitted light L31 that is light in a part of the wavelength region before being received by the light receiving unit 15. Moreover, according to the wavelength of the emitted light L1 from the light source part 11, the wavelength range and the light quantity of the 1st and 2nd transmitted light L11 and L31 are adjusted. Accordingly, it is possible to perform optical scanning and ranging using the scanning light L2 having the optimum characteristics in accordance with the scanning environment (ranging environment) and the characteristic change of the light source unit 11.
  • FIG. 8 is a diagram illustrating a schematic configuration example of the distance measuring device 30 according to the second embodiment.
  • the distance measuring device 30 has the same configuration as the distance measuring device 10 except for the configurations of the first and second filters 31 and 33, the deflecting unit (light projecting unit) 32, and the control unit 34.
  • FIG. 8 shows only the configuration of the scanning device SC2 included in the distance measuring device 30.
  • the scanning device SC2 transmits only light in a part of the wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11 and periodically the first transmitted light L1.
  • the first filter 31 is continuously changed. That is, the first filter 31 is a wavelength variable filter that continuously changes the transmission wavelength range.
  • the first filter 31 sets the transmission wavelength region so that the wavelength region ⁇ 0 is the central wavelength region, and the wavelength of the first transmitted light L11 is continuously changed between the wavelength region ⁇ 1 and the wavelength region ⁇ 2. Change.
  • the deflecting unit 32 includes a diffraction grating 32A that emits light in different directions according to the wavelength of the first transmitted light L11.
  • the diffraction surface of the diffraction grating 32 ⁇ / b> A is fixed with respect to the first filter 31. That is, the present embodiment is an example of a device configuration when the deflecting unit 32 includes an optical element other than the MEMS mirror as a deflecting element.
  • the first filter 31 causes the light whose wavelength is continuously and periodically changed to enter the diffraction grating 32A as the first transmitted light L11. Then, the direction of emission from the diffraction grating 32A changes for each wavelength of the first transmitted light L11, whereby the first transmitted light L11 is deflected. Thereby, the deflected light is projected toward the scanning region R0 as the scanning light L2.
  • the first filter 31 and the deflecting unit 32 function as a scanning unit (sweep unit) that sweeps the scanning region R0 with the scanning light L2.
  • the width of the transmission wavelength region of the first filter 31 can be determined based on, for example, the grating constant (grating interval) of the diffraction grating 32A.
  • the second filter 33 is a wavelength tunable filter that changes the transmission wavelength range according to the transmission wavelength range of the first filter 31.
  • the second filter 33 is configured to periodically change the transmission wavelength range between the wavelength range ⁇ 1 and the wavelength range ⁇ 2 in conjunction with the first filter 31.
  • the control unit 34 also controls the light source control unit 34A that controls the light source unit 11 and the first and second filters 31 and 33 based on the monitoring results of the wavelength monitoring unit M1 and the light amount monitoring unit M2. Part 34B.
  • FIGS. 9A to 9D are diagrams illustrating examples of spectra of the emitted light L1, the first transmitted light L11 (projection signal), the incident light LS, and the second transmitted light L31, respectively. .
  • the first filter 31 has a transmission wavelength band B3 ( ⁇ 1) that transmits light in the wavelength band ⁇ 1 and a transmission wavelength band B3 ( ⁇ 2) that transmits light in the wavelength band ⁇ 2 with a predetermined bandwidth by the filter control unit 34B.
  • the transmission wavelength band B3 is periodically changed between For example, when the transmission wavelength region B3 of the first filter 31 is the intermediate wavelength region ⁇ 0 between the wavelength region ⁇ 1 and the wavelength region ⁇ 2, the first transmitted light L11 ( ⁇ 0) has the spectrum shown in FIG. 9B. Show. Further, the light amount AM11 ( ⁇ 0) of the first transmitted light L11 ( ⁇ 0) is a portion indicated by hatching in FIG. 9B.
  • the light source control unit 34A performs the first transmitted light L11.
  • the light amount AM1 of the emitted light L1 may be adjusted by controlling the light source unit 11 so that the light amount AM11 falls within a predetermined range (for example, constant).
  • the incident light LS including the reflected light L3 ( ⁇ 0) is, for example, illustrated in FIG. 9C. It is assumed to show a spectrum. Further, the incident light LS includes a component (signal component) corresponding to the reflected light L3 ( ⁇ 0) and a component (noise component) corresponding to the environmental light L0.
  • the second filter 33 is adjusted to a transmission wavelength band B4 corresponding to the transmission wavelength band B3 of the first filter 31 by the filter control unit 34B.
  • the second filter 33 is reached by the timing at which the incident light LS corresponding to this is assumed to be received.
  • the transmission wavelength band B4 is adjusted to the transmission wavelength band B4 ( ⁇ 0).
  • the transmission wavelength range B4 ( ⁇ 0) of the second filter 33 is adjusted to be the same as the transmission wavelength range B3 ( ⁇ 0) of the first filter 31. Therefore, the second transmitted light L31 ( ⁇ 0) has a spectrum indicated by a solid line in FIG. 9D.
  • the first filter 31 has a wavelength of the first transmitted light L11 within the range of the direction of the scanning light L2 to be projected, that is, within the range of the wavelength region to be incident on the diffraction grating 32A.
  • the transmission wavelength region B3 is changed so as to adjust the width of the region.
  • the light source unit 11 emits, for example, light having a light amount AM1 corresponding to the light amount AM11 of the first transmitted light L11 as the emitted light L1. Accordingly, it is possible to project an appropriate amount of light as the scanning light L2, and to appropriately remove noise components in the incident light LS. Further, the light amount of the scanning light L2 is stabilized. Therefore, accurate scanning and ranging can be performed.
  • the diffraction grating 32A functioning as the deflecting unit 32 does not need to be operated like the oscillating mirror 24 of the deflecting unit 13. Therefore, the same scanning information can be obtained by controlling the first and second filters 31 and 33. Therefore, the operation quality and stability of the scanning device SC2 or the distance measuring device 30 are improved.
  • the scanning device SC2 includes the first and second filters 31 and 33 has been described.
  • the scanning device SC2 is not limited to the case where the first and second filters 31 and 33 are included.
  • a common optical path may be provided for the emitted light L1 and the reflected light L3, and one filter may be disposed on the common optical path.

Abstract

This scanning device comprises: a light source unit; a first filter which transmits only light in a partial wavelength band, among emitted light from the light source unit, as first transmitted light; a deflecting unit which projects the first transmitted light toward a prescribed region as scanned light; a second filter which transmits, as second transmitted light, light in a wavelength band overlapping the wavelength band of the first transmitted light, among reflected light obtained by the scanned light being reflected by a target object in the prescribed region; and a receiving unit which receives the second transmitted light.

Description

走査装置及び測距装置Scanning device and distance measuring device
 本発明は、光走査を行う走査装置、及び光測距を行う測距装置に関する。 The present invention relates to a scanning device that performs optical scanning and a ranging device that performs optical ranging.
 従来から、光を対象物に照射し、当該対象物によって反射された光を検出することで、当該対象物までの距離を測定する測距装置が知られている。また、対象物の光走査を行い、当該対象物までの距離に加えて当該対象物の形状や向きなどに関する情報を得ることができる光走査型の測距装置が知られている。 2. Description of the Related Art Conventionally, distance measuring devices that measure the distance to an object by irradiating the object with light and detecting the light reflected by the object are known. There is also known an optical scanning type distance measuring device that performs optical scanning of an object and obtains information related to the shape and orientation of the object in addition to the distance to the object.
 当該走査型の測距装置は、例えば、走査装置として、MEMS(Micro Electro Mechanical Systems)ミラーと、当該ミラーに向けて光を出射する光源と、対象物からの反射光を受光する受光部とを有する。例えば、特許文献1には、投光部から光を照射した時から受光部で反射光を受信した時までの経過時間に基づいて、測定対象物までの距離を計測する距離計測手段と、特定の波長の光を受光部に導くバンドパスフィルタとを含む光学式レーダ装置が開示されている。 For example, the scanning type distance measuring device includes, as a scanning device, a MEMS (Micro Electro Mechanical Systems) mirror, a light source that emits light toward the mirror, and a light receiving unit that receives reflected light from an object. Have. For example, Patent Document 1 discloses a distance measuring unit that measures a distance to an object to be measured based on an elapsed time from when light is emitted from a light projecting unit to when reflected light is received by a light receiving unit, An optical radar device is disclosed that includes a bandpass filter that guides light of a certain wavelength to a light receiving unit.
特開2007-85832号公報JP 2007-85832 A
 走査型の測距装置は、例えば、パルス状のレーザ光を走査領域に向けて投光し、対象物からの反射光(光パルス)を受光及び検出することで、走査領域内の光学的な情報を取得する。正確な走査情報(光情報)を得ることを考慮すると、装置によって受光される光にはノイズとなる光が少ないこと、例えば環境光などの装置からの出射光に起因しない光が当該反射光に対して少ないことが好ましい。従って、例えば高出力な光を走査に用いることが考えられる。 A scanning distance measuring device projects, for example, a pulsed laser beam toward a scanning region, and receives and detects reflected light (light pulse) from an object, thereby optically detecting in the scanning region. Get information. Considering that accurate scanning information (light information) is obtained, the light received by the device has little noise light, for example, light that is not caused by light emitted from the device such as ambient light is reflected in the reflected light. On the other hand, a small amount is preferable. Therefore, for example, it is conceivable to use high output light for scanning.
 その一方、例えば、走査装置又は測距装置が移動体に搭載される場合などには、例えばJIS C 6802 / IEC60825-1に定められたレーザ製品の安全基準などを満たすことが要求される。このように、ノイズ成分が小さな光信号を得ようとして装置からの光出力を高くする場合でも、例えばその出射可能な光量に制約条件がある場合がある。 On the other hand, for example, when a scanning device or a distance measuring device is mounted on a moving body, for example, it is required to satisfy the safety standards for laser products defined in JIS C 6802 / IEC 60825-1. Thus, even when the light output from the apparatus is increased in order to obtain an optical signal with a small noise component, there may be a restriction condition on the amount of light that can be emitted, for example.
 また、装置から出射する光を生成する光源の特性は、使用環境(例えば温度や湿度、使用時間など)によって変化する場合が多い。従って、例えば受光された光信号の一部をフィルタによって除去する場合でも、ノイズ成分のみならず信号成分(パルス成分)が除去される場合や、ノイズ成分が十分に除去されない場合がある。 Also, the characteristics of a light source that generates light emitted from the apparatus often change depending on the usage environment (for example, temperature, humidity, usage time, etc.). Therefore, for example, even when a part of the received optical signal is removed by a filter, not only the noise component but also the signal component (pulse component) may be removed, or the noise component may not be sufficiently removed.
 本発明は上記した点に鑑みてなされたものであり、適切な光量の光を対象物に投光し、また受光した光のノイズ成分を適切に除去することで、走査領域内の正確な光走査を行うことが可能な走査装置及び測距装置を提供することを課題の1つとしている。 The present invention has been made in view of the above points, and projects an appropriate amount of light onto an object and appropriately removes a noise component of the received light so that accurate light within a scanning region can be obtained. An object is to provide a scanning device and a distance measuring device capable of performing scanning.
 請求項1に記載の発明は、光源部と、光源部からの出射光のうちの一部の波長域の光のみを第1の透過光として透過させる第1のフィルタと、第1の透過光を走査光として所定の領域に向けて投光する投光部と、走査光が所定の領域内の対象物で反射した反射光のうち、第1の透過光の波長域に重複する波長域の光を第2の透過光として透過させる第2のフィルタと、第2の透過光を受光する受光部と、を有することを特徴とする。 The invention according to claim 1 is a light source unit, a first filter that transmits only a part of the wavelength band of light emitted from the light source unit as the first transmitted light, and the first transmitted light. Of the wavelength region that overlaps the wavelength region of the first transmitted light among the reflected light reflected by the object in the predetermined region It has the 2nd filter which permeate | transmits light as 2nd transmitted light, and the light-receiving part which light-receives 2nd transmitted light, It is characterized by the above-mentioned.
 また、請求項9に記載の発明は、請求項1に記載の走査装置と、受光部による第2の透過光の受光結果に基づいて対象物までの距離を測定する測距部と、を有することを特徴とする。 The invention according to claim 9 includes the scanning device according to claim 1, and a distance measuring unit that measures the distance to the object based on the result of receiving the second transmitted light by the light receiving unit. It is characterized by that.
 また、請求項10に記載の発明は、光源部と、光源部からの出射光を方向可変に偏向しつつ走査光として所定の領域に向けて投光する偏向部と、走査光が所定の領域内の対象物で反射した反射光を受光する受光部と、出射光の光路上でありかつ反射光の光路上に設けられた1つのフィルタと、を有することを特徴とする。 According to a tenth aspect of the present invention, there is provided a light source unit, a deflecting unit for projecting light emitted from the light source unit toward a predetermined region while deflecting light emitted from the light source unit in a variable direction, and the scanning light in a predetermined region. And a light receiving unit that receives reflected light reflected by the object inside, and a filter provided on the optical path of the emitted light and on the optical path of the reflected light.
