WO2019131277A1 - Method for manufacturing optical element assembly - Google Patents

Method for manufacturing optical element assembly Download PDF

Info

Publication number
WO2019131277A1
WO2019131277A1 PCT/JP2018/046334 JP2018046334W WO2019131277A1 WO 2019131277 A1 WO2019131277 A1 WO 2019131277A1 JP 2018046334 W JP2018046334 W JP 2018046334W WO 2019131277 A1 WO2019131277 A1 WO 2019131277A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
prism
axis
optical
light
Prior art date
Application number
PCT/JP2018/046334
Other languages
French (fr)
Japanese (ja)
Inventor
守 藤村
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019131277A1 publication Critical patent/WO2019131277A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors

Definitions

  • the present invention relates to a method of manufacturing an optical element assembly.
  • Priority is claimed on Japanese Patent Application No. 2017-252602, filed Dec. 27, 2017, the content of which is incorporated herein by reference.
  • Patent Document 1 proposes that a wedge-shaped prism be provided in part of a prism assembly in order to adjust the deviation from the design value of the incident optical axis and the outgoing optical axis in the manufacturing process of the prism assembly. It is done.
  • the wedge-shaped prism is joined to the other prisms of the prism assembly after being rotationally adjusted about the optical axis.
  • the present invention has been made in view of the above circumstances, and an optical element assembly in which the deviation from the design value of the outgoing optical axis with respect to the incoming optical axis is suppressed without adding the adjustment member is easily performed. It is an object of the present invention to provide a method of manufacturing an optical element assembly that can be manufactured.
  • a first bonding surface which is one of the optical surfaces of the first optical element by holding the first optical element and the second optical element.
  • the second bonding surface which is one of the optical surfaces of the second optical element, face each other with an uncured adhesive interposed therebetween, and the outer central axis of the first optical element and the outer center of the second optical element
  • the inspection light is incident to the second optical element, and the return light formed by transferring the inspection light into the first optical element and the second optical element is generated.
  • Process B in which the emission optical axis from the second optical element has a predetermined positional relationship; Curing the adhesive of and a step C of forming a cured adhesive layer.
  • the step A includes the step a of holding the first optical element in a sleeve;
  • the second optical element is inserted from an annular insertion portion having a central axis at a position coinciding with the central axis of the second optical element, and the second joint surface is brought into contact with the first joint surface.
  • the step b of holding the second optical element at the insertion portion, and the separation of the sleeve and the insertion portion along the reference axis allows the second optical element to be
  • the method may include the step c of separating the first optical element and the second optical element, and the step d of disposing the adhesive between the first bonding surface and the second bonding surface.
  • a point at which the reference axis intersects the second bonding surface is a rotation center.
  • the first bonding surface and the second bonding surface may be moved in an inclined manner with respect to the reference axis by relatively rotating the second optical element relative to the first optical element.
  • an optical element assembly in which the deviation from the design value of the outgoing optical axis with respect to the incident optical axis is suppressed without adding adjustment members is facilitated Can be manufactured.
  • FIG. 1 is a schematic front view showing an example of an optical element assembly manufactured by the method of manufacturing an optical element assembly according to an embodiment of the present invention.
  • the optical element assembly manufactured by the method of manufacturing an optical element assembly according to the present embodiment is configured by bonding a plurality of optical elements using an adhesive.
  • the optical element assembly is not particularly limited in type and number of optical elements. For example, a prism, a lens, a parallel plate, a mirror, a polarizing element, a filter element etc. are mentioned as an optical element.
  • the optical element assembly is configured by bonding a first optical element composed of one or more optical elements and a second optical element composed of one or more optical elements by an adhesive cured layer.
  • the adhesive cured layer is formed between a first bonding surface, which is one of the optical surfaces of the first optical element, and a second bonding surface, which is one of the optical surfaces of the second optical element.
  • first and second are used to distinguish the two optical elements, and represent the arrangement order of the optical elements in the designed optical path. Absent. Therefore, either of the first optical element and the second optical element may be disposed on the object side.
  • An optical surface is a surface or interface that performs optical action on incident light, such as transmission, refraction, reflection, polarization selection, wavelength selection, and the like.
  • the optical surface may be, for example, a prism surface, a lens surface, a flat surface, a mirror surface, a polarization surface, a filter surface, or the like according to the type of the optical element.
  • the first bonding surface and the second bonding surface may be a curved surface or a flat surface as long as they have substantially the same surface shape. Therefore, the adhesive cured layer provided between the first bonding surface and the second bonding surface is formed of a thin film. As described later, in the present embodiment, the relative position of the first bonding surface and the second bonding surface is adjusted, so the thickness of the adhesive cured layer may change depending on the place.
  • the optical element assembly 4 shown in FIG. 1 is an example of an optical element assembly manufactured by the method of manufacturing an optical element assembly of the present embodiment.
  • the optical element assembly 4 includes a first prism 2 (second optical element) and a junction prism 1 (first optical element).
  • the first prism 2 and the cemented prism 1 are bonded to each other with the adhesive cured layer 3 interposed therebetween.
  • the adhesive cured layer 3 is formed of a cured body of an appropriate light transmitting resin adhesive capable of adhering the first prism 2 and the junction prism 1 to each other.
  • the curing method of the adhesive forming the adhesive cured layer 3 is not particularly limited.
  • an adhesive for forming the adhesive cured layer 3 an energy ray-curable resin adhesive cured by energy rays such as UV light, a thermosetting resin adhesive cured by heating, etc. may be used. Good.
  • Either of the first prism 2 and the cemented prism 1 may be disposed on the object side.
  • the design of the optical element assembly 4 based on the designed optical path layout in the case where the incident light L1 enters the first prism 2 and is emitted from the cemented prism 1 as the output light L7.
  • the above configuration is described.
  • ray tracing is performed by causing various light beams to enter the optical system.
  • the arrangement of the optical surface such that the optical characteristics such as aberration are optimum and the optical path of the on-axis luminous flux which is an effective luminous flux in design are determined.
  • An axial chief ray which is a chief ray of an axial light flux, is an axial line connecting the center of the light flux of the axial light flux, and is a light beam passing through the optical axis of the axial light flux. Therefore, in the following description, unless otherwise specified, the incident light L1 is the designed axial light flux, and the optical axis of the incident light L1 coincides with the designed optical axis of the optical element assembly 4 .
  • the first prism 2 includes a first surface 2a (optical surface) which is an incident surface of the incident light L1, and a second surface 2b (an optical surface, a second bonding surface) which is an emitting surface.
  • the first surface 2a and the second surface 2b are both flat.
  • the second surface 2b is inclined at an acute angle with the normal to the first surface 2a.
  • the second surface 2 b constitutes a second bonding surface of the first prism 2.
  • a prism side surface 2c is formed on the side between the first surface 2a and the second surface 2b.
  • the shape of the prism side surface 2c is not particularly limited.
  • the prism side surface 2c may be a cylindrical surface, an elliptic cylindrical surface, a prismatic surface, or the like.
  • the size of the diameter of the first prism 2 (hereinafter referred to as the diameter of the first prism 2) in the range where the prism side surface 2c is formed is d2.
  • the first prism 2 is made of, for example, a glass material, a transparent resin material, or the like.
  • the incident light L1 may be shifted from the center of the first surface 2a depending on the design intention or the relationship with other optical systems combined with the optical element assembly 4.
  • the incident light L1 is incident on the first surface 2a in a state of being coaxial with the central axis O2 of the prism side surface 2c of the first prism 2.
  • the angle of incidence on the first surface 2a of the incident light L1 represents a theta i
  • the theta i is 0 degrees.
  • the incident light L1 enters the first surface 2a, passes through the first surface 2a, becomes light L2, and travels straight along the central axis O2.
  • the light L2 reaches the second surface 2b, it becomes light L3 and passes through the second surface 2b.
  • the z-axis is a normal passing through the center of the first surface 2a.
  • the z-axis is coaxial with the central axis O 2 of the prism side surface 2 c of the first prism 2.
  • the positive direction of the z-axis is a direction from the first surface 2a to the second surface 2b (a direction from the left side to the right side in FIG. 1).
  • the z-axis is an axis along which the on-axis chief ray of the light L2 travels in the first prism 2.
  • the y-axis is an axis parallel to the first surface 2a and the second surface 2b among axes perpendicular to the z-axis.
  • the positive direction of the y-axis is the direction from the back side to the front side of the sheet.
  • the x-axis is an axis perpendicular to the z-axis and the y-axis.
  • the positive direction of the x axis is a direction from the lower side to the upper side.
  • the xyz coordinate system is a right-handed orthogonal coordinate system.
  • the cemented prism 1 is formed by cementing the second prism 1A and the third prism 1B with each other.
  • the second prism 1A and the third prism 1B are made of, for example, a glass material, a transparent resin material, or the like.
  • the refractive index of the material of the second prism 1A is larger than the refractive index of the material of the third prism 1B.
  • the refractive index of the material of the second prism 1A may be the same as or different from the refractive index of the material of the first prism 2. In the example shown in FIG. 1, the materials of the second prism 1A and the first prism 2 are different from each other.
  • the second prism 1A is a quadrangular prism when viewed from the y-axis direction.
  • the second prism 1A has a first surface 1a (first joint surface), a second surface 1b, and a third surface 1c as optical surfaces.
  • the first surface 1 a is an incident surface on which the light L 3 enters the cemented prism 1.
  • the first surface 1a is a flat surface.
  • the first surface 1 a is bonded to the second surface 2 b of the first prism 2 by the adhesive cured layer 3. For this reason, the first surface 1 a constitutes a first bonding surface of the cemented prism 1.
  • the first surface 1a is disposed in parallel with the second surface 2b, sandwiching the adhesive cured layer 3 having a constant layer thickness in design.
  • the light L3 emitted from the second surface 2b passes through the adhesive cured layer 3 and is incident on the first surface 1a.
  • the light L3 is refracted according to the difference in refractive index between the first prism 2 and the second prism 1A.
  • the light L3 travels obliquely in the positive x-axis direction as it travels in the positive z-axis direction by the light L2 being refracted by the first surface 1a.
  • the second surface 1b is an optical surface that internally reflects the light L3.
  • the second surface 1b is formed by the interface of the junction of the second prism 1A and the third prism 1B.
  • the second surface 1b is a flat surface disposed on the z-axis positive direction side of the first surface 1a.
  • the second surface 1b is disposed in parallel to the y-axis, similarly to the first surface 1a.
  • the inclination angle of the second surface 1 b with respect to the z-axis is smaller than that of the first surface 1 a. Therefore, when the light L3 is reflected by the second surface 1b, it travels as the light L4 in the diagonal direction toward the x-axis negative direction as it travels in the z-axis positive direction.
  • the third surface 1c is an optical surface that internally reflects the light L4.
  • the third surface 1c is formed on a part of the outer surface in the negative direction of the x-axis in the second prism 1A.
  • the third surface 1c is a flat surface disposed on the x-axis negative direction side of the second surface 1b.
  • the third surface 1c is disposed parallel to the y-axis, as with the second surface 1b. However, the inclination angle of the third surface 1c with respect to the z axis is smaller than that of the second surface 1b.
  • the light L4 when the light L4 is reflected by the third surface 1c, the light L4 travels as the light L5 in the diagonal direction toward the x-axis positive direction as it travels in the z-axis positive direction.
  • the light L5 is reflected in an oblique direction approaching the z-axis in the zx plane.
  • the third surface 1c may be provided with a reflection coating to increase the reflectance.
  • the light L5 which is the reflected light of the third surface 1c reaches the second surface 1b
  • the light L5 passes through the second surface 1b, becomes light L6, and enters the third prism 1B.
  • the light L6 since the light L6 is refracted by the second surface 1b, the light L6 travels in a diagonal direction closer to the z-axis.
  • the fourth surface 1d is an optical surface formed of a plane that transmits the light L6.
  • the fourth surface 1d is an exit surface that emits the outgoing light L7 made of the transmitted light of the light L6.
  • Fourth surface 1d is emitted light L7 is provided so as to emit at a predetermined emission angle theta o.
  • the fourth surface 1 d is a flat surface disposed on the x-axis positive direction side of the second surface 1 b.
  • the fourth surface 1d is disposed parallel to the y-axis, similarly to the second surface 1b.
  • the inclination angle of the fourth surface 1d with respect to the z-axis is larger than that of the second surface 1b. Therefore, as the light L6 is refracted by the fourth surface 1d, the outgoing light L7 travels obliquely in the positive x-axis direction as it travels in the positive z-axis direction.
  • the shapes of the prism side 1e excluding the third surface 1c in the second prism 1A and the prism side 1f of the third prism 1B are not particularly limited.
  • the prism side surfaces 1e and 1f may be cylindrical surfaces, elliptical cylindrical surfaces, prismatic surfaces, or the like.
  • the prism side faces 1e and 1f are cylindrical surfaces coaxial with each other will be described.
  • the diameter of the second prism 1A in the range in which the prism side 1e is formed (hereinafter referred to as the diameter of the second prism 1A) and the diameter of the third prism 1B in the range in which the prism side 1f is formed (hereinafter, the third prism Although they may be different from each other as the diameter of 1 B), hereinafter, an example in which the size of each of these diameters is d1 will be described.
  • the central axis O1 of the prism side faces 1e and 1f is disposed coaxially with the z axis in design.
  • the diameter size d1 of the second prism 1A and the third prism 1B and the diameter size d2 of the first prism 2 may be different from each other or may be equal to each other.
  • the optical element assembly 4 outputs the incident light L1 incident from the first surface 2a along the z-axis in the zx plane, deflected in a direction rotated by ⁇ o counterclockwise in the figure. It is a light deflection element to be emitted as the emitted light L7.
  • the optical element assembly 4 includes the first surface 2a, the second surface 2b, the first surface 1a, the second surface 1b, the third surface 1c, and the second surface along the above-described optical path in order to realize deflection of light. 1b and 4th surface 1d are arranged in this order. Since the optical element assembly 4 has the prism side faces 2c, 1e, 1f made of cylindrical surfaces on the outer peripheral part, the optical element assembly 4 has a substantially cylindrical shape as a whole.
  • the optical element assembly 4 may be attached to an appropriate optical device with only the first prism 2, the second prism 1A, and the third prism 1B assembled, or may be attached to an appropriate holder.
  • the optical unit 6 may be formed by fixing the optical element assembly 4 to the inside of the cylindrical lens barrel 5.
  • the size of the inner diameter of the inner peripheral surface 5a of the lens barrel 5 is d5, which is larger than both d2 and d1.
  • the optical element assembly 4 can be inserted inside the inner peripheral surface 5a of the barrel 5 by forming the outer diameter to be less than d5.
  • the optical element assembly 4 is fixed to the barrel 5 in a state of being positioned in the range of a gap between the optical element assembly 4 and the inner circumferential surface 5 a.
  • adhesion is used as a method of fixing the optical element assembly 4.
  • the main optical performance as a light deflection element in the optical element assembly 4 is the size and direction of the outgoing angle of the outgoing light L7.
  • the size and direction of the emission angle of the emission light L7 are determined from the design values by accumulating the position error and the attitude error of the optical surface in the optical element assembly 4 caused by the manufacturing error of the first prism 2 and the cemented prism 1. Change. As described below, in the method of manufacturing an optical element assembly according to this embodiment, the emitted light is adjusted by adjusting the relative position between the cemented prism 1 and the first prism 2 when the optical element assembly 4 is manufactured.
  • the size and direction of the emission angle of L7 are within the allowable range.
  • FIG. 2 is a schematic vertical sectional view showing an example of an optical element bonding apparatus that can be used in the method of manufacturing an optical element assembly according to the embodiment of the present invention.
  • the optical element bonding apparatus 10 includes a first holding unit 11, a second holding unit 12, a gonio stage 13, a stage driving unit 14, an autocollimator 15, and a UV light source 16.
  • the optical element bonding apparatus 10 further includes adhesive application means (not shown).
  • the XYZ coordinate system described in FIG. 2 may be used.
  • the arrangement attitude of the optical element bonding apparatus 10 is not limited to such an arrangement attitude.
  • the optical element bonding apparatus 10 may be disposed in an orientation in which the XYZ coordinate system is appropriately rotated.
  • the Z axis is a vertical axis.
  • the positive direction of the Z axis is vertically upward.
  • the X axis and the Y axis are two axes orthogonal to each other in a horizontal plane orthogonal to the Z axis.
  • the X axis is a coordinate axis extending in the left and right direction in the drawing.
  • the positive direction of the X axis is the direction from the left side to the right side in the drawing.
  • the Y axis is a coordinate axis extending in the depth direction of the drawing.
  • the positive direction of the Y axis is the direction from the front side to the back side of the drawing.
  • the first holding unit 11 is a device portion that holds the cemented prism 1 and translates the cemented prism 1 in a direction (Z-axis direction) along at least the Z-axis.
  • the first holding unit 11 includes a holding sleeve 11A, a moving stage 11B, and a driving unit 11C.
  • the holding sleeve 11A includes a sleeve 11a (cylindrical body) and a bottom plate 11d.
  • the sleeve 11a is formed of a cylindrical body capable of housing the junction prism 1 and a part of the first prism 2 inside.
  • a first inner circumferential surface 11b and a second inner circumferential surface 11c which are cylindrical surfaces coaxial with the central axis C of the sleeve 11a, are formed in this order.
  • the first inner circumferential surface 11b is a cylindrical surface which can insert the cemented prism 1 along the central axis O1 and positions the cemented prism 1 in a direction perpendicular to the central axis O1 in the inserted state.
  • the size Db of the inner diameter of the first inner circumferential surface 11b is a size that allows the prism side faces 1e and 1f to be movably fitted in the z-axis direction.
  • the second inner circumferential surface 11c is a cylindrical surface into which the cemented prism 1 can be inserted along the central axis O1 and the first prism 2 along the central axis O2.
  • the inner diameter of the second inner circumferential surface 11c can be such that the first prism 2 can be inclined within an angle range in which the manufacturing error of the cemented prism 1 and the first prism 2 can be corrected inside the second inner circumferential surface 11c.
  • the size Dc of the inner diameter of the second inner circumferential surface 11c is d0 ⁇ Dc ⁇ d2 + 2 ⁇ ⁇ .
  • Dc is equal to or less than the size d5 of the inner diameter of the barrel 5 in which the optical element assembly 4 is assembled.
  • the bottom plate 11 d is a member that covers the end of the first holding portion 11 in which the first inner circumferential surface 11 b is formed.
  • a holding surface 11e for holding the cemented prism 1 is formed in the inside of the sleeve 11a in contact with the fourth surface 1d of the cemented prism 1.
  • the shape of the holding surface 11e is not particularly limited as long as the central axis O1 of the cemented prism 1 can be coaxially arranged with the central axis C of the holding sleeve 11A.
  • the holding surface 11e may be a plane inclined with respect to the central axis C by the same angle as the inclination angle of the fourth surface 1d with respect to the central axis O1.
  • the central axis O1 of the cemented prism 1 is coaxial with the central axis C in a state where the fourth surface 1d is in close contact with the holding surface 11e.
  • the second inner circumferential surface 11c of the holding sleeve 11A opens in the positive Z-axis direction.
  • the moving stage 11B makes the central axis C of the holding sleeve 11A parallel to the Z axis.
  • the moving stage 11B moves the holding sleeve 11A in the Z-axis direction.
  • the movement stage 11B may be configured to include a linear movement stage having a movement degree of freedom at least in the Z-axis direction.
  • the drive unit 11C has an operation unit (not shown). The drive unit 11C drives the moving stage 11B based on the operation input from the operator via the operation unit (not shown).
  • the second holding unit 12 holds the first prism 2 so that the first surface 2a as the second bonding surface tilts at least one point on the second surface 2b of the first prism 2. This is a device for rotating the first prism 2 relative to the cemented prism 1.
  • the second holding unit 12 includes a chuck 12A, a support arm 12B, a gonio stage 13, and a stage driving unit 14.
  • the chuck 12 ⁇ / b> A detachably holds the prism side surface 2 c of the first prism 2.
  • the chuck 12A holds the first prism 2 such that the central axis O2 of the first prism 2 is coaxial with the holding central axis H of the chuck 12A.
  • the support arm 12B has a predetermined positional relationship with the rotational center of the gonio stage 13 described later by the chuck 12A.
  • the support arm 12B may be provided with a position adjustment mechanism that adjusts the support position of the chuck 12A in order to be able to arrange an optical element having a shape different from that of the first prism 2 described above at the same predetermined position.
  • a position adjustment mechanism may include, for example, a moving stage having an appropriate degree of freedom of movement.
  • the gonio stage 13 is a rotation stage having a rotation center (rotation center) Q on an axis parallel to the Z axis.
  • the rotational direction of the gonio stage 13 can be selected between the direction around one axis and the directions around two axes orthogonal to each other as needed.