実施例1に係る測距装置の配置例を示す図である。FIG. 3 is a diagram illustrating an arrangement example of distance measuring apparatuses according to the first embodiment. 実施例1に係る測距装置における走査装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a scanning device in a distance measuring device according to Embodiment 1. FIG. 実施例1に係る測距装置における光源部からの出射光の特性例を示す図である。It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における第1のフィルタを透過した光の特性例を示す図である。FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置が受光する光の特性例を示す図である。It is a figure which shows the example of a characteristic of the light which the ranging apparatus which concerns on Example 1 light-receives. 実施例1に係る測距装置における第2のフィルタを透過した光の特性を示す図である。It is a figure which shows the characteristic of the light which permeate | transmitted the 2nd filter in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における光源部からの出射光の特性例を示す図である。It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における第1のフィルタを透過した光の特性例を示す図である。FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置が受光する光の特性例を示す図である。It is a figure which shows the example of a characteristic of the light which the ranging apparatus which concerns on Example 1 light-receives. 実施例1に係る測距装置における第2のフィルタを透過した光の特性を示す図である。It is a figure which shows the characteristic of the light which permeate | transmitted the 2nd filter in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における光源部からの出射光の特性例を示す図である。It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における第1のフィルタを透過した光の特性例を示す図である。FIG. 6 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置における光源部からの出射光の特性例を示す図である。It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 1. FIG. 実施例1に係る測距装置における偏向部の上面図である。6 is a top view of a deflecting unit in the distance measuring apparatus according to Embodiment 1. FIG. 実施例1に係る測距装置における偏向部の断面図である。3 is a cross-sectional view of a deflection unit in the distance measuring apparatus according to Embodiment 1. FIG. 実施例1の変形例に係る測距装置における走査装置のの構成例を示す図である。It is a figure which shows the structural example of the scanning apparatus in the ranging apparatus which concerns on the modification of Example 1. FIG. 実施例2に係る測距装置の配置例を示す図である。FIG. 10 is a diagram illustrating an arrangement example of distance measuring apparatuses according to a second embodiment. 実施例2に係る測距装置における光源部からの出射光の特性例を示す図である。It is a figure which shows the example of a characteristic of the emitted light from the light source part in the ranging apparatus which concerns on Example 2. FIG. 実施例2に係る測距装置における第1のフィルタを透過した光の特性例を示す図である。FIG. 10 is a diagram illustrating an example of characteristics of light transmitted through a first filter in the distance measuring apparatus according to the second embodiment. 実施例2に係る測距装置が受光する光の特性例を示す図である。It is a figure which shows the example of a characteristic of the light which the ranging device which concerns on Example 2 receives. 実施例2に係る測距装置における第2のフィルタを透過した光の特性を示す図である。It is a figure which shows the characteristic of the light which permeate | transmitted the 2nd filter in the ranging apparatus which concerns on Example 2. FIG.
 以下に本発明の実施例について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は、実施例1に係る測距装置10の模式的な配置図である。測距装置10は、所定の領域(以下、走査領域と称する)R0の光走査を行い、走査領域R0内に存在する対象物OBまでの距離を測定する走査型の測距装置である。図1を用いて、測距装置10について説明する。なお、図の明確さのため、図1には、走査領域R0及び対象物OBを模式的に示している。 FIG. 1 is a schematic layout diagram of the distance measuring apparatus 10 according to the first embodiment. The distance measuring device 10 is a scanning distance measuring device that performs optical scanning of a predetermined region (hereinafter referred to as a scanning region) R0 and measures the distance to the object OB existing in the scanning region R0. The distance measuring device 10 will be described with reference to FIG. For clarity of illustration, FIG. 1 schematically shows the scanning region R0 and the object OB.
 まず、測距装置10は、パルス化された光(以下、出射光と称する)L1を生成及び出射する光源部11を有する。本実施例においては、光源部11は、出射光L1として、赤外領域にピーク波長を有するパルス化されたレーザ光を生成する。 First, the distance measuring device 10 includes a light source unit 11 that generates and emits pulsed light (hereinafter referred to as emission light) L1. In the present embodiment, the light source unit 11 generates pulsed laser light having a peak wavelength in the infrared region as the emitted light L1.
 測距装置10は、光源部11からの出射光L1のうちの一部の波長域の光を第1の透過光L11として透過させるフィルタ(以下、第1のフィルタと称する)12を有する。本実施例においては、第1のフィルタ12は、その透過波長域(本実施例においては第1の透過光L11の波長域)を変化させることが可能な波長可変型のバンドパスフィルタである。 The distance measuring device 10 includes a filter (hereinafter referred to as a first filter) 12 that transmits a part of the wavelength range of the outgoing light L1 from the light source unit 11 as the first transmitted light L11. In the present embodiment, the first filter 12 is a variable wavelength band-pass filter capable of changing the transmission wavelength region (the wavelength region of the first transmitted light L11 in the present embodiment).
 例えば、第1のフィルタ12は、互いに対向しかつその対向間隔が変化する一対の反射膜(図示せず)を有する。当該一対の反射膜は、ファブリペローエタロンを構成する。第1のフィルタ12は、当該一対の反射膜の間隔に応じた波長域の光を第1の透過光L11として透過させる。 For example, the first filter 12 has a pair of reflective films (not shown) that face each other and whose facing interval changes. The pair of reflective films constitutes a Fabry-Perot etalon. The 1st filter 12 permeate | transmits the light of the wavelength range according to the space | interval of the said pair of reflective film as the 1st transmitted light L11.
 測距装置10は、第1の透過光L11を走査光(投光信号)L2として走査領域R0に向けて投光する投光部13を有する。本実施例においては、投光部13は、第1の透過光L11の出射方向を変化させることで走査光L2を生成し、この走査光L2を走査領域R0に向けて投光する偏向部である。以下においては、測距装置10が投光部13として偏向部を有する場合について説明する。 The distance measuring device 10 includes a light projecting unit 13 that projects the first transmitted light L11 toward the scanning region R0 as the scanning light (light projection signal) L2. In the present embodiment, the light projecting unit 13 is a deflecting unit that generates the scanning light L2 by changing the emission direction of the first transmitted light L11 and projects the scanning light L2 toward the scanning region R0. is there. Hereinafter, a case where the distance measuring device 10 includes a deflecting unit as the light projecting unit 13 will be described.
 本実施例においては、偏向部13は、第1の透過光L11を走査領域R0に向けて反射させる可動式の光反射面13Aを有する可動ミラーを含む。偏向部13は、光反射面13Aの向きを変化させることで、第1の透過光L11が反射する方向を連続的かつ周期的に変化させる。本実施例においては、偏向部13は、走査光L2によって走査領域R0を走査(掃引)する走査部(掃引部)として機能する。なお、走査領域R0は、光反射面13Aの可動範囲に対応する幅及び高さを有する仮想の3次元空間である。図1においては、走査領域R0の外縁を破線で模式的に示した。 In this embodiment, the deflecting unit 13 includes a movable mirror having a movable light reflecting surface 13A that reflects the first transmitted light L11 toward the scanning region R0. The deflecting unit 13 changes the direction in which the first transmitted light L11 is reflected continuously and periodically by changing the direction of the light reflecting surface 13A. In this embodiment, the deflecting unit 13 functions as a scanning unit (sweep unit) that scans (sweeps) the scanning region R0 with the scanning light L2. The scanning region R0 is a virtual three-dimensional space having a width and a height corresponding to the movable range of the light reflecting surface 13A. In FIG. 1, the outer edge of the scanning region R0 is schematically shown by a broken line.
 例えば、図1に示すように、走査領域R0内における走査光L2の光路上に対象物OBが存在する場合、対象物OBに走査光L2が照射され、対象物OBによって走査光L2が反射(散乱)する。 For example, as shown in FIG. 1, when the object OB is present on the optical path of the scanning light L2 in the scanning region R0, the object OB is irradiated with the scanning light L2, and the scanning light L2 is reflected by the object OB ( Scatter).
 測距装置10は、走査光L2が対象物OBに照射されることで対象物OBによって反射した光(以下、反射光と称する)L3を含む光(測距装置10に入射する光、以下、入射光と称する)LSに対してフィルタリングを行い、入射光LSに含まれる一部の波長域の光を第2の透過光L31として透過させるフィルタ(以下、第2のフィルタと称する)14を有する。なお、以下においては、入射光LSとは、第2のフィルタ14に入射する光をいう。 The distance measuring device 10 includes light (hereinafter, referred to as reflected light) L3 reflected by the object OB when the scanning light L2 is applied to the object OB (light incident on the distance measuring device 10, hereinafter referred to as “light”). A filter (hereinafter referred to as a second filter) 14 that performs filtering on the LS (referred to as incident light) and transmits light in a part of the wavelength band included in the incident light LS as the second transmitted light L31. . In the following, the incident light LS refers to light incident on the second filter 14.
 本実施例においては、第2のフィルタ14は、第1のフィルタ12と同様の構成を有する。本実施例においては、第2のフィルタ14は、その透過波長域(すなわち第2の透過光L31の波長域)を変化させることが可能な波長可変型のバンドパスフィルタである。しかし、第2のフィルタ14は、第1のフィルタ12を透過する光の波長域の全部又は一部の波長域の光を透過させるように構成されていればよく、その具体的構成は限定されない。 In the present embodiment, the second filter 14 has the same configuration as the first filter 12. In the present embodiment, the second filter 14 is a wavelength-variable type bandpass filter capable of changing the transmission wavelength region (that is, the wavelength region of the second transmitted light L31). However, the 2nd filter 14 should just be comprised so that the light of all or one part wavelength range of the light which permeate | transmits the 1st filter 12 may be permeate | transmitted, The concrete structure is not limited. .
 第2のフィルタ14は、反射光L3のうち、少なくとも一部が第1の透過光L11の波長域と重複する波長域の光を第2の透過光L31として透過させるように構成されている。例えば、本実施例においては、第2のフィルタ14は、第1のフィルタ12と同一の透過波長域を有する、又は第1のフィルタ12の透過波長域に含まれかつこれよりも狭い透過波長域を有するように、第1のフィルタ12と連動して、光透過特性を変化させる。 The second filter 14 is configured to transmit, as the second transmitted light L31, light in a wavelength range in which at least a part of the reflected light L3 overlaps the wavelength range of the first transmitted light L11. For example, in the present embodiment, the second filter 14 has the same transmission wavelength range as the first filter 12, or is included in the transmission wavelength range of the first filter 12 and narrower than this. The light transmission characteristic is changed in conjunction with the first filter 12 so as to have
 測距装置10は、第2の透過光L31を受光して検出する受光部15を有する。受光部15は、例えば、第2の透過光L31に対して光電変換を行い、第2の透過光L31に応じた電気信号(走査結果を示す信号、以下、走査情報信号と称する)SRを生成する。 The distance measuring device 10 includes a light receiving unit 15 that receives and detects the second transmitted light L31. For example, the light receiving unit 15 performs photoelectric conversion on the second transmitted light L31 and generates an electrical signal (a signal indicating a scanning result, hereinafter referred to as a scanning information signal) SR according to the second transmitted light L31. To do.
 なお、本実施例においては、第2のフィルタ14は、対象物OBによって反射し、偏向部13に戻ってきた反射光L3を含む光を入射光LSとして受光し、この入射光LSから第2の透過光L31を生成する。 In the present embodiment, the second filter 14 receives the light including the reflected light L3 reflected by the object OB and returned to the deflecting unit 13 as the incident light LS, and the second light 14 is generated from the incident light LS. The transmitted light L31 is generated.
 具体的には、本実施例においては、測距装置10は、第1のフィルタ12と偏向部13の光反射面13Aとの間の第1の透過光L11の光路上に設けられ、偏向部13を経た入射光LSを第2のフィルタ14に導く投受光分離部BSを有する。本実施例においては、投受光分離部BSは、ビームスプリッタである。以下においては、測距装置10が投受光分離部BSとしてビームスプリッタを有する場合について説明する。 Specifically, in this embodiment, the distance measuring device 10 is provided on the optical path of the first transmitted light L11 between the first filter 12 and the light reflecting surface 13A of the deflecting unit 13, and the deflecting unit 13 includes a light projecting / receiving separation unit BS that guides the incident light LS having passed through 13 to the second filter 14. In the present embodiment, the light projecting / receiving separation unit BS is a beam splitter. Hereinafter, a case where the distance measuring device 10 has a beam splitter as the light projecting / receiving separation unit BS will be described.
 測距装置10においては、第1のフィルタ12を透過した出射光L1である第1の透過光L11は、ビームスプリッタBSを透過して偏向部13に向かって進み、走査光L2として走査領域R0に投光される。 In the distance measuring device 10, the first transmitted light L11, which is the emitted light L1 that has passed through the first filter 12, passes through the beam splitter BS and travels toward the deflecting unit 13, and as the scanning light L2, the scanning region R0. Will be flooded.
 一方、走査光L2は、走査領域R0内に存在する対象物OBによって反射されて反射光L3となり、その一部が偏向部13の光反射面13Aに向かって戻ってくる。そして、反射光L3は、光反射面13Aによって反射された後、ビームスプリッタBSによって反射され、第2のフィルタ14に入射する。従って、本実施例においては、受光部15は、この当該偏向部13及び第2のフィルタ14を透過した反射光L3を第2の透過光L31として受光する。 On the other hand, the scanning light L2 is reflected by the object OB existing in the scanning region R0 to become reflected light L3, and a part thereof returns toward the light reflecting surface 13A of the deflecting unit 13. The reflected light L3 is reflected by the light reflecting surface 13A, then reflected by the beam splitter BS, and enters the second filter 14. Therefore, in this embodiment, the light receiving unit 15 receives the reflected light L3 transmitted through the deflecting unit 13 and the second filter 14 as the second transmitted light L31.
 測距装置10は、走査情報信号SRに基づいて、対象物OBまでの距離を測定する測距部16を有する。本実施例においては、測距部16は、走査情報信号SRから第2の透過光L31のパルスを検出し、出射光L1の出射からの時間差に基づくタイムオブフライト法によって対象物OB(又はその一部の表面領域)までの距離を測定する。測距部16は、測定した距離情報を示すデータ(測距データ)を生成する。 The distance measuring device 10 includes a distance measuring unit 16 that measures the distance to the object OB based on the scanning information signal SR. In the present embodiment, the distance measuring unit 16 detects the pulse of the second transmitted light L31 from the scanning information signal SR, and performs the object OB (or its object) by the time-of-flight method based on the time difference from the emission of the emission light L1. Measure the distance to some surface area. The distance measuring unit 16 generates data (ranging data) indicating the measured distance information.
 なお、本明細書においては、説明上、走査領域R0内における測距装置10から所定の距離だけ離れた仮想の被走査面を走査面R1と称して説明する場合がある。図1には、走査面R1を例示的に示した。測距装置10による走査領域R0の走査及び測距は、走査面R1をターゲットとして走査面R1に向けて出射される走査光L2を用いて行われる。 In this specification, for the sake of explanation, a virtual scanned surface that is a predetermined distance away from the distance measuring device 10 in the scanning region R0 may be referred to as a scanning surface R1. FIG. 1 exemplarily shows the scanning plane R1. Scanning and ranging of the scanning region R0 by the distance measuring device 10 are performed using the scanning light L2 emitted toward the scanning surface R1 with the scanning surface R1 as a target.
 また、本実施例においては、測距部16は、パルス化されて投光される走査光L2による当該測距データに基づいて走査領域R0を画像化するデータ(測距画像データ)を生成する。例えば、測距部16は、偏向部13による走査光L2の投光方向の変化周期、すなわち走査領域R0を走査する周期(以下、走査周期と称する場合がある)毎に1つの測距画像データを生成する。 In the present embodiment, the distance measuring unit 16 generates data (ranging image data) for imaging the scanning region R0 based on the distance measurement data obtained by the scanning light L2 that is pulsed and projected. . For example, the distance measurement unit 16 has one distance measurement image data for every change period of the light projecting direction of the scanning light L2 by the deflecting unit 13, that is, every period of scanning the scanning region R0 (hereinafter sometimes referred to as a scanning period). Is generated.
 なお、走査周期とは、例えば、走査領域R0に対する光掃引を周期的に行う場合において、任意の装置状態(例えば偏向部13における光反射面13Aの向き)の時点から、その後に再度当該装置状態に戻る時点までの期間をいう。 The scanning cycle is, for example, in the case where light sweeping is periodically performed on the scanning region R0, from the time of an arbitrary device state (for example, the direction of the light reflecting surface 13A in the deflection unit 13), and then the device state again. The period up to the point of returning to.
 本実施例においては、測距部16は、当該測距データと光反射面13Aの向きを示す情報とを対応付け、2次元又は3次元のマップとして画像化する。本実施例においては、測距部16は、走査周期毎に当該マップ画像を生成する。なお、測距部16は、複数のマップ画像を時系列に沿って動画として表示する表示部(図示せず)を有していてもよい。 In the present embodiment, the distance measurement unit 16 associates the distance measurement data with information indicating the direction of the light reflecting surface 13A, and forms an image as a two-dimensional or three-dimensional map. In the present embodiment, the distance measuring unit 16 generates the map image for each scanning cycle. The distance measuring unit 16 may include a display unit (not shown) that displays a plurality of map images as moving images in time series.
 また、測距装置10は、光源部11、第1のフィルタ12、偏向部13、第2のフィルタ14、受光部15及び測距部16の動作制御を行う制御部17を有する。例えば、本実施例においては、制御部17は、光源部11に駆動信号DLを供給し、光源部11の駆動及びその制御を行う。また、制御部17は、第1及び第2のフィルタ12及び14に駆動信号DFを供給し、第1及び第2のフィルタ12及び14の各々の透過波長域を制御する。また、制御部17は、偏向部13に駆動信号DX及びDYを供給し、偏向部13における光反射面13Aの変位を制御する。 Further, the distance measuring device 10 includes a control unit 17 that performs operation control of the light source unit 11, the first filter 12, the deflecting unit 13, the second filter 14, the light receiving unit 15, and the distance measuring unit 16. For example, in the present embodiment, the control unit 17 supplies a drive signal DL to the light source unit 11 to drive and control the light source unit 11. In addition, the control unit 17 supplies the drive signal DF to the first and second filters 12 and 14 and controls the transmission wavelength ranges of the first and second filters 12 and 14. Further, the control unit 17 supplies drive signals DX and DY to the deflecting unit 13 and controls the displacement of the light reflecting surface 13 </ b> A in the deflecting unit 13.
 図2は、測距装置10の詳細構成例を示す図である。まず、本実施例においては、光源部11は、レーザ光を生成する発光素子11Aと、当該レーザ光を集光及び整形する整形レンズ11Bと、を含む。発光素子11Aは、例えば半導体レーザからなる。また、受光部15は、第2の透過光L2を受光して集光する集光レンズ15Aと、当該集光された第2の透過光L2を検出する検出素子15Bと、を含む。検出素子15Bは、例えば少なくとも1つの光電変換素子を含む。 FIG. 2 is a diagram illustrating a detailed configuration example of the distance measuring device 10. First, in the present embodiment, the light source unit 11 includes a light emitting element 11A that generates laser light and a shaping lens 11B that condenses and shapes the laser light. The light emitting element 11A is made of, for example, a semiconductor laser. The light receiving unit 15 includes a condenser lens 15A that receives and collects the second transmitted light L2, and a detection element 15B that detects the collected second transmitted light L2. The detection element 15B includes, for example, at least one photoelectric conversion element.
 次に、本実施例においては、測距装置10は、出射光L1の波長を監視する波長監視部M1を有する。波長監視部M1は、例えば、出射光L1のスペクトル及びその変化を検出して記憶する装置(図示せず)を含む。また、本実施例においては、測距装置10は、第1の透過光L11の光量を監視する光量監視部M2を有する。光量監視部M2は、例えば、第1の透過光L11の単位時間当たりの光量(総光量)を算出及び記憶する装置(図示せず)を含む。 Next, in this embodiment, the distance measuring device 10 includes a wavelength monitoring unit M1 that monitors the wavelength of the emitted light L1. The wavelength monitoring unit M1 includes, for example, a device (not shown) that detects and stores the spectrum of the emitted light L1 and changes thereof. In the present embodiment, the distance measuring device 10 includes a light amount monitoring unit M2 that monitors the light amount of the first transmitted light L11. The light quantity monitoring unit M2 includes, for example, a device (not shown) that calculates and stores a light quantity (total light quantity) per unit time of the first transmitted light L11.
 なお、本実施例においては、図2に示すように、光源部11と第1のフィルタ12との間の出射光L1の光路上には、出射光L1を分離して波長監視部M1に導くビームスプリッタが設けられている。また、第1のフィルタ12とビームスプリッタBSとの間の第1の透過光L11の光路上には、第1の透過光L11を分離して光量監視部M2に導くビームスプリッタが設けられている。 In this embodiment, as shown in FIG. 2, the outgoing light L1 is separated and guided to the wavelength monitoring unit M1 on the optical path of the outgoing light L1 between the light source unit 11 and the first filter 12. A beam splitter is provided. A beam splitter is provided on the optical path of the first transmitted light L11 between the first filter 12 and the beam splitter BS to separate the first transmitted light L11 and guide it to the light quantity monitoring unit M2. .
 次に、制御部17は、出射光L1の波長及び第1の透過光L11の光量に基づいて、出射光L1の光量を調節するように光源部11を制御する光源制御部17Aを有する。例えば、光源制御部17Aは、波長監視部M1及び光量監視部M2から、それぞれ出射光L1の波長及び第1の透過光L11の監視結果を取得する。そして、光源制御部17Aは、当該監視結果に基づいて、光源部11における発光素子11Aを駆動する駆動信号DLの調節を行う。これによって、例えば、出射光L1の出力が変化する。 Next, the control unit 17 includes a light source control unit 17A that controls the light source unit 11 so as to adjust the light amount of the emitted light L1 based on the wavelength of the emitted light L1 and the light amount of the first transmitted light L11. For example, the light source control unit 17A acquires the wavelength of the emitted light L1 and the monitoring result of the first transmitted light L11 from the wavelength monitoring unit M1 and the light amount monitoring unit M2, respectively. Then, the light source control unit 17A adjusts the drive signal DL that drives the light emitting element 11A in the light source unit 11 based on the monitoring result. Thereby, for example, the output of the emitted light L1 changes.
 また、制御部17は、出射光L1の波長及び第1の透過光L11の光量に基づいて、第1及び第2のフィルタ12及び14の光透過特性を制御し、これによって第1及び第2の透過光L11及びL31の波長域を調節するフィルタ制御部17Bを有する。例えば、フィルタ制御部17Bは、出射光L1の波長の変化に基づいて第1のフィルタ12の透過波長域を変化させる。これによって、第1の透過光L11の波長域が変化する。 Further, the control unit 17 controls the light transmission characteristics of the first and second filters 12 and 14 based on the wavelength of the emitted light L1 and the light amount of the first transmitted light L11, thereby the first and second filters. The filter control unit 17B adjusts the wavelength range of the transmitted light L11 and L31. For example, the filter control unit 17B changes the transmission wavelength region of the first filter 12 based on the change in the wavelength of the emitted light L1. As a result, the wavelength range of the first transmitted light L11 changes.
 なお、例えば、図2に示す構成要素、すなわち光源部11、第1のフィルタ12、偏向部13、ビームスプリッタBS、第2のフィルタ14、受光部15、波長監視部M1、光量監視部M2及び制御部17は、走査装置SCを構成する。 2, for example, the light source unit 11, the first filter 12, the deflection unit 13, the beam splitter BS, the second filter 14, the light receiving unit 15, the wavelength monitoring unit M1, the light amount monitoring unit M2, and the like. The control unit 17 constitutes the scanning device SC.
 次に、図3A乃至図3Dを用いて、第1及び第2のフィルタ12及び14の基本的な動作について説明する。まず、図3A、図3B、図3C及び図3Dは、それぞれ、出射光L1、第1の透過光L11(投光信号)、入射光LS及び第2の透過光L31のスペクトルの例を示す図である。なお、図3A乃至図3Dにおいては、それぞれの光の光量に対応する部分にハッチングを施した。 Next, basic operations of the first and second filters 12 and 14 will be described with reference to FIGS. 3A to 3D. First, FIG. 3A, FIG. 3B, FIG. 3C, and FIG. 3D are diagrams showing examples of spectra of the emitted light L1, the first transmitted light L11 (light projection signal), the incident light LS, and the second transmitted light L31, respectively. It is. In FIGS. 3A to 3D, the portions corresponding to the respective light amounts are hatched.
 まず、出射光L1が図3Aに示すスペクトルを有することが波長監視部M1によって検出された場合について説明する。この場合、第1のフィルタ12は、フィルタ制御部17Bによって、例えば出射光L1のピーク波長(最大強度に対応する波長値)を含む出射光L1の一部の波長域のみを透過させるような透過波長域B1に調節される。従って、第1の透過光L11は、例えば、図3Bに実線で示すスペクトルを有することとなる。 First, the case where the wavelength monitoring unit M1 detects that the emitted light L1 has the spectrum shown in FIG. 3A will be described. In this case, the first filter 12 transmits only part of the wavelength range of the outgoing light L1 including, for example, the peak wavelength (wavelength value corresponding to the maximum intensity) of the outgoing light L1 by the filter control unit 17B. It is adjusted to the wavelength band B1. Therefore, the first transmitted light L11 has a spectrum indicated by a solid line in FIG. 3B, for example.
 次に、図3Bに示すスペクトルの第1の透過光L11が走査光L2として対象物OBに照射された場合、その反射光L3を含む入射光LSは、例えば図3Cに示すスペクトルを示すことが想定される。 Next, when the object OB is irradiated with the first transmitted light L11 having the spectrum illustrated in FIG. 3B as the scanning light L2, the incident light LS including the reflected light L3 may exhibit the spectrum illustrated in FIG. 3C, for example. is assumed.
 具体的には、第2のフィルタ14への入射光LSは、対象物OBからの反射光L3に対応する成分、すなわち走査光L2が対象物OBによって反射したことに起因する光成分を信号成分として含む。また、入射光LSは、反射光L3とは無関係な成分、例えば太陽光などの環境光L0に対応する成分をノイズ成分として含む。入射光LSは、多くの場合、例えばこれらの光が重畳された光信号である。 Specifically, the incident light LS to the second filter 14 is a signal component that is a component corresponding to the reflected light L3 from the object OB, that is, a light component resulting from the reflection of the scanning light L2 by the object OB. Include as. Further, the incident light LS includes a component irrelevant to the reflected light L3, for example, a component corresponding to the environmental light L0 such as sunlight as a noise component. In many cases, the incident light LS is, for example, an optical signal in which these lights are superimposed.