  • the rotational direction of the gonio stage 13 is uniaxial if it is possible to obtain necessary optical characteristics even with the pivotal movement about one axis. It may be a turning direction. However, it is more preferable that the rotational direction of the gonio stage 13 be capable of rotating around two axes.
  • the gonio stage 13 includes a base portion 13A mounted on a plane parallel to the XY plane, and a moving portion 13B moving along a guide surface 13a on the base portion 13A.
  • support arms 12B of the second holding unit 12 are provided to intersect (orthogonal).
  • the guide surface 13a has, for example, a cylindrical surface having a radius R centered on a rotation center axis passing through the rotation center Q when the gonio stage 13 rotates in a direction around one axis.
  • the guide surface 13a may be configured as a spherical surface having a radius R centered on the rotation center Q.
  • the gonio stage 13 may be configured such that the gonio stage rotating in the direction around one axis is overlapped in two stages such that the rotation center axes thereof are orthogonal to each other at the rotation center Q. In this case, the turning radius of each gonio stage differs from each other.
  • the gonio stage 13 will be described as being configured to rotate in a direction around two axes. Specifically, the gonio stage 13 can rotate around an axis parallel to the Y-axis intersecting at the rotation center Q and around an axis parallel to the X-axis.
  • the second holding portion 12 on the moving portion 13B is adjusted in position as necessary, so that the rotation center Q is an extension of the holding central axis H of the chuck 12A at least before the adjustment described later is started.
  • the holding central axis H of the chuck 12A is disposed in parallel with the Z axis.
  • the stage drive unit 14 has an operation unit (not shown).
  • the stage drive unit 14 drives the gonio stage 13 based on an operation input from the operator via an operation unit (not shown).
  • the autocollimator 15 is a device portion that makes the inspection light T incident on the designed light path of the first prism 2 and detects a deviation of the return light T ′ of the inspection light T.
  • the auto-collimator 15 can be rotated by interlocking with the rotation of the moving unit 13B by the support unit (not shown).
  • the autocollimator 15 can keep the incident position and the incident angle of the inspection light T on the first surface 2a in the same state, even if the first surface 2a of the first prism 2 rotates.
  • the UV light source 16 is a curing means for curing the adhesive described later by irradiating UV (ultraviolet) light necessary for curing the adhesive described later.
  • the UV light source 16 is an advancing position facing the first surface 2a on the Z-axis positive direction side and a retracted position not facing the first surface 2a by the holding portion (not shown) (two-dot chain line in FIG. Reference) and are arranged switchably.
  • the UV light source 16 is shown in the retracted position.
  • the UV light can be made incident on the first surface 2a along the central axis O2.
  • FIG. 3 is a flowchart showing an example of a method of manufacturing an optical element assembly according to the present embodiment.
  • 4 to 6 are process explanatory views of a method of manufacturing an optical element assembly according to the present embodiment.
  • step S1 the cemented prism 1 which is the first optical element is held by the first holding unit 11 (step a). Specifically, as shown in FIG. 4, the cemented prism 1 is inserted inside the first inner circumferential surface 11b, and the fourth surface 1d of the cemented prism 1 abuts on the holding surface 11e of the holding sleeve 11A. Thus, the cemented prism 1 is positioned and held inside the holding sleeve 11A.
  • the holding sleeve 11A is disposed at a position where the central axis C is parallel to the Z axis and passes through the rotation center Q of the gonio stage 13 at an appropriate time before or after the cemented prism 1 is held by the holding sleeve 11A. Further, the holding sleeve 11A is moved so that the rotation center Q is positioned on the surface of the first surface 1a. Such movement of the holding sleeve 11A is performed by the movable stage 11B based on the operation input of the operator to the drive unit 11C. This movement may be performed by a manual operation in which the operator indicates the movement amount. However, when the operator instructs to start the movement, the movement to the arrangement position stored in advance in the drive unit 11C may be automatically performed according to the design shape of the cemented prism 1. Above, step S1 is completed.
  • step S2 is performed.
  • step S2 the first prism 2 and the junction prism are in a state in which the second surface 2b of the first prism 2 which is the second junction surface is in contact with the first surface 1a of the junction prism 1 which is the first junction surface.
  • step (step b) of inserting the first prism 2 from the chuck 12A described later is performed. Specifically, as shown in FIG. 4, the chuck 12A is opened so that the first prism 2 can be inserted while the gonio stage 13 is moved to the neutral position (see the two-dot chain line in FIG. 4) . In this state, the first prism 2 (see the two-dot chain line in FIG.
  • the opened chuck 12 A serves as an insertion guide for the first prism 2. Therefore, by setting the opening diameter of the chuck 12A to be slightly larger than the outer diameter of the prism side surface 2c, the first prism 2 with the central axis O2 of the first prism 2 substantially coaxial with the holding central axis H 2 are inserted into the holding sleeve 11A.
  • the first prism 2 is inserted in a state of being shifted around the central axis O2, the second surface 2b and the first surface 1a do not contact each other.
  • the second surface 1 b and the first surface 1 a are free of minute gaps due to errors in flatness. They abut each other on the whole surface. Whether the second surface 1b and the first surface 1a are in full contact with each other, for example, is the height of the first surface 2a projecting from the outer end surface in the Z-axis positive direction of the chuck 12A minimized? It is judged by how. In the present embodiment, the state in which the second surface 2 b of the first prism 2 is in full contact with the first surface 1 a is maintained by the weight of the first prism 2.
  • step S2 is completed.
  • step S3 is performed.
  • step S3 the cemented prism 1 and the first prism 2 are held apart from each other (step c). Specifically, the holding sleeve 11A is moved in the Z-axis negative direction by the moving stage 11B. At this time, the first prism 2 is held by the chuck 12A on the first holding portion 11. The cemented prism 1 is held in the holding sleeve 11A of the first holding portion 11 by its own weight.
  • the amount of movement of the holding sleeve 11A is not particularly limited as long as a gap in which an adhesive described later can be disposed is formed between the first surface 1a and the second surface 2b. In the present embodiment, as shown in FIG. 5, a gap is formed between the first surface 1a and the second surface 2b to such an extent that an adhesive application nozzle 17 described later can be inserted.
  • step S3 is completed.
  • steps S1 to S3 described above the reference axis (central axis) as a whole such that the first surface 1a (first joint surface) and the second surface 2b (second joint surface) face each other apart from each other C)
  • a step of holding the cemented prism 1 (first optical element) and the first prism 2 (second optical element) is performed.
  • step S4 is performed.
  • an adhesive is disposed between the first surface 1a and the second surface 2b (step d).
  • the adhesive application nozzle 17 for supplying the adhesive 18 is inserted from the gap between the first prism 2 and the upper end of the holding sleeve 11A.
  • An adhesive supply unit (not shown) for storing the adhesive 18 is connected to the adhesive application nozzle 17.
  • the adhesive application nozzle 17 and the adhesive supply unit constitute an adhesive application means in the optical element bonding apparatus 10.
  • the adhesive 18 forms the adhesive cured layer 3 after curing.
  • an appropriate light transmitting resin adhesive capable of adhering the first prism 2 and the cemented prism 1 to each other is used.
  • the adhesive 18 for example, an energy ray-curable resin adhesive, a thermosetting resin adhesive, or the like may be used. In the present embodiment, an example in which the adhesive 18 is a UV curable resin adhesive will be described.
  • the supply amount of the adhesive 18 is an appropriate amount that can form the adhesive cured layer 3 over the entire range of the effective diameter of the first surface 1 a and the second surface 2 b.
  • step S5 is performed.
  • step S5 the adhesive 18 is thinned by relatively translating the cemented prism 1 and the first prism 2 along the central axis C. Specifically, as shown in FIG. 2, the holding sleeve 11A is moved in parallel in the Z-axis positive direction by the moving stage 11B. By such parallel movement, the first surface 1a and the second surface 2b approach each other in a state in which they are maintained in parallel. Thus, the uncured adhesive 18 is sandwiched between the first surface 1 a and the second surface 2 b and is stretched. When the distance between the first surface 1a and the second surface 2b reaches the designed distance t, the moving stage 11B is stopped.
  • the layer thickness of the adhesive 18 is 0 in the range of the optical characteristics necessary for the optical element assembly 4 and the amount of rotation of the first prism 2 necessary for the correction of the optical axis offset described later. It is decided beforehand as a size which does not become. That is, if the cemented prism 1 and the first prism 2 are manufactured as designed, the optical axis of the on-axis light beam incident on the optical element assembly 4 with such an arrangement is the optical axis of the designed optical path layout. Match Above, step S5 is completed.
  • the first surface 1a (first joint surface) and the second surface 2b (second joint surface) face each other with an uncured adhesive interposed therebetween by the steps S1 to S5 described above, and the joint prism
  • the central axis (external center axis) O1 of 1 (first optical element) and the central axis (external center axis) O2 of the first prism 2 (second optical element) are coaxial with the central axis (reference axis) C
  • the step of holding the cemented prism 1 and the first prism 2 is performed.
  • step S6 is performed.
  • step S6 the inspection light is incident along the incident optical axis of the assembled optical element assembly 4 through the uncured adhesive 18, and the deviation of the optical axis in the optical element assembly 4 is detected, An operation of rotating the first prism 2 relative to the cemented prism 1 with respect to the movement center Q is performed.
  • the autocollimator 15 is disposed on the Z-axis positive direction side of the first surface 2 a.
  • the autocollimator 15 is supported by a support (not shown) such that the optical axis of the inspection light T is coaxial with the holding central axis H.
  • the inspection light T is repeatedly refracted and internally reflected by the first prism 2 and the cemented prism 1 as an axial light beam.
  • the inspection light T when the inspection light T reaches the fourth surface 1d, light is generated that is scattered back by the fourth surface 1d. A part of the light reverses the light path leading to the fourth surface 1 d and becomes return light T ′ returning to the autocollimator 15.
  • the return light T ′ when there is no manufacturing error in the cemented prism 1 and the first prism 2, the return light T ′ reverses the designed light path, so that the return light T ′ emitted from the first surface 2 a
  • the optical axis and the optical axis of the inspection light T are coaxial. This state is detected by the return light T 'being coincident with the optical axis of the autocollimator 15.
  • the autocollimator 15 detects that the optical axis of the return light T 'is offset from the optical axis of the autocollimator.
  • the shift amount of the return light T ' can be converted to the shift amount of the emission angle of the light emitted from the fourth surface 1d.
  • step S6 When the shift of the optical axis of the return light T ′ is detected by the autocollimator 15, the operator rotates the moving unit 13B based on the shift direction and the shift amount of the optical axis so as to reduce the shift amount. This is the end of step S6.
  • step S7 it is determined whether the amount of deviation of the optical axis of the return light T 'is in an allowable range. Specifically, an allowance for determination of the shift amount of the optical axis of the return light T ′ detected on the autocollimator 15 corresponding to the shift amount of the emission angle permitted in the optical element assembly 4 is determined in advance. There is. The operator determines whether the shift amount of the optical axis of the return light T ′ is within the allowable range by comparing the shift amount of the optical axis of the return light T ′ detected by the autocollimator 15 with the determination allowable value. If the amount of deviation is less than or equal to the determination allowable value, step S8 is performed. If the amount of deviation exceeds the determination allowable value, step S6 is performed.
  • step S8 the relative rotational movement of the first prism 2 is stopped. Specifically, the operator performs an operation input to stop the rotation of the gonio stage 13 through the operation unit (not shown) of the stage drive unit 14. Thereby, the rotation of the first prism 2 is stopped. Above, step S8 is completed.
  • the deviation between the optical axis of the inspection light T detected by the autocollimator 15 and the optical axis of the return light T ′ is eliminated.
  • An example of the case is depicted schematically.
  • the first prism 2 is arranged so that the on-plane point P and the rotation center Q coincide with each other, and therefore, the first prism 2 rotates around the rotation center Q, and the on-plane point P becomes the rotation center Q. Match. Therefore, the first surface 1a and the second surface 2b are not parallel to each other.
  • the uncured adhesive 18 sandwiched between the first surface 1a and the second surface 2b is a layer of the adhesive 18 as it proceeds in the negative X-axis direction on the X-axis negative direction side with respect to the on-plane point P It is thicker.
  • the layer thickness of the adhesive 18 becomes thicker as it proceeds in the positive direction of the X-axis. Since the first surface 1a and the second surface 2b are separated by the distance t in step S5, the layer thickness of the adhesive 18 does not become zero even at the most X-axis positive direction side.
  • the end of the first prism 2 in the negative Z-axis direction is inserted inside the second inner circumferential surface 11c of the holding sleeve 11A.
  • the first prism 2 tilts from the central axis C inside the second inner circumferential surface 11 c.
  • the size of the inner diameter of the second inner circumferential surface 11c is Dc described above, the first prism 2 never comes in contact with the second inner circumferential surface 11c. If the amount of rotation of the gonio stage 13 becomes too large due to an erroneous operation etc., the operator sees that the side surface 2c of the prism is in contact with the upper end of the first holding portion 11, and the amount of rotation becomes too large. You can know that.
  • step S6 to step S8 the first surface 1a (first bonding) is produced by rotating the cemented prism 1 (first optical element) relative to the first prism 2 (second optical element).
  • step B is performed in which the surface) and the second surface 2b (second joint surface) are moved in an inclined manner with respect to the central axis C (reference axis).
  • the incident axis of the inspection light T on the first prism 2 (second optical element) and the emission axis of the return light T ′ corresponding to the inspection light T from the first prism 2 (second optical element) Match
  • the present invention is not limited to this.
  • an incident axis of the inspection light T on the first prism 2 (second optical element) and an emission axis of the return light T ′ corresponding to the inspection light T from the first prism 2 (second optical element) are predetermined. It would be good if
  • step S9 the adhesive cured layer 3 is formed (step C). Specifically, first, as indicated by a two-dot chain line in FIG. 6, the UV light source 16 is advanced to the advanced position. Thereafter, UV light is emitted from the UV light source 16 toward the first surface 2a. The UV light enters the first prism 2 from the first surface 2 a and is applied to the uncured adhesive 18. The adhesive cured layer 3 in which the adhesive 18 is completely cured by continuing the irradiation of the UV light in a state where the cemented prism 1 and the first prism 2 are held by the first holding unit 11 and the second holding unit 12 respectively. May be formed.
  • step S9 is completed, and the optical element assembly 4 is manufactured.
  • the optical element assembly 4 is removed from the optical element bonding apparatus 10 by releasing the holding by the first holding unit 11 and the second holding unit 12.
  • the removed optical element assembly 4 is fixed to, for example, the lens barrel 5 after being inspected if necessary.
  • step S9 the UV light irradiation may not be performed until the adhesive 18 is completely cured.
  • the curing of the adhesive 18 proceeds, for example, due to an external force acting at the time of removal from the first holding portion 11 and the second holding portion 12, a positional deviation between the cemented prism 1 and the first prism 2 does not occur. If the intensity is obtained, the irradiation of UV light may be stopped. In this case, the adhesive 18 forms an adhesive cured layer 3 ′ during curing. After the adhesive cured layer 3 ′ is formed, the optical element assembly 4 is removed from the optical element bonding apparatus 10 by releasing the holding by the first holding unit 11 and the second holding unit 12.
  • the removed optical element assembly 4 is subjected to a curing process to further cure the adhesive cured layer 3 '.
  • a curing process for example, a curing process of irradiating or heating UV light of higher intensity is performed.
  • step S9 ends.
  • the optical element assembly 4 is manufactured.
  • the optical element assembly 4 is removed from the optical element bonding apparatus 10. It can be done in the For this reason, restrictions in the curing process are reduced, and more efficient curing can be performed. For example, it becomes possible to easily irradiate the UV light to a portion where the UV light is not easily hit by the UV light irradiation from the first surface 2a. For example, even if the heating furnace can not carry in the optical element bonding apparatus 10, it may be possible to carry in if only the optical element assembly 4 is. For example, it is also possible to simultaneously cure a plurality of optical element assemblies 4. According to such a curing method, since the other optical element assembly 4 can be manufactured without occupying the optical element bonding apparatus 10 until the adhesive 18 is completely cured, productivity is improved.
  • the optical element assembly 4 manufactured in this manner has the axes at the incident surface and the exit surface by adjustment at the time of bonding in the manufacturing method of the present embodiment.
  • the amount of deviation of the upper luminous flux from the design value of the optical axis is within an allowable range. Specifically, fall first and the incident angle theta i of surface 2a, respectively tolerance error of the emission angle theta o, in fourth surface 1d is emitting surface is an incident surface of the optical element assembly 4 There is.
  • Three-dimensional can be easily manufactured.
  • the adjustment of the optical axis is performed only by relatively rotating and moving the two optical elements centering on one point, so the manufacturing apparatus is simplified and the adjustment is facilitated.
  • the on-plane point located at the center of the designed axial light flux in the second joint surface is used as the rotation center of the relative rotational movement, the change in the layer thickness of the uncured adhesive Occur symmetrically around the This makes it easy to predict changes in the layer thickness of the adhesive.
  • the optical performance as the optical element assembly 4 can be easily facilitated. It can be improved.
  • the tolerance value of the manufacturing error of each of the first prism 2, the second prism 1A, and the third prism 1B in the optical element assembly 4 can be relaxed. This reduces the manufacturing cost of the optical element assembly 4.
  • each movement may be performed relative to each other between the cemented prism 1 and the first prism 2.
  • the first prism 2 may be fixed, and the cemented prism 1 may be moved in the Z-axis direction, or the cemented prism 1 and the first prism 2 may be moved in the Z-axis direction.
  • the first prism 2 may be fixed and the cemented prism 1 may be rotated.
  • the cemented prism 1 and the first prism 2 may be rotated respectively.
  • the rotation center Q of the gonio stage 13 coincides with the on-plane point P of the second surface 2 b. Even if the rotation center Q does not coincide with the on-plane point P, if it is near the on-plane point, substantially the same effect as in the case of coincidence is obtained. For this reason, the rotation center Q may be coincident with a point on the surface located substantially at the center of the designed axial light flux. The range of the approximate center may be sufficient if the amount of deviation from the center is sufficiently smaller than the effective diameter of the axial light flux, that is, the effective diameter of the second surface 2b.
  • each step of the present manufacturing method has been described as an example in the case where it is performed by the manual operation of the operator operating the optical element bonding apparatus 10.
  • the present manufacturing method may be partially or entirely automatically performed by the optical element bonding apparatus 10 or a working robot replacing the operator.
  • the shift amount of the optical axis of the optical element assembly is detected by comparing the optical axis of the inspection light on the incident surface with the optical axis of the return light from the output surface.
  • the shift amount of the optical axis of the optical element assembly may be detected by the shift amount from the design value of the optical axis of the inspection light transmitted through the exit surface. In this case, for example, if an optical sensor is disposed at a position facing the exit surface, the amount of deviation of the optical axis of the inspection light can be detected.
  • the optical element assembly 4 has been described as an example of a light deflection element that deflects incident light in the zx plane.
  • the light deflection direction is not limited to in-plane deflection.
  • the optical element assembly may be a light deflection element that performs deflection such that the optical axis of the incident light and the optical axis of the emitted light do not exist in the same plane.
  • the optical element assembly may include an optical element other than a prism or an optical surface such as a lens surface.
  • the optical element assembly may include a lens surface, the amount of deviation of the optical axis may be detected by detecting the imaging position on the image plane.
  • the junction prism 1 in which the second prism 1A and the third prism 1B are joined is the first optical element and the first prism 2 is the first.
  • the two optical elements have been described in the example in which the adjustment of the optical axis offset by the relative rotational movement is performed.
  • how to select the first optical element and the second optical element is an appropriate combination that can efficiently correct the manufacturing error of each optical surface by relative rotational movement, It may be used according to the optical characteristics of the optical element assembly.
  • first optical element 1a First surface (optical surface, first bonding surface) 1A Second Prism 1B Third Prism 1d Fourth Surface (Optical Surface, Emitting Surface) 2 First prism (second optical element) 2a First surface (optical surface, incident surface) 2b Second surface (second joint surface) 3, 3 'Adhesive Hardening Layer 4
  • Optical Element Assembly 5 Lens Barrel 6
  • Optical Unit 10 Optical Element Bonding Device 11 First Holding Portion 11a Sleeve (Cylindrical Body) 11A holding sleeve 11B moving stage 11C driving unit 12 second holding unit 12A chuck 12B support arm 13 gonio stage 14 stage driving unit 15 autocollimator 16 UV light source 17 adhesive application nozzle 18 adhesive C central axis (reference axis) H Holding central axis L1 Incident light L1 Incident light L2, L3, L4, L5, L6 Light L7 Outgoing light O1, O2 Central axial line P Point on the plane Q Rotation center T Inspection light T '