 次に、第2のフィルタ14は、フィルタ制御部17Bによって、第1のフィルタ12の透過波長域B1に対応する透過波長域B2に調節される。例えば、本実施例においては、第2のフィルタ14は、第1の透過光L11の波長域の一部の波長域の光のみを第2の透過光L31として透過させる透過波長域B2に調節されている。従って、第2の透過光L31は、図3Dに実線で示すスペクトルを有することとなる。受光部15には、このような第2の透過光L31が入射する。 Next, the second filter 14 is adjusted to the transmission wavelength band B2 corresponding to the transmission wavelength band B1 of the first filter 12 by the filter control unit 17B. For example, in the present embodiment, the second filter 14 is adjusted to a transmission wavelength band B2 that transmits only a part of the wavelength band of the first transmission light L11 as the second transmission light L31. ing. Accordingly, the second transmitted light L31 has a spectrum indicated by a solid line in FIG. 3D. Such second transmitted light L31 is incident on the light receiving unit 15.
 次に、図4A乃至図4Dを用いて、光源部11の特性、すなわち出射光L1の特性が変化した際の第1及び第2のフィルタ12及び14の動作について説明する。図4A、図4B、図4C及び図4Dは、それぞれ、出射光L1の波長(スペクトル)がタイミングt0とタイミングt1との間で異なる場合のタイミングt1以降の出射光L1、第1の透過光L11、入射光LS及び第2の透過光L31のスペクトルの例を示す図である。 Next, the operation of the first and second filters 12 and 14 when the characteristics of the light source unit 11, that is, the characteristics of the emitted light L1, change will be described with reference to FIGS. 4A to 4D. 4A, FIG. 4B, FIG. 4C, and FIG. 4D respectively show the emitted light L1 and the first transmitted light L11 after the timing t1 when the wavelength (spectrum) of the emitted light L1 is different between the timing t0 and the timing t1. It is a figure which shows the example of the spectrum of incident light LS and the 2nd transmitted light L31.
 まず、出射光L1が長波長側にシフトした場合を考える。この場合、タイミングt0における出射光L1(t0)、及びタイミングt1における出射光L1(t1)は、例えば図4Aに示すようなスペクトルを示す。なお、図4Aにおいては、出射光L1(t0)のスペクトルを破線で示した。 First, consider a case where the outgoing light L1 is shifted to the long wavelength side. In this case, the emitted light L1 (t0) at the timing t0 and the emitted light L1 (t1) at the timing t1 have a spectrum as shown in FIG. 4A, for example. In FIG. 4A, the spectrum of the emitted light L1 (t0) is indicated by a broken line.
 この場合、第1のフィルタ12は、この出射光L1の波長変化を波長監視部M1から受けたフィルタ制御部17Bによって、例えば、透過波長域B1を出射光L1の波長変化分だけ(長波長側に)シフトさせる。従って、第1のフィルタ12は、タイミングt1の後の所定のタイミングt2において、例えば、波長変化後の出射光L1(t1)のピーク波長を含む所定の波長域の光を第1の透過光L11(t2)として透過させる透過波長域B1(t2)となるように調節される。従って、例えば、タイミングt2においては、第1の透過光L11(t2)は、図4Bに示すようなスペクトルを示す。 In this case, for example, the first filter 12 receives the wavelength change of the emitted light L1 from the wavelength monitoring unit M1, and for example, transmits the transmission wavelength band B1 by the wavelength change of the emitted light L1 (on the long wavelength side). To shift). Accordingly, at the predetermined timing t2 after the timing t1, the first filter 12 converts, for example, light in a predetermined wavelength range including the peak wavelength of the emitted light L1 (t1) after the wavelength change into the first transmitted light L11. (T2) is adjusted to be a transmission wavelength region B1 (t2) to be transmitted. Therefore, for example, at the timing t2, the first transmitted light L11 (t2) has a spectrum as shown in FIG. 4B.
 また、この第1の透過光L11(t2)が走査光L2として投光された場合、タイミングt2の後のタイミングt31に受光される第1の透過光L11(t2)に起因する入射光LS(t31)は、図4Cに示すスペクトルを示すことが想定される。すなわち、入射光LS(t31)は、第1の透過光L11(t2)に起因する反射光L3(t31)と、反射光L3(t31)と同時に第2のフィルタ14に入射する環境光L0(t31)と、を含む。 In addition, when the first transmitted light L11 (t2) is projected as the scanning light L2, the incident light LS (caused by the first transmitted light L11 (t2) received at the timing t31 after the timing t2 It is assumed that t31) shows the spectrum shown in FIG. 4C. That is, the incident light LS (t31) is reflected light L3 (t31) caused by the first transmitted light L11 (t2), and the ambient light L0 (t0) incident on the second filter 14 simultaneously with the reflected light L3 (t31). t31).
 なお、図4Cには、変化前のタイミングであるタイミングt0の出射光L1(t0)に起因してタイミングt30に第2のフィルタ14に入射する入射光LS(t30)のスペクトルを破線で示した。 In FIG. 4C, the spectrum of the incident light LS (t30) incident on the second filter 14 at the timing t30 due to the emitted light L1 (t0) at the timing t0, which is the timing before the change, is indicated by a broken line. .
 また、本実施例においては、タイミングt2(すなわち第1のフィルタ12の透過波長域B1が調節されたタイミング)又はその後のタイミングにおいて、第2のフィルタ14の透過波長域B2もフィルタ制御部17Bによって調節される。例えば、第2のフィルタ14は、タイミングt2の直後のタイミングにおいて、その透過波長域B2が長波長側に調節される。従って、第2のフィルタ14に入射光LSが入射するタイミングt31においては、第2の透過光L31(t31)は、図4Dに示すようなスペクトルを示す。 In the present embodiment, the transmission wavelength band B2 of the second filter 14 is also set by the filter control unit 17B at the timing t2 (that is, the timing at which the transmission wavelength band B1 of the first filter 12 is adjusted) or the subsequent timing. Adjusted. For example, in the second filter 14, the transmission wavelength band B2 is adjusted to the long wavelength side at a timing immediately after the timing t2. Therefore, at the timing t31 when the incident light LS enters the second filter 14, the second transmitted light L31 (t31) has a spectrum as shown in FIG. 4D.
 このように、本実施例においては、例えば、光源部11の特性(発光素子11Aの発光特性)が変化した場合、その特性変化に応じて第1及び第2のフィルタ12及び14が透過波長域B1及びB2を変化させる。また、第1及び第2のフィルタ12及び14の透過波長域B1及びB2は、光源部11の特性変化に応じて随時調節される。 Thus, in this embodiment, for example, when the characteristic of the light source unit 11 (the light emission characteristic of the light emitting element 11A) changes, the first and second filters 12 and 14 are transmitted through the transmission wavelength region according to the characteristic change. B1 and B2 are changed. Further, the transmission wavelength ranges B1 and B2 of the first and second filters 12 and 14 are adjusted as needed in accordance with the characteristic change of the light source unit 11.
 従って、出射光L1の特性が変化した場合でも、第1のフィルタ12の特性を調節することによって、第1の透過光L11(すなわち走査光L2)の光量を安定させることができる。 Therefore, even when the characteristics of the emitted light L1 change, the light quantity of the first transmitted light L11 (that is, the scanning light L2) can be stabilized by adjusting the characteristics of the first filter 12.
 また、第1のフィルタ12の特性の調節に応じて第2のフィルタ14の特性を調節することによって、反射光L3(信号成分)及び環境光L0(ノイズ成分)を含む入射光LSから、適切に環境光L0を除去することができる。例えば、本実施例においては、図3D及び図4Dに示すように、第2のフィルタ12の透過波長域B2が第1のフィルタ12の透過波長域B1に完全に含まれかつ第1のフィルタ12の透過波長域B1よりも狭くなるように、第2のフィルタ12の透過波長域B2が調節される。 Further, by adjusting the characteristics of the second filter 14 in accordance with the adjustment of the characteristics of the first filter 12, the incident light LS including the reflected light L3 (signal component) and the ambient light L0 (noise component) can be appropriately selected. The ambient light L0 can be removed. For example, in this embodiment, as shown in FIGS. 3D and 4D, the transmission wavelength band B2 of the second filter 12 is completely included in the transmission wavelength band B1 of the first filter 12, and the first filter 12 is used. The transmission wavelength region B2 of the second filter 12 is adjusted so as to be narrower than the transmission wavelength region B1.
 すなわち、本実施例においては、第2のフィルタ12は、第1のフィルタ12の透過波長域B1の一部の波長域の光のみを第2の透過光L31として透過させるような透過波長域B1を有する。これによって、反射光L3と異なる波長のほぼ全ての環境光L0を除去することができる。従って、反射光L3を適切に抽出することができ、走査精度及び測距精度が向上する。 In other words, in the present embodiment, the second filter 12 transmits only light in a part of the wavelength band B1 of the first filter 12 as the second transmitted light L31. Have As a result, almost all the environmental light L0 having a wavelength different from that of the reflected light L3 can be removed. Therefore, the reflected light L3 can be extracted appropriately, and the scanning accuracy and distance measurement accuracy are improved.
 なお、第2のフィルタ12の透過波長域B2と第1のフィルタ12の透過波長域B1とは、完全に同一であってもよい。 Note that the transmission wavelength region B2 of the second filter 12 and the transmission wavelength region B1 of the first filter 12 may be completely the same.
 なお、より正確に第2のフィルタ14の透過波長域B2を調節することを考慮すると、測距装置10は、第2の透過光L31の波長を監視する波長監視部(図示せず)を有していてもよい。この場合、フィルタ制御部17Bは、第1及び第2の透過光L11及びL31の各々の波長を監視しつつ第1及び第2のフィルタ12及び14を制御すればよい。 In consideration of adjusting the transmission wavelength region B2 of the second filter 14 more accurately, the distance measuring device 10 has a wavelength monitoring unit (not shown) that monitors the wavelength of the second transmitted light L31. You may do it. In this case, the filter control unit 17B may control the first and second filters 12 and 14 while monitoring the wavelengths of the first and second transmitted lights L11 and L31.
 次に、図5A乃至図5Cを用いて、光源部11の出力調節動作について説明する。なお、理解の容易さのため、図5A乃至図5Cにおいては、光源部11によって出射光L1の光量のみが調節され、第1のフィルタ12の特性は調節されない場合(すなわち出射光L1の波長が変化しないと仮定した場合)について説明する。また、ここでは、一例として、実際の走査を行う前に初期設定として出射光L1の光量調節が行われる場合について説明する。 Next, the output adjustment operation of the light source unit 11 will be described with reference to FIGS. 5A to 5C. For ease of understanding, in FIGS. 5A to 5C, when only the light amount of the emitted light L1 is adjusted by the light source unit 11 and the characteristics of the first filter 12 are not adjusted (that is, the wavelength of the emitted light L1 is (Assuming no change). In addition, here, as an example, a case where the light amount adjustment of the emitted light L1 is performed as an initial setting before actual scanning is performed will be described.
 図5Aは、調節前の出射光L1のスペクトルの例を示す図である。まず、調節前のタイミングt01において、出射光L1(t01)が図5Aのハッチングで示した面積に相当する光量AM1(t01)を有している場合を考える。 FIG. 5A is a diagram showing an example of the spectrum of the outgoing light L1 before adjustment. First, consider a case where the emitted light L1 (t01) has a light amount AM1 (t01) corresponding to the area indicated by hatching in FIG. 5A at the timing t01 before adjustment.
 図5Bは、出射光L1(t01)が第1のフィルタ12に入射した際の第1の透過光L11(t0)のスペクトルの例を示す図である。例えば、第1のフィルタ12が初期設定として図3Bに示す透過波長域B1に設定されている場合、第1の透過光L11(t01)の光量AM11(t01)は、図5Bにハッチングで示す面積に対応する量となる。 FIG. 5B is a diagram illustrating an example of a spectrum of the first transmitted light L11 (t0) when the emitted light L1 (t01) is incident on the first filter 12. For example, when the first filter 12 is set to the transmission wavelength region B1 shown in FIG. 3B as an initial setting, the light amount AM11 (t01) of the first transmitted light L11 (t01) is the area shown by hatching in FIG. 5B. The amount corresponds to.
 本実施例においては、光源制御部17Aは、第1の透過光L11(t01)の光量AM(t01)が安全上の基準を満たす光量(所定の光量)となるように、光源部11の駆動制御を行う。すなわち、光源部11は、第1の透過光L11の光量AM11に基づいて制御された出射光L1を出射するように駆動される。 In the present embodiment, the light source control unit 17A drives the light source unit 11 so that the light amount AM (t01) of the first transmitted light L11 (t01) becomes a light amount (predetermined light amount) that satisfies safety standards. Take control. That is, the light source unit 11 is driven so as to emit the emitted light L1 controlled based on the light amount AM11 of the first transmitted light L11.
 具体的には、本実施例においては、走査領域R0に投光される走査光L2は、光源部11からの出射光L1の一部である第1の透過光L11に対応する光量を有することとなる。従って、例えば、レーザ光の安全基準などの走査光L2の光量の制約条件は、第1の透過光L11に基づいて算出すればよい。また、例えば、第1の透過光L11の光量が安全基準を満たしていればよい。 Specifically, in this embodiment, the scanning light L2 projected onto the scanning region R0 has a light amount corresponding to the first transmitted light L11 that is a part of the emitted light L1 from the light source unit 11. It becomes. Therefore, for example, the restriction condition of the light quantity of the scanning light L2, such as the safety standard of the laser light, may be calculated based on the first transmitted light L11. For example, the light quantity of the 1st transmitted light L11 should just satisfy | fill safety standards.
 例えば、光源制御部11は、光量監視部M2によって検出(算出)されたタイミングt01における第1の透過光L11(t01)の光量AM11(t01)が安全上の基準に対して十分に小さい場合、出射光L1の光量AM1が大きくなるように光源部11の出力を調節する。 For example, when the light amount AM11 (t01) of the first transmitted light L11 (t01) at the timing t01 detected (calculated) by the light amount monitoring unit M2 is sufficiently small with respect to the safety standard, The output of the light source unit 11 is adjusted so that the light amount AM1 of the emitted light L1 is increased.
 この場合、例えば、調節後のタイミングt02においては、図5Cに示すように、光源部11からは、タイミングt01の出射光L1(t01)よりも高い出力の出射光L1(t02)が出射される。従って、出射光L1(t02)の光量AM1(t02)は、タイミングt01における出射光L1(t01)の光量AM1(t02)よりも大きくなる。 In this case, for example, at the adjusted timing t02, as shown in FIG. 5C, the light source unit 11 emits the emitted light L1 (t02) having a higher output than the emitted light L1 (t01) at the timing t01. . Therefore, the light amount AM1 (t02) of the emitted light L1 (t02) is larger than the light amount AM1 (t02) of the emitted light L1 (t01) at the timing t01.
 このように、本実施例においては、光源部11は、第1のフィルタ12を透過した第1の透過光L11の光量AM11に基づいて、出射光L1の光量を調節するように構成されている。従って、例えば安全上の基準などの制約条件を満たす範囲内で、十分な光量を有する走査光L2によって、走査領域R0を走査することができる。 Thus, in the present embodiment, the light source unit 11 is configured to adjust the light amount of the emitted light L1 based on the light amount AM11 of the first transmitted light L11 that has passed through the first filter 12. . Therefore, for example, the scanning region R0 can be scanned with the scanning light L2 having a sufficient amount of light within a range that satisfies the constraint conditions such as safety standards.
 なお、光源部11は、測距装置10(走査装置SC)の動作中においても出射光L1の光量AM1を調節してもよい。例えば、光源部11による出射光L1の光量調節は、第1のフィルタ12の透過波長域B1の調節が行われた場合など、第1の透過光L11の光量AM1が所定量以上変化した場合には、再度行われてもよい。また、例えば、透過波長域B1の調節によって出射光L1の光量AM1が安全基準の上限に近づくことが予想される場合、光源部11は、光源制御部17Aによって、出力を下げる調節を行ってもよい。 The light source unit 11 may adjust the light amount AM1 of the emitted light L1 even during the operation of the distance measuring device 10 (scanning device SC). For example, the light amount adjustment of the emitted light L1 by the light source unit 11 is performed when the light amount AM1 of the first transmitted light L11 changes by a predetermined amount or more, such as when the transmission wavelength range B1 of the first filter 12 is adjusted. May be performed again. Further, for example, when the light amount AM1 of the emitted light L1 is expected to approach the upper limit of the safety standard by adjusting the transmission wavelength band B1, the light source unit 11 may perform adjustment to lower the output by the light source control unit 17A. Good.
 また、上記においては、第1及び第2のフィルタ12及び14の透過波長域B1及びB2が調節される場合について説明した。また、光量監視部M2によって第1の透過光L11の光量AM11を実測(算出)し、この結果を光源部11にフィードバックするように出射光L1の光量AM1が調節される場合について説明した。 In the above description, the case where the transmission wavelength ranges B1 and B2 of the first and second filters 12 and 14 are adjusted has been described. Further, a case has been described in which the light amount monitoring unit M2 measures (calculates) the light amount AM11 of the first transmitted light L11 and the light amount AM1 of the emitted light L1 is adjusted so that the result is fed back to the light source unit 11.
 すなわち、本実施例においては、第1のフィルタ12は、出射光L1の波長に応じて透過波長域B1を変化させる波長可変フィルタである。また、第2のフィルタ14は、第1のフィルタ12の透過波長域B1に基づいて透過波長域B2を変化させる波長可変フィルタである。また、光源部11は、第1の透過光L11のの光量AM11に基づいた光量AM1の光を出射光L1として出射する。 That is, in the present embodiment, the first filter 12 is a wavelength tunable filter that changes the transmission wavelength band B1 according to the wavelength of the outgoing light L1. The second filter 14 is a wavelength tunable filter that changes the transmission wavelength range B2 based on the transmission wavelength range B1 of the first filter 12. In addition, the light source unit 11 emits light of the light amount AM1 based on the light amount AM11 of the first transmitted light L11 as the emitted light L1.
 しかし、第1及び第2のフィルタ12及び14は、波長可変フィルタである場合に限定されない。例えば、光源部11は、設計上(想定される範囲内)の環境で使用される限り、ほとんど波長特性が変化しない場合が多い。従って、例えば、当該設計上の光源部11からの出射光L1の特性を予め取得しておけば、第1及び第2のフィルタ12及び14は、当該設計上の出射光L1の特性に対応する透過波長域B1及びB2を有する波長固定フィルタであってもよい。 However, the first and second filters 12 and 14 are not limited to being wavelength tunable filters. For example, as long as the light source unit 11 is used in a design environment (within an assumed range), the wavelength characteristics are often hardly changed. Therefore, for example, if the characteristics of the emitted light L1 from the designed light source unit 11 are acquired in advance, the first and second filters 12 and 14 correspond to the characteristics of the designed emitted light L1. A fixed wavelength filter having transmission wavelength ranges B1 and B2 may be used.
 換言すれば、第1のフィルタ12は、光源部11からの出射光(パルス光)L1のうちの一部の波長域の光のみを第1の透過光L11として透過させるように構成されたフィルタであればよい。また、第2のフィルタ14は、走査光L2が走査領域R0内の対象物OBで反射した反射光L3のうち、第1の透過光L11の波長域に重複する又は一致する波長域の光を第2の透過光L31として透過させるように構成されたフィルタであればよい。 In other words, the first filter 12 is a filter configured to transmit only light in a partial wavelength region of the emitted light (pulse light) L1 from the light source unit 11 as the first transmitted light L11. If it is. Further, the second filter 14 emits light in a wavelength region that overlaps or coincides with the wavelength region of the first transmitted light L11 out of the reflected light L3 reflected by the scanning light L2 from the object OB in the scanning region R0. Any filter configured to transmit the second transmitted light L31 may be used.
 また、例えば、第1のフィルタ12が波長固定フィルタである場合においては、第1の透過光L11の光量AM11は、出射光L1の波長(スペクトル)がわかれば、実測しなくても算出されることができる。従って、十分な光量の走査光L2を投光することを考慮すると、例えば、光源部11は、出射光L1の波長域に応じた光量の光を出射光L1として出射するように構成されていてもよい。 For example, when the first filter 12 is a fixed wavelength filter, the light amount AM11 of the first transmitted light L11 can be calculated without actually measuring if the wavelength (spectrum) of the emitted light L1 is known. be able to. Accordingly, in consideration of projecting a sufficient amount of scanning light L2, for example, the light source unit 11 is configured to emit light having a light amount corresponding to the wavelength region of the emitted light L1 as the emitted light L1. Also good.
 また、本実施例においては、光源部11、第1のフィルタ12及び第2のフィルタ14の各々の特性は、制御部17によって調節される場合について説明した。しかし、光源部11、第1のフィルタ12又は第2のフィルタ14は、制御部17の制御によらず、自立的にその特性を調節するように構成されていてもよい。例えば、光源部11、第1のフィルタ12又は第2のフィルタ14には、制御部17が有する制御プログラムがインストールされていればよい。 In the present embodiment, the case where the characteristics of the light source unit 11, the first filter 12, and the second filter 14 are adjusted by the control unit 17 has been described. However, the light source unit 11, the first filter 12, or the second filter 14 may be configured to independently adjust the characteristics without being controlled by the control unit 17. For example, the control program of the control unit 17 may be installed in the light source unit 11, the first filter 12, or the second filter 14.
 また、本実施例においては、光源部11、第1のフィルタ12及び第2のフィルタ14の各々の特性は、全て固定されていてもよい。具体的には、上記したように、設計上の環境下では、光源部11の特性はほとんど変化しないことが想定される。従って、光源部11、第1のフィルタ12及び第2のフィルタ14の各々は、全て設計上の特性に固定されていてもよい。すなわち、光源部11は、出射光L1を出射するように構成された光源であればよい。 In the present embodiment, all the characteristics of the light source unit 11, the first filter 12, and the second filter 14 may be fixed. Specifically, as described above, it is assumed that the characteristics of the light source unit 11 hardly change under a design environment. Therefore, each of the light source unit 11, the first filter 12, and the second filter 14 may be fixed to design characteristics. That is, the light source unit 11 may be a light source configured to emit the emitted light L1.
 次に、図6A及び図6Bを用いて、偏向部13の構成の一例について説明する。図6Aは、偏向部13の模式的な上面図である。また、図6Bは、偏向部13の断面図である。図6Bは、図6AのV-V線に沿った断面図である。本実施例においては、偏向部13は、光反射面13Aを有する揺動ミラー24を含み、この揺動ミラー24が揺動するMEMS(Micro Electro Mechanical Systems)ミラーである。 Next, an example of the configuration of the deflection unit 13 will be described with reference to FIGS. 6A and 6B. FIG. 6A is a schematic top view of the deflecting unit 13. FIG. 6B is a cross-sectional view of the deflection unit 13. 6B is a cross-sectional view taken along line VV in FIG. 6A. In this embodiment, the deflecting unit 13 is a MEMS (Micro Electro Mechanical Systems) mirror that includes a oscillating mirror 24 having a light reflecting surface 13A and that the oscillating mirror 24 oscillates.
 また、本実施例においては、偏向部13は、電磁気的に揺動ミラー24を揺動させるように構成されている。より具体的には、偏向部13は、固定部(ベース部)21、揺動部(可動部)22、駆動力生成部23及び揺動ミラー24を有する。また、本実施例においては、偏向部13は、互いに直交する2つの揺動軸(第1及び第2の揺動軸)AX及びAYを中心に揺動ミラー24が揺動するように構成されている。 In this embodiment, the deflecting unit 13 is configured to electromagnetically oscillate the oscillating mirror 24. More specifically, the deflection unit 13 includes a fixed unit (base unit) 21, a swing unit (movable unit) 22, a driving force generation unit 23, and a swing mirror 24. In the present embodiment, the deflection unit 13 is configured such that the oscillating mirror 24 oscillates around two oscillating shafts (first and second oscillating shafts) AX and AY orthogonal to each other. ing.
 本実施例においては、固定部21は、固定基板B1及び固定基板B1上に形成された環状の固定枠B2を含む。揺動部22は、各々の一端が固定枠B2の内側に固定された一対のトーションバー(第1のトーションバー)TXを含む。一対のトーションバーTXの各々は、少なくとも周方向の弾性を有する棒状の弾性部材からなり、揺動軸AXに沿って整列している。また、揺動部22は、外周部側面が一対のトーションバーTXの各々の他端に接続された環状の揺動枠(可動枠)SXを有する。 In this embodiment, the fixing portion 21 includes a fixed substrate B1 and an annular fixed frame B2 formed on the fixed substrate B1. The swing part 22 includes a pair of torsion bars (first torsion bars) TX each having one end fixed inside the fixed frame B2. Each of the pair of torsion bars TX is composed of a rod-shaped elastic member having at least circumferential elasticity, and is aligned along the swing axis AX. Further, the swing part 22 has an annular swing frame (movable frame) SX whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TX.
 また、揺動部22は、各々の一端が揺動枠SXの内周部側面に接続され、一対のトーションバーTXに直交する方向(揺動軸AYに沿った方向)に整列した一対のトーションバー(第2のトーションバー)TYと、外周部側面が一対のトーションバーTYの各々の他端に接続された揺動板(可動板)SYと、を有する。一対のトーションバーTYの各々は、少なくとも周方向の弾性を有する棒状の弾性部材からなる。 Each of the swinging portions 22 is connected to a side surface of the inner peripheral portion of the swinging frame SX and has a pair of torsion lines aligned in a direction perpendicular to the pair of torsion bars TX (a direction along the swinging axis AY). It has a bar (second torsion bar) TY and a swing plate (movable plate) SY whose outer peripheral side surface is connected to the other end of each of the pair of torsion bars TY. Each of the pair of torsion bars TY is composed of a rod-like elastic member having at least circumferential elasticity.
 本実施例においては、揺動枠SXは揺動軸AXを中心に(揺動中心として)揺動し、揺動板SYは揺動軸AX及びAYを中心に揺動する。また、揺動板SY上には揺動ミラー24が形成されている。例えば、揺動ミラー24は、揺動板SY上に成膜された光反射性を有する膜である。揺動ミラー24の光反射面13Aは、揺動板SYと共に、互いに直交する揺動軸AX及びAYを中心に揺動する。 In this embodiment, the swing frame SX swings about the swing axis AX (with the swing center), and the swing plate SY swings about the swing axes AX and AY. A swing mirror 24 is formed on the swing plate SY. For example, the oscillating mirror 24 is a light reflective film formed on the oscillating plate SY. The light reflecting surface 13A of the oscillating mirror 24 oscillates around the oscillating axes AX and AY orthogonal to each other together with the oscillating plate SY.