Abstract

This method for manufacturing an optical element assembly includes: a step A for holding a first optical element and a second optical element, whereby a first joining surface, which is one of the optical surfaces of the first optical element, and a second joining surface, which is one of the optical surfaces of the second optical element, face each other with an uncured adhesive interposed therebetween, and the outline center axis of the first optical element and the outline center axis of the second optical element are disposed coaxially with respect to a reference axial line; a step B for rotating the second optical element relative to the first optical element, and moving the first joining surface and the second joining surface in a manner that is inclined with respect to the reference axial line, whereby a prescribed positional relationship is established between the entry axis along which inspection light enters the second optical element and the exit axis along which return light, formed by the inspection light being transferred in the first optical element and the second optical element, exits the second optical element; and a step C for curing the uncured adhesive and forming an adhesive cured layer.

Description

光学素子組立体の製造方法Method of manufacturing optical element assembly
 本発明は、光学素子組立体の製造方法に関する。
 本願は、2017年12月27日に、日本国に出願された特願2017-252602号に基づいて優先権を主張し、その内容をここに援用する。
The present invention relates to a method of manufacturing an optical element assembly.
Priority is claimed on Japanese Patent Application No. 2017-252602, filed Dec. 27, 2017, the content of which is incorporated herein by reference.
 光学素子として複数の光学素子が接着剤硬化層を用いて接合された組立体が知られている。このような組立体では光学素子ごとに製造誤差が発生する。このため、各光学素子の製造誤差の積み上げによって、組立体としての光学性能も変化する。
 組立体を構成する光学素子の数が多くなるほど、組立体としての光学性能を満足するために必要な個々の光学素子の許容誤差は小さくなる。このため、場合によっては個々の光学素子の加工能力を超える精度が必要になる。
 光学素子の製造誤差を許容できる程度に収めるため、組立体の製造時に光学素子に組み立て調整が行われる場合がある。
 例えば、特許文献1には、プリズム組立体の製造工程において、入射光軸と出射光軸との設計値からのずれを調整するために、プリズム組立体の一部に楔形プリズムを設けることが提案されている。楔形プリズムは光軸回りの回転調整された後に、プリズム組立体の他のプリズムと接合される。
There is known an assembly in which a plurality of optical elements are bonded as an optical element using an adhesive cured layer. In such an assembly, a manufacturing error occurs for each optical element. For this reason, the optical performance as an assembly also changes due to the buildup of the manufacturing error of each optical element.
The greater the number of optical elements that make up the assembly, the smaller the tolerances of the individual optical elements required to satisfy the optical performance of the assembly. For this reason, in some cases, an accuracy exceeding the processing capability of the individual optical elements is required.
In order to keep the manufacturing error of the optical element to an acceptable level, the optical element may be assembled and adjusted at the time of manufacturing the assembly.
For example, Patent Document 1 proposes that a wedge-shaped prism be provided in part of a prism assembly in order to adjust the deviation from the design value of the incident optical axis and the outgoing optical axis in the manufacturing process of the prism assembly. It is done. The wedge-shaped prism is joined to the other prisms of the prism assembly after being rotationally adjusted about the optical axis.
日本国特許第3735146号公報Japanese Patent No. 3735146
 上述した従来技術には以下のような課題がある。
 特許文献1に記載の技術による調整では、楔形プリズムは、光軸を楔形プリズムの回転軸回りに回転させるために用いられている。しかし、種々の製造誤差に対応して光軸の向きを調整するには、楔形プリズム以外のプリズムの姿勢調整も併せて行うことが必要になる。このため、楔形プリズムを含む複数のプリズムを動かして調整しなければならないので、調整作業が複雑になる。
 特許文献1に記載のプリズム組立体では、設計上必要ない楔形プリズムを備えるため、部品コストが増大し、かつ、プリズム組立体の小型化が難しくなる可能性がある。
 特に、製造誤差の補正に必要な楔形プリズムは薄肉であるため、製造が難しい点で高価になる可能性がある。また、このような薄肉の楔形プリズムは、回転調整する際の保持および駆動が難しい。
The above-described prior art has the following problems.
In the adjustment according to the technique described in Patent Document 1, a wedge-shaped prism is used to rotate the optical axis about the rotation axis of the wedge-shaped prism. However, in order to adjust the direction of the optical axis in accordance with various manufacturing errors, it is necessary to also adjust the attitude of the prisms other than the wedge-shaped prism. For this reason, the adjustment operation becomes complicated because the plurality of prisms including the wedge-shaped prism must be moved and adjusted.
The prism assembly described in Patent Document 1 has a wedge-shaped prism which is not necessary in design, which increases the cost of parts and may make it difficult to miniaturize the prism assembly.
In particular, since the wedge-shaped prism required to correct the manufacturing error is thin, it may be expensive in terms of manufacturing difficulties. In addition, such thin-walled wedge-shaped prisms are difficult to hold and drive during rotational adjustment.
 本発明は、上記のような事情に鑑みてなされたものであり、調整用部材を付加することなく入射光軸に対する出射光軸の設計値からのずれが抑制された光学素子組立体を容易に製造することができる光学素子組立体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an optical element assembly in which the deviation from the design value of the outgoing optical axis with respect to the incoming optical axis is suppressed without adding the adjustment member is easily performed. It is an object of the present invention to provide a method of manufacturing an optical element assembly that can be manufactured.
 本発明の第1の態様に係る光学素子組立体の製造方法は、第1光学素子および第2光学素子を保持することにより、前記第1光学素子の光学面の1つである第1接合面と前記第2光学素子の光学面の1つである第2接合面とが未硬化の接着剤を挟んで対向するとともに、前記第1光学素子の外形中心軸と前記第2光学素子の外形中心軸とを基準軸線と同軸に配置する工程Aと、前記第2光学素子を前記第1光学素子に対して相対回転移動させ、前記第1接合面と前記第2接合面とが前記基準軸線に対して傾斜して動作することにより、検査光が前記第2光学素子への入射軸と、前記検査光が前記第1光学素子および前記第2光学素子内に転送されて形成された戻り光が前記第2光学素子からの出射軸とが所定の位置関係になる工程Bと、未硬化の前記接着剤を硬化させて接着剤硬化層を形成する工程Cと、を含む。 In the method of manufacturing an optical element assembly according to the first aspect of the present invention, a first bonding surface which is one of the optical surfaces of the first optical element by holding the first optical element and the second optical element. And the second bonding surface, which is one of the optical surfaces of the second optical element, face each other with an uncured adhesive interposed therebetween, and the outer central axis of the first optical element and the outer center of the second optical element And a step A of arranging the axis coaxially with the reference axis, and rotating the second optical element relative to the first optical element so that the first joint surface and the second joint surface are the reference axis. By operating with respect to the inclination, the inspection light is incident to the second optical element, and the return light formed by transferring the inspection light into the first optical element and the second optical element is generated. Process B in which the emission optical axis from the second optical element has a predetermined positional relationship; Curing the adhesive of and a step C of forming a cured adhesive layer.
 本発明の第2の態様によれば、上記第1の態様に係る光学素子組立体の製造方法では、前記工程Aは、前記第1光学素子をスリーブ内に保持する工程aと、前記スリーブ内の中心軸と一致する位置にある中心軸を有する環状の挿入部から前記第2光学素子を挿入し、前記第2接合面を前記第1接合面に当接させ、前記第1光学素子と前記第2光学素子の姿勢調整を行ってから、前記第2光学素子を前記挿入部にて保持する工程bと、前記スリーブと前記挿入部とを前記基準軸に沿って離間させることにより、前記第1光学素子と前記第2光学素子とを離間させる工程cと、前記第1接合面と前記第2接合面との間に前記接着剤を配置する工程dと、を含んでもよい。 According to a second aspect of the present invention, in the method of manufacturing an optical element assembly according to the first aspect, the step A includes the step a of holding the first optical element in a sleeve; The second optical element is inserted from an annular insertion portion having a central axis at a position coinciding with the central axis of the second optical element, and the second joint surface is brought into contact with the first joint surface. After the attitude adjustment of the second optical element is performed, the step b of holding the second optical element at the insertion portion, and the separation of the sleeve and the insertion portion along the reference axis allows the second optical element to be The method may include the step c of separating the first optical element and the second optical element, and the step d of disposing the adhesive between the first bonding surface and the second bonding surface.
 本発明の第3の態様によれば、上記第1の態様に係る光学素子組立体の製造方法では、前記工程Bにおいて、前記基準軸線が前記第2接合面に交差する点を回転中心として、前記第2光学素子を前記第1光学素子に対して相対回転移動させることにより、前記第1接合面と前記第2接合面とが前記基準軸線に対して傾斜して移動してもよい。 According to a third aspect of the present invention, in the method of manufacturing an optical element assembly according to the first aspect, in the step B, a point at which the reference axis intersects the second bonding surface is a rotation center. The first bonding surface and the second bonding surface may be moved in an inclined manner with respect to the reference axis by relatively rotating the second optical element relative to the first optical element.
 上記各態様に係る本発明の光学素子組立体の製造方法によれば、調整用部材を付加することなく入射光軸に対する出射光軸の設計値からのずれが抑制された光学素子組立体を容易に製造することができる。 According to the method of manufacturing an optical element assembly of the present invention according to the above aspects, an optical element assembly in which the deviation from the design value of the outgoing optical axis with respect to the incident optical axis is suppressed without adding adjustment members is facilitated Can be manufactured.
本発明の一実施形態に係る光学素子組立体の製造方法で製造される光学素子組立体の一例を示す模式的な正面図である。It is a typical front view showing an example of the optical element assembly manufactured with the manufacturing method of the optical element assembly concerning one embodiment of the present invention. 本実施形態に係る光学素子組立体の製造方法に用いることができる光学素子接合装置の一例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows an example of the optical element joining apparatus which can be used for the manufacturing method of the optical element assembly which concerns on this embodiment. 本実施形態に係る光学素子組立体の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the optical element assembly which concerns on this embodiment. 本実施形態に係る光学素子組立体の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the optical element assembly which concerns on this embodiment. 本実施形態に係る光学素子組立体の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the optical element assembly which concerns on this embodiment. 本実施形態に係る光学素子組立体の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the optical element assembly which concerns on this embodiment.
 以下では、本発明の一実施形態に係る光学素子組立体の製造方法について添付図面を参照して説明する。まず、本実施形態に係る光学素子組立体の製造方法によって製造される光学素子組立体の一例について説明する。
 図1は、本発明の実施形態の光学素子組立体の製造方法で製造される光学素子組立体の一例を示す模式的な正面図である。
Hereinafter, a method of manufacturing an optical element assembly according to an embodiment of the present invention will be described with reference to the attached drawings. First, an example of an optical element assembly manufactured by the method of manufacturing an optical element assembly according to the present embodiment will be described.
FIG. 1 is a schematic front view showing an example of an optical element assembly manufactured by the method of manufacturing an optical element assembly according to an embodiment of the present invention.
 本実施形態に係る光学素子組立体の製造方法によって製造される光学素子組立体は、複数の光学素子が接着剤を用いて接合されて構成されている。光学素子組立体は、光学素子の種類、個数に特に制限はない。例えば、光学素子としては、プリズム、レンズ、平行平板、ミラー、偏光素子、フィルタ素子などが挙げられる。
 光学素子組立体は、1以上の光学素子で構成された第1光学素子と、1以上の光学素子で構成された第2光学素子と、が接着剤硬化層によって接合されて構成される。この接着剤硬化層は、第1光学素子の光学面の1つである第1接合面と、第2光学素子の光学面の1つである第2接合面と、の間に形成される。
 ここで、第1光学素子および第2光学素子における序数(第1、第2)は、2つの光学素子を区別するために用いられており、設計上の光路における光学素子の配置順序を表していない。このため、第1光学素子および第2光学素子は、どちらが物体側に配置されてもかまわない。
The optical element assembly manufactured by the method of manufacturing an optical element assembly according to the present embodiment is configured by bonding a plurality of optical elements using an adhesive. The optical element assembly is not particularly limited in type and number of optical elements. For example, a prism, a lens, a parallel plate, a mirror, a polarizing element, a filter element etc. are mentioned as an optical element.
The optical element assembly is configured by bonding a first optical element composed of one or more optical elements and a second optical element composed of one or more optical elements by an adhesive cured layer. The adhesive cured layer is formed between a first bonding surface, which is one of the optical surfaces of the first optical element, and a second bonding surface, which is one of the optical surfaces of the second optical element.
Here, the ordinal numbers (first and second) in the first optical element and the second optical element are used to distinguish the two optical elements, and represent the arrangement order of the optical elements in the designed optical path. Absent. Therefore, either of the first optical element and the second optical element may be disposed on the object side.
 光学面は、入射光に対する光学作用、例えば、透過、屈折、反射、偏光選択、波長選択などを行う表面または界面である。光学面は、光学素子の種類に応じて、例えば、プリズム面、レンズ面、平板表面、ミラー面、偏光面、フィルタ表面などであってもよい。
 第1接合面および第2接合面は、略同様の面形状であれば、湾曲面でもよいし、平面でもよい。このため、第1接合面および第2接合面の間に設けられる接着剤硬化層は、薄膜で構成される。
 後述するように本実施形態では、第1接合面および第2接合面の相対位置が調整されるため、接着剤硬化層の厚みは場所によって変化していてもよい。
An optical surface is a surface or interface that performs optical action on incident light, such as transmission, refraction, reflection, polarization selection, wavelength selection, and the like. The optical surface may be, for example, a prism surface, a lens surface, a flat surface, a mirror surface, a polarization surface, a filter surface, or the like according to the type of the optical element.
The first bonding surface and the second bonding surface may be a curved surface or a flat surface as long as they have substantially the same surface shape. Therefore, the adhesive cured layer provided between the first bonding surface and the second bonding surface is formed of a thin film.
As described later, in the present embodiment, the relative position of the first bonding surface and the second bonding surface is adjusted, so the thickness of the adhesive cured layer may change depending on the place.
 例えば、図1に示す光学素子組立体4は、本実施形態の光学素子組立体の製造方法によって製造される光学素子組立体の一例である。
 光学素子組立体4は、第1プリズム2(第2光学素子)と接合プリズム1(第1光学素子)とを備える。第1プリズム2および接合プリズム1は、接着剤硬化層3を挟んで互いに接合されている。接着剤硬化層3は、第1プリズム2および接合プリズム1を互いに接着可能な適宜の光透過性の樹脂接着剤の硬化体で構成される。接着剤硬化層3を形成する接着剤の硬化方法は特に限定されない。例えば、接着剤硬化層3を形成する接着剤としては、UV光などのエネルギー線によって硬化されるエネルギー線硬化型樹脂接着剤、加熱によって硬化される熱硬化型樹脂接着剤などが使用されてもよい。
For example, the optical element assembly 4 shown in FIG. 1 is an example of an optical element assembly manufactured by the method of manufacturing an optical element assembly of the present embodiment.
The optical element assembly 4 includes a first prism 2 (second optical element) and a junction prism 1 (first optical element). The first prism 2 and the cemented prism 1 are bonded to each other with the adhesive cured layer 3 interposed therebetween. The adhesive cured layer 3 is formed of a cured body of an appropriate light transmitting resin adhesive capable of adhering the first prism 2 and the junction prism 1 to each other. The curing method of the adhesive forming the adhesive cured layer 3 is not particularly limited. For example, as an adhesive for forming the adhesive cured layer 3, an energy ray-curable resin adhesive cured by energy rays such as UV light, a thermosetting resin adhesive cured by heating, etc. may be used. Good.
 第1プリズム2および接合プリズム1は、どちらが物体側に配置されてもよい。以下では、一例として、入射光L1が、第1プリズム2に入射し、接合プリズム1から出射光L7となって出射される場合の設計上の光路レイアウトに基づいて、光学素子組立体4の設計上の構成が説明される。
 光学系の設計においては、光学系に種々の光束を入射させて光線追跡が行われる。これにより、像面において、例えば、収差などの光学特性が最適となるような光学面の配置と、設計上の有効光束である軸上光束の光路と、が決定される。軸上光束の主光線である軸上主光線は、軸上光束の光束中心を連ねた軸線であり、軸上光束の光軸を通る光線である。
 このため、以下の説明では、特に断らない限り、入射光L1は設計上の軸上光束であり、入射光L1の光軸は、光学素子組立体4の設計上の光軸に一致している。
Either of the first prism 2 and the cemented prism 1 may be disposed on the object side. In the following, as an example, the design of the optical element assembly 4 based on the designed optical path layout in the case where the incident light L1 enters the first prism 2 and is emitted from the cemented prism 1 as the output light L7. The above configuration is described.
In the design of an optical system, ray tracing is performed by causing various light beams to enter the optical system. Thereby, for example, in the image plane, the arrangement of the optical surface such that the optical characteristics such as aberration are optimum and the optical path of the on-axis luminous flux which is an effective luminous flux in design are determined. An axial chief ray, which is a chief ray of an axial light flux, is an axial line connecting the center of the light flux of the axial light flux, and is a light beam passing through the optical axis of the axial light flux.
Therefore, in the following description, unless otherwise specified, the incident light L1 is the designed axial light flux, and the optical axis of the incident light L1 coincides with the designed optical axis of the optical element assembly 4 .
 第1プリズム2は、入射光L1の入射面である第1面2a(光学面)と、出射面である第2面2b(光学面、第2接合面)と、を備える。第1面2aおよび第2面2bはいずれも平面である。
 第2面2bは、第1面2aの法線と鋭角をなして傾斜している。第2面2bは、第1プリズム2における第2接合面を構成している。
 第1プリズム2において、第1面2aと第2面2bとの間の側方には、プリズム側面2cが形成されている。
 プリズム側面2cの形状は特に限定されない。例えば、プリズム側面2cは、円筒面、楕円筒面、角柱面などであってもよい。以下では、一例として、プリズム側面2cが円筒面からなる場合の例で説明する。プリズム側面2cが形成された範囲内における第1プリズム2の直径(以下、第1プリズム2の直径と称する)の大きさは、d2である。
 第1プリズム2は、例えば、ガラス材料、透明樹脂材料などによって製造される。
The first prism 2 includes a first surface 2a (optical surface) which is an incident surface of the incident light L1, and a second surface 2b (an optical surface, a second bonding surface) which is an emitting surface. The first surface 2a and the second surface 2b are both flat.
The second surface 2b is inclined at an acute angle with the normal to the first surface 2a. The second surface 2 b constitutes a second bonding surface of the first prism 2.
In the first prism 2, a prism side surface 2c is formed on the side between the first surface 2a and the second surface 2b.
The shape of the prism side surface 2c is not particularly limited. For example, the prism side surface 2c may be a cylindrical surface, an elliptic cylindrical surface, a prismatic surface, or the like. In the following, as an example, an example in which the prism side surface 2c is formed of a cylindrical surface will be described. The size of the diameter of the first prism 2 (hereinafter referred to as the diameter of the first prism 2) in the range where the prism side surface 2c is formed is d2.
The first prism 2 is made of, for example, a glass material, a transparent resin material, or the like.
 入射光L1は、設計意図あるいは光学素子組立体4と組み合わされる他の光学系との関係によっては、第1面2aの中心からずれて入射されてもよい。本実施形態では、入射光L1の有効径を大きく確保する観点から、第1面2aの法線に沿って第1面2aの中心に入射する場合の例で説明する。すなわち、入射光L1は、第1プリズム2のプリズム側面2cの中心軸線O2と同軸の状態で、第1面2aに入射する。
 入射光L1の第1面2aに対する入射角をθと表すと、θは0度である。
 入射光L1は、第1面2aに入射して、第1面2aを透過すると、光L2となって、中心軸線O2に沿って直進する。光L2は、第2面2bに到達すると、光L3となって、第2面2bを透過する。
The incident light L1 may be shifted from the center of the first surface 2a depending on the design intention or the relationship with other optical systems combined with the optical element assembly 4. In the present embodiment, from the viewpoint of securing a large effective diameter of the incident light L1, an example in the case of entering the center of the first surface 2a along the normal line of the first surface 2a will be described. That is, the incident light L1 is incident on the first surface 2a in a state of being coaxial with the central axis O2 of the prism side surface 2c of the first prism 2.
When the angle of incidence on the first surface 2a of the incident light L1 represents a theta i, the theta i is 0 degrees.
The incident light L1 enters the first surface 2a, passes through the first surface 2a, becomes light L2, and travels straight along the central axis O2. When the light L2 reaches the second surface 2b, it becomes light L3 and passes through the second surface 2b.
 以下の光学素子組立体4に関する説明において、光学素子組立体4に固定されたxyz直交座標系が用いられる場合がある。
 z軸は、第1面2aの中心を通る法線である。z軸は、第1プリズム2のプリズム側面2cの中心軸線O2と同軸になっている。
 z軸の正方向は、第1面2aから第2面2bに向かう方向(図1の左側から右側に向かう方向)である。設計上の光路レイアウトでは、z軸は、第1プリズム2において、光L2の軸上主光線が進む軸線になっている。
 y軸は、z軸に直交する軸線のうち、第1面2aおよび第2面2bに平行な軸線である。図1では、y軸の正方向は、紙面奥側から紙面手前側に向かう方向である。
 x軸は、z軸およびy軸に直交する軸線である。図1では、x軸の正方向は、下側から上側に向かう方向である。
 言い換えれば、xyz座標系は、右手系直交座標系である。
In the following description of the optical element assembly 4, an xyz Cartesian coordinate system fixed to the optical element assembly 4 may be used.
The z-axis is a normal passing through the center of the first surface 2a. The z-axis is coaxial with the central axis O 2 of the prism side surface 2 c of the first prism 2.
The positive direction of the z-axis is a direction from the first surface 2a to the second surface 2b (a direction from the left side to the right side in FIG. 1). In the design optical path layout, the z-axis is an axis along which the on-axis chief ray of the light L2 travels in the first prism 2.
The y-axis is an axis parallel to the first surface 2a and the second surface 2b among axes perpendicular to the z-axis. In FIG. 1, the positive direction of the y-axis is the direction from the back side to the front side of the sheet.
The x-axis is an axis perpendicular to the z-axis and the y-axis. In FIG. 1, the positive direction of the x axis is a direction from the lower side to the upper side.
In other words, the xyz coordinate system is a right-handed orthogonal coordinate system.
 接合プリズム1は、第2プリズム1Aと、第3プリズム1Bと、が互いに接合されて形成されている。
 第2プリズム1Aおよび第3プリズム1Bは、例えば、ガラス材料、透明樹脂材料などによって製造される。第2プリズム1Aの材料の屈折率は、第3プリズム1Bの材料の屈折率よりも大きい。第2プリズム1Aの材料の屈折率は、第1プリズム2の材料の屈折率と同じでもよいし、異なっていてもよい。図1に示す例では、第2プリズム1Aおよび第1プリズム2の材料は互いに異なっている。
The cemented prism 1 is formed by cementing the second prism 1A and the third prism 1B with each other.
The second prism 1A and the third prism 1B are made of, for example, a glass material, a transparent resin material, or the like. The refractive index of the material of the second prism 1A is larger than the refractive index of the material of the third prism 1B. The refractive index of the material of the second prism 1A may be the same as or different from the refractive index of the material of the first prism 2. In the example shown in FIG. 1, the materials of the second prism 1A and the first prism 2 are different from each other.
 第2プリズム1Aは、y軸方向から見て、四辺形状のプリズムである。第2プリズム1Aは、光学面として、第1面1a(第1接合面)、第2面1b、および第3面1cを有する。
 第1面1aは、接合プリズム1に光L3が入射する入射面である。第1面1aは平面からなる。第1面1aは、接着剤硬化層3によって、第1プリズム2の第2面2bと接合されている。このため、第1面1aは、接合プリズム1の第1接合面を構成している。
 第1面1aは、設計上は、一定の層厚を有する接着剤硬化層3を挟んで、第2面2bと平行に配置される。
 第2面2bから出射した光L3は、接着剤硬化層3を透過して、第1面1aに入射する。光L3は、第1プリズム2と第2プリズム1Aとの屈折率差に応じて屈折される。図1に示す例では、光L3は、光L2が第1面1aで屈折されることによって、z軸正方向に進むにつれてx軸正方向に向かう斜め方向に進む。
The second prism 1A is a quadrangular prism when viewed from the y-axis direction. The second prism 1A has a first surface 1a (first joint surface), a second surface 1b, and a third surface 1c as optical surfaces.
The first surface 1 a is an incident surface on which the light L 3 enters the cemented prism 1. The first surface 1a is a flat surface. The first surface 1 a is bonded to the second surface 2 b of the first prism 2 by the adhesive cured layer 3. For this reason, the first surface 1 a constitutes a first bonding surface of the cemented prism 1.
The first surface 1a is disposed in parallel with the second surface 2b, sandwiching the adhesive cured layer 3 having a constant layer thickness in design.
The light L3 emitted from the second surface 2b passes through the adhesive cured layer 3 and is incident on the first surface 1a. The light L3 is refracted according to the difference in refractive index between the first prism 2 and the second prism 1A. In the example illustrated in FIG. 1, the light L3 travels obliquely in the positive x-axis direction as it travels in the positive z-axis direction by the light L2 being refracted by the first surface 1a.
 第2面1bは、光L3を内部反射させる光学面である。第2面1bは、第2プリズム1Aと第3プリズム1Bとの接合部の界面によって形成されている。
 第2面1bは、第1面1aのz軸正方向側に配置された平面からなる。第2面1bは、第1面1aと同様、y軸に平行に配置されている。ただし、第2面1bのz軸に対する傾斜角は、第1面1aよりも小さくなっている。
 このため、光L3は、第2面1bで反射されると、z軸正方向に進むにつれてx軸負方向に向かう斜め方向に、光L4となって進む。
The second surface 1b is an optical surface that internally reflects the light L3. The second surface 1b is formed by the interface of the junction of the second prism 1A and the third prism 1B.
The second surface 1b is a flat surface disposed on the z-axis positive direction side of the first surface 1a. The second surface 1b is disposed in parallel to the y-axis, similarly to the first surface 1a. However, the inclination angle of the second surface 1 b with respect to the z-axis is smaller than that of the first surface 1 a.
Therefore, when the light L3 is reflected by the second surface 1b, it travels as the light L4 in the diagonal direction toward the x-axis negative direction as it travels in the z-axis positive direction.
 第3面1cは、光L4を内部反射させる光学面である。第3面1cは、第2プリズム1Aにおいてx軸負方向側の外表面の一部に形成されている。
 第3面1cは、第2面1bのx軸負方向側に配置された平面からなる。第3面1cは、第2面1bと同様、y軸に平行に配置されている。ただし、第3面1cのz軸に対する傾斜角は、第2面1bよりも小さくなっている。
 このため、光L4は、第3面1cで反射されると、z軸正方向に進むにつれてx軸正方向に向かう斜め方向に、光L5となって進む。光L5は、zx平面内において、z軸に近づく斜め方向に反射される。
 第3面1cは、反射率を高めるために、反射コートが施されていてもよい。
The third surface 1c is an optical surface that internally reflects the light L4. The third surface 1c is formed on a part of the outer surface in the negative direction of the x-axis in the second prism 1A.
The third surface 1c is a flat surface disposed on the x-axis negative direction side of the second surface 1b. The third surface 1c is disposed parallel to the y-axis, as with the second surface 1b. However, the inclination angle of the third surface 1c with respect to the z axis is smaller than that of the second surface 1b.
Therefore, when the light L4 is reflected by the third surface 1c, the light L4 travels as the light L5 in the diagonal direction toward the x-axis positive direction as it travels in the z-axis positive direction. The light L5 is reflected in an oblique direction approaching the z-axis in the zx plane.
The third surface 1c may be provided with a reflection coating to increase the reflectance.
 第3面1cの反射光である光L5は、第2面1bに到達すると、第2面1bを透過し、光L6となって第3プリズム1B内に入射する。このとき、光L6は、第2面1bで屈折されるため、さらにz軸に近づく斜め方向に進む。 When the light L5 which is the reflected light of the third surface 1c reaches the second surface 1b, the light L5 passes through the second surface 1b, becomes light L6, and enters the third prism 1B. At this time, since the light L6 is refracted by the second surface 1b, the light L6 travels in a diagonal direction closer to the z-axis.
 第4面1dは、光L6を透過させる平面からなる光学面である。このため、第4面1dは、光L6の透過光からなる出射光L7を出射させる出射面になっている。
 第4面1dは、出射光L7が予め決められた出射角θで出射するように設けられている。例えば、図1に示す例では、第4面1dは、第2面1bのx軸正方向側に配置された平面からなる。第4面1dは、第2面1bと同様、y軸に平行に配置されている。ただし、第4面1dのz軸に対する傾斜角は、第2面1bよりも大きくなっている。
 このため、光L6が第4面1dで屈折されることにより、出射光L7は、z軸正方向に進むにつれてx軸正方向に向かう斜め方向に進む。
The fourth surface 1d is an optical surface formed of a plane that transmits the light L6. For this reason, the fourth surface 1d is an exit surface that emits the outgoing light L7 made of the transmitted light of the light L6.
Fourth surface 1d is emitted light L7 is provided so as to emit at a predetermined emission angle theta o. For example, in the example illustrated in FIG. 1, the fourth surface 1 d is a flat surface disposed on the x-axis positive direction side of the second surface 1 b. The fourth surface 1d is disposed parallel to the y-axis, similarly to the second surface 1b. However, the inclination angle of the fourth surface 1d with respect to the z-axis is larger than that of the second surface 1b.
Therefore, as the light L6 is refracted by the fourth surface 1d, the outgoing light L7 travels obliquely in the positive x-axis direction as it travels in the positive z-axis direction.
 第2プリズム1Aにおいて第3面1cを除くプリズム側面1eと、第3プリズム1Bにおけるプリズム側面1fと、の形状は特に限定されない。例えば、プリズム側面1e、1fは、円筒面、楕円筒面、角柱面などであってもよい。
 以下では、一例として、プリズム側面1e、1fが互いに同軸の円筒面からなる場合の例で説明する。プリズム側面1eが形成された範囲における第2プリズム1Aの直径(以下、第2プリズム1Aの直径と称する)と、プリズム側面1fが形成された範囲における第3プリズム1Bの直径(以下、第3プリズム1Bの直径と称する)とは互いに異なっていてもよいが、以下では、これらの直径の大きさがいずれもd1である例を説明する。
 プリズム側面1e、1fの中心軸線O1は、設計上は、z軸と同軸に配置される。
 第2プリズム1Aおよび第3プリズム1Bの直径の大きさd1と、第1プリズム2の直径の大きさd2とは、互いに異なっていてもよいし、互いに等しくてもよい。
The shapes of the prism side 1e excluding the third surface 1c in the second prism 1A and the prism side 1f of the third prism 1B are not particularly limited. For example, the prism side surfaces 1e and 1f may be cylindrical surfaces, elliptical cylindrical surfaces, prismatic surfaces, or the like.
In the following, as an example, an example in which the prism side faces 1e and 1f are cylindrical surfaces coaxial with each other will be described. The diameter of the second prism 1A in the range in which the prism side 1e is formed (hereinafter referred to as the diameter of the second prism 1A) and the diameter of the third prism 1B in the range in which the prism side 1f is formed (hereinafter, the third prism Although they may be different from each other as the diameter of 1 B), hereinafter, an example in which the size of each of these diameters is d1 will be described.
The central axis O1 of the prism side faces 1e and 1f is disposed coaxially with the z axis in design.
The diameter size d1 of the second prism 1A and the third prism 1B and the diameter size d2 of the first prism 2 may be different from each other or may be equal to each other.
 このような構成により、光学素子組立体4は、zx平面において、z軸に沿って第1面2aから入射した入射光L1を、図示反時計回りにθだけ回転された方向に偏向した出射光L7となって出射させる光偏向素子である。
 光学素子組立体4は、光の偏向を実現するために、上述した光路に沿って第1面2a、第2面2b、第1面1a、第2面1b、第3面1c、第2面1b、および第4面1dがこの順に配列されている。
 光学素子組立体4は、円筒面からなるプリズム側面2c、1e、1fを外周部に有するため、全体として略円柱状である。
With such a configuration, the optical element assembly 4 outputs the incident light L1 incident from the first surface 2a along the z-axis in the zx plane, deflected in a direction rotated by θ o counterclockwise in the figure. It is a light deflection element to be emitted as the emitted light L7.
The optical element assembly 4 includes the first surface 2a, the second surface 2b, the first surface 1a, the second surface 1b, the third surface 1c, and the second surface along the above-described optical path in order to realize deflection of light. 1b and 4th surface 1d are arranged in this order.
Since the optical element assembly 4 has the prism side faces 2c, 1e, 1f made of cylindrical surfaces on the outer peripheral part, the optical element assembly 4 has a substantially cylindrical shape as a whole.
 光学素子組立体4は、第1プリズム2、第2プリズム1A、および第3プリズム1Bのみを組み立てたままの状態で、適宜の光学機器に取り付けられてもよいし、適宜のホルダに組み付けられた光学ユニットとして、光学機器に取り付けられてもよい。
 例えば、光学素子組立体4が円筒状の鏡筒5の内部に固定されることによって、光学ユニット6が形成されてもよい。この場合、鏡筒5の内周面5aの内径の大きさは、d2およびd1のいずれよりも大きいd5である。
 光学素子組立体4は、外径がd5未満に形成されることによって、鏡筒5の内周面5aの内側に挿入可能となる。光学素子組立体4は、内周面5aとの間に隙間の範囲で、位置決めされた状態で、鏡筒5に固定される。光学素子組立体4の固定方法としては、例えば、接着が用いられる。
The optical element assembly 4 may be attached to an appropriate optical device with only the first prism 2, the second prism 1A, and the third prism 1B assembled, or may be attached to an appropriate holder. As an optical unit, it may be attached to an optical instrument.
For example, the optical unit 6 may be formed by fixing the optical element assembly 4 to the inside of the cylindrical lens barrel 5. In this case, the size of the inner diameter of the inner peripheral surface 5a of the lens barrel 5 is d5, which is larger than both d2 and d1.
The optical element assembly 4 can be inserted inside the inner peripheral surface 5a of the barrel 5 by forming the outer diameter to be less than d5. The optical element assembly 4 is fixed to the barrel 5 in a state of being positioned in the range of a gap between the optical element assembly 4 and the inner circumferential surface 5 a. As a method of fixing the optical element assembly 4, for example, adhesion is used.
 光学素子組立体4における光偏向素子としての主な光学性能は、出射光L7の出射角の大きさおよび方向である。出射光L7の出射角の大きさおよび方向は、第1プリズム2および接合プリズム1の製造誤差に起因する光学素子組立体4内の光学面の位置誤差および姿勢誤差が積み上がることによって設計値から変化する。
 以下に説明するように、本実施形態に係る光学素子組立体の製造方法では、光学素子組立体4の製造時に、接合プリズム1と第1プリズム2との相対位置を調整することによって、出射光L7の出射角の大きさおよび方向を許容範囲内に収めている。
The main optical performance as a light deflection element in the optical element assembly 4 is the size and direction of the outgoing angle of the outgoing light L7. The size and direction of the emission angle of the emission light L7 are determined from the design values by accumulating the position error and the attitude error of the optical surface in the optical element assembly 4 caused by the manufacturing error of the first prism 2 and the cemented prism 1. Change.
As described below, in the method of manufacturing an optical element assembly according to this embodiment, the emitted light is adjusted by adjusting the relative position between the cemented prism 1 and the first prism 2 when the optical element assembly 4 is manufactured. The size and direction of the emission angle of L7 are within the allowable range.
 次に、光学素子組立体4の製造に用いることができる光学素子接合装置について説明する。
 図2は、本発明の実施形態の光学素子組立体の製造方法に用いることができる光学素子接合装置の一例を示す模式的な縦断面図である。
Next, an optical element bonding apparatus that can be used for manufacturing the optical element assembly 4 will be described.
FIG. 2 is a schematic vertical sectional view showing an example of an optical element bonding apparatus that can be used in the method of manufacturing an optical element assembly according to the embodiment of the present invention.
 図2に示すように、光学素子接合装置10は、第1保持部11、第2保持部12、ゴニオステージ13、ステージ駆動部14、オートコリメータ15、およびUV光源16を備える。光学素子接合装置10は、さらに、図示略の接着剤塗布手段も備える。 As shown in FIG. 2, the optical element bonding apparatus 10 includes a first holding unit 11, a second holding unit 12, a gonio stage 13, a stage driving unit 14, an autocollimator 15, and a UV light source 16. The optical element bonding apparatus 10 further includes adhesive application means (not shown).
 以下では、光学素子接合装置10における相対位置の参照を容易にするため、図2に記載のXYZ座標系が用いられる場合がある。ただし、光学素子接合装置10の配置姿勢はこのような配置姿勢には限定されない。光学素子接合装置10は、XYZ座標系が、適宜方向に回転された向きに配置されてもよい。
 Z軸は鉛直軸である。Z軸の正方向は鉛直上方向である。
 X軸およびY軸はZ軸に直交する水平面内で、互いに直交する2軸である。図2では、X軸は紙面内で左右方向に延びる座標軸である。X軸の正方向は、図示左側から右側に向かう方向である。Y軸は紙面奥行き方向に延びる座標軸である。Y軸の正方向は、紙面手前側から奥側に向かう方向である。
In the following, in order to facilitate reference of the relative position in the optical element bonding apparatus 10, the XYZ coordinate system described in FIG. 2 may be used. However, the arrangement attitude of the optical element bonding apparatus 10 is not limited to such an arrangement attitude. The optical element bonding apparatus 10 may be disposed in an orientation in which the XYZ coordinate system is appropriately rotated.
The Z axis is a vertical axis. The positive direction of the Z axis is vertically upward.
The X axis and the Y axis are two axes orthogonal to each other in a horizontal plane orthogonal to the Z axis. In FIG. 2, the X axis is a coordinate axis extending in the left and right direction in the drawing. The positive direction of the X axis is the direction from the left side to the right side in the drawing. The Y axis is a coordinate axis extending in the depth direction of the drawing. The positive direction of the Y axis is the direction from the front side to the back side of the drawing.
 第1保持部11は、接合プリズム1を保持し、接合プリズム1を少なくともZ軸に沿う方向(Z軸方向)に平行移動する装置部分である。
 第1保持部11は、保持スリーブ11A、移動ステージ11B、および駆動部11Cを備える。
The first holding unit 11 is a device portion that holds the cemented prism 1 and translates the cemented prism 1 in a direction (Z-axis direction) along at least the Z-axis.
The first holding unit 11 includes a holding sleeve 11A, a moving stage 11B, and a driving unit 11C.
 保持スリーブ11Aは、スリーブ11a(筒状体)と、底板11dと、を備える。
 スリーブ11aは、接合プリズム1と、第1プリズム2の一部と、を内部に収容可能な筒状体からなる。スリーブ11aの内面には、スリーブ11aの中心軸線Cと同軸の円筒面である、第1内周面11bおよび第2内周面11cがこの順に形成されている。
 第1内周面11bは、接合プリズム1を中心軸線O1に沿って挿入可能であり、挿入状態で接合プリズム1を中心軸線O1に直交する方向において位置決めする円筒面からなる。このため、第1内周面11bの内径の大きさDbは、プリズム側面1e、1fをz軸方向に移動可能に嵌合する大きさである。
 第2内周面11cは、接合プリズム1を中心軸線O1に沿って、第1プリズム2を中心軸線O2に沿って、それぞれ挿入できる円筒面からなる。さらに、第2内周面11cは、第2内周面11cの内側において、接合プリズム1および第1プリズム2の製造誤差の補正が可能となる角度範囲で第1プリズム2を傾けることができる内径を有する。
 すなわち、第2内周面11cの内径の大きさDcは、片側の調整用の隙間をΔと表し、d1、d2の大きい方をd0とすると、d0<Dc≦d2+2・Δである。
 さらに、Dcは、光学素子組立体4を組み立てる鏡筒5の内径の大きさd5以下であることが好ましい。
The holding sleeve 11A includes a sleeve 11a (cylindrical body) and a bottom plate 11d.
The sleeve 11a is formed of a cylindrical body capable of housing the junction prism 1 and a part of the first prism 2 inside. On the inner surface of the sleeve 11a, a first inner circumferential surface 11b and a second inner circumferential surface 11c, which are cylindrical surfaces coaxial with the central axis C of the sleeve 11a, are formed in this order.
The first inner circumferential surface 11b is a cylindrical surface which can insert the cemented prism 1 along the central axis O1 and positions the cemented prism 1 in a direction perpendicular to the central axis O1 in the inserted state. For this reason, the size Db of the inner diameter of the first inner circumferential surface 11b is a size that allows the prism side faces 1e and 1f to be movably fitted in the z-axis direction.
The second inner circumferential surface 11c is a cylindrical surface into which the cemented prism 1 can be inserted along the central axis O1 and the first prism 2 along the central axis O2. Furthermore, the inner diameter of the second inner circumferential surface 11c can be such that the first prism 2 can be inclined within an angle range in which the manufacturing error of the cemented prism 1 and the first prism 2 can be corrected inside the second inner circumferential surface 11c. Have.
That is, assuming that the adjustment gap on one side is Δ, and the larger one of d1 and d2 is d0, the size Dc of the inner diameter of the second inner circumferential surface 11c is d0 <Dc ≦ d2 + 2 · Δ.
Furthermore, it is preferable that Dc is equal to or less than the size d5 of the inner diameter of the barrel 5 in which the optical element assembly 4 is assembled.
 底板11dは、第1内周面11bが形成された第1保持部11の端部をふさぐ部材である。底板11dにおいてスリーブ11aの内部には、接合プリズム1の第4面1dに当接して、接合プリズム1を保持する保持面11eが形成されている。保持面11eの形状は、接合プリズム1の中心軸線O1を保持スリーブ11Aの中心軸線Cと同軸に配置できれば、特に限定されない。
 例えば、保持面11eは、中心軸線O1に対する第4面1dの傾斜角と同じ角度だけ中心軸線Cに対して傾斜した平面であってもよい。この場合、第4面1dが保持面11eと密着して当接する状態で、接合プリズム1の中心軸線O1と中心軸線Cとが同軸になる。
The bottom plate 11 d is a member that covers the end of the first holding portion 11 in which the first inner circumferential surface 11 b is formed. In the bottom plate 11d, a holding surface 11e for holding the cemented prism 1 is formed in the inside of the sleeve 11a in contact with the fourth surface 1d of the cemented prism 1. The shape of the holding surface 11e is not particularly limited as long as the central axis O1 of the cemented prism 1 can be coaxially arranged with the central axis C of the holding sleeve 11A.
For example, the holding surface 11e may be a plane inclined with respect to the central axis C by the same angle as the inclination angle of the fourth surface 1d with respect to the central axis O1. In this case, the central axis O1 of the cemented prism 1 is coaxial with the central axis C in a state where the fourth surface 1d is in close contact with the holding surface 11e.
 移動ステージ11Bは、保持スリーブ11Aの第2内周面11cがZ軸正方向に向かって開口している。移動ステージ11Bは、保持スリーブ11Aを支持することにより、保持スリーブ11Aの中心軸線CがZ軸と平行になる。さらに、移動ステージ11Bは、保持スリーブ11AをZ軸方向に移動させる。
 例えば、移動ステージ11Bは、少なくともZ軸方向に移動自由度を有する直動ステージを含んで構成されてもよい。
 駆動部11Cは、図示略の操作部を有している。駆動部11Cは、図示略の操作部を介した操作者からの操作入力に基づいて、移動ステージ11Bを駆動する。
In the moving stage 11B, the second inner circumferential surface 11c of the holding sleeve 11A opens in the positive Z-axis direction. By supporting the holding sleeve 11A, the moving stage 11B makes the central axis C of the holding sleeve 11A parallel to the Z axis. Furthermore, the moving stage 11B moves the holding sleeve 11A in the Z-axis direction.
For example, the movement stage 11B may be configured to include a linear movement stage having a movement degree of freedom at least in the Z-axis direction.
The drive unit 11C has an operation unit (not shown). The drive unit 11C drives the moving stage 11B based on the operation input from the operator via the operation unit (not shown).
 第2保持部12は、第1プリズム2を保持し、少なくとも第1プリズム2の第2面2b上の1点を中心にして、第2接合面である第1面2aが傾動するように、第1プリズム2を接合プリズム1に対して相対回転移動させる装置である。
 第2保持部12は、チャック12A、支持アーム12B、ゴニオステージ13、およびステージ駆動部14を備える。
The second holding unit 12 holds the first prism 2 so that the first surface 2a as the second bonding surface tilts at least one point on the second surface 2b of the first prism 2. This is a device for rotating the first prism 2 relative to the cemented prism 1.
The second holding unit 12 includes a chuck 12A, a support arm 12B, a gonio stage 13, and a stage driving unit 14.
 チャック12Aは、第1プリズム2のプリズム側面2cを着脱可能に保持する。チャック12Aは、第1プリズム2の中心軸線O2が、チャック12Aの保持中心軸線Hと同軸になるように第1プリズム2を保持する。
 支持アーム12Bは、チャック12Aを支持することにより、チャック12Aが後述するゴニオステージ13の回動中心と所定の位置関係となる。支持アーム12Bは、上述の第1プリズム2と異なる形状の光学素子を同様の所定位置に配置できるようにするために、チャック12Aの支持位置を調整する位置調整機構が設けられていてもよい。このような位置調整機構には、例えば、適宜の移動自由度を有する移動ステージなどが含まれていてもよい。
The chuck 12 </ b> A detachably holds the prism side surface 2 c of the first prism 2. The chuck 12A holds the first prism 2 such that the central axis O2 of the first prism 2 is coaxial with the holding central axis H of the chuck 12A.
By supporting the chuck 12A, the support arm 12B has a predetermined positional relationship with the rotational center of the gonio stage 13 described later by the chuck 12A. The support arm 12B may be provided with a position adjustment mechanism that adjusts the support position of the chuck 12A in order to be able to arrange an optical element having a shape different from that of the first prism 2 described above at the same predetermined position. Such a position adjustment mechanism may include, for example, a moving stage having an appropriate degree of freedom of movement.
 ゴニオステージ13は、Z軸に平行な軸線上に回動中心(回転中心)Qを有する回動ステージである。ゴニオステージ13の回動方向は、1軸回り方向と、互いに直交する2軸回り方向とが必要に応じて選択できる。例えば、第1プリズム2および接合プリズム1の製造誤差に応じて、1軸回りの回動でも必要な光学特性が得られる調整が可能な場合には、ゴニオステージ13の回動方向は、1軸回り方向でもよい。ただし、ゴニオステージ13の回動方向は、2軸回り方向が可能であることがより好ましい。
 ゴニオステージ13は、XY平面に平行な平面上に載置される基台部13Aと、基台部13A上の案内面13aに沿って移動する移動部13Bと、を備える。