 駆動力生成部23は、固定基板B1上に配置された磁石MGと、揺動枠SX上において揺動枠SXの外周に沿って配線された金属配線(第1のコイル)CXと、揺動板SY上において揺動板SYの外周に沿って配線された金属配線(第2のコイル)CYと、を含む。 The driving force generation unit 23 includes a magnet MG disposed on the fixed substrate B1, a metal wiring (first coil) CX wired along the outer periphery of the swing frame SX on the swing frame SX, and a swing And a metal wiring (second coil) CY wired along the outer periphery of the swing plate SY on the plate SY.
 本実施例においては、磁石MGは、固定基板B1上における固定枠B2の外側領域に設けられた複数の磁石片からなる。本実施例においては、4つの磁石片が、それぞれ、揺動軸AX及びAYの各々に沿ってかつ一対のトーションバーTX及びTYの外側の位置に配置されている。 In the present embodiment, the magnet MG is composed of a plurality of magnet pieces provided in the outer region of the fixed frame B2 on the fixed substrate B1. In the present embodiment, four magnet pieces are respectively disposed along the swing axes AX and AY and at positions outside the pair of torsion bars TX and TY.
 また、揺動軸AXに沿った方向において互いに対向する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。同様に、揺動軸AYに沿った方向において互いに対向する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。 Further, the two magnet pieces facing each other in the direction along the swing axis AX are arranged so that portions having opposite polarities face each other. Similarly, the two magnet pieces facing each other in the direction along the swing axis AY are arranged so that the portions having opposite polarities face each other.
 本実施例においては、金属配線CXに電流が流れると、揺動軸AYに沿った方向に並んだ磁石MGの2つの磁石片によって生じた磁界との相互作用により、一対のトーションバーTXが周方向にねじれ、揺動枠SXが揺動軸AXを中心に揺動する。同様に、金属配線CYに流れた電流による電界と揺動枠AXに沿った方向に並んだ磁石MGの2つの磁石片による磁界とによって一対のトーションバーTYがねじれ、揺動板SYが揺動軸AYを中心に揺動する。 In the present embodiment, when a current flows through the metal wiring CX, the pair of torsion bars TX are rotated by the interaction with the magnetic field generated by the two magnet pieces of the magnet MG aligned in the direction along the swing axis AY. The swing frame SX swings about the swing axis AX. Similarly, the pair of torsion bars TY is twisted and the swing plate SY swings due to the electric field generated by the current flowing through the metal wiring CY and the magnetic field generated by the two magnet pieces of the magnet MG aligned in the direction along the swing frame AX. It swings around the axis AY.
 また、図6Aに示すように、金属配線CX及びCYは、制御部17に接続されている。制御部17は、金属配線CX及びCYに駆動信号DX及びDYを供給する。駆動力生成部23は、駆動信号DX及びDYの印加によって、揺動部22及び揺動ミラー24を揺動させる電磁気力を生成する。 Further, as shown in FIG. 6A, the metal wirings CX and CY are connected to the control unit 17. The control unit 17 supplies drive signals DX and DY to the metal wirings CX and CY. The driving force generation unit 23 generates an electromagnetic force that swings the swinging unit 22 and the swinging mirror 24 by applying the drive signals DX and DY.
 なお、本実施例においては、揺動ミラー24は、円板形状を有する。また、揺動ミラー24は、揺動軸AX及びAYに直交する中心軸ACを有する。揺動部22及び揺動ミラー24は、揺動ミラー24の中心軸ACに関して90度回転対称に形成されている。 In this embodiment, the oscillating mirror 24 has a disk shape. The oscillating mirror 24 has a central axis AC orthogonal to the oscillating axes AX and AY. The oscillating portion 22 and the oscillating mirror 24 are formed to be 90-degree rotationally symmetric with respect to the central axis AC of the oscillating mirror 24.
 また、図6Bを参照すると、本実施例においては、固定部21の固定基板B1は、凹部を有する。また、固定枠B2は、固定基板B1の当該凹部に揺動部22を懸架するように固定基板B1に固定されている。また、固定枠B2及び揺動部22(揺動枠SX、揺動板SY並びにトーションバーTX及びTY)は、例えば半導体基板を加工することで形成された当該半導体基板の部分である。 Referring to FIG. 6B, in the present embodiment, the fixed substrate B1 of the fixed portion 21 has a recess. The fixed frame B2 is fixed to the fixed substrate B1 so that the swinging portion 22 is suspended in the concave portion of the fixed substrate B1. Further, the fixed frame B2 and the swinging portion 22 (the swinging frame SX, the swinging plate SY, and the torsion bars TX and TY) are portions of the semiconductor substrate formed by processing the semiconductor substrate, for example.
 揺動ミラー24は、揺動板SYと共に、固定基板B1の凹部に揺動可能に懸架(支持)されている。また、磁石MGは、固定基板B1上における凹部の外側に形成されている。また、本実施例においては、トーションバーTX及びTYがねじれることで、固定枠B2の内側において、トーションバーTX及びTYを挟んだ揺動部22の両端部が固定基板B1の凹部に向かう方向及び離れる方向に揺動する。また、揺動ミラー24は、中心軸AC上の1点を揺動中心とし、固定枠B2に対して傾斜するように揺動する。 The oscillating mirror 24 is suspended (supported) together with the oscillating plate SY so as to be able to oscillate in the concave portion of the fixed substrate B1. Moreover, the magnet MG is formed outside the concave portion on the fixed substrate B1. Further, in the present embodiment, the torsion bars TX and TY are twisted, so that both ends of the swinging part 22 sandwiching the torsion bars TX and TY are directed toward the recesses of the fixed substrate B1 inside the fixed frame B2. Swings away. Further, the oscillating mirror 24 oscillates so as to be inclined with respect to the fixed frame B2 with one point on the central axis AC as the oscillating center.
 揺動ミラー24(光反射面13A)が揺動することで、第1の透過光L11の反射方向、すなわち走査光L2の投光方向が変化する。このようにして、偏向部13(投光部)は、第1の透過光L11を方向可変に偏向する揺動ミラー24を有し、当該偏向された第1の透過光L11を走査光L2として走査領域R0に向けて投光する。 When the oscillating mirror 24 (light reflecting surface 13A) oscillates, the reflection direction of the first transmitted light L11, that is, the light projecting direction of the scanning light L2 changes. In this way, the deflecting unit 13 (light projecting unit) includes the oscillating mirror 24 that deflects the first transmitted light L11 in a variable direction, and the deflected first transmitted light L11 is used as the scanning light L2. Light is projected toward the scanning region R0.
 すなわち、本実施例においては、偏向部13は、第1の透過光L11を反射させかつ互いに直交する揺動軸AX及びAYの周りを揺動する揺動ミラー24を有する。例えば、偏向部13は、ラスタースキャン、又はリサージュスキャンなどの走査方式に従った態様で走査領域R0に走査光L2を投光するを行うように、揺動ミラー24を揺動させる。 That is, in the present embodiment, the deflecting unit 13 includes the oscillating mirror 24 that reflects the first transmitted light L11 and oscillates around the oscillating axes AX and AY orthogonal to each other. For example, the deflecting unit 13 oscillates the oscillating mirror 24 so as to project the scanning light L2 onto the scanning region R0 in a manner according to a scanning method such as raster scanning or Lissajous scanning.
 なお、偏向部13がMEMSミラーを含む場合、揺動ミラー24は、互いに直交する揺動軸AX及びAYの周りを揺動する場合に限定されない。例えば、揺動軸AX及びAYは互いに直交していなくてもよく、互いに異なる方向に沿った軸であればよい。また、揺動ミラー24は、2つの揺動軸AX及びAYの周りを揺動する場合に限定されず、例えば1つの揺動軸(例えば揺動軸AXのみ)の周りを揺動するように構成されていてもよい。すなわち、偏向部13は、例えば、第1の透過光L11を反射させかつ少なくとも1つの軸の周りを揺動する揺動ミラー24を有していればよい。 In addition, when the deflection | deviation part 13 contains a MEMS mirror, the rocking | fluctuation mirror 24 is not limited to the case where it rock | fluctuates around the rocking axes AX and AY orthogonal to each other. For example, the swing axes AX and AY do not have to be orthogonal to each other, and may be axes that are along different directions. Further, the oscillating mirror 24 is not limited to oscillating around the two oscillating axes AX and AY. For example, the oscillating mirror 24 oscillates around one oscillating axis (for example, only the oscillating axis AX). It may be configured. In other words, the deflecting unit 13 may have, for example, the oscillating mirror 24 that reflects the first transmitted light L11 and oscillates around at least one axis.
 上記したように、測距装置10は、光源部11と、光源部11からの出射光L1のうちの一部の波長域の光のみを第1の透過光L11として透過させる第1のフィルタ12と、第1の透過光L11を走査光L2として所定の領域R0に向けて投光する投光部13と、走査光L2が当該所定の領域R0内の対象物OBで反射した反射光L3のうち、第1の透過光L11の波長域に重複する波長域の光を第2の透過光L31として透過させる第2のフィルタ14と、第2の透過光L31を受光する受光部15と、受光部15による第2の透過光L31の受光結果に基づいて対象物OBまでの距離を測定する測距部16と、を有する。従って、適切な光量の光を対象物OBに投光し、また受光した光のノイズ成分を適切に除去することで、走査領域R0内の正確な光走査を行うことが可能な走査型の測距装置10を提供することができる。 As described above, the distance measuring device 10 includes the light source unit 11 and the first filter 12 that transmits only light in a partial wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11. A light projecting unit 13 that projects the first transmitted light L11 as the scanning light L2 toward the predetermined region R0, and the reflected light L3 reflected by the object OB in the predetermined region R0. Among them, the second filter 14 that transmits the light in the wavelength region overlapping the wavelength region of the first transmitted light L11 as the second transmitted light L31, the light receiving unit 15 that receives the second transmitted light L31, and the light reception And a distance measuring unit 16 that measures the distance to the object OB based on the light reception result of the second transmitted light L31 by the unit 15. Therefore, a scanning type measurement capable of performing accurate optical scanning in the scanning region R0 by projecting an appropriate amount of light onto the object OB and appropriately removing noise components of the received light. A distance device 10 can be provided.
 また、受光部15が生成した走査情報信号SRは測距以外の用途にも用いられることができる。すなわち、測距装置10は、測距部15を有しない場合、走査装置SCとして動作する。 Also, the scanning information signal SR generated by the light receiving unit 15 can be used for purposes other than ranging. That is, the distance measuring device 10 operates as the scanning device SC when the distance measuring unit 15 is not provided.
 従って、走査装置SCは、例えば、光源部11と、光源部11からの出射光L1のうちの一部の波長域の光のみを第1の透過光L11として透過させる第1のフィルタ12と、第1の透過光L11を走査光L2として所定の領域R0に向けて投光する投光部13と、走査光L2が当該所定の領域R0内の対象物OBで反射した反射光L3のうち、第1の透過光L11の波長域に重複する波長域の光を第2の透過光L31として透過させる第2のフィルタ14と、第2の透過光L31を受光する受光部15と、を有する。従って、適切な光量の光を対象物OBに投光し、また受光した光のノイズ成分を適切に除去することで、走査領域R0内の正確な光走査を行うことが可能な走査装置SCを提供することができる。 Accordingly, the scanning device SC includes, for example, the light source unit 11, the first filter 12 that transmits only the light in the partial wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11, Of the light projecting unit 13 that projects the first transmitted light L11 toward the predetermined region R0 as the scanning light L2, and the reflected light L3 reflected by the object OB in the predetermined region R0, It has the 2nd filter 14 which permeate | transmits the light of the wavelength range which overlaps with the wavelength range of the 1st transmitted light L11 as the 2nd transmitted light L31, and the light-receiving part 15 which receives the 2nd transmitted light L31. Accordingly, the scanning device SC capable of performing accurate optical scanning in the scanning region R0 by projecting an appropriate amount of light onto the object OB and appropriately removing noise components of the received light. Can be provided.
 図7は、実施例1の変形例に係る測距装置10Aの模式的な構成例を示す図である。なお、図7は、測距装置10Aに含まれる走査装置SC1の構成のみを示している。測距装置10Aは、第1及び第2のフィルタ12及び14に代えて、出射光L1及び反射光L3に共通の光路上に設けられた1つのフィルタ18を有する点、並びに制御部19の構成を除いては、測距装置10と同様の構成を有する。 FIG. 7 is a diagram illustrating a schematic configuration example of a distance measuring apparatus 10A according to a modification of the first embodiment. FIG. 7 shows only the configuration of the scanning device SC1 included in the distance measuring device 10A. The distance measuring device 10A has a single filter 18 provided on a common optical path for the emitted light L1 and the reflected light L3 in place of the first and second filters 12 and 14, and the configuration of the control unit 19 The configuration is the same as that of the distance measuring device 10 except for.