 移動部13Bには、第2保持部12の支持アーム12Bが交差(直交)して設けられている。
The gonio stage 13 is a rotation stage having a rotation center (rotation center) Q on an axis parallel to the Z axis. The rotational direction of the gonio stage 13 can be selected between the direction around one axis and the directions around two axes orthogonal to each other as needed. For example, according to the manufacturing error of the first prism 2 and the cemented prism 1, the rotational direction of the gonio stage 13 is uniaxial if it is possible to obtain necessary optical characteristics even with the pivotal movement about one axis. It may be a turning direction. However, it is more preferable that the rotational direction of the gonio stage 13 be capable of rotating around two axes.
The gonio stage 13 includes a base portion 13A mounted on a plane parallel to the XY plane, and a moving portion 13B moving along a guide surface 13a on the base portion 13A.
In the moving unit 13B, support arms 12B of the second holding unit 12 are provided to intersect (orthogonal).
 案内面13aは、例えば、ゴニオステージ13が1軸回り方向に回動する場合には、回動中心Qを通る回動中心軸を中心とする半径Rの円筒面を有する。
 案内面13aは、例えば、ゴニオステージ13が2軸回り方向に回動する場合には、回動中心Qを中心とする半径Rの球面で構成されてもよい。ただし、ゴニオステージ13は、1軸回り方向に回転するゴニオステージをそれぞれの回動中心軸線が回動中心Qにおいて互いに直交するように2段重ねて構成されてもよい。この場合、各ゴニオステージの回動半径は互いに異なる。
The guide surface 13a has, for example, a cylindrical surface having a radius R centered on a rotation center axis passing through the rotation center Q when the gonio stage 13 rotates in a direction around one axis.
For example, when the gonio stage 13 rotates in a direction around two axes, the guide surface 13a may be configured as a spherical surface having a radius R centered on the rotation center Q. However, the gonio stage 13 may be configured such that the gonio stage rotating in the direction around one axis is overlapped in two stages such that the rotation center axes thereof are orthogonal to each other at the rotation center Q. In this case, the turning radius of each gonio stage differs from each other.
 以下では、ゴニオステージ13は、2軸回り方向に回動する構成として説明する。具体的には、ゴニオステージ13は、回動中心Qにおいて交差するY軸に平行な軸線回りと、X軸に平行な軸線回りとに回動できる。
 移動部13B上の第2保持部12は、必要に応じて位置調整されることによって、少なくとも後述する調整が開始されるまでには、回動中心Qがチャック12Aの保持中心軸線Hの延長線上に位置する。
 図2に示すようなゴニオステージ13における回動の中立位置では、チャック12Aの保持中心軸線HがZ軸と平行に配置される。
In the following, the gonio stage 13 will be described as being configured to rotate in a direction around two axes. Specifically, the gonio stage 13 can rotate around an axis parallel to the Y-axis intersecting at the rotation center Q and around an axis parallel to the X-axis.
The second holding portion 12 on the moving portion 13B is adjusted in position as necessary, so that the rotation center Q is an extension of the holding central axis H of the chuck 12A at least before the adjustment described later is started. Located in
At a neutral position of rotation of the gonio stage 13 as shown in FIG. 2, the holding central axis H of the chuck 12A is disposed in parallel with the Z axis.
 ステージ駆動部14は、図示略の操作部を有している。ステージ駆動部14は、図示略の操作部を介した操作者からの操作入力に基づいて、ゴニオステージ13を駆動する。 The stage drive unit 14 has an operation unit (not shown). The stage drive unit 14 drives the gonio stage 13 based on an operation input from the operator via an operation unit (not shown).
 オートコリメータ15は、第1プリズム2の設計上の光路に検査光Tを入射させ、検査光Tの戻り光T’のずれを検知する装置部分である。本実施形態では、オートコリメータ15は、図示略の支持部によって、移動部13Bの回動に連動して回動できる。これにより、オートコリメータ15は、第1プリズム2の第1面2aが回動しても、第1面2aに対する検査光Tの入射位置および入射角を同一の状態に保つことができる。 The autocollimator 15 is a device portion that makes the inspection light T incident on the designed light path of the first prism 2 and detects a deviation of the return light T ′ of the inspection light T. In the present embodiment, the auto-collimator 15 can be rotated by interlocking with the rotation of the moving unit 13B by the support unit (not shown). Thus, the autocollimator 15 can keep the incident position and the incident angle of the inspection light T on the first surface 2a in the same state, even if the first surface 2a of the first prism 2 rotates.
 UV光源16は、後述する接着剤の硬化に必要なUV(紫外)光を照射することによって後述する接着剤を硬化させる硬化手段である。本実施形態では、UV光源16は、図示略の保持部によって、Z軸正方向側において第1面2aに対向する進出位置と、第1面2aに対向しない退避位置(図6の二点鎖線参照)と、が切り替え可能に配置されている。
 図2では、UV光源16が退避位置に配置されている状態が示されている。
 UV光源16は、進出位置に配置されると、UV光を中心軸線O2に沿って第1面2aに入射させることが可能である。
The UV light source 16 is a curing means for curing the adhesive described later by irradiating UV (ultraviolet) light necessary for curing the adhesive described later. In the present embodiment, the UV light source 16 is an advancing position facing the first surface 2a on the Z-axis positive direction side and a retracted position not facing the first surface 2a by the holding portion (not shown) (two-dot chain line in FIG. Reference) and are arranged switchably.
In FIG. 2, the UV light source 16 is shown in the retracted position.
When the UV light source 16 is disposed at the exit position, the UV light can be made incident on the first surface 2a along the central axis O2.
 次に、光学素子接合装置10を用いて行う本実施形態に係る光学素子組立体の製造方法について説明する。
 図3は、本実施形態に係る光学素子組立体の製造方法の一例を示すフローチャートである。図4~6は、本実施形態に係る光学素子組立体の製造方法の工程説明図である。
Next, a method of manufacturing an optical element assembly according to the present embodiment performed using the optical element bonding apparatus 10 will be described.
FIG. 3 is a flowchart showing an example of a method of manufacturing an optical element assembly according to the present embodiment. 4 to 6 are process explanatory views of a method of manufacturing an optical element assembly according to the present embodiment.
 本実施形態に係る光学素子組立体の製造方法の一例は、図3に示すステップS1~S9を図3に示すフローに従って実行することによって行われる。
 ステップS1では、第1光学素子である接合プリズム1が第1保持部11に保持される(工程a)。
 具体的には、図4に示すように、接合プリズム1が第1内周面11bの内側に挿入され、接合プリズム1の第4面1dが保持スリーブ11Aの保持面11eと当接する。これにより、接合プリズム1は、保持スリーブ11Aの内部に位置決めして保持される。
 保持スリーブ11Aは、接合プリズム1が保持スリーブ11Aに保持される以前または以後の適宜の時点で、中心軸線CがZ軸に平行かつゴニオステージ13の回動中心Qを通る位置に配置される。さらに、保持スリーブ11Aは、回動中心Qが第1面1aの面上に位置するように移動される。
 このような保持スリーブ11Aの移動は、駆動部11Cへの操作者の操作入力に基づいて、移動ステージ11Bによって行われる。この移動は操作者が移動量を指示するマニュアル動作によって行われてもよい。ただし、操作者が移動開始を指示すると接合プリズム1の設計形状に応じて予め駆動部11Cに予め記憶された配置位置への移動が自動的に行われてもよい。
 以上で、ステップS1が終了する。
An example of the method of manufacturing an optical element assembly according to the present embodiment is performed by executing steps S1 to S9 shown in FIG. 3 in accordance with the flow shown in FIG.
In step S1, the cemented prism 1 which is the first optical element is held by the first holding unit 11 (step a).
Specifically, as shown in FIG. 4, the cemented prism 1 is inserted inside the first inner circumferential surface 11b, and the fourth surface 1d of the cemented prism 1 abuts on the holding surface 11e of the holding sleeve 11A. Thus, the cemented prism 1 is positioned and held inside the holding sleeve 11A.
The holding sleeve 11A is disposed at a position where the central axis C is parallel to the Z axis and passes through the rotation center Q of the gonio stage 13 at an appropriate time before or after the cemented prism 1 is held by the holding sleeve 11A. Further, the holding sleeve 11A is moved so that the rotation center Q is positioned on the surface of the first surface 1a.
Such movement of the holding sleeve 11A is performed by the movable stage 11B based on the operation input of the operator to the drive unit 11C. This movement may be performed by a manual operation in which the operator indicates the movement amount. However, when the operator instructs to start the movement, the movement to the arrangement position stored in advance in the drive unit 11C may be automatically performed according to the design shape of the cemented prism 1.
Above, step S1 is completed.
 ステップS1の後、ステップS2が行われる。ステップS2では、第2接合面である第1プリズム2の第2面2bが、第1接合面である接合プリズム1の第1面1aに当接される状態で、第1プリズム2および接合プリズム1の姿勢が調整されてから、後述するチャック12Aから第1プリズム2を挿入する工程(工程b)が実行される。
 具体的には、図4に示すように、ゴニオステージ13が中立位置に移動された状態で、第1プリズム2が挿通可能となるようにチャック12Aが開かれる(図4の二点鎖線参照)。この状態で、第2面2bがZ軸負方向に向いた姿勢で第1プリズム2(図4の二点鎖線参照)が保持スリーブ11Aの上部に挿入される。このとき、開いたチャック12Aは、第1プリズム2の挿入ガイドになる。このため、チャック12Aの開口径がプリズム側面2cの外径よりわずかに大きくなるようにしておくことで、第1プリズム2の中心軸線O2が、保持中心軸線Hと略同軸の状態で第1プリズム2が保持スリーブ11A内に挿入される。
 第1プリズム2が中心軸線O2回りにずれた状態で挿入されると、第2面2bと第1面1aとが面同士で互いに当接することはない。第1プリズム2の中心軸線O2回りの位置が適正に修正されると、図4に実線で示すように、第2面1bおよび第1面1aは平面度の誤差に起因する微小隙間を除いて全面的に互いに当接する。第2面1bと第1面1aとは全面的に当接しているかどうかは、例えば、第1面2aのチャック12AのZ軸正方向における外側の端面から突出する高さが極小になっているかどうかで判定される。
 本実施形態では、第1プリズム2の第2面2bが第1面1aと全面的に当接した状態は第1プリズム2の自重によって維持される。この状態では、第2面2bと中心軸線O1との交点である面上点Pは、回動中心Qに一致している。さらに、中心軸線O1、O2、C、および保持中心軸線Hが互いに同軸に配置されている。
 中心軸線Cは、光学素子接合装置10における調整の基準軸線を構成している。
 以上で、ステップS2が終了する。
After step S1, step S2 is performed. In step S2, the first prism 2 and the junction prism are in a state in which the second surface 2b of the first prism 2 which is the second junction surface is in contact with the first surface 1a of the junction prism 1 which is the first junction surface. After the attitude of 1 is adjusted, a step (step b) of inserting the first prism 2 from the chuck 12A described later is performed.
Specifically, as shown in FIG. 4, the chuck 12A is opened so that the first prism 2 can be inserted while the gonio stage 13 is moved to the neutral position (see the two-dot chain line in FIG. 4) . In this state, the first prism 2 (see the two-dot chain line in FIG. 4) is inserted into the upper portion of the holding sleeve 11A in a posture in which the second surface 2b is oriented in the negative Z-axis direction. At this time, the opened chuck 12 A serves as an insertion guide for the first prism 2. Therefore, by setting the opening diameter of the chuck 12A to be slightly larger than the outer diameter of the prism side surface 2c, the first prism 2 with the central axis O2 of the first prism 2 substantially coaxial with the holding central axis H 2 are inserted into the holding sleeve 11A.
When the first prism 2 is inserted in a state of being shifted around the central axis O2, the second surface 2b and the first surface 1a do not contact each other. When the position of the first prism 2 about the central axis O2 is properly corrected, as shown by the solid line in FIG. 4, the second surface 1 b and the first surface 1 a are free of minute gaps due to errors in flatness. They abut each other on the whole surface. Whether the second surface 1b and the first surface 1a are in full contact with each other, for example, is the height of the first surface 2a projecting from the outer end surface in the Z-axis positive direction of the chuck 12A minimized? It is judged by how.
In the present embodiment, the state in which the second surface 2 b of the first prism 2 is in full contact with the first surface 1 a is maintained by the weight of the first prism 2. In this state, the on-plane point P which is the intersection of the second surface 2b and the central axis O1 coincides with the rotation center Q. Furthermore, the central axes O1, O2, C and the holding central axis H are arranged coaxially with each other.
The central axis C constitutes a reference axis of adjustment in the optical element bonding apparatus 10.
Above, step S2 is completed.
 ステップS2の後、ステップS3が行われる。ステップS3では、接合プリズム1と第1プリズム2とが互いに離間するように保持される(工程c)。
 具体的には、移動ステージ11Bによって、保持スリーブ11AがZ軸負方向に移動される。このとき、第1プリズム2は、チャック12Aによって第1保持部11に保持されている。接合プリズム1は、自重によって第1保持部11の保持スリーブ11A内に保持されている。
 保持スリーブ11Aの移動量は、第1面1aと第2面2bとの間に後述する接着剤が配置できる隙間が形成されれば、特に制限されない。
 本実施形態では、図5に示すように、第1面1aと第2面2bとの間に後述する接着剤塗布ノズル17が挿入できる程度の隙間が形成される。
 以上で、ステップS3が終了する。
After step S2, step S3 is performed. In step S3, the cemented prism 1 and the first prism 2 are held apart from each other (step c).
Specifically, the holding sleeve 11A is moved in the Z-axis negative direction by the moving stage 11B. At this time, the first prism 2 is held by the chuck 12A on the first holding portion 11. The cemented prism 1 is held in the holding sleeve 11A of the first holding portion 11 by its own weight.
The amount of movement of the holding sleeve 11A is not particularly limited as long as a gap in which an adhesive described later can be disposed is formed between the first surface 1a and the second surface 2b.
In the present embodiment, as shown in FIG. 5, a gap is formed between the first surface 1a and the second surface 2b to such an extent that an adhesive application nozzle 17 described later can be inserted.
Above, step S3 is completed.
 上述したステップS1~S3では、全体として、第1面1a(第1接合面)と、第2面2b(第2接合面)と、が互いに離間して対向するように、基準軸線(中心軸線C)上に接合プリズム1(第1光学素子)と第1プリズム2(第2光学素子)とを保持する工程が行われている。 In steps S1 to S3 described above, the reference axis (central axis) as a whole such that the first surface 1a (first joint surface) and the second surface 2b (second joint surface) face each other apart from each other C) A step of holding the cemented prism 1 (first optical element) and the first prism 2 (second optical element) is performed.
 ステップS3の後、ステップS4が行われる。ステップS4では、第1面1aと第2面2bとの間に接着剤が配置される(工程d)。
 具体的には、図5に示すように、第1プリズム2と保持スリーブ11Aの上端部との間の隙間から、接着剤18を供給する接着剤塗布ノズル17が挿入される。接着剤塗布ノズル17には、接着剤18を貯留する図示略の接着剤供給部が接続されている。接着剤塗布ノズル17および接着剤供給部は、光学素子接合装置10における接着剤塗布手段を構成している。
After step S3, step S4 is performed. In step S4, an adhesive is disposed between the first surface 1a and the second surface 2b (step d).
Specifically, as shown in FIG. 5, the adhesive application nozzle 17 for supplying the adhesive 18 is inserted from the gap between the first prism 2 and the upper end of the holding sleeve 11A. An adhesive supply unit (not shown) for storing the adhesive 18 is connected to the adhesive application nozzle 17. The adhesive application nozzle 17 and the adhesive supply unit constitute an adhesive application means in the optical element bonding apparatus 10.
 接着剤18は、硬化後に接着剤硬化層3を形成する。接着剤18は、第1プリズム2および接合プリズム1を互いに接着可能な適宜の光透過性の樹脂接着剤が用いられる。接着剤18は、例えば、エネルギー線硬化型樹脂接着剤、熱硬化型樹脂接着剤などが用いられてもよい。
 本実施形態では、接着剤18がUV硬化型樹脂接着剤である場合の例で説明する。
 接着剤18の供給量は、第1面1aおよび第2面2bの有効径の範囲全体に接着剤硬化層3が形成できる適宜量が用いられる。
 予め決められた供給量の接着剤18が第1面1a上に供給されたら、接着剤18の供給が停止される。この後、接着剤塗布ノズル17が第1プリズム2と第1保持部11との間から退避される。
 以上で、ステップS4が終了する。
The adhesive 18 forms the adhesive cured layer 3 after curing. As the adhesive 18, an appropriate light transmitting resin adhesive capable of adhering the first prism 2 and the cemented prism 1 to each other is used. As the adhesive 18, for example, an energy ray-curable resin adhesive, a thermosetting resin adhesive, or the like may be used.
In the present embodiment, an example in which the adhesive 18 is a UV curable resin adhesive will be described.
The supply amount of the adhesive 18 is an appropriate amount that can form the adhesive cured layer 3 over the entire range of the effective diameter of the first surface 1 a and the second surface 2 b.
When the predetermined amount of adhesive 18 is supplied onto the first surface 1a, the supply of the adhesive 18 is stopped. Thereafter, the adhesive application nozzle 17 is retracted from between the first prism 2 and the first holding portion 11.
Above, step S4 is completed.
 ステップS4の後、ステップS5が行われる。ステップS5では、中心軸線Cに沿って接合プリズム1と第1プリズム2とが相対平行移動されることによって接着剤18が薄層化される。
 具体的には、図2に示すように、移動ステージ11Bによって、保持スリーブ11AをZ軸正方向に平行移動させる。このような平行移動により第1面1aと第2面2bとは、平行を保った状態で、互いに近づく。これにより、未硬化の接着剤18が第1面1aと第2面2bとに挟まれて、押し伸ばされる。
 第1面1aと第2面2bとの間隔が設計上の間隔tになったら、移動ステージ11Bが停止される。間隔tの大きさは、光学素子組立体4に必要な光学特性と、後述する光軸ずれの補正のために必要な第1プリズム2の回動量の範囲で、接着剤18の層厚が0にならない大きさとして、予め決められている。すなわち、接合プリズム1および第1プリズム2が設計通りに製造されていれば、このような配置の光学素子組立体4に入射された軸上光束の光軸は、設計上の光路レイアウトの光軸に一致する。
 以上で、ステップS5が終了する。
After step S4, step S5 is performed. In step S5, the adhesive 18 is thinned by relatively translating the cemented prism 1 and the first prism 2 along the central axis C.
Specifically, as shown in FIG. 2, the holding sleeve 11A is moved in parallel in the Z-axis positive direction by the moving stage 11B. By such parallel movement, the first surface 1a and the second surface 2b approach each other in a state in which they are maintained in parallel. Thus, the uncured adhesive 18 is sandwiched between the first surface 1 a and the second surface 2 b and is stretched.
When the distance between the first surface 1a and the second surface 2b reaches the designed distance t, the moving stage 11B is stopped. The layer thickness of the adhesive 18 is 0 in the range of the optical characteristics necessary for the optical element assembly 4 and the amount of rotation of the first prism 2 necessary for the correction of the optical axis offset described later. It is decided beforehand as a size which does not become. That is, if the cemented prism 1 and the first prism 2 are manufactured as designed, the optical axis of the on-axis light beam incident on the optical element assembly 4 with such an arrangement is the optical axis of the designed optical path layout. Match
Above, step S5 is completed.
 本実施形態において、上述したステップS1~S5によって、第1面1a(第1接合面)と第2面2b(第2接合面)とが未硬化の接着剤を挟んで対向するとともに、接合プリズム1(第1光学素子)の中心軸線(外形中心軸)O1と第1プリズム2(第2光学素子)の中心軸線(外形中心軸)O2とが中心軸線(基準軸線)Cと同軸になった状態で、接合プリズム1および第1プリズム2を保持する工程(工程A)が実行される。 In the present embodiment, the first surface 1a (first joint surface) and the second surface 2b (second joint surface) face each other with an uncured adhesive interposed therebetween by the steps S1 to S5 described above, and the joint prism The central axis (external center axis) O1 of 1 (first optical element) and the central axis (external center axis) O2 of the first prism 2 (second optical element) are coaxial with the central axis (reference axis) C In the state, the step of holding the cemented prism 1 and the first prism 2 (step A) is performed.
 ステップS5の後、ステップS6が行われる。ステップS6では、未硬化の接着剤18を介して組み立てられた光学素子組立体4の入射光軸に沿って検査光が入射され、光学素子組立体4における光軸のずれを検知しつつ、回動中心Qを中心として第1プリズム2を接合プリズム1に対して相対回転移動する動作が行われる。
 具体的には、図2に示すように、第1面2aのZ軸正方向側にオートコリメータ15が配置される。オートコリメータ15は、検査光Tの光軸が保持中心軸線Hと同軸になるように図示略の支持部によって支持される。
 検査光Tは、軸上光束として、第1プリズム2および接合プリズム1によって、屈折、内部反射を繰り返して進む。
After step S5, step S6 is performed. In step S6, the inspection light is incident along the incident optical axis of the assembled optical element assembly 4 through the uncured adhesive 18, and the deviation of the optical axis in the optical element assembly 4 is detected, An operation of rotating the first prism 2 relative to the cemented prism 1 with respect to the movement center Q is performed.
Specifically, as shown in FIG. 2, the autocollimator 15 is disposed on the Z-axis positive direction side of the first surface 2 a. The autocollimator 15 is supported by a support (not shown) such that the optical axis of the inspection light T is coaxial with the holding central axis H.
The inspection light T is repeatedly refracted and internally reflected by the first prism 2 and the cemented prism 1 as an axial light beam.
 例えば、検査光Tは、第4面1dに達すると、第4面1dで散乱された内部に戻る光が発生する。この光のうち、一部は、第4面1dに至る光路を逆進して、オートコリメータ15に戻る戻り光T’になる。
 上述したように、接合プリズム1および第1プリズム2に製造誤差がない場合には、戻り光T’は、設計上の光路を逆進するため、第1面2aから出射する戻り光T’の光軸と、検査光Tの光軸とは同軸になる。この状態は、戻り光T’がオートコリメータ15の光軸に一致することによって検知される。
 光学素子組立体4内のいずれかの光学面に製造誤差がある場合には、検査光Tは設計上の光路からずれる。このため、オートコリメータ15では、戻り光T’の光軸がオートコリメータの光軸からずれていることが検知される。戻り光T’のずれ量は第4面1dからの出射光の出射角のずれ量に換算可能である。
For example, when the inspection light T reaches the fourth surface 1d, light is generated that is scattered back by the fourth surface 1d. A part of the light reverses the light path leading to the fourth surface 1 d and becomes return light T ′ returning to the autocollimator 15.
As described above, when there is no manufacturing error in the cemented prism 1 and the first prism 2, the return light T ′ reverses the designed light path, so that the return light T ′ emitted from the first surface 2 a The optical axis and the optical axis of the inspection light T are coaxial. This state is detected by the return light T 'being coincident with the optical axis of the autocollimator 15.
If there is a manufacturing error on any of the optical surfaces in the optical element assembly 4, the inspection light T deviates from the designed light path. Therefore, the autocollimator 15 detects that the optical axis of the return light T 'is offset from the optical axis of the autocollimator. The shift amount of the return light T 'can be converted to the shift amount of the emission angle of the light emitted from the fourth surface 1d.
 操作者は、オートコリメータ15によって戻り光T’の光軸のずれが検知されたら、光軸のずれ方向およびずれ量に基づいて、ずれ量が減少するように、移動部13Bを回動させる。
 以上で、ステップS6が終了する。
When the shift of the optical axis of the return light T ′ is detected by the autocollimator 15, the operator rotates the moving unit 13B based on the shift direction and the shift amount of the optical axis so as to reduce the shift amount.
This is the end of step S6.
 ステップS6の後、ステップS7が行われる。ステップS7では、戻り光T’の光軸のずれ量が許容範囲かどうか判定される。
 具体的には、光学素子組立体4において許容される出射角のずれ量に対応するオートコリメータ15上で検知される戻り光T’の光軸のずれ量の判定用許容値が予め求められている。操作者は、オートコリメータ15によって検知される戻り光T’の光軸のずれ量を判定用許容値と比較することによって、戻り光T’の光軸のずれ量が許容範囲かどうか判定する。
 ずれ量が判定用許容値以下の場合、ステップS8が行われる。
 ずれ量が判定用許容値を超える場合、ステップS6が行われる。
After step S6, step S7 is performed. In step S7, it is determined whether the amount of deviation of the optical axis of the return light T 'is in an allowable range.
Specifically, an allowance for determination of the shift amount of the optical axis of the return light T ′ detected on the autocollimator 15 corresponding to the shift amount of the emission angle permitted in the optical element assembly 4 is determined in advance. There is. The operator determines whether the shift amount of the optical axis of the return light T ′ is within the allowable range by comparing the shift amount of the optical axis of the return light T ′ detected by the autocollimator 15 with the determination allowable value.
If the amount of deviation is less than or equal to the determination allowable value, step S8 is performed.
If the amount of deviation exceeds the determination allowable value, step S6 is performed.
 ステップS8では、第1プリズム2の相対回転移動が停止される。
 具体的には、操作者は、ステージ駆動部14の操作部(図示略)を通して、ゴニオステージ13の回動を停止する操作入力を行う。これにより、第1プリズム2の回動が停止される。
 以上で、ステップS8が終了する。
In step S8, the relative rotational movement of the first prism 2 is stopped.
Specifically, the operator performs an operation input to stop the rotation of the gonio stage 13 through the operation unit (not shown) of the stage drive unit 14. Thereby, the rotation of the first prism 2 is stopped.
Above, step S8 is completed.
 例えば、図6には、第1プリズム2が図示時計回りに回動した状態で、オートコリメータ15で検知された検査光Tの光軸と戻り光T’の光軸とのずれが解消された場合の例が模式的に描かれている。
 第1プリズム2は、面上点Pと回動中心Qとが一致するように配置されているため、回動中心Qを中心に回動して、面上点Pは、回動中心Qに一致している。このため、第1面1aと第2面2bとは非平行になっている。
 これにより、第1面1aおよび第2面2bに挟まれた未硬化の接着剤18は、面上点PよりもX軸負方向側では、X軸負方向に進むにつれて、接着剤18の層厚が厚くなっている。反対に、面上点PよりもX軸正方向側では、X軸正方向に進むにつれて、接着剤18の層厚が厚くなっている。ステップS5において第1面1aと第2面2bとが間隔tだけ離されているため、最もX軸正方向側の部位でも、接着剤18の層厚がゼロになることはない。
For example, in FIG. 6, in a state where the first prism 2 is rotated clockwise, the deviation between the optical axis of the inspection light T detected by the autocollimator 15 and the optical axis of the return light T ′ is eliminated. An example of the case is depicted schematically.
The first prism 2 is arranged so that the on-plane point P and the rotation center Q coincide with each other, and therefore, the first prism 2 rotates around the rotation center Q, and the on-plane point P becomes the rotation center Q. Match. Therefore, the first surface 1a and the second surface 2b are not parallel to each other.
Thus, the uncured adhesive 18 sandwiched between the first surface 1a and the second surface 2b is a layer of the adhesive 18 as it proceeds in the negative X-axis direction on the X-axis negative direction side with respect to the on-plane point P It is thicker. On the other hand, on the positive side in the X-axis direction with respect to the point P on the surface, the layer thickness of the adhesive 18 becomes thicker as it proceeds in the positive direction of the X-axis. Since the first surface 1a and the second surface 2b are separated by the distance t in step S5, the layer thickness of the adhesive 18 does not become zero even at the most X-axis positive direction side.
 第1プリズム2は、Z軸負方向側の端部が保持スリーブ11Aの第2内周面11cの内側に挿入されている。第1プリズム2は、第2内周面11cの内側で、中心軸線Cから傾動している。しかし、第2内周面11cの内径の大きさは、上述のDcであるため、第1プリズム2が第2内周面11cと接触することはない。
 万一、誤操作などで、ゴニオステージ13の回動量が大きくなりすぎた場合、操作者は、プリズム側面2cが第1保持部11の上端部と接触したことを見て回動量が大きくなりすぎたことを知ることができる。
The end of the first prism 2 in the negative Z-axis direction is inserted inside the second inner circumferential surface 11c of the holding sleeve 11A. The first prism 2 tilts from the central axis C inside the second inner circumferential surface 11 c. However, since the size of the inner diameter of the second inner circumferential surface 11c is Dc described above, the first prism 2 never comes in contact with the second inner circumferential surface 11c.
If the amount of rotation of the gonio stage 13 becomes too large due to an erroneous operation etc., the operator sees that the side surface 2c of the prism is in contact with the upper end of the first holding portion 11, and the amount of rotation becomes too large. You can know that.
本実施形態に係るステップS6からステップS8において、接合プリズム1(第1光学素子)を第1プリズム2(第2光学素子)に対して相対回転移動させることにより、第1面1a(第1接合面)と第2面2b(第2接合面)とが中心軸線C(基準軸線)に対して傾斜して移動される工程(工程B)が実行される。その結果、検査光Tの第1プリズム2(第2光学素子)への入射軸と、検査光Tに対応する戻り光T’の第1プリズム2(第2光学素子)からの出射軸とが一致する。なお、本発明は、これに限定されない。例えば、検査光Tの第1プリズム2(第2光学素子)への入射軸と、検査光Tに対応する戻り光T’の第1プリズム2(第2光学素子)からの出射軸とが所定の関係となれればよい。 In step S6 to step S8 according to the present embodiment, the first surface 1a (first bonding) is produced by rotating the cemented prism 1 (first optical element) relative to the first prism 2 (second optical element). A step (step B) is performed in which the surface) and the second surface 2b (second joint surface) are moved in an inclined manner with respect to the central axis C (reference axis). As a result, the incident axis of the inspection light T on the first prism 2 (second optical element) and the emission axis of the return light T ′ corresponding to the inspection light T from the first prism 2 (second optical element) Match The present invention is not limited to this. For example, an incident axis of the inspection light T on the first prism 2 (second optical element) and an emission axis of the return light T ′ corresponding to the inspection light T from the first prism 2 (second optical element) are predetermined. It would be good if
 ステップS8の後、ステップS9が行われる。ステップS9では、接着剤硬化層3が形成される(工程C)。
 具体的には、まず図6に二点鎖線で示すように、UV光源16が進出位置に進出される。その後、UV光源16から第1面2aに向けてUV光が出射される。UV光は、第1面2aから第1プリズム2に入射して、未硬化の接着剤18に照射される。
 接合プリズム1および第1プリズム2がそれぞれ第1保持部11および第2保持部12によって保持された状態でUV光の照射を続けることによって、接着剤18が完全に硬化された接着剤硬化層3が形成されてもよい。接着剤硬化層3が形成されたら、ステップS9が終了し、光学素子組立体4が製造される。
 光学素子組立体4は、第1保持部11および第2保持部12による保持が解除されることによって、光学素子接合装置10から取り外される。取り外された光学素子組立体4は、必要に応じて検査が行われた後、例えば、鏡筒5などに固定される。
After step S8, step S9 is performed. In step S9, the adhesive cured layer 3 is formed (step C).
Specifically, first, as indicated by a two-dot chain line in FIG. 6, the UV light source 16 is advanced to the advanced position. Thereafter, UV light is emitted from the UV light source 16 toward the first surface 2a. The UV light enters the first prism 2 from the first surface 2 a and is applied to the uncured adhesive 18.
The adhesive cured layer 3 in which the adhesive 18 is completely cured by continuing the irradiation of the UV light in a state where the cemented prism 1 and the first prism 2 are held by the first holding unit 11 and the second holding unit 12 respectively. May be formed. After the adhesive cured layer 3 is formed, step S9 is completed, and the optical element assembly 4 is manufactured.
The optical element assembly 4 is removed from the optical element bonding apparatus 10 by releasing the holding by the first holding unit 11 and the second holding unit 12. The removed optical element assembly 4 is fixed to, for example, the lens barrel 5 after being inspected if necessary.
 ステップS9において、UV光の照射は、接着剤18が完全に硬化するまで行われなくてもよい。接着剤18の硬化が進んで、例えば、第1保持部11および第2保持部12からの取り外し時などに作用する外力によって、接合プリズム1と第1プリズム2との間の位置ずれが生じない強度が得られれば、UV光の照射が停止されてもよい。
 この場合、接着剤18によって、硬化途中の接着剤硬化層3’が形成される。接着剤硬化層3’が形成されたら、光学素子組立体4は第1保持部11および第2保持部12による保持が解除されることによって、光学素子接合装置10から取り外される。
 取り外された光学素子組立体4は、接着剤硬化層3’をさらに硬化させるための硬化処理が行われる。例えば、より高強度のUV光を照射したり、加熱したりする硬化処理が行われる。接着剤硬化層3’の硬化が進んで接着剤硬化層3が形成されると、ステップS9が終了する。このようにして光学素子組立体4が製造される。
In step S9, the UV light irradiation may not be performed until the adhesive 18 is completely cured. As the curing of the adhesive 18 proceeds, for example, due to an external force acting at the time of removal from the first holding portion 11 and the second holding portion 12, a positional deviation between the cemented prism 1 and the first prism 2 does not occur. If the intensity is obtained, the irradiation of UV light may be stopped.
In this case, the adhesive 18 forms an adhesive cured layer 3 ′ during curing. After the adhesive cured layer 3 ′ is formed, the optical element assembly 4 is removed from the optical element bonding apparatus 10 by releasing the holding by the first holding unit 11 and the second holding unit 12.
The removed optical element assembly 4 is subjected to a curing process to further cure the adhesive cured layer 3 '. For example, a curing process of irradiating or heating UV light of higher intensity is performed. When the curing of the adhesive cured layer 3 'proceeds and the adhesive cured layer 3 is formed, step S9 ends. Thus, the optical element assembly 4 is manufactured.
 このように接着剤18の硬化工程を複数の硬化工程に分ける場合、接着剤硬化層3’から接着剤硬化層3を形成する工程は、光学素子組立体4が光学素子接合装置10から取り外された状態で行える。このため、硬化処理における制約が少なくなって、より効率的な硬化が行える。例えば、第1面2aからのUV光照射ではUV光が当たりにくい箇所にも容易にUV光を照射することが可能になる。例えば、光学素子接合装置10が搬入できない加熱炉であっても、光学素子組立体4のみであれば搬入できる場合がある。例えば、複数の光学素子組立体4を同時に硬化させることも可能になる。
 このような硬化方法によれば、接着剤18が完全に硬化するまで、光学素子接合装置10が占有されることなく、他の光学素子組立体4の製造も行えるため、生産性が向上する。
Thus, when the curing process of the adhesive 18 is divided into a plurality of curing processes, in the process of forming the adhesive cured layer 3 from the adhesive cured layer 3 ', the optical element assembly 4 is removed from the optical element bonding apparatus 10. It can be done in the For this reason, restrictions in the curing process are reduced, and more efficient curing can be performed. For example, it becomes possible to easily irradiate the UV light to a portion where the UV light is not easily hit by the UV light irradiation from the first surface 2a. For example, even if the heating furnace can not carry in the optical element bonding apparatus 10, it may be possible to carry in if only the optical element assembly 4 is. For example, it is also possible to simultaneously cure a plurality of optical element assemblies 4.
According to such a curing method, since the other optical element assembly 4 can be manufactured without occupying the optical element bonding apparatus 10 until the adhesive 18 is completely cured, productivity is improved.
 このようにして製造された光学素子組立体4は、接合プリズム1および第1プリズム2に製造誤差がある場合でも、本実施形態の製造方法における接合時の調整によって、入射面および出射面における軸上光束の光軸の設計値に対するずれ量が許容範囲に収められている。具体的には、光学素子組立体4における入射面である第1面2aにおける入射角θと、出射面である第4面1dにおける出射角θと、の誤差がそれぞれ許容範囲に収まっている。 Even when there is a manufacturing error in the cemented prism 1 and the first prism 2, the optical element assembly 4 manufactured in this manner has the axes at the incident surface and the exit surface by adjustment at the time of bonding in the manufacturing method of the present embodiment. The amount of deviation of the upper luminous flux from the design value of the optical axis is within an allowable range. Specifically, fall first and the incident angle theta i of surface 2a, respectively tolerance error of the emission angle theta o, in fourth surface 1d is emitting surface is an incident surface of the optical element assembly 4 There is.
 以上説明したように、本実施形態に係る光学素子組立体の製造方法によれば、調整用部材を付加することなく入射光軸に対する出射光軸の設計値からのずれが抑制された光学素子組立体を容易に製造することができる。
 例えば、本製造方法では、2つの光学素子が1点を中心として相対回転移動されるだけで、光軸の調整が行われるため、製造装置が簡素化されるとともに、調整が容易になる。
 特に、相対回転移動の回動中心として、第2接合面における設計上の軸上光束の中心に位置する面上点が使用されるため、未硬化の接着剤の層厚の変化が面上点を中心として対称的に発生する。このため、接着剤の層厚の変化の予測が容易になる。これにより、第2接合面の移動による接着剤硬化層の層厚の変化が過大になることによる調整のやり直しなどを防止できるため、迅速な製造が可能である。
As described above, according to the method of manufacturing an optical element assembly according to this embodiment, an optical element set in which the deviation from the design value of the outgoing optical axis with respect to the incident optical axis is suppressed without adding the adjustment member. Three-dimensional can be easily manufactured.
For example, in the present manufacturing method, the adjustment of the optical axis is performed only by relatively rotating and moving the two optical elements centering on one point, so the manufacturing apparatus is simplified and the adjustment is facilitated.
In particular, since the on-plane point located at the center of the designed axial light flux in the second joint surface is used as the rotation center of the relative rotational movement, the change in the layer thickness of the uncured adhesive Occur symmetrically around the This makes it easy to predict changes in the layer thickness of the adhesive. As a result, it is possible to prevent rework of adjustment due to excessive change in the layer thickness of the adhesive cured layer due to the movement of the second bonding surface, and therefore, rapid manufacturing is possible.
 例えば、本製造方法では、光学素子組立体4における第1プリズム2、第2プリズム1A、および第3プリズム1Bに製造誤差が含まれていても、光学素子組立体4としての光学性能を容易に向上することができる。
 あるいは、光学素子組立体4における第1プリズム2、第2プリズム1A、および第3プリズム1Bにおけるそれぞれ製造誤差の許容値を緩和することができる。これにより、光学素子組立体4における部品製造コストが低減される。
For example, in the present manufacturing method, even if the first prism 2, the second prism 1A, and the third prism 1B in the optical element assembly 4 include manufacturing errors, the optical performance as the optical element assembly 4 can be easily facilitated. It can be improved.
Alternatively, the tolerance value of the manufacturing error of each of the first prism 2, the second prism 1A, and the third prism 1B in the optical element assembly 4 can be relaxed. This reduces the manufacturing cost of the optical element assembly 4.
 上記実施形態の説明では、接合プリズム1がZ軸方向に移動され、第1プリズム2が回動中心Q回りに回転移動される場合の例で説明した。しかし、それぞれの移動は、接合プリズム1と第1プリズム2との間で相対的に行われればよい。
 例えば、第1プリズム2が固定されて、接合プリズム1がZ軸方向に移動されてもよいし、接合プリズム1および第1プリズム2がそれぞれZ軸方向に移動されてもよい。
 例えば、第1プリズム2が固定されて、接合プリズム1が回動されてもよい。さらに、接合プリズム1および第1プリズム2がそれぞれ回動されてもよい。
In the description of the above embodiment, the example in which the cemented prism 1 is moved in the Z-axis direction and the first prism 2 is rotationally moved around the rotation center Q has been described. However, each movement may be performed relative to each other between the cemented prism 1 and the first prism 2.
For example, the first prism 2 may be fixed, and the cemented prism 1 may be moved in the Z-axis direction, or the cemented prism 1 and the first prism 2 may be moved in the Z-axis direction.
For example, the first prism 2 may be fixed and the cemented prism 1 may be rotated. Furthermore, the cemented prism 1 and the first prism 2 may be rotated respectively.
 上記実施形態の説明では、ゴニオステージ13の回動中心Qが、第2面2bの面上点Pに一致している場合の例で説明した。回動中心Qは、面上点Pと一致していなくても、面上点の近傍であれば、一致している場合と略同様な効果が得られる。このため、回動中心Qは、設計上の軸上光束の略中心に位置する面上点に一致していればよい。略中心の範囲は、中心からのずれ量が、軸上光束の有効径、すなわち第2面2bの有効径に対して十分小さければよい。 In the description of the above embodiment, an example in which the rotation center Q of the gonio stage 13 coincides with the on-plane point P of the second surface 2 b has been described. Even if the rotation center Q does not coincide with the on-plane point P, if it is near the on-plane point, substantially the same effect as in the case of coincidence is obtained. For this reason, the rotation center Q may be coincident with a point on the surface located substantially at the center of the designed axial light flux. The range of the approximate center may be sufficient if the amount of deviation from the center is sufficiently smaller than the effective diameter of the axial light flux, that is, the effective diameter of the second surface 2b.
 上記実施形態の説明では、本製造方法の各ステップが、光学素子接合装置10を操作する操作者のマニュアル操作することによって行われる場合の例で説明した。本製造方法は、光学素子接合装置10あるいは操作者に代わる作業ロボットなどによって、一部または全部が自動的に実行されてもよい。 In the description of the above embodiment, each step of the present manufacturing method has been described as an example in the case where it is performed by the manual operation of the operator operating the optical element bonding apparatus 10. The present manufacturing method may be partially or entirely automatically performed by the optical element bonding apparatus 10 or a working robot replacing the operator.
 上記実施形態の説明では、オートコリメータを用いているため、光学素子組立体の光軸のずれ量は、入射面における検査光の光軸と出射面からの戻り光の光軸との比較によって検知される場合の例で説明した。光学素子組立体の光軸のずれ量は、出射面を透過する検査光の光軸の設計値からのずれ量によって検知されてもよい。この場合、例えば、出射面に対向する位置に光センサを配置すれば、検査光の光軸のずれ量が検知可能である。 Since the autocollimator is used in the description of the above embodiment, the shift amount of the optical axis of the optical element assembly is detected by comparing the optical axis of the inspection light on the incident surface with the optical axis of the return light from the output surface. In the case of The shift amount of the optical axis of the optical element assembly may be detected by the shift amount from the design value of the optical axis of the inspection light transmitted through the exit surface. In this case, for example, if an optical sensor is disposed at a position facing the exit surface, the amount of deviation of the optical axis of the inspection light can be detected.
 上記実施形態の説明では、光学素子組立体4が入射光をzx平面内で偏向する光偏向素子の場合の例で説明した。光学素子組立体が光偏向素子の場合に、光偏向方向は平面内の偏向には限定されない。例えば、光学素子組立体は、入射光の光軸と出射光の光軸とが同一平面に存在しないような偏向を行う光偏向素子であってもよい。 In the description of the above embodiment, the optical element assembly 4 has been described as an example of a light deflection element that deflects incident light in the zx plane. When the optical element assembly is a light deflection element, the light deflection direction is not limited to in-plane deflection. For example, the optical element assembly may be a light deflection element that performs deflection such that the optical axis of the incident light and the optical axis of the emitted light do not exist in the same plane.
 上記実施形態の説明では、光学素子がプリズムのみで構成される光学素子組立体4を製造する場合の例で説明した。光学素子組立体の光軸のずれ量が検知できれば、光学素子組立体にプリズム以外の光学素子あるいはレンズ面などの光学面が含まれていてもよい。例えば、光学素子組立体に、レンズ面が含まれている場合には、像面における結像位置を検出するなどして、光軸のずれ量が検知されてもよい。 In the description of the above embodiment, the example in the case of manufacturing the optical element assembly 4 in which the optical element is formed only of the prism has been described. If the shift amount of the optical axis of the optical element assembly can be detected, the optical element assembly may include an optical element other than a prism or an optical surface such as a lens surface. For example, when the optical element assembly includes a lens surface, the amount of deviation of the optical axis may be detected by detecting the imaging position on the image plane.
 上記実施形態の説明では、光学素子組立体の光学素子が3個の場合に、第2プリズム1Aと第3プリズム1Bとが接合された接合プリズム1を第1光学素子、第1プリズム2を第2光学素子として、互いに相対回転移動による光軸ずれの調整が行われる場合の例で説明した。光学素子組立体が3以上の光学素子を含む場合に、第1光学素子と第2光学素子との選び方は、相対回転移動によって各光学面の製造誤差が効率的に補正できる適宜の組み合わせが、光学素子組立体の光学特性に応じて用いられればよい。 In the description of the above embodiment, when the number of optical elements in the optical element assembly is three, the junction prism 1 in which the second prism 1A and the third prism 1B are joined is the first optical element and the first prism 2 is the first. The two optical elements have been described in the example in which the adjustment of the optical axis offset by the relative rotational movement is performed. When the optical element assembly includes three or more optical elements, how to select the first optical element and the second optical element is an appropriate combination that can efficiently correct the manufacturing error of each optical surface by relative rotational movement, It may be used according to the optical characteristics of the optical element assembly.
 以上、本発明の好ましい各実施形態、各実施例を説明したが、本発明はこれらの各実施形態、各実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
Although the preferred embodiments and examples of the present invention have been described above, the present invention is not limited to the respective embodiments and examples. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
 上記各実施形態によれば、調整用部材を付加することなく入射光軸に対する出射光軸の設計値からのずれが抑制された光学素子組立体を容易に製造する方法を提供することができる。 According to each of the above-described embodiments, it is possible to provide a method of easily manufacturing an optical element assembly in which the deviation from the design value of the outgoing optical axis with respect to the incident optical axis is suppressed without adding an adjustment member.
1 接合プリズム(第1光学素子)
1a 第1面(光学面、第1接合面)
1A 第2プリズム
1B 第3プリズム
1d 第4面(光学面、出射面)
2 第1プリズム(第2光学素子)
2a 第1面(光学面、入射面)
2b 第2面(第2接合面)
3、3’ 接着剤硬化層
4 光学素子組立体
5 鏡筒
6 光学ユニット
10 光学素子接合装置
11 第1保持部
11a スリーブ(筒状体)
11A 保持スリーブ
11B 移動ステージ
11C 駆動部
12 第2保持部
12A チャック
12B 支持アーム
13 ゴニオステージ
14 ステージ駆動部
15 オートコリメータ
16 UV光源
17 接着剤塗布ノズル
18 接着剤
C 中心軸線(基準軸線)
H 保持中心軸線
L1 入射光
L1  入射光
L2、L3、L4、L5、L6 光
L7 出射光
O1、O2 中心軸線
P 面上点
Q 回動中心
T 検査光
T’ 戻り光
θ 入射角
θ 出射角
1 junction prism (first optical element)
1a First surface (optical surface, first bonding surface)
1A Second Prism 1B Third Prism 1d Fourth Surface (Optical Surface, Emitting Surface)
2 First prism (second optical element)
2a First surface (optical surface, incident surface)
2b Second surface (second joint surface)
3, 3 'Adhesive Hardening Layer 4 Optical Element Assembly 5 Lens Barrel 6 Optical Unit 10 Optical Element Bonding Device 11 First Holding Portion 11a Sleeve (Cylindrical Body)
11A holding sleeve 11B moving stage 11C driving unit 12 second holding unit 12A chuck 12B support arm 13 gonio stage 14 stage driving unit 15 autocollimator 16 UV light source 17 adhesive application nozzle 18 adhesive C central axis (reference axis)
H Holding central axis L1 Incident light L1 Incident light L2, L3, L4, L5, L6 Light L7 Outgoing light O1, O2 Central axial line P Point on the plane Q Rotation center T Inspection light T 'Return light θ i Incident angle θ o Output Horn