 換言すれば、測距装置10Aの走査装置SC1は、光源部11と、光源部11からの出射光L1を方向可変に偏向しつつ走査光L2として所定の領域R0に向けて投光する偏向部13と、走査光L2が当該所定の領域R0内の対象物OBで反射した反射光L3を受光する受光部15と、出射光L1の光路上でありかつ反射光L3の光路上に設けられた1つのフィルタ18と、を有する。 In other words, the scanning device SC1 of the distance measuring device 10A includes the light source unit 11 and a deflecting unit that projects the emitted light L1 from the light source unit 11 toward the predetermined region R0 as the scanning light L2 while deflecting the emitted light L1 in a variable direction. 13 and the light receiving unit 15 that receives the reflected light L3 reflected by the object OB in the predetermined region R0, and the optical path of the outgoing light L1 and the optical path of the reflected light L3. One filter 18.
 本変形例においては、走査装置SC1は、光源部11と偏向部13との間における出射光L1の光路上に設けられ、偏向部13を経た反射光L3(偏向部13に戻ってきた反射光L3)を受光部15に導く投受光分離部としてビームスプリッタBSを有する。また、フィルタ18は、ビームスプリッタBSと偏向部13との間における出射光L1及び反射光L3の共通の光路上に設けられている。 In the present modification, the scanning device SC1 is provided on the optical path of the outgoing light L1 between the light source unit 11 and the deflecting unit 13, and is reflected light L3 that has passed through the deflecting unit 13 (reflected light returning to the deflecting unit 13). A beam splitter BS is provided as a light projecting / receiving separation unit for guiding L3) to the light receiving unit 15. The filter 18 is provided on a common optical path for the outgoing light L1 and the reflected light L3 between the beam splitter BS and the deflecting unit 13.
 例えば、フィルタ18は、測距装置10における第1のフィルタ12と同様の構成を有する。例えば、フィルタ18は、光源部11からの出射光L1の波長に応じて透過波長帯域B1を変化させる波長可変フィルタである。また、フィルタ18は、制御部19のフィルタ制御部19Aによって制御される。 For example, the filter 18 has the same configuration as the first filter 12 in the distance measuring device 10. For example, the filter 18 is a wavelength tunable filter that changes the transmission wavelength band B <b> 1 according to the wavelength of the emitted light L <b> 1 from the light source unit 11. The filter 18 is controlled by a filter control unit 19A of the control unit 19.
 本変形例のように、光源部11と偏向部13との間の出射光L1の光路と、偏向部13と受光部15との間の反射光L3の光路と、に共通の光路が設けられる場合、当該共通の光路に1つのフィルタ18を配置することで、走査装置SCと同様の動作を行うことができる。 As in this modification, a common optical path is provided for the optical path of the emitted light L1 between the light source unit 11 and the deflecting unit 13 and the optical path of the reflected light L3 between the deflecting unit 13 and the light receiving unit 15. In this case, the same operation as that of the scanning device SC can be performed by arranging one filter 18 in the common optical path.
 なお、走査装置SC1においては、走査装置SCのように2つのフィルタ(第1及び第2のフィルタ12及び14)を有する場合に比べ、単純な構成で同様の動作を行うことができる。 The scanning device SC1 can perform the same operation with a simple configuration as compared with the case where the scanning device SC1 has two filters (first and second filters 12 and 14) as in the scanning device SC.
 本実施例及びその変形例に示すように、光源部11からの出射光L1は、偏向部13によって偏向される前(又は走査光L2として走査領域R0に向けて投光される前)に、その一部の波長域の光である第1の透過光L11に変換される。また、対象物OBからの反射光L3を含む入射光LSは、受光部15によって受光される前に、その一部の波長域の光である第2の透過光L31に変換される。また、光源部11からの出射光L1の波長に応じて、第1及び第2の透過光L11及びL31の波長域及びその光量が調節される。従って、走査環境(測距環境)及び光源部11の特性変化に応じて最適な特性の走査光L2を用いて光走査及び測距を行うことができる。 As shown in the present embodiment and its modification, the emitted light L1 from the light source unit 11 is deflected by the deflecting unit 13 (or before being projected toward the scanning region R0 as the scanning light L2). It is converted into first transmitted light L11 which is light in a part of the wavelength range. Further, the incident light LS including the reflected light L3 from the object OB is converted into the second transmitted light L31 that is light in a part of the wavelength region before being received by the light receiving unit 15. Moreover, according to the wavelength of the emitted light L1 from the light source part 11, the wavelength range and the light quantity of the 1st and 2nd transmitted light L11 and L31 are adjusted. Accordingly, it is possible to perform optical scanning and ranging using the scanning light L2 having the optimum characteristics in accordance with the scanning environment (ranging environment) and the characteristic change of the light source unit 11.
 図8は、実施例2に係る測距装置30の模式的な構成例を示す図である。測距装置30は、第1及び第2のフィルタ31及び33、偏向部(投光部)32、並びに制御部34の構成を除いては、測距装置10と同様の構成を有する。なお、図8は、測距装置30に含まれる走査装置SC2の構成のみを示している。 FIG. 8 is a diagram illustrating a schematic configuration example of the distance measuring device 30 according to the second embodiment. The distance measuring device 30 has the same configuration as the distance measuring device 10 except for the configurations of the first and second filters 31 and 33, the deflecting unit (light projecting unit) 32, and the control unit 34. FIG. 8 shows only the configuration of the scanning device SC2 included in the distance measuring device 30.
 本実施例においては、走査装置SC2は、光源部11からの出射光L1のうちの一部の波長域の光のみを第1の透過光L11として透過させかつ周期的に第1の透過光L1の波長域を変化させ続ける第1のフィルタ31を有する。すなわち、第1のフィルタ31は、連続的に透過波長域を変化させる波長可変フィルタである。 In the present embodiment, the scanning device SC2 transmits only light in a part of the wavelength region of the emitted light L1 from the light source unit 11 as the first transmitted light L11 and periodically the first transmitted light L1. The first filter 31 is continuously changed. That is, the first filter 31 is a wavelength variable filter that continuously changes the transmission wavelength range.
 例えば、第1のフィルタ31は、波長域λ0を中央波長域とし、波長域λ1と波長域λ2との間で連続的に第1の透過光L11の波長を変化させるように、透過波長域を変化させる。 For example, the first filter 31 sets the transmission wavelength region so that the wavelength region λ0 is the central wavelength region, and the wavelength of the first transmitted light L11 is continuously changed between the wavelength region λ1 and the wavelength region λ2. Change.
 また、走査装置SC2においては、偏向部32は、第1の透過光L11の波長に応じて異なる方向に光を出射する回折格子32Aを有する。また、本実施例においては、回折格子32Aの回折面は、第1のフィルタ31に対して固定されている。すなわち、本実施例は、偏向部32がMEMSミラー以外の光学素子を偏向素子として含む場合の装置構成例である。 In the scanning device SC2, the deflecting unit 32 includes a diffraction grating 32A that emits light in different directions according to the wavelength of the first transmitted light L11. In the present embodiment, the diffraction surface of the diffraction grating 32 </ b> A is fixed with respect to the first filter 31. That is, the present embodiment is an example of a device configuration when the deflecting unit 32 includes an optical element other than the MEMS mirror as a deflecting element.
 走査装置SC2においては、第1のフィルタ31によって連続的かつ周期的に波長が変化する光を第1の透過光L11として回折格子32Aに入射させる。そして、回折格子32Aからの出射方向が第1の透過光L11の波長毎に変化することで、第1の透過光L11が偏向される。これによって、偏向された光が走査光L2として走査領域R0に向けて投光される。 In the scanning device SC2, the first filter 31 causes the light whose wavelength is continuously and periodically changed to enter the diffraction grating 32A as the first transmitted light L11. Then, the direction of emission from the diffraction grating 32A changes for each wavelength of the first transmitted light L11, whereby the first transmitted light L11 is deflected. Thereby, the deflected light is projected toward the scanning region R0 as the scanning light L2.
 すなわち、本実施例においては、第1のフィルタ31及び偏向部32(回折格子32A)が走査光L2によって走査領域R0を掃引する走査部(掃引部)として機能する。なお、第1のフィルタ31の透過波長域の幅は、例えば、回折格子32Aの格子定数(格子間隔)に基づいて定められることができる。 That is, in the present embodiment, the first filter 31 and the deflecting unit 32 (diffraction grating 32A) function as a scanning unit (sweep unit) that sweeps the scanning region R0 with the scanning light L2. The width of the transmission wavelength region of the first filter 31 can be determined based on, for example, the grating constant (grating interval) of the diffraction grating 32A.
 また、第2のフィルタ33は、第1のフィルタ31の透過波長域に応じて透過波長域を変化させる波長可変フィルタである。本実施例においては、第2のフィルタ33は、第1のフィルタ31に連動して、波長域λ1と波長域λ2との間で周期的に透過波長域を変化させるように構成されている。 The second filter 33 is a wavelength tunable filter that changes the transmission wavelength range according to the transmission wavelength range of the first filter 31. In the present embodiment, the second filter 33 is configured to periodically change the transmission wavelength range between the wavelength range λ1 and the wavelength range λ2 in conjunction with the first filter 31.
 また、制御部34は、波長監視部M1及び光量監視部M2の監視結果に基づいて、光源部11を制御する光源制御部34Aと、第1及び第2のフィルタ31及び33を制御するフィルタ制御部34Bを有する。 The control unit 34 also controls the light source control unit 34A that controls the light source unit 11 and the first and second filters 31 and 33 based on the monitoring results of the wavelength monitoring unit M1 and the light amount monitoring unit M2. Part 34B.
 次に、図9A乃至図9Dを用いて、第1及び第2のフィルタ31及び33の動作について説明する。図9A、図9B、図9C及び図9Dは、それぞれ、出射光L1、第1の透過光L11(投光信号)、入射光LS及び第2の透過光L31のスペクトルの例を示す図である。 Next, the operation of the first and second filters 31 and 33 will be described with reference to FIGS. 9A to 9D. 9A, 9B, 9C, and 9D are diagrams illustrating examples of spectra of the emitted light L1, the first transmitted light L11 (projection signal), the incident light LS, and the second transmitted light L31, respectively. .
 第1のフィルタ31は、フィルタ制御部34Bによって、所定の帯域幅で、波長域λ1の光を透過させる透過波長域B3(λ1)と波長域λ2の光を透過させる透過波長域B3(λ2)との間で周期的に透過波長域B3を変化させる。例えば、第1のフィルタ31の透過波長域B3が、波長域λ1及び波長域λ2の中間の波長域λ0となっている場合、第1の透過光L11(λ0)は、図9Bに示すスペクトルを示す。また、第1の透過光L11(λ0)の光量AM11(λ0)は、図9Bのハッチングで示した部分となる。 The first filter 31 has a transmission wavelength band B3 (λ1) that transmits light in the wavelength band λ1 and a transmission wavelength band B3 (λ2) that transmits light in the wavelength band λ2 with a predetermined bandwidth by the filter control unit 34B. The transmission wavelength band B3 is periodically changed between For example, when the transmission wavelength region B3 of the first filter 31 is the intermediate wavelength region λ0 between the wavelength region λ1 and the wavelength region λ2, the first transmitted light L11 (λ0) has the spectrum shown in FIG. 9B. Show. Further, the light amount AM11 (λ0) of the first transmitted light L11 (λ0) is a portion indicated by hatching in FIG. 9B.
 なお、図9Bに示すように、第1の透過光L11の光量AM11はその波長域によって(例えば波長域λ0、λ1及びλ2間で)異なる場合が想定される。従って、例えば、光量監視部M2の監視結果によって、波長域によって第1の透過光L11の光量AM11が所定量以上変化することが検出された場合、光源制御部34Aは、第1の透過光L11の光量AM11が所定の範囲内(例えば一定)となるように光源部11を制御して出射光L1の光量AM1を調節してもよい。 Note that, as shown in FIG. 9B, it is assumed that the light amount AM11 of the first transmitted light L11 varies depending on the wavelength region (for example, between the wavelength regions λ0, λ1, and λ2). Therefore, for example, when it is detected from the monitoring result of the light amount monitoring unit M2 that the light amount AM11 of the first transmitted light L11 changes by a predetermined amount or more depending on the wavelength range, the light source control unit 34A performs the first transmitted light L11. The light amount AM1 of the emitted light L1 may be adjusted by controlling the light source unit 11 so that the light amount AM11 falls within a predetermined range (for example, constant).
 また、図9Bに示すスペクトルの第1の透過光L11(λ0)が走査光L2として対象物OBに照射された場合、その反射光L3(λ0)を含む入射光LSは、例えば図9Cに示すスペクトルを示すことが想定される。また、入射光LSは、反射光L3(λ0)に対応する成分(信号成分)と、環境光L0に対応する成分(ノイズ成分)とを含む。 Moreover, when the object OB is irradiated with the first transmitted light L11 (λ0) having the spectrum illustrated in FIG. 9B as the scanning light L2, the incident light LS including the reflected light L3 (λ0) is, for example, illustrated in FIG. 9C. It is assumed to show a spectrum. Further, the incident light LS includes a component (signal component) corresponding to the reflected light L3 (λ0) and a component (noise component) corresponding to the environmental light L0.