Claims (3)

  1.  第1光学素子および第2光学素子を保持することにより、前記第1光学素子の光学面の1つである第1接合面と前記第2光学素子の光学面の1つである第2接合面とが未硬化の接着剤を挟んで対向するとともに、前記第1光学素子の外形中心軸と前記第2光学素子の外形中心軸とを基準軸線と同軸に配置する工程Aと、
     前記第2光学素子を前記第1光学素子に対して相対回転移動させ、前記第1接合面と前記第2接合面とが前記基準軸線に対して傾斜して動作することにより、検査光が前記第2光学素子への入射軸と、前記検査光が前記第1光学素子および前記第2光学素子内に転送されて形成された戻り光が前記第2光学素子からの出射軸とが所定の位置関係になる工程Bと、
     未硬化の前記接着剤を硬化させて接着剤硬化層を形成する工程Cと、
     を含む、光学素子組立体の製造方法。
    By holding the first optical element and the second optical element, the first bonding surface which is one of the optical surfaces of the first optical element and the second bonding surface which is one of the optical surfaces of the second optical element And A facing each other with an uncured adhesive interposed therebetween, and disposing the center axis of the outer shape of the first optical element and the center axis of the outer shape of the second optical element coaxially with the reference axis;
    The inspection light is moved by rotating the second optical element relative to the first optical element so that the first bonding surface and the second bonding surface are inclined with respect to the reference axis. The incident axis to the second optical element, the return axis formed by transferring the inspection light into the first optical element and the second optical element, and the output axis from the second optical element are at predetermined positions Process B to be related
    Curing the uncured adhesive to form an adhesive cured layer;
    A method of manufacturing an optical element assembly, comprising:
  2.  前記工程Aは、
      前記第1光学素子をスリーブ内に保持する工程aと、
      前記スリーブ内の中心軸と一致する位置にある中心軸を有する環状の挿入部から前記第2光学素子を挿入し、前記第2接合面を前記第1接合面に当接させ、前記第1光学素子と前記第2光学素子の姿勢調整を行ってから、前記第2光学素子を前記挿入部にて保持する工程bと、
      前記スリーブと前記挿入部とを前記基準軸に沿って離間させることにより、前記第1光学素子と前記第2光学素子とを離間させる工程cと、
      前記第1接合面と前記第2接合面との間に前記接着剤を配置する工程dと、
     を含む、請求項1に記載の光学素子組立体の製造方法。
    The process A is
    Holding the first optical element in a sleeve;
    The second optical element is inserted from an annular insertion portion having a central axis at a position coincident with the central axis in the sleeve, and the second joint surface is brought into contact with the first joint surface, and the first optical A step b of holding the second optical element at the insertion portion after adjusting the attitude of the element and the second optical element;
    Separating the first optical element and the second optical element by separating the sleeve and the insertion portion along the reference axis;
    Placing the adhesive between the first bonding surface and the second bonding surface;
    A method of manufacturing an optical element assembly according to claim 1, comprising:
  3.  前記工程Bにおいて、前記基準軸線が前記第2接合面に交差する点を回転中心として、前記第2光学素子を前記第1光学素子に対して相対回転移動させることにより、前記第1接合面と前記第2接合面とが前記基準軸線に対して傾斜して移動する、請求項1に記載の光学素子組立体の製造方法。 In the step B, the second optical element is moved relative to the first optical element with respect to the first optical element, with the point at which the reference axis intersects the second joint surface as a rotation center. The method of manufacturing an optical element assembly according to claim 1, wherein the second bonding surface moves inclining with respect to the reference axis.
PCT/JP2018/046334 2017-12-27 2018-12-17 Method for manufacturing optical element assembly WO2019131277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252602A JP2019117363A (en) 2017-12-27 2017-12-27 Method of manufacturing optical element assembly
JP2017-252602 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131277A1 true WO2019131277A1 (en) 2019-07-04

Family

ID=67063556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046334 WO2019131277A1 (en) 2017-12-27 2018-12-17 Method for manufacturing optical element assembly

Country Status (2)

Country Link
JP (1) JP2019117363A (en)
WO (1) WO2019131277A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031913A1 (en) * 2021-08-30 2023-03-09 Lumus Ltd. Method and apparatus for bonding of optical surfaces by active alignment
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133829A (en) * 1995-11-07 1997-05-20 Toshiba Mach Co Ltd Surface matching mechanism for connection surface between optical fiber components, and connecting device for optical fiber component using same mechanism
JP2003015007A (en) * 2001-06-29 2003-01-15 Toshiba Mach Co Ltd Device and method for joining faces
JP2004157200A (en) * 2002-11-05 2004-06-03 Nippon Sheet Glass Co Ltd Optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133829A (en) * 1995-11-07 1997-05-20 Toshiba Mach Co Ltd Surface matching mechanism for connection surface between optical fiber components, and connecting device for optical fiber component using same mechanism
JP2003015007A (en) * 2001-06-29 2003-01-15 Toshiba Mach Co Ltd Device and method for joining faces
JP2004157200A (en) * 2002-11-05 2004-06-03 Nippon Sheet Glass Co Ltd Optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
WO2023031913A1 (en) * 2021-08-30 2023-03-09 Lumus Ltd. Method and apparatus for bonding of optical surfaces by active alignment

Also Published As

Publication number Publication date
JP2019117363A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US8228609B2 (en) Apparatus for combining individual light beams of different wavelengths to form a coaxial light bundle
JP6393046B2 (en) Wide-angle lens unit
WO2019131277A1 (en) Method for manufacturing optical element assembly
TWI416186B (en) An optical collimator and a light connector for use, and a holding member for an optical collimator
JP5602627B2 (en) Optical plug connector for optical waveguide
CN104777559A (en) Calibration system and method, optical fiber ferrule assembly and manufacturing method as well as optical fiber connector
JP5184775B2 (en) Optical processing equipment
CN104777561A (en) Calibration system and method, optical fiber ferrule assembly and manufacturing method as well as optical fiber connector
US20170010417A1 (en) Light guiding device, manufacturing method, and ld module
JP2003098413A (en) Light source device and its adjustment method
WO2016067836A1 (en) Lens holding frame, lens assembly, and method for assembling lens assembly
US9749492B2 (en) Beam adjustment method for optical scanning device and optical scanning device
WO2017043042A1 (en) Laser machining head and origin calibration method for same
KR20160129651A (en) Apparatus for manufacturing a camera module
JPH08327869A (en) Eccentricity adjusting method for lens barrel and lens system
US5894368A (en) Optical prism
US20210109306A1 (en) Optical component and method of manufacturing optical component
TWI407175B (en) Device and method for center aligning
TW201336626A (en) Centering and edging method, centering and edging device, and lens positioning unit
JP5084423B2 (en) Light source device
JP2003046184A (en) Device and method for assembling optical product
US6867934B2 (en) Color wheel
JP4345964B2 (en) Method for adhering lens in light source device
JP5608402B2 (en) Method for manufacturing composite optical element and apparatus for manufacturing the same
WO2023032506A1 (en) Optical fiber alignment method, alignment device, and connection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894922

Country of ref document: EP

Kind code of ref document: A1