 そして、第2のフィルタ33は、フィルタ制御部34Bによって、第1のフィルタ31の透過波長域B3に対応する透過波長域B4に調節される。例えば、第1のフィルタ31の透過波長域B3が透過波長域B3(λ0)に調節された場合、これに対応する入射光LSを受光することが想定されるタイミングまでに、第2のフィルタ33の透過波長域B4は、透過波長域B4(λ0)に調節される。例えば、第2のフィルタ33の透過波長域B4(λ0)は、第1のフィルタ31の透過波長域B3(λ0)と同一となるように調節される。従って、第2の透過光L31(λ0)は、図9Dに実線で示すスペクトルを有することとなる。 The second filter 33 is adjusted to a transmission wavelength band B4 corresponding to the transmission wavelength band B3 of the first filter 31 by the filter control unit 34B. For example, when the transmission wavelength range B3 of the first filter 31 is adjusted to the transmission wavelength range B3 (λ0), the second filter 33 is reached by the timing at which the incident light LS corresponding to this is assumed to be received. The transmission wavelength band B4 is adjusted to the transmission wavelength band B4 (λ0). For example, the transmission wavelength range B4 (λ0) of the second filter 33 is adjusted to be the same as the transmission wavelength range B3 (λ0) of the first filter 31. Therefore, the second transmitted light L31 (λ0) has a spectrum indicated by a solid line in FIG. 9D.
 本実施例においては、第1のフィルタ31は、投光されるべき走査光L2の方向の範囲内、すなわち回折格子32Aに入射するべき波長域の範囲内で、第1の透過光L11の波長域の幅を調節するように、透過波長域B3を変化させる。また、本実施例においては、光源部11は、例えば、第1の透過光L11の光量AM11に応じた光量AM1の光を出射光L1として出射する。従って、適切な光量の光を走査光L2として投光し、かつ入射光LS内のノイズ成分を適切に除去することができる。また、走査光L2の光量が安定する。従って、正確な走査及び測距を行うことができる。 In the present embodiment, the first filter 31 has a wavelength of the first transmitted light L11 within the range of the direction of the scanning light L2 to be projected, that is, within the range of the wavelength region to be incident on the diffraction grating 32A. The transmission wavelength region B3 is changed so as to adjust the width of the region. In the present embodiment, the light source unit 11 emits, for example, light having a light amount AM1 corresponding to the light amount AM11 of the first transmitted light L11 as the emitted light L1. Accordingly, it is possible to project an appropriate amount of light as the scanning light L2, and to appropriately remove noise components in the incident light LS. Further, the light amount of the scanning light L2 is stabilized. Therefore, accurate scanning and ranging can be performed.
 また、本実施例においては、偏向部32として機能する回折格子32Aは、偏向部13の揺動ミラー24のように動作させる必要がない。従って、第1及び第2のフィルタ31及び33の制御を行うことによって、同様の走査情報を得ることができる。従って、走査装置SC2又は測距装置30としての動作品質及び安定性が向上する。 In this embodiment, the diffraction grating 32A functioning as the deflecting unit 32 does not need to be operated like the oscillating mirror 24 of the deflecting unit 13. Therefore, the same scanning information can be obtained by controlling the first and second filters 31 and 33. Therefore, the operation quality and stability of the scanning device SC2 or the distance measuring device 30 are improved.
 なお、本実施例においては、走査装置SC2が第1及び第2のフィルタ31及び33を有する場合について説明した。しかし、走査装置SC2は、第1及び第2のフィルタ31及び33を有する場合に限定されない。例えば、実施例1の変形例に係る走査装置SC1のように、出射光L1及び反射光L3に共通の光路を設け、その共通の光路上に1つのフィルタを配置してもよい。 In the present embodiment, the case where the scanning device SC2 includes the first and second filters 31 and 33 has been described. However, the scanning device SC2 is not limited to the case where the first and second filters 31 and 33 are included. For example, like the scanning device SC1 according to the modification of the first embodiment, a common optical path may be provided for the emitted light L1 and the reflected light L3, and one filter may be disposed on the common optical path.
10、10A、30 測距装置
SC、SC1、SC2 走査装置
11 光源部
12、31 第1のフィルタ
13、32 偏向部(投光部)
14、33 第2のフィルタ
18 フィルタ
15 受光部
10, 10A, 30 Ranging devices SC, SC1, SC2 Scanning device 11 Light source unit 12, 31 First filter 13, 32 Deflection unit (light projection unit)
14, 33 Second filter 18 Filter 15 Light receiving portion

Claims (12)

  1.  光源部と、
     前記光源部からの出射光のうちの一部の波長域の光のみを第1の透過光として透過させる第1のフィルタと、
     前記第1の透過光を走査光として所定の領域に向けて投光する投光部と、
     前記走査光が前記所定の領域内の対象物で反射した反射光のうち、前記第1の透過光の波長域に重複する波長域の光を第2の透過光として透過させる第2のフィルタと、
     前記第2の透過光を受光する受光部と、を有することを特徴とする走査装置。
    A light source unit;
    A first filter that transmits only a part of the wavelength region of the emitted light from the light source unit as the first transmitted light;
    A light projecting unit that projects the first transmitted light toward a predetermined region as scanning light;
    A second filter that transmits, as second transmitted light, light in a wavelength region that overlaps with the wavelength region of the first transmitted light among reflected light that is reflected by the object in the predetermined region of the scanning light; ,
    And a light receiving portion that receives the second transmitted light.
  2.  前記第1のフィルタは、前記光源からの前記出射光の波長に応じて透過波長域を変化させる波長可変フィルタであることを特徴とする請求項1に記載の走査装置。 2. The scanning device according to claim 1, wherein the first filter is a wavelength tunable filter that changes a transmission wavelength region in accordance with a wavelength of the emitted light from the light source.
  3.  前記第2のフィルタは、前記第1のフィルタの前記透過波長域に応じて透過波長域を変化させる波長可変フィルタであることを特徴とする請求項2に記載の走査装置。 3. The scanning device according to claim 2, wherein the second filter is a wavelength tunable filter that changes a transmission wavelength range according to the transmission wavelength range of the first filter.
  4.  前記第2のフィルタは、前記反射光のうち、前記第1の透過光の一部の波長域の光のみを前記第2の透過光として透過させることを特徴とする請求項1乃至3のいずれか1つに記載の走査装置。 The said 2nd filter permeate | transmits only the light of the one part wavelength range of said 1st transmitted light among said reflected lights as said 2nd transmitted light, Any one of Claim 1 thru | or 3 characterized by the above-mentioned. A scanning device according to claim 1.
  5.  前記光源部は、前記第1の透過光の光量に基づいた光量の光を前記出射光として出射することを特徴とする請求項1乃至4のいずれか1つに記載の走査装置。 5. The scanning device according to claim 1, wherein the light source unit emits light having a light amount based on a light amount of the first transmitted light as the emitted light.
  6.  前記光源部は、前記出射光の波長域に応じた光量の光を前記出射光として出射することを特徴とする請求項1乃至5のいずれか1つに記載の走査装置。 The scanning device according to claim 1, wherein the light source unit emits light having a light amount corresponding to a wavelength range of the emitted light as the emitted light.
  7.  前記投光部は、前記第1の透過光を反射させかつ少なくとも1つの軸の周りを揺動することで前記第1の透過光を方向可変に偏向する揺動ミラーを有することを特徴とする請求項1乃至6のいずれか1つに記載の走査装置。 The light projecting unit includes an oscillating mirror that reflects the first transmitted light and oscillates around at least one axis to deflect the first transmitted light in a variable direction. The scanning device according to claim 1.
  8.  前記第1のフィルタは、透過波長域を変化させる波長可変フィルタであり、
     前記投光部は、前記第1の透過光の波長に応じて異なる方向に光を出射する回折格子を有することを特徴とする請求項1乃至6のいずれか1つに記載の走査装置。
    The first filter is a wavelength tunable filter that changes a transmission wavelength range;
    The scanning device according to claim 1, wherein the light projecting unit includes a diffraction grating that emits light in different directions according to the wavelength of the first transmitted light.
  9.  請求項1乃至8のいずれか1つに記載の走査装置と、
     前記受光部による前記第2の透過光の受光結果に基づいて前記対象物までの距離を測定する測距部と、を有することを特徴とする測距装置。
    A scanning device according to any one of claims 1 to 8,
    A distance measuring device comprising: a distance measuring unit that measures a distance to the object based on a result of receiving the second transmitted light by the light receiving unit.
  10.  光源部と、
     前記光源部からの出射光を方向可変に偏向しつつ走査光として所定の領域に向けて投光する偏向部と、
     前記走査光が前記所定の領域内の対象物で反射した反射光を受光する受光部と、
     前記出射光の光路上でありかつ前記反射光の光路上に設けられた1つのフィルタと、を有することを特徴とする走査装置。
    A light source unit;
    A deflecting unit that projects light toward a predetermined region as scanning light while deflecting light emitted from the light source unit in a variable direction;
    A light receiving unit that receives the reflected light reflected by the object in the predetermined region, and
    And a filter provided on the optical path of the outgoing light and on the optical path of the reflected light.
  11.  前記光源部と前記偏向部との間における前記出射光の光路上に設けられ、前記偏向部を経た前記反射光を前記受光部に導く投受光分離部を有し、
     前記1つのフィルタは、前記偏向部と前記投受光分離部との間における前記出射光及び前記反射光に共通の光路上に設けられていることを特徴とする請求項10に記載の走査装置。
    A light projecting / receiving separation unit that is provided on an optical path of the emitted light between the light source unit and the deflecting unit and guides the reflected light that has passed through the deflecting unit to the light receiving unit;
    The scanning device according to claim 10, wherein the one filter is provided on an optical path common to the emitted light and the reflected light between the deflecting unit and the light projecting and receiving separation unit.
  12.  前記投受光分離部は、ビームスプリッタであることを特徴とする請求項11に記載の走査装置。 The scanning device according to claim 11, wherein the light projecting / receiving separation unit is a beam splitter.
PCT/JP2019/008322 2018-03-05 2019-03-04 Scanning device and distance measuring device WO2019172166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038390 2018-03-05
JP2018-038390 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019172166A1 true WO2019172166A1 (en) 2019-09-12

Family

ID=67847200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008322 WO2019172166A1 (en) 2018-03-05 2019-03-04 Scanning device and distance measuring device

Country Status (1)

Country Link
WO (1) WO2019172166A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146523A (en) * 1998-09-02 2000-05-26 Sony Corp Instrument and method for measuring distance
JP2012093633A (en) * 2010-10-28 2012-05-17 Kyocera Mita Corp Lighting system and image forming apparatus
JP2015010899A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Wavelength selection filter, wavelength variable light source using the same, optical interference fault meter using the wavelength variable light source, and photodetector using the wavelength selection filter
WO2015087564A1 (en) * 2013-12-10 2015-06-18 三菱電機株式会社 Laser radar device
JP2016011844A (en) * 2014-06-27 2016-01-21 セイコーエプソン株式会社 Spectral image capture system and control method of the same
WO2018003852A1 (en) * 2016-06-30 2018-01-04 国立大学法人横浜国立大学 Optical deflection device and lidar apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146523A (en) * 1998-09-02 2000-05-26 Sony Corp Instrument and method for measuring distance
JP2012093633A (en) * 2010-10-28 2012-05-17 Kyocera Mita Corp Lighting system and image forming apparatus
JP2015010899A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Wavelength selection filter, wavelength variable light source using the same, optical interference fault meter using the wavelength variable light source, and photodetector using the wavelength selection filter
WO2015087564A1 (en) * 2013-12-10 2015-06-18 三菱電機株式会社 Laser radar device
JP2016011844A (en) * 2014-06-27 2016-01-21 セイコーエプソン株式会社 Spectral image capture system and control method of the same
WO2018003852A1 (en) * 2016-06-30 2018-01-04 国立大学法人横浜国立大学 Optical deflection device and lidar apparatus

Similar Documents

Publication Publication Date Title
JP6894082B2 (en) Spatial profiling system and method
JP6956964B2 (en) Light deflection device and rider device
JP6965784B2 (en) Distance measuring device and moving object using it
US9201237B2 (en) Diffraction-based sensing of mirror position
US20130188043A1 (en) Active illumination scanning imager
US20220050187A1 (en) Scan-less 3d optical sensing devices and associated lidar based on stacking of integrated photonic chips, wavelength division demultiplexing and position-to-angle conversion of a lens
JP2007526620A (en) Wavelength tuning source device and method
EP2716050B1 (en) An optical device
US20210041537A1 (en) Multispectral lidar transceiver
KR20200102900A (en) Lidar device
JP6892149B2 (en) LIDAR system with movable fiber
JP2024019680A (en) Scanning device and photodetection device
US20190212547A1 (en) Fiber-based laser scanner
WO2019172166A1 (en) Scanning device and distance measuring device
US11942754B2 (en) Driving current correction method and apparatus for multiple laser devices, and laser projector
CN112147775A (en) Optical fiber scanning device and scanning display equipment
EP3855586B1 (en) Laser device
JP2021018079A (en) Imaging apparatus, measuring device, and measuring method
WO2019031327A1 (en) Optical apparatus
US11231641B2 (en) Driving current correction method and apparatus for multiple laser devices, and laser projector
KR102139845B1 (en) Variable-wavelength light source
US20090251670A1 (en) Optical feedback for high speed scan mirror
JP7432989B2 (en) Light projecting device, projecting/receiving device, and distance measuring device
WO2023127269A1 (en) Spectroscopic device
US20220236418A1 (en) Lidar system comprising an interferential diffractive element and lidar imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP