WO2019131084A1 - Spacer, hard disk drive, and production method for spacer - Google Patents

Spacer, hard disk drive, and production method for spacer Download PDF

Info

Publication number
WO2019131084A1
WO2019131084A1 PCT/JP2018/045292 JP2018045292W WO2019131084A1 WO 2019131084 A1 WO2019131084 A1 WO 2019131084A1 JP 2018045292 W JP2018045292 W JP 2018045292W WO 2019131084 A1 WO2019131084 A1 WO 2019131084A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
less
mass
content
temperature
Prior art date
Application number
PCT/JP2018/045292
Other languages
French (fr)
Japanese (ja)
Inventor
西田 幸寛
明訓 河野
耕一 坪井
太一朗 溝口
鈴木 聡
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to CN201880083573.1A priority Critical patent/CN111511937B/en
Publication of WO2019131084A1 publication Critical patent/WO2019131084A1/en
Priority to PH12020550939A priority patent/PH12020550939A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/06Shaping thick-walled hollow articles, e.g. projectiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking

Definitions

  • the present invention relates to a spacer, a hard disk drive, and a method of manufacturing the spacer.
  • a magnetic disk drive having a large storage capacity comprises a plurality of magnetic disks, and a ring-shaped spacer is inserted between the magnetic disks, and the spacer and the magnetic disk rotate together.
  • the conventional spacer is often manufactured by cutting free-cutting stainless steel excellent in machinability, but free-cutting stainless steel contains S and Pb, so the steel price is high, and the cost is high. It was connected to up. Therefore, research on technology for manufacturing a spacer by punching a relatively inexpensive ferritic stainless steel sheet having a smaller content of S and Pb than free-cutting stainless steel is being advanced.
  • Patent Document 1 a metal plate having a predetermined thickness is punched out to form a substantially ring-shaped element ring, and through a predetermined process, a proximal end of an annular tongue formed in the element ring is sheared using a shearing tool.
  • a method of shearing to produce a spacer ring is disclosed.
  • Patent Document 2 rolling of a ferritic stainless steel having a variation of surface hardness within 4% up and down centering on an average value, a grain size number of 5.0 to 9.0, and a residual compressive stress of 80 MPa or less
  • a spacer manufactured using a plate material is disclosed. The spacer is formed by processing the rolled plate material into a ring shape by punching.
  • Japanese Patent Publication No. 2001-167548 Japanese Patent Publication "Japanese Unexamined Patent Publication No. 2013-222487 (October 28, 2013)"
  • the spacer ring manufactured by the method disclosed in Patent Document 1 has a residual stress in its inside, so that the shape is not stable when it is incorporated into the final stage of the manufacturing process or when it is incorporated into the magnetic disk. It was a cause of distortion.
  • the spacer disclosed in Patent Document 2 solves the problem of the residual stress to some extent, since the spacer is formed by punching, the magnetic characteristics are impaired. Since the spacer ring is also subjected to punching and pressing, the magnetic properties are impaired as in the case of the spacer.
  • neither Patent Document 1 nor 2 describes or suggests a technique for improving the rotational performance of the motor provided in the hard disk drive by performing processing such that the magnetic properties of the spacer ring and the spacer are not impaired. .
  • One aspect of the present invention is made in view of the above problems, and an object thereof is to provide a spacer having excellent magnetic characteristics that can realize a hard disk drive with high efficiency and small energy load.
  • a spacer is a spacer provided in a hard disk drive, and the above-mentioned plate formed into a ring shape after forming a plate material of ferritic stainless steel into a ring shape.
  • the plate material is manufactured by heating and pressing at a temperature of 900 ° C. or more and a temperature lower than the austenite transformation start temperature Ac1 (hereinafter, simply described as “Ac1”).
  • a method of manufacturing a spacer is a method of manufacturing a spacer provided in a hard disk drive, and a method of forming a plate material of ferritic stainless steel into a ring shape And a second step of heating and pressing the plate material formed into a ring shape in the first step at a temperature of 900 ° C. or more and less than Ac 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a hard disk drive according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a spindle motor provided in the hard disk drive, and a diagram showing a change in magnetic flux density around a spacer. It is a graph which shows the relationship between distortion amount and magnetic flux density about the said ferritic stainless steel.
  • the ferritic stainless steel used for manufacturing the spacer according to one aspect of the present invention is for manufacturing a molded product which is relatively small (for example, 50 mm or less in diameter or 20 mm or less in height) and for which high dimensional accuracy is required.
  • the austenite transformation start temperature Ac1 (hereinafter, also simply described as “Ac1”) refers to a temperature at which austenite starts to form in the structure of the ring-shaped steel material by heating, and ferritic stainless steel It changes according to the ratio of the ingredient of It was laboratory-confirmed that there is a relationship of Formula 1 below between Ac1 and the contained component of the ferritic stainless steel used for the spacer according to one aspect of the present invention. Therefore, in the present invention, the value AC [° C.] obtained by the equation 1 is used as an index of the heating temperature upper limit, that is, Ac1. In the present embodiment, a ferritic stainless steel is used in a proportion of the contained components such that AC is about 1150 ° C. or less.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the hard disk drive 1.
  • the hard disk drive 1 includes three platters 11 in a sealed case-like shroud 2 for sealing the inside of the apparatus.
  • the platter 11 is rotated by a spindle motor 20, and a magnetic head 30 slightly floating from the surface of the platter 11 performs writing and reading of the platter 11.
  • Spacers 12 are provided between two adjacent platters 11, respectively.
  • the spacer 12 is in the form of a ring and is disposed around the rotation hub 21 of the spindle motor 20.
  • a disc-like clamper 22 is fastened to the upper end portion of the rotating hub 21 with a screw 23.
  • the elastic deformation of the clamper 22 presses the inner peripheral portion of the platter 11 to hold the plurality of platters 11 and the plurality of spacers 12 between the large-diameter portion at the bottom of the rotating hub 21 and the clamper 22.
  • the clamper 22 may be fixed by a member other than the screw 23.
  • Hard disk drives typically have a 2.5 inch standard and a 3.5 inch standard. In a 3.5 inch standard hard disk drive, in order to use a combination of a glass platter and a stainless steel spacer, the dimensional accuracy of the stainless steel spacer is more required.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the spindle motor 20 and a diagram showing a change in magnetic flux density around the spacer 12.
  • the spindle motor 20 is fixed to each of six stator iron cores 20b projecting from the rotating shaft 20a toward the rotating hub 21 and extending along the side of the rotating shaft 20a.
  • the child coil 20c is wound.
  • stator coil 20c current is supplied to the stator coil 20c to magnetize the stator core 20b, thereby generating repulsive force or attractive force between the magnetized stator core 10b and the magnet 21a.
  • the magnet 21a is arrange
  • the rotating hub 21, the clamper 22 and the platter 11 are rotated using the generated repulsive force or the like.
  • the rotary hub 21 serves as a yoke (specifically, a back yoke) that improves the performance of the spindle motor 20 by constructing a magnetic circuit in which the so-called “leakage flux” is reduced as much as possible.
  • "Leakage flux” refers to a line of magnetic force that passes through parts other than the original magnetic circuit and is not useful for generating repulsion or the like.
  • the role of the rotating hub 21 as a yoke is further strengthened by using a spacer having excellent magnetic properties. That is, while the magnetic properties of the spacer are determined by the magnitude of the magnetic flux density (or permeability) of the spacer, the "leakage flux" becomes smaller as the magnetic flux density (or permeability) of the spacer becomes larger (see FIG. From the state of the upper right to the state of the lower right), the performance of the spindle motor 20 is improved.
  • the spindle motor 20 uses the spacer 12 having excellent magnetic characteristics, the role of the rotating hub 21 as a yoke is further strengthened, and its performance is improved as compared with the conventional spindle motor. ing.
  • composition of the components of the ferritic stainless steel used to manufacture the spacer 12 is as follows. In addition, remainders other than each component shown below are iron (Fe) and a small amount of unavoidable impurities (unavoidable impurities).
  • (Chrome: Cr) Cr is an element essential to ferritic stainless steel, and in order to ensure corrosion resistance, the Cr concentration is preferably 11% by mass or more. However, when a large amount of Cr is contained, the stainless steel is excessively hardened. Therefore, the Cr concentration is preferably 19% by mass or less, and more preferably 13% by mass or less.
  • the adjustment method of content of Cr is not specifically limited, For example, content of Cr can be adjusted by controlling the reductive reaction of Cr oxide.
  • Mn is an element that adversely affects the outgas resistance and the magnetic properties by forming sulfides. Therefore, in the ferritic stainless steel used for manufacturing the spacer 12, the content of Mn is preferably as small as possible, and is preferably 0.60% by mass or less.
  • Ti titanium: Ti
  • Nb is an element capable of turning a ferritic stainless steel into a ferritic single phase at 900 to 1000 ° C. by reacting with C or N.
  • the larger the crystal grain size the better the magnetic properties, but since Ti, unlike Nb, hardly interferes with the grain growth of ferritic stainless steel at high temperature, from the viewpoint of magnetic properties Ti It is more preferable to add.
  • excessive addition of Ti adversely affects the surface properties of stainless steel and impairs manufacturability, so it is preferable to contain 0.05 to 0.50 mass% or less of Ti.
  • Carbon Since C is a harmful element that degrades magnetic properties by forming carbides, the content of C is set to 0.08 mass% or less, and preferably 0.02 mass% or less.
  • Si is an element effective as a deoxidizer at the time of steel making.
  • the content of Si is preferably 0.80% by mass or less.
  • (Rin: P) P reduces the hot workability according to its content. Therefore, the content of P is preferably 0.04% by mass or less.
  • the content of S in the ferritic stainless steel is high, the inclusions of the A-based material containing MnS as a main component present in the steel increase and the magnetic properties are degraded. Therefore, the content of S is preferably 0.03% by mass or less.
  • Ni Ni
  • Ni Ni
  • the content of Ni is preferably 0.50% by mass or less.
  • N (Nitrogen: N) Excess addition of N forms nitrides with other elements to cause deterioration of the magnetic properties. Therefore, the content of N is preferably 0.02% by mass or less.
  • Al is an element that improves the cleanliness of the steel, but on the other hand, if the content is large, it forms a compound with C and N to lower the magnetic properties, so the content is preferably 0.05% by mass or less.
  • the composition of the above-mentioned components is merely an example, and even when the content (mass%) of each component is other than the above-described example, the magnetic flux density B10 when the external magnetic field 10Oe is applied to the spacer 12 is It is possible to realize the spacer 12 excellent in the magnetic characteristics of 0.6 T or more, and the spacer 12 having a parallelism of 5 ⁇ m or less and a flatness of 1 ⁇ m or less. In addition, even if the spacer 12 contains the components other than the above-described components, the spacer 12 having a magnetic flux density B10 of 0.6 T or more, a parallelism of 5 ⁇ m or less, and a flatness of 1 ⁇ m or less can be realized.
  • This ring-shaped steel material has substantially no occurrence of sagging on the punched end face, and the punched end face properties are significantly improved.
  • the magnetic properties are reduced by about 10% to about 20% as compared with the rolled plate before the first step. In this step, when pressing is further performed, the magnetic properties are reduced by about 50% or more.
  • the amount of precipitates and inclusions generated is significantly reduced as compared with the case of performing other heat treatment or pressure treatment, and the size of the formed precipitates and the like becomes larger.
  • tissue of ring-shaped steel materials a crystal grain becomes large by pressurizing, heating at 900 degreeC or more.
  • the heating temperature is less than Ac1
  • the ring-shaped steel material becomes an ⁇ single phase.
  • the residual stress of the ring-shaped steel material is effectively removed. The occurrence of these events significantly improves the magnetic properties of the ring-shaped steel material after the second process.
  • the magnetic flux density B10 in the external magnetic field H 10 Oe (796 A / m) is at least 0.6 T or more.
  • the ring-shaped steel material preferably has a magnetic flux density B10 of 0.8 T or more, and this numerical value can be obtained by appropriately adjusting the heating temperature and pressure.
  • the pressure annealing is a type of annealing, and refers to a process of pressing a ring-shaped steel material while heating it to a predetermined temperature, holding the steel material at the predetermined temperature for a certain period of time, and gradually cooling it.
  • a hot closed forging press is a method in which a punch is made to double-dynamically penetrate into a mold in a state in which a ring-shaped plate material heated to a predetermined temperature is confined in a mold and closed. It refers to the process of filling the steel material in the mold. Both treatments have the effect of effectively removing the residual stress of the ring-shaped steel material, which contributes to the improvement of the magnetic properties of the spacer 12.
  • the press tempering process refers to a process of pressing (tempering) when tempering.
  • the hot closed forging press using a hydraulic multi-axial press etc. can be illustrated.
  • closed forging unlike a normal forging, a ring-shaped plate material confined in a mold is formed without burrs.
  • the pressure is 0.001 MPa to 200 MPa from the viewpoint of dimensional accuracy.
  • the pressure is smaller than 0.001 MPa, the control of the flatness and the parallelism becomes difficult due to the insufficient pressure.
  • the pressure exceeds 200 MPa, the pressing force is too large, which makes it difficult to control the plate thickness.
  • the polishing time in lapping polishing and barrel polishing can be shortened, and the cutting allowance can be reduced. Further, the polishing load to be applied to the steel material can be reduced, and the occurrence of warpage in the final product spacer 12 can be suppressed. As mentioned above, while being able to improve production efficiency, material yield can be improved.
  • the steel material after barrel polishing is cleaned (fourth step).
  • the ferritic stainless steel used for manufacturing the spacer 12 has the cleanliness calculated by the method of calculating the cleanliness specified in JIS G0555. It is preferable that it is 0.04% or less.
  • TiN-based inclusions 0.004% by mass to 0.02% by mass, it is possible to further suppress the occurrence of sagging on the punched end face while minimizing the deterioration of the magnetic characteristics. As well as being able to do this, parts cleanability does not deteriorate.
  • the manufacturing of the spacer 12 is completed. Note that at least the first and second steps may be performed to manufacture the spacer 12 having excellent magnetic characteristics, and the third and fourth steps are not essential steps for manufacturing the spacer 12.
  • spacers were manufactured using ferritic stainless steels (the first invention steel, the second invention steel, and the comparison steel) having the components and compositions shown in Table 1 below. Note that Ac1 of the first invention steel was 984 ° C., and Ac1 of the second invention steel was 1089 ° C. And the magnetism of each spacer was measured by a predetermined method, and those magnetic characteristics were compared. In addition, the relationship between strain and magnetic flux density was also investigated.
  • the first invention steel was stacked and pressure annealed at a heating temperature of 950 ° C. for 2 hours. That is, the first invention steel was pressurized while being heated at a temperature of 900 ° C. or more and less than the austenite transformation start temperature Ac1 (984 ° C.).
  • the second invention steel was stacked and pressure annealed at a heating temperature of 1050 ° C. for 2 hours. That is, the second invention steel was pressurized while heating at a temperature of 900 ° C. or more and less than the austenite transformation start temperature Ac1 (1089 ° C.).
  • a plurality of ring-shaped steel materials are stacked in a state in which a partition plate subjected to preoxidation with the same material as the steel material is inserted between two ring-shaped steel materials facing each other. Then, a weight is loaded on the top surface of the laminate so that the surface pressure is 0.01 MPa, and the processing is performed to perform annealing in vacuum.
  • Each spacer 12 manufactured using the first and second invention steels and a spacer manufactured using a comparative steel have a thickness of 1.60 mm, It has a ring shape with an inner diameter of 25.0 mm and an outer diameter of 32 mm. This is shaped and sized to fit a 3.5 inch standard hard disk drive.
  • the magnetism of each spacer 12 and the first comparative spacer manufactured using the first and second invention steels was measured by the same method. Specifically, using a 0.32 mm diameter enamel coated copper wire, the BH tracer is used as a primary coil of 100 turns and a secondary coil of 90 turns for all the spacers 12 and the first comparison spacer described above.
  • the spacer 12 manufactured using the first invention steel had a magnetic flux density B10 of 1.0 T.
  • the spacer 12 manufactured using the second invention steel had a magnetic flux density B10 of 0.9 T.
  • Both of the spacers 12 have a magnetic flux density B10 of 0.8 T or more, and exhibit excellent magnetic characteristics.
  • the magnetic flux density B10 of the first comparison spacer is 0.5 T, which is less than 0.6 T, which is a reference value of superiority or inferiority of the magnetic characteristics of the spacer.
  • a second comparative spacer manufactured by subjecting a cold-rolled, annealed, pickled plate of a first invention steel of 1.8 mm thickness to only a heat treatment and a fine blanking press (“first invention spacer in Table 2
  • the magnetic flux density B10 is 0.4 T, which is less than 0.6 T.
  • the spacer manufactured by the manufacturing method according to one aspect of the present invention has significantly improved magnetic properties as compared to the spacer manufactured by the other manufacturing method. .
  • a spacer manufactured using the first invention steel or the second invention steel became a pass (o) regardless of the manufacturing method.
  • the flatness is 1 ⁇ m or less and the parallelism is 5 ⁇ m or less. Therefore, in order to improve the flatness and the parallelism of the spacer, the conditions described in the present embodiment for the composition of the components are satisfied. It has become clear that it is preferable to use a ferritic stainless steel.
  • the magnetic flux density B10 is 1.2 T in the state where no strain occurs, and the first comparative example is used. It was found that the magnetic flux density B10 was twice or more that of the spacer. Also, while the amount of strain increased from 0% to about 0.5%, the magnetic flux density B10 rapidly decreased, and the decrease in magnetic flux density B10 became moderate after the amount of strain exceeded about 0.5%. .
  • a spacer is a spacer provided in a hard disk drive, and the above-mentioned plate formed into a ring shape after forming a plate material of ferritic stainless steel into a ring shape.
  • the sheet material is manufactured by heating and pressing at a temperature of 900 ° C. or more and a temperature lower than the austenite transformation start temperature Ac1 (hereinafter, also simply described as “Ac1”).
  • the plate material of the ferritic stainless steel formed into a ring shape is pressurized while being heated at a temperature of 900 ° C. or more and less than Ac1. Therefore, the above-mentioned plate material whose magnetic characteristics have once deteriorated due to being formed into a ring shape has its magnetic characteristics improved by the above heating and pressing. Therefore, for example, a spacer with improved magnetic characteristics can be realized as compared to a spacer manufactured without being subjected to any treatment after being formed into a ring shape.
  • the spacer according to one aspect of the present invention has a magnetic flux density B10 of 0.6 T or more and a parallelism of 5 ⁇ m or less when the external magnetic field 10 Oe is applied to the spacer. It is preferable that it is 1 micrometer or less.
  • content of C is 0.08 mass% or less
  • content of Si is 0.80 mass% or less
  • content of Mn of the spacer which concerns on one aspect of this invention 0.60 mass% or less
  • P content is 0.04 mass% or less
  • S content is 0.03 mass% or less
  • Ni content is 0.50 mass% or less
  • Cr content is 11 mass %
  • the content of N is 0.02% by mass or less
  • the content of Al is 0.05% by mass or less
  • the content of Ti is 0.05% by mass to 0.50% by mass or less
  • the balance consists of Fe and unavoidable impurities, and the cleanliness is 0.04% or less.
  • content of C which is the spacer which concerns on one aspect of this invention is 0.02 mass% or less.
  • group inclusion is 0.004 mass% or more and 0.02 mass% or less of the spacer which concerns on one aspect of this invention.
  • the spacer which concerns on 1 aspect of this invention pressure-anneals the said board
  • the plate material of the ferritic stainless steel formed into a ring shape is pressure annealed at a temperature of 900 ° C. or more and less than Ac1. Accordingly, the above-mentioned pressure annealing improves the magnetic properties of the above-mentioned plate whose magnetic properties have once been lowered by being formed into a ring shape. Therefore, a spacer with improved magnetic properties can be realized.
  • the spacer which concerns on 1 aspect of this invention is hot closing forging press the said board
  • the plate material of the ferritic stainless steel formed into a ring shape is subjected to the hot close forging press at a temperature of 900 ° C. or more and less than Ac1. Therefore, the above-mentioned plate material whose magnetic characteristics have once deteriorated due to being formed into a ring shape is improved in its magnetic characteristics by the above-mentioned hot close forging press. Therefore, a spacer with improved magnetic properties can be realized.
  • the hard disk drive which concerns on 1 aspect of this invention is equipped with the said spacer. According to the above configuration, by providing the spacer having excellent magnetic characteristics, it is possible to reduce the rotational load applied to the spindle motor in the hard disk drive.
  • a method of manufacturing a spacer is a method of manufacturing a spacer provided in a hard disk drive, and a method of forming a plate material of ferritic stainless steel into a ring shape And a second step of heating and pressing the plate material formed into a ring shape in the first step at a temperature of 900 ° C. or more and less than Ac 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Gasket Seals (AREA)
  • Forging (AREA)
  • Soft Magnetic Materials (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)

Abstract

Provided is a spacer having excellent magnetic characteristics. This spacer (12) is produced by forming a sheet of a ferrite stainless steel into a ring shape, and thereafter, applying heat and pressure to the ring-shaped sheet at a temperature of not lower than 900°C but lower than the austenite transformation start temperature Ac1.

Description

スペーサ、ハードディスクドライブおよびスペーサの製造方法Spacer, hard disk drive and method of manufacturing spacer
 本発明は、スペーサ、ハードディスクドライブおよびスペーサの製造方法に関する。 The present invention relates to a spacer, a hard disk drive, and a method of manufacturing the spacer.
 従来から、磁気ディスク装置(例えばハードディスクドライブ)の小型化および大容量化がますます進展している。記憶容量が大容量な磁気ディスク装置は、複数の磁気ディスクを備え、それらの磁気ディスクの間にリング状のスペーサが挿入されており、スペーサと磁気ディスクとが一緒に回転する。 2. Description of the Related Art Conventionally, miniaturization and capacity increase of magnetic disk drives (for example, hard disk drives) have been increasingly developed. A magnetic disk drive having a large storage capacity comprises a plurality of magnetic disks, and a ring-shaped spacer is inserted between the magnetic disks, and the spacer and the magnetic disk rotate together.
 ここで、従来のスペーサは、切削性に優れる快削ステンレス鋼を切削加工して製造されることが多いところ、快削ステンレス鋼はSやPbを含有していることから鋼材価格が高く、コストアップに繋がっていた。そこで、快削ステンレス鋼に比べてSやPbの含有量が少なく、比較的安価なフェライト系ステンレス鋼の板材を打ち抜き加工等してスペーサを製造する技術の研究が進められている。 Here, the conventional spacer is often manufactured by cutting free-cutting stainless steel excellent in machinability, but free-cutting stainless steel contains S and Pb, so the steel price is high, and the cost is high. It was connected to up. Therefore, research on technology for manufacturing a spacer by punching a relatively inexpensive ferritic stainless steel sheet having a smaller content of S and Pb than free-cutting stainless steel is being advanced.
 例えば、特許文献1には、所定の板厚を有する金属板を打ち抜いて略リング状の素リングを形成し、所定の工程を経て素リングに形成された環状舌片の基端を剪断工具により剪断してスペーサリングを製造する方法が開示されている。また例えば、特許文献2には、表面硬度のバラツキが平均値を中心として上下4%以内、結晶粒度番号が5.0~9.0、かつ残留圧縮応力が80MPa以下のフェライト系ステンレス鋼の圧延板材を用いて製造されたスペーサが開示されている。このスペーサは、上記圧延板材を打ち抜き加工によってリング状に加工することにより成形される。 For example, in Patent Document 1, a metal plate having a predetermined thickness is punched out to form a substantially ring-shaped element ring, and through a predetermined process, a proximal end of an annular tongue formed in the element ring is sheared using a shearing tool. A method of shearing to produce a spacer ring is disclosed. For example, in Patent Document 2, rolling of a ferritic stainless steel having a variation of surface hardness within 4% up and down centering on an average value, a grain size number of 5.0 to 9.0, and a residual compressive stress of 80 MPa or less A spacer manufactured using a plate material is disclosed. The spacer is formed by processing the rolled plate material into a ring shape by punching.
日本国公開特許公報「特開平2001-167548号公報(2001年6月22日公開)」Japanese Patent Publication No. 2001-167548 (published on June 22, 2001) 日本国公開特許公報「特開平2013-222487号公報(2013年10月28日公開)」Japanese Patent Publication "Japanese Unexamined Patent Publication No. 2013-222487 (October 28, 2013)"
 しかしながら、特許文献1に開示された方法により製造されたスペーサリングは、その内部に残留応力が生じることから、製造工程の最終段階または磁気ディスクに組み込んだ際に形状が安定せず、磁気ディスクが歪む要因となっていた。その点、特許文献2に開示されたスペーサは、残留応力の問題についてはある程度解消されているものの、打ち抜き加工により成形されていることから、磁気特性が損なわれてしまう。上記スペーサリングについても、打ち抜き加工やプレス加工が施されていることから、上記スペーサと同様に磁気特性が損なわれてしまう。しかしながら、特許文献1・2ともに、スペーサリングおよびスペーサの磁気特性が損なわれないような処理を施して、ハードディスクドライブに備えられたモータの回転性能を向上させる技術については記載も示唆もされていない。 However, the spacer ring manufactured by the method disclosed in Patent Document 1 has a residual stress in its inside, so that the shape is not stable when it is incorporated into the final stage of the manufacturing process or when it is incorporated into the magnetic disk. It was a cause of distortion. In that respect, although the spacer disclosed in Patent Document 2 solves the problem of the residual stress to some extent, since the spacer is formed by punching, the magnetic characteristics are impaired. Since the spacer ring is also subjected to punching and pressing, the magnetic properties are impaired as in the case of the spacer. However, neither Patent Document 1 nor 2 describes or suggests a technique for improving the rotational performance of the motor provided in the hard disk drive by performing processing such that the magnetic properties of the spacer ring and the spacer are not impaired. .
 本発明の一態様は、上記の各問題点に鑑みなされたものであり、その目的は、高効率でエネルギー負荷の小さいハードディスクドライブを実現できる、磁気特性に優れたスペーサを提供することにある。 SUMMARY OF THE INVENTION One aspect of the present invention is made in view of the above problems, and an object thereof is to provide a spacer having excellent magnetic characteristics that can realize a hard disk drive with high efficiency and small energy load.
 上記の課題を解決するために、本発明の一態様に係るスペーサは、ハードディスクドライブに備えられるスペーサであって、フェライト系ステンレス鋼の板材をリング形状に成形した後、リング形状に成形された前記板材を900℃以上オーステナイト変態開始温度Ac1(以下、単に「Ac1」と記載する)未満の温度で加熱しつつ加圧することにより製造されている。 In order to solve the above problems, a spacer according to one aspect of the present invention is a spacer provided in a hard disk drive, and the above-mentioned plate formed into a ring shape after forming a plate material of ferritic stainless steel into a ring shape. The plate material is manufactured by heating and pressing at a temperature of 900 ° C. or more and a temperature lower than the austenite transformation start temperature Ac1 (hereinafter, simply described as “Ac1”).
 また、上記の課題を解決するために、本発明の一態様に係るスペーサの製造方法は、ハードディスクドライブに備えられるスペーサの製造方法であって、フェライト系ステンレス鋼の板材をリング形状に成形する第1工程と、前記第1工程にてリング形状に成形された前記板材を、900℃以上Ac1未満の温度で加熱しつつ加圧する第2工程と、を含んでいる。 Further, in order to solve the above-described problems, a method of manufacturing a spacer according to one aspect of the present invention is a method of manufacturing a spacer provided in a hard disk drive, and a method of forming a plate material of ferritic stainless steel into a ring shape And a second step of heating and pressing the plate material formed into a ring shape in the first step at a temperature of 900 ° C. or more and less than Ac 1.
 本発明の一態様によれば、高効率でエネルギー負荷の小さいハードディスクドライブを実現できる、磁気特性に優れたスペーサを提供することができる。 According to one aspect of the present invention, it is possible to provide a spacer with excellent magnetic characteristics that can realize a hard disk drive with high efficiency and small energy load.
本発明の一実施形態に係るハードディスクドライブの概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a hard disk drive according to an embodiment of the present invention. 上記ハードディスクドライブに備えられたスピンドルモータの概略構成を示す断面図、およびスペーサ周辺の磁束密度の変化を示す図である。FIG. 6 is a cross-sectional view showing a schematic configuration of a spindle motor provided in the hard disk drive, and a diagram showing a change in magnetic flux density around a spacer. 上記フェライト系ステンレス鋼について、ひずみ量と磁束密度の関係を示すグラフである。It is a graph which shows the relationship between distortion amount and magnetic flux density about the said ferritic stainless steel.
 以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において、「A~B」とは、A以上B以下であることを示している。 Hereinafter, embodiments of the present invention will be described. The following description is for the purpose of better understanding the spirit of the invention, and does not limit the present invention unless otherwise specified. Further, in the present specification, “A to B” indicates that A or more and B or less.
 本発明の一態様に係るスペーサの製造に使用したフェライト系ステンレス鋼は、比較的小さく(例えば、直径50mm以下、または高さ20mm以下)、かつ、高い寸法精度を求められる成形品を製造するのに好適なステンレス鋼である。 The ferritic stainless steel used for manufacturing the spacer according to one aspect of the present invention is for manufacturing a molded product which is relatively small (for example, 50 mm or less in diameter or 20 mm or less in height) and for which high dimensional accuracy is required. Stainless steel suitable for
 また、本明細書において、オーステナイト変態開始温度Ac1(以下、単に「Ac1」とも記載する)とは、加熱することによりリング状の鋼材の組織にオーステナイトが生成し始める温度を指し、フェライト系ステンレス鋼の含有成分の割合に応じて変化する。本発明の一態様に係るスペーサに用いられるフェライト系ステンレス鋼のAc1と含有成分との間には、下記の式1の関係があることを実験室的に確認した。そこで、本発明では式1にて求めた値AC〔℃〕を加熱温度上限の指標、すなわちAc1とした。本実施形態では、ACが約1150℃以下となるような含有成分の割合のフェライト系ステンレス鋼を使用している。 Further, in the present specification, the austenite transformation start temperature Ac1 (hereinafter, also simply described as “Ac1”) refers to a temperature at which austenite starts to form in the structure of the ring-shaped steel material by heating, and ferritic stainless steel It changes according to the ratio of the ingredient of It was laboratory-confirmed that there is a relationship of Formula 1 below between Ac1 and the contained component of the ferritic stainless steel used for the spacer according to one aspect of the present invention. Therefore, in the present invention, the value AC [° C.] obtained by the equation 1 is used as an index of the heating temperature upper limit, that is, Ac1. In the present embodiment, a ferritic stainless steel is used in a proportion of the contained components such that AC is about 1150 ° C. or less.
 (式1)
AC〔℃〕=-221C+64Si-40Mn-80Ni+20Cr-247N+1240Al+486Ti+602
(Formula 1)
AC [° C.] =-221C + 64Si-40Mn-80Ni + 20Cr-247N + 1240Al + 486Ti + 602
 <ハードディスクドライブの構造>
 まず、図1を参照して、本発明の一実施形態に係るハードディスクドライブ1の構造について説明する。図1は、ハードディスクドライブ1の概略構成を示す断面図である。図1に示すように、ハードディスクドライブ1は、装置内を密閉する密閉ケース状のシュラウド2内に、3枚のプラッタ11を備えている。プラッタ11は、スピンドルモータ20により回転し、プラッタ11の表面から僅かに浮いた磁気ヘッド30が、プラッタ11の書き込みおよび読み取りを行う。
<Structure of Hard Disk Drive>
First, the structure of a hard disk drive 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a schematic configuration of the hard disk drive 1. As shown in FIG. 1, the hard disk drive 1 includes three platters 11 in a sealed case-like shroud 2 for sealing the inside of the apparatus. The platter 11 is rotated by a spindle motor 20, and a magnetic head 30 slightly floating from the surface of the platter 11 performs writing and reading of the platter 11.
 隣り合う2枚のプラッタ11の間にはそれぞれ、スペーサ12(詳細については後述)が設けられている。このスペーサ12は、リング形状であって、スピンドルモータ20の回転ハブ21の周りを囲んで配置されている。回転ハブ21の上端部に円盤状のクランパ22をネジ23にて締結している。クランパ22の弾性変形によりプラッタ11の内周部を押圧して、複数のプラッタ11と複数のスペーサ12とを、回転ハブ21の底部の大径部分とクランパ22との間に保持している。なお、ネジ23以外の部材により、クランパ22が固定されていてもよい。 Spacers 12 (details will be described later) are provided between two adjacent platters 11, respectively. The spacer 12 is in the form of a ring and is disposed around the rotation hub 21 of the spindle motor 20. A disc-like clamper 22 is fastened to the upper end portion of the rotating hub 21 with a screw 23. The elastic deformation of the clamper 22 presses the inner peripheral portion of the platter 11 to hold the plurality of platters 11 and the plurality of spacers 12 between the large-diameter portion at the bottom of the rotating hub 21 and the clamper 22. The clamper 22 may be fixed by a member other than the screw 23.
 ハードディスクドライブには、通常、2.5インチの規格および3.5インチの規格がある。3.5インチの規格のハードディスクドライブにおいて、ガラスプラッタとステンレス製スペーサとの組合せを用いるためには、ステンレス製スペーサの寸法精度がより要求される。 Hard disk drives typically have a 2.5 inch standard and a 3.5 inch standard. In a 3.5 inch standard hard disk drive, in order to use a combination of a glass platter and a stainless steel spacer, the dimensional accuracy of the stainless steel spacer is more required.
 <スペーサの磁気特性とスピンドルモータの性能との関係>
 次に、図2を参照して、スペーサ12の磁気特性とスピンドルモータ20の性能との関係について説明する。図2は、スピンドルモータ20の概略構成を示す断面図、およびスペーサ12周辺の磁束密度の変化を示す図である。
<Relationship between spacer magnetic characteristics and spindle motor performance>
Next, with reference to FIG. 2, the relationship between the magnetic characteristics of the spacer 12 and the performance of the spindle motor 20 will be described. FIG. 2 is a cross-sectional view showing a schematic configuration of the spindle motor 20 and a diagram showing a change in magnetic flux density around the spacer 12.
 図2に示すように、スピンドルモータ20は、回転軸20aから回転ハブ21に向けて突出しているとともに、回転軸20aの側面に沿って延伸している6つの固定子鉄心20bのそれぞれに、固定子コイル20cが巻き付けられている。 As shown in FIG. 2, the spindle motor 20 is fixed to each of six stator iron cores 20b projecting from the rotating shaft 20a toward the rotating hub 21 and extending along the side of the rotating shaft 20a. The child coil 20c is wound.
 まず、固定子コイル20cに電流を流して固定子鉄心20bを磁化させ、磁化した固定子鉄心10bと磁石21aとの間に斥力または引力を発生させる。磁石21aは、回転ハブ21における回転軸20a側の領域に配置されており、固定子鉄心20bと対向している。次に、発生した斥力等を利用して、回転ハブ21、クランパ22およびプラッタ11を回転させる。 First, current is supplied to the stator coil 20c to magnetize the stator core 20b, thereby generating repulsive force or attractive force between the magnetized stator core 10b and the magnet 21a. The magnet 21a is arrange | positioned in the area | region by the side of the rotating shaft 20a in the rotating hub 21, and is facing the stator core 20b. Next, the rotating hub 21, the clamper 22 and the platter 11 are rotated using the generated repulsive force or the like.
 回転ハブ21には、いわゆる「漏れ磁束」を極力低減した磁気回路を構成することで、スピンドルモータ20の性能を向上させるヨーク(具体的には、バックヨーク)としての役割がある。「漏れ磁束」とは、本来の磁気回路以外の部分を通過し、斥力等の発生に役立たない磁力線を指す。 The rotary hub 21 serves as a yoke (specifically, a back yoke) that improves the performance of the spindle motor 20 by constructing a magnetic circuit in which the so-called "leakage flux" is reduced as much as possible. "Leakage flux" refers to a line of magnetic force that passes through parts other than the original magnetic circuit and is not useful for generating repulsion or the like.
 ここで、磁気特性に優れたスペーサが用いられることにより、回転ハブ21のヨークとしての役割がより強化される。すなわち、スペーサの磁気特性は当該スペーサの磁束密度(または透磁率)の大小で決定付けられるところ、スペーサの磁束密度(または透磁率)が大きいほど「漏れ磁束」が小さくなり(図2における、紙面向かって右上の図の状態から右下の図の状態になる)、ひいてはスピンドルモータ20の性能が向上する。 Here, the role of the rotating hub 21 as a yoke is further strengthened by using a spacer having excellent magnetic properties. That is, while the magnetic properties of the spacer are determined by the magnitude of the magnetic flux density (or permeability) of the spacer, the "leakage flux" becomes smaller as the magnetic flux density (or permeability) of the spacer becomes larger (see FIG. From the state of the upper right to the state of the lower right), the performance of the spindle motor 20 is improved.
 特に、ニアライン用途や大容量サーバに使用される3.5インチ規格のハードディスクドライブは、1基当たりのプラッタ積層枚数が多くスピンドルモータにかかる回転の負荷も大きくなる。したがって、従来から高効率のスピンドルモータが所望されており、この高効率のスピンドルモータを実現するために、スペーサの磁気特性の向上が大きな課題となっていた。 In particular, 3.5 inch standard hard disk drives used for near-line applications and high-capacity servers have a large number of stacked platters per unit and a large rotational load on the spindle motor. Therefore, a spindle motor with high efficiency has been desired conventionally, and in order to realize this spindle motor with high efficiency, improvement of the magnetic characteristics of the spacer has been a major issue.
 その点、スピンドルモータ20は、磁気特性に優れたスペーサ12が用いられていることから、回転ハブ21のヨークとしての役割がより強化されており、その性能が従来のスピンドルモータに比べて向上している。 In that respect, since the spindle motor 20 uses the spacer 12 having excellent magnetic characteristics, the role of the rotating hub 21 as a yoke is further strengthened, and its performance is improved as compared with the conventional spindle motor. ing.
 <フェライト系ステンレス鋼の含有成分の組成>
 スペーサ12の製造に使用されたフェライト系ステンレス鋼の含有成分の組成は、以下のとおりである。なお、以下に示す各成分以外の残部は、鉄(Fe)、および不可避的に混入する少量の不純物(不可避的不純物)である。
<Composition of Components of Ferritic Stainless Steel>
The composition of the components of the ferritic stainless steel used to manufacture the spacer 12 is as follows. In addition, remainders other than each component shown below are iron (Fe) and a small amount of unavoidable impurities (unavoidable impurities).
 (クロム:Cr)
 Crはフェライト系ステンレス鋼に必須の元素であり、耐食性を確保するためにCr濃度は11質量%以上が好ましい。ただし、Crを多量に含有すると、ステンレス鋼が過度に硬質化するため、Cr濃度は19質量%以下が好ましく、13質量%以下であるとより好ましい。Crの含有量の調整方法は特に限定されず、例えば、Cr酸化物の還元反応を制御することによってCrの含有量を調整することができる。
(Chrome: Cr)
Cr is an element essential to ferritic stainless steel, and in order to ensure corrosion resistance, the Cr concentration is preferably 11% by mass or more. However, when a large amount of Cr is contained, the stainless steel is excessively hardened. Therefore, the Cr concentration is preferably 19% by mass or less, and more preferably 13% by mass or less. The adjustment method of content of Cr is not specifically limited, For example, content of Cr can be adjusted by controlling the reductive reaction of Cr oxide.
 (マンガン:Mn)
 Mnは、硫化物を生成することで耐アウトガス性および磁気特性に悪影響を及ぼす元素である。そのため、スペーサ12の製造に使用するフェライト系ステンレス鋼では、Mnの含有量ができるだけ少ないほうがよく、0.60質量%以下であることが好ましい。
(Manganese: Mn)
Mn is an element that adversely affects the outgas resistance and the magnetic properties by forming sulfides. Therefore, in the ferritic stainless steel used for manufacturing the spacer 12, the content of Mn is preferably as small as possible, and is preferably 0.60% by mass or less.
 (チタン:Ti)
 TiはNbと同様、CまたはNと反応することにより、フェライト系ステンレス鋼を900~1000℃においてフェライト系単相にすることができる元素である。その一方で、結晶粒が大きいほど磁気特性は向上するが、Tiは、Nbと異なり高温でのフェライト系ステンレス鋼の結晶粒成長をほとんど妨げないため、磁気特性の観点からはNbよりもTiを添加するほうが好ましい。一方で過剰なTiの添加は、ステンレス鋼の表面性状に悪影響を及ぼし、製造性を損なうため、0.05~0.50質量%以下のTiを含有することが好ましい。
(Titanium: Ti)
Ti, like Nb, is an element capable of turning a ferritic stainless steel into a ferritic single phase at 900 to 1000 ° C. by reacting with C or N. On the other hand, the larger the crystal grain size, the better the magnetic properties, but since Ti, unlike Nb, hardly interferes with the grain growth of ferritic stainless steel at high temperature, from the viewpoint of magnetic properties Ti It is more preferable to add. On the other hand, excessive addition of Ti adversely affects the surface properties of stainless steel and impairs manufacturability, so it is preferable to contain 0.05 to 0.50 mass% or less of Ti.
 (炭素:C)
 Cは、炭化物を生成することで磁気特性を低下させる有害な元素であるため、Cの含有量は、0.08質量%以下とし、0.02質量%以下であることが好ましい。
(Carbon: C)
Since C is a harmful element that degrades magnetic properties by forming carbides, the content of C is set to 0.08 mass% or less, and preferably 0.02 mass% or less.
 (ケイ素:Si)
 Siは、製鋼時の脱酸剤として有効な元素である。ただし、Siを多量に含有すると固溶強化によりステンレス鋼が過度に硬質化する。したがって、Siの含有量は、0.80質量%以下であることが好ましい。
(Silicon: Si)
Si is an element effective as a deoxidizer at the time of steel making. However, when a large amount of Si is contained, the stainless steel is excessively hardened due to solid solution strengthening. Therefore, the content of Si is preferably 0.80% by mass or less.
 (リン:P)
 Pは、その含有量に応じて熱間加工性を低下させる。そのため、Pの含有量は、0.04質量%以下であることが好ましい。
(Rin: P)
P reduces the hot workability according to its content. Therefore, the content of P is preferably 0.04% by mass or less.
 (硫黄:S)
 フェライト系ステンレス鋼においてSの含有量が多いと、該鋼中に存在する、MnSを主体とするA系の介在物が多くなり磁気特性を劣化させる。そのため、Sの含有量は、0.03質量%以下であることが好ましい。
(Sulfur: S)
When the content of S in the ferritic stainless steel is high, the inclusions of the A-based material containing MnS as a main component present in the steel increase and the magnetic properties are degraded. Therefore, the content of S is preferably 0.03% by mass or less.
 Sの含有量の調整方法としては、還元・仕上げ製錬期において、Cr酸化物の還元および脱酸を行うときに、脱酸とともに造滓を行うことにより脱硫が生じるため、この脱硫反応を促進することにより、Sの含有量を低下させることができる。Sの含有量の調整方法として公知の方法を使用すればよく、当該調整方法は、特に限定されない。 As a method of adjusting the content of S, desulfurization takes place by deoxidization together with deoxidation at the time of reduction and deoxidation of Cr oxides in the reduction and finishing smelting phase, so this desulfurization reaction is promoted By doing this, the content of S can be reduced. A known method may be used as a method of adjusting the content of S, and the adjustment method is not particularly limited.
 (ニッケル:Ni)
 Niは、高温域におけるオーステナイト相の割合を増加させるため、熱間圧延時の加工性向上に有効である。しかし、過度に含有するとα-γ変態点温度が低下し、十分な再結晶温度を確保できなくなる。また、Niは、高価な元素でもある。そのため、Niの含有量は、0.50質量%以下であることが好ましい。
(Nickel: Ni)
Ni increases the proportion of the austenite phase in the high temperature range, and thus is effective in improving the workability during hot rolling. However, if it is contained excessively, the temperature of the α-γ transformation point is lowered, and a sufficient recrystallization temperature can not be secured. In addition, Ni is also an expensive element. Therefore, the content of Ni is preferably 0.50% by mass or less.
 (窒素:N)
 Nを過剰に添加すると他の元素と窒化物を形成して磁気特性の低下を招く。そのため、Nの含有量は、0.02質量%以下であることが好ましい。
(Nitrogen: N)
Excess addition of N forms nitrides with other elements to cause deterioration of the magnetic properties. Therefore, the content of N is preferably 0.02% by mass or less.
 (アルミニウム:Al)
 Alは鋼の清浄度を向上させる元素であるが、一方で含有量が多いとC、Nと化合物を形成し磁気特性を低下させるため、0.05質量%以下であることが好ましい。
(Aluminum: Al)
Al is an element that improves the cleanliness of the steel, but on the other hand, if the content is large, it forms a compound with C and N to lower the magnetic properties, so the content is preferably 0.05% by mass or less.
 なお、上述の含有成分の組成はあくまで一例であり、各含有成分の含有量(質量%)が上述の例以外の場合でも、スペーサ12に対して外部磁場10Oeを印加した場合の磁束密度B10が0.6T以上となる磁気特性に優れたスペーサ12で、かつ、平行度5μm以下、平面度1μm以下となるスペーサ12を実現することができる。また、上述の各含有成分以外の含有成分を含んだスペーサ12であっても、磁束密度B10が0.6T以上、平行度5μm以下、平面度1μm以下のスペーサ12を実現することができる。 The composition of the above-mentioned components is merely an example, and even when the content (mass%) of each component is other than the above-described example, the magnetic flux density B10 when the external magnetic field 10Oe is applied to the spacer 12 is It is possible to realize the spacer 12 excellent in the magnetic characteristics of 0.6 T or more, and the spacer 12 having a parallelism of 5 μm or less and a flatness of 1 μm or less. In addition, even if the spacer 12 contains the components other than the above-described components, the spacer 12 having a magnetic flux density B10 of 0.6 T or more, a parallelism of 5 μm or less, and a flatness of 1 μm or less can be realized.
 <スペーサの製造方法>
 含有成分の組成について上記条件を充足するフェライト系ステンレス鋼を使用した、スペーサ12の製造方法の一例について、以下に説明する。具体的には、下記(1)~(4)の各工程を踏むことにより、スペーサ12が製造される。
<Method of manufacturing spacer>
An example of the manufacturing method of the spacer 12 using the ferritic stainless steel which satisfies the said conditions about the composition of a component is demonstrated below. Specifically, the spacer 12 is manufactured by performing the following steps (1) to (4).
 (1) まず、焼鈍を施したフェライト系ステンレス鋼の圧延板材(板材:不図示)に対して、金型を用いて精密打ち抜き加工を行う。すなわち、上記圧延板材に対して外径打ち抜き加工を行い、次に内径打ち抜き加工を行うことにより、リング形状に成形された鋼材(板材:不図示)を得る(第1工程)。 (1) First, precision punching is performed on a annealed rolled plate material (plate material: not shown) of a ferritic stainless steel using a die. That is, an outer diameter punching process is performed on the rolled plate material, and then an inner diameter punching process is performed to obtain a steel material (plate material: not shown) formed into a ring shape (first step).
 このリング形状の鋼材は、打ち抜き端面におけるダレの発生が略無く、当該打ち抜き端面性状が大幅に改善されている。しかしながら、第1工程終了後のリング形状の鋼材は、第1工程を行う前の圧延板材と比べて磁気特性が約10%~約20%低下する。なお、この工程において、さらにプレス加工を施した場合、磁気特性は約50%以上低下する。 This ring-shaped steel material has substantially no occurrence of sagging on the punched end face, and the punched end face properties are significantly improved. However, in the ring-shaped steel material after the completion of the first step, the magnetic properties are reduced by about 10% to about 20% as compared with the rolled plate before the first step. In this step, when pressing is further performed, the magnetic properties are reduced by about 50% or more.
 (2) 次に、上記打ち抜き加工により得られたリング形状の鋼材に対して、900℃以上Ac1未満の温度で加熱しつつ加圧する(第2工程)。 (2) Next, with respect to the ring-shaped steel material obtained by the said punching, it is pressurized, heating at the temperature of 900 degreeC or more and less than Ac1 (2nd process).
 この第2工程を行うことにより、他の加熱処理または加圧処理を行う場合と比べて、生成される析出物や介在物の量が大幅に減少するとともに、生成された析出物等の大きさが大きくなる。また、リング状の鋼材の組織について、900℃以上で加熱しつつ加圧することにより、結晶粒が大きくなる。また、加熱温度がAc1未満であることにより、リング形状の鋼材はα単相となる。さらには、リング状の鋼材の残留応力が効果的に除去される。これらの事象が発生することにより、第2工程を終えたリング形状の鋼材の磁気特性は大幅に向上する。 By performing this second step, the amount of precipitates and inclusions generated is significantly reduced as compared with the case of performing other heat treatment or pressure treatment, and the size of the formed precipitates and the like Becomes larger. Moreover, about the structure | tissue of ring-shaped steel materials, a crystal grain becomes large by pressurizing, heating at 900 degreeC or more. In addition, since the heating temperature is less than Ac1, the ring-shaped steel material becomes an α single phase. Furthermore, the residual stress of the ring-shaped steel material is effectively removed. The occurrence of these events significantly improves the magnetic properties of the ring-shaped steel material after the second process.
 具体的には、第2工程終了後のリング形状の鋼材は、外部磁場H=10Oe(796A/m)における磁束密度B10が少なくとも0.6T以上となっている。付言すれば、該リング形状の鋼材は、磁束密度B10が0.8T以上となることが好ましく、加熱温度や圧力を適宜調整することによってこの数値を得ることができる。 Specifically, in the ring-shaped steel material after completion of the second step, the magnetic flux density B10 in the external magnetic field H = 10 Oe (796 A / m) is at least 0.6 T or more. In addition, the ring-shaped steel material preferably has a magnetic flux density B10 of 0.8 T or more, and this numerical value can be obtained by appropriately adjusting the heating temperature and pressure.
 第2工程としては、リング形状の鋼材を900℃以上Ac1未満の温度で加圧焼鈍する処理や、900℃以上Ac1未満の温度で熱間閉塞鍛造プレスする処理などを例示することができる。 As a 2nd process, the process which carries out the pressure annealing of ring-shaped steel materials at the temperature of 900 degreeC or more and less than Ac1, and the process which carries out the hot closing forging press at the temperature of 900 degreeC or more and less than Ac1 can be illustrated.
 加圧焼鈍とは焼鈍の一種であり、リング形状の鋼材を所定の温度まで加熱しつつ加圧し、当該所定の温度で一定時間保持した後に徐冷する処理を指す。また、熱間閉塞鍛造プレスとは、所定の温度まで加熱したリング形状の板材を金型内に閉じ込め閉塞した状態で、複動的にパンチを金型内に複動的に侵入させることにより、上記鋼材を金型内に充満させる処理を指す。両処理とも、リング形状の鋼材の残留応力を効果的に除去する効果があり、スペーサ12の磁気特性の向上に寄与する。 The pressure annealing is a type of annealing, and refers to a process of pressing a ring-shaped steel material while heating it to a predetermined temperature, holding the steel material at the predetermined temperature for a certain period of time, and gradually cooling it. In addition, a hot closed forging press is a method in which a punch is made to double-dynamically penetrate into a mold in a state in which a ring-shaped plate material heated to a predetermined temperature is confined in a mold and closed. It refers to the process of filling the steel material in the mold. Both treatments have the effect of effectively removing the residual stress of the ring-shaped steel material, which contributes to the improvement of the magnetic properties of the spacer 12.
 なお、加圧焼鈍としては、後述の積み付け加圧焼鈍の他、板材や各種部品の形状矯正で採用されるプレステンパー処理をリング形状の鋼材に施す場合を例示することができる。プレステンパー処理とは、焼戻し(テンパー)する際に加圧(プレス)する処理を指す。 In addition, as a pressure annealing, the case where the steel materials of a ring shape are provided with the press temper process employ | adopted by shape correction of a board | plate material or various components other than the loading pressure annealing mentioned later can be illustrated. The press tempering process refers to a process of pressing (tempering) when tempering.
 また、熱間閉塞鍛造プレスとしては、油圧多軸プレス機等を利用した熱間密閉鍛造プレスを例示することができる。密閉鍛造は通常の鍛造と異なり、金型内に閉じ込めたリング状の板材をバリを出すことなく成型する。 Moreover, as a hot closing forging press, the hot closed forging press using a hydraulic multi-axial press etc. can be illustrated. In the case of closed forging, unlike a normal forging, a ring-shaped plate material confined in a mold is formed without burrs.
 さらに、積み付け加圧焼鈍時の加圧力に関しては、寸法精度の観点から0.001MPa~200MPaであることが好ましい。0.001MPaより加圧が小さい場合は加圧不足により平面度、平行度の制御が困難となる。一方で200MPaを越えた場合は加圧力が大きすぎるため、板厚の制御が困難になる。 Furthermore, with respect to the pressing force at the time of stacking pressure annealing, it is preferable that the pressure is 0.001 MPa to 200 MPa from the viewpoint of dimensional accuracy. When the pressure is smaller than 0.001 MPa, the control of the flatness and the parallelism becomes difficult due to the insufficient pressure. On the other hand, when the pressure exceeds 200 MPa, the pressing force is too large, which makes it difficult to control the plate thickness.
 (3) 次に、第2工程終了後のリング形状の鋼材に対して、例えば砥粒としてラップ剤(ダイヤモンドスラリー)を用いて、ラッピング加工を行い、リング形状の鋼材の表面を研磨する。そして、ラッピング加工後の上記鋼材を、粒子状の研磨剤および媒材(コンパウンド)とともにバレル容器に入れ、バレル研磨を行い、バリ取りをする(第3工程)。 (3) Next, lapping is performed on the ring-shaped steel material after completion of the second step using, for example, a lapping agent (diamond slurry) as abrasive grains, and the surface of the ring-shaped steel material is polished. Then, the above-described steel material after lapping is put in a barrel container together with a particulate abrasive and a medium (compound), barrel-polished and deburred (third step).
 ここで、リング形状の鋼材は、打ち抜き端面におけるダレの発生が抑制されていることから、ラッピング研磨およびバレル研磨における研磨時間を短縮し、削り代を少なくすることができる。また、上記鋼材に与える研磨負荷を低減することができ、最終製品であるスペーサ12に反りが発生することを抑制することができる。以上より、生産効率を向上させることができるとともに、材料歩留りを向上させることができる。 Here, in the ring-shaped steel material, since the occurrence of sagging on the punched end surface is suppressed, the polishing time in lapping polishing and barrel polishing can be shortened, and the cutting allowance can be reduced. Further, the polishing load to be applied to the steel material can be reduced, and the occurrence of warpage in the final product spacer 12 can be suppressed. As mentioned above, while being able to improve production efficiency, material yield can be improved.
 (4) その後、バレル研磨後の上記鋼材を洗浄する(第4工程)。ここで、磁気特性の観点からは介在物を極力低減する必要があり、スペーサ12の製造に使用されるフェライト系ステンレス鋼は、JIS G0555で規定される清浄度の算出方法で算出した清浄度が0.04%以下であることが好ましい。ただし、0.004質量%~0.02質量%となるTiN系介在物を含有している場合、磁気特性の低下を最小限度に抑えつつ、打ち抜き端面におけるダレの発生をより一層抑制することができるとともに、部品洗浄性が悪化しない。 (4) Thereafter, the steel material after barrel polishing is cleaned (fourth step). Here, it is necessary to reduce inclusions as much as possible from the viewpoint of the magnetic properties, and the ferritic stainless steel used for manufacturing the spacer 12 has the cleanliness calculated by the method of calculating the cleanliness specified in JIS G0555. It is preferable that it is 0.04% or less. However, when containing TiN-based inclusions of 0.004% by mass to 0.02% by mass, it is possible to further suppress the occurrence of sagging on the punched end face while minimizing the deterioration of the magnetic characteristics. As well as being able to do this, parts cleanability does not deteriorate.
 上記第4工程を行うことにより、スペーサ12の製造が終了する。なお、磁気特性に優れたスペーサ12を製造するためには少なくとも第1・第2工程を行えばよく、第3・第4工程は上記スペーサ12の製造に必須の工程ではない。 By performing the fourth step, the manufacturing of the spacer 12 is completed. Note that at least the first and second steps may be performed to manufacture the spacer 12 having excellent magnetic characteristics, and the third and fourth steps are not essential steps for manufacturing the spacer 12.
 <実施例>
 本実施例では、下記の表1に示す成分・組成を有する各フェライト系ステンレス鋼(第1発明鋼、第2発明鋼および比較鋼)を用いてスペーサを製造した。なお、第1発明鋼のAc1は、984℃であり、第2発明鋼のAc1は1089℃であった。そして、所定の方法で各スペーサの磁気を測定してそれらの磁気特性を比較した。また、ひずみ量と磁束密度のとの関係も調査した。
<Example>
In this example, spacers were manufactured using ferritic stainless steels (the first invention steel, the second invention steel, and the comparison steel) having the components and compositions shown in Table 1 below. Note that Ac1 of the first invention steel was 984 ° C., and Ac1 of the second invention steel was 1089 ° C. And the magnetism of each spacer was measured by a predetermined method, and those magnetic characteristics were compared. In addition, the relationship between strain and magnetic flux density was also investigated.
Figure JPOXMLDOC01-appb-T000001
 (スペーサの製造)
 第1・第2発明鋼については、板厚1.8mmの冷延焼鈍酸洗板(圧延板材)を1.80t/1.60tの板厚まで調質後にファインブランキングプレス加工し(第1工程)、得られたリング形状の鋼材を真空(0.005Pa)中で積み付け加圧焼鈍した(第2工程)。その後、上述の第3・第4工程を行ってスペーサ12を製造した。
Figure JPOXMLDOC01-appb-T000001
(Manufacture of spacer)
For the first and second invention steels, cold-rolled annealed pickled sheet (rolled sheet material) with a thickness of 1.8 mm is refined to a thickness of 1.80 t / 1. Step) The obtained ring-shaped steel material was stacked and pressure annealed in a vacuum (0.005 Pa) (second step). Thereafter, the third and fourth steps described above were performed to manufacture the spacer 12.
 ここで、第1発明鋼については950℃の加熱温度で2時間積み付け加圧焼鈍した。すなわち、第1発明鋼を900℃以上オーステナイト変態開始温度Ac1(984℃)未満の温度で加熱しつつ加圧した。また、第2発明鋼については1050℃の加熱温度で2時間積み付け加圧焼鈍した。すなわち、第2発明鋼を900℃以上、オーステナイト変態開始温度Ac1(1089℃)未満の温度で加熱しつつ加圧した。積み付け加圧焼鈍とは、互いに対向する2つのリング形状の鋼材の間に前記鋼材と同一素材で予備酸化を施した仕切り板を挿入した状態で、複数のリング形状の鋼材を積層する。そして、積層体の上面に面圧0.01MPaとなるような錘を積載し、真空中で焼鈍する処理を指す。 Here, the first invention steel was stacked and pressure annealed at a heating temperature of 950 ° C. for 2 hours. That is, the first invention steel was pressurized while being heated at a temperature of 900 ° C. or more and less than the austenite transformation start temperature Ac1 (984 ° C.). The second invention steel was stacked and pressure annealed at a heating temperature of 1050 ° C. for 2 hours. That is, the second invention steel was pressurized while heating at a temperature of 900 ° C. or more and less than the austenite transformation start temperature Ac1 (1089 ° C.). In stacking pressure annealing, a plurality of ring-shaped steel materials are stacked in a state in which a partition plate subjected to preoxidation with the same material as the steel material is inserted between two ring-shaped steel materials facing each other. Then, a weight is loaded on the top surface of the laminate so that the surface pressure is 0.01 MPa, and the processing is performed to perform annealing in vacuum.
 一方、比較鋼については、比較鋼の丸棒をスライスし、得られた薄板状の鋼材をさらに切削加工してリング形状のスペーサを製造した。この製造方法は、2.5インチの規格のハードディスクドライブに適合する従来のスペーサの製造方法と同一である。 On the other hand, for the comparative steel, a round bar of the comparative steel was sliced, and the obtained thin plate-like steel material was further cut to produce a ring-shaped spacer. This manufacturing method is identical to the conventional spacer manufacturing method compatible with 2.5 inch standard hard disk drives.
 第1・第2発明鋼を使用して製造された各スペーサ12、および比較鋼を使用して製造されたスペーサ(以下、「第1比較用スペーサ」とする)ともに、厚さ1.60mm、内径25.0mm、外径32mmのリング形状である。これは、3.5インチの規格のハードディスクドライブに適合する形状・大きさとなる。 Each spacer 12 manufactured using the first and second invention steels and a spacer manufactured using a comparative steel (hereinafter referred to as “first comparative spacer”) have a thickness of 1.60 mm, It has a ring shape with an inner diameter of 25.0 mm and an outer diameter of 32 mm. This is shaped and sized to fit a 3.5 inch standard hard disk drive.
 (磁気測定の方法)
 第1・第2発明鋼を使用して製造された各スペーサ12および第1比較用スペーサともに、同一の方法でそれぞれの磁気を測定した。具体的には、0.32mmφのエナメル被覆銅線を使用し、上記の各スペーサ12および第1比較用スペーサのすべてについて100巻の1次コイル、90巻の2次コイルとして、B-Hトレーサを使用して外部磁場H=10Oeにおける磁束密度B10を測定した。
(Method of magnetic measurement)
The magnetism of each spacer 12 and the first comparative spacer manufactured using the first and second invention steels was measured by the same method. Specifically, using a 0.32 mm diameter enamel coated copper wire, the BH tracer is used as a primary coil of 100 turns and a secondary coil of 90 turns for all the spacers 12 and the first comparison spacer described above. The magnetic flux density B10 at an external magnetic field H = 10 Oe was measured using
 あわせて、上記の各スペーサ12および第1比較用スペーサのすべてについて、平面度、平行度も測定した。平面度については1.50μm以下、平行度については5.00μm以下を合格(表2中の○)、これらの数値を超えるものを不合格(表2中の×)とした。測定結果は、下記の表2のようになった。 At the same time, the flatness and the parallelism were also measured for all the spacers 12 and the first comparison spacer described above. The flatness was 1.50 μm or less and the parallelism was 5.00 μm or less (○ in Table 2), and those exceeding these values were rejected (× in Table 2). The measurement results are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 (磁気測定の結果)
 表2に示すように、第1発明鋼を使用して製造されたスペーサ12は、磁束密度B10が1.0Tとなった。また、第2発明鋼を使用して製造されたスペーサ12は、磁束密度B10が0.9Tとなった。両スペーサ12ともに磁束密度B10が0.8T以上であり、優れた磁気特性を示している。
Figure JPOXMLDOC01-appb-T000002
(Result of magnetic measurement)
As shown in Table 2, the spacer 12 manufactured using the first invention steel had a magnetic flux density B10 of 1.0 T. The spacer 12 manufactured using the second invention steel had a magnetic flux density B10 of 0.9 T. Both of the spacers 12 have a magnetic flux density B10 of 0.8 T or more, and exhibit excellent magnetic characteristics.
 一方、第1比較用スペーサの磁束密度B10は0.5Tであり、スペーサの磁気特性の優劣の基準値となる0.6Tを下回っている。また、板厚1.8mmの第1発明鋼の冷延焼鈍酸洗板に対して調質とファインブランキングプレス加工のみ施して製造された第2比較用スペーサ(表2中の「第1発明鋼/焼鈍工程省略」に対応)も磁束密度B10が0.4Tであり、0.6Tを下回っている。 On the other hand, the magnetic flux density B10 of the first comparison spacer is 0.5 T, which is less than 0.6 T, which is a reference value of superiority or inferiority of the magnetic characteristics of the spacer. In addition, a second comparative spacer manufactured by subjecting a cold-rolled, annealed, pickled plate of a first invention steel of 1.8 mm thickness to only a heat treatment and a fine blanking press (“first invention spacer in Table 2 The magnetic flux density B10 is 0.4 T, which is less than 0.6 T.
 これらのことから、本発明の一態様に係る製造方法によって製造されたスペーサは、他の製造方法によって製造されたスペーサと比べて、その磁気特性が大幅に向上していることが明らかになった。 From these facts, it was revealed that the spacer manufactured by the manufacturing method according to one aspect of the present invention has significantly improved magnetic properties as compared to the spacer manufactured by the other manufacturing method. .
 なお、平面度および平行度については、製造方法に拘らず第1発明鋼または第2発明鋼を使用して製造されたスペーサが合格(○)となった。一般に、平面度が1μm以下、平行度が5μm以下であれば好ましいことから、スペーサの平面度および平行度を向上させるためには、含有成分の組成について本実施形態にて説明した条件を充足するフェライト系ステンレス鋼を使用することが好ましいことが明らかとなった。 With regard to the flatness and the parallelism, a spacer manufactured using the first invention steel or the second invention steel became a pass (o) regardless of the manufacturing method. Generally, it is preferable if the flatness is 1 μm or less and the parallelism is 5 μm or less. Therefore, in order to improve the flatness and the parallelism of the spacer, the conditions described in the present embodiment for the composition of the components are satisfied. It has become clear that it is preferable to use a ferritic stainless steel.
 (ひずみ量と磁束密度との関係)
 第1発明鋼を使用して第2工程終了後のスペーサ12に所定の圧力を加え、その圧力により発生したひずみ量と、加圧時の外部磁場H=10Oeにおける磁束密度B10とをそれぞれ測定した。測定結果を用いて、縦軸を磁束密度B10、横軸をひずみ量としたグラフを作成したところ、図3に示すようなグラフとなった。図3のグラフにおいては、比較用として第1比較用スペーサのグラフを破線で表示している。
(Relation between strain amount and magnetic flux density)
A predetermined pressure was applied to the spacer 12 after completion of the second step using the first invention steel, and the strain amount generated by the pressure and the magnetic flux density B10 at the external magnetic field H = 10 Oe at the time of pressurization were measured respectively . When a graph in which the vertical axis represents the magnetic flux density B10 and the horizontal axis represents the strain amount was created using the measurement results, a graph as shown in FIG. 3 was obtained. In the graph of FIG. 3, the graph of the first comparison spacer is indicated by a broken line for comparison.
 図3に示すように、第1発明鋼を使用して第2工程まで製造されたスペーサ12については、ひずみが生じていない状態において磁束密度B10が1.2Tとなっており、第1比較用スペーサと比べて2倍以上の磁束密度B10を有していることが認められた。また、ひずみ量が0%から約0.5%まで増加する間、磁束密度B10が急速に低下し、ひずみ量が約0.5%を超えた辺りから磁束密度B10の低下が緩やかになった。 As shown in FIG. 3, for the spacer 12 manufactured to the second step using the first invention steel, the magnetic flux density B10 is 1.2 T in the state where no strain occurs, and the first comparative example is used. It was found that the magnetic flux density B10 was twice or more that of the spacer. Also, while the amount of strain increased from 0% to about 0.5%, the magnetic flux density B10 rapidly decreased, and the decrease in magnetic flux density B10 became moderate after the amount of strain exceeded about 0.5%. .
 このことから、磁気特性に優れたスペーサ、すなわち高い磁束密度を有するスペーサを製造するには、成形時に加わったひずみを除去するのが有効であることが明らかとなった。この点からも、リング状の鋼材の残留応力を効果的に除去することができる、本発明の一態様に係るスペーサの製造方法が有用であるといえる。 From this, it became clear that it is effective to remove the strain applied at the time of molding in order to manufacture a spacer having excellent magnetic properties, ie, a spacer having a high magnetic flux density. Also from this point, it can be said that the method of manufacturing a spacer according to an aspect of the present invention, which can effectively remove the residual stress of the ring-shaped steel material, is useful.
 <まとめ>
 上記の課題を解決するために、本発明の一態様に係るスペーサは、ハードディスクドライブに備えられるスペーサであって、フェライト系ステンレス鋼の板材をリング形状に成形した後、リング形状に成形された前記板材を900℃以上オーステナイト変態開始温度Ac1(以下、単に「Ac1」とも記載する)未満の温度で加熱しつつ加圧することにより製造されている。
<Summary>
In order to solve the above problems, a spacer according to one aspect of the present invention is a spacer provided in a hard disk drive, and the above-mentioned plate formed into a ring shape after forming a plate material of ferritic stainless steel into a ring shape. The sheet material is manufactured by heating and pressing at a temperature of 900 ° C. or more and a temperature lower than the austenite transformation start temperature Ac1 (hereinafter, also simply described as “Ac1”).
 上記構成によれば、リング形状に成形されたフェライト系ステンレス鋼の板材が、900℃以上Ac1未満の温度で加熱しつつ加圧される。したがって、リング形状に成形されたことにより磁気特性が一旦低下した上記板材は、上記の加熱・加圧によってその磁気特性が向上する。そのため、例えばリング形状に成形された後に何の処理も施されることなく製造されたスペーサと比較して、磁気特性が向上したスペーサを実現することができる。 According to the above configuration, the plate material of the ferritic stainless steel formed into a ring shape is pressurized while being heated at a temperature of 900 ° C. or more and less than Ac1. Therefore, the above-mentioned plate material whose magnetic characteristics have once deteriorated due to being formed into a ring shape has its magnetic characteristics improved by the above heating and pressing. Therefore, for example, a spacer with improved magnetic characteristics can be realized as compared to a spacer manufactured without being subjected to any treatment after being formed into a ring shape.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、前記スペーサに対して外部磁場10Oeを印加した場合の磁束密度B10が0.6T以上、平行度5μm以下、平面度1μm以下であることが好ましい。 Further, in order to solve the above problems, the spacer according to one aspect of the present invention has a magnetic flux density B10 of 0.6 T or more and a parallelism of 5 μm or less when the external magnetic field 10 Oe is applied to the spacer. It is preferable that it is 1 micrometer or less.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、Cの含有量が0.08質量%以下、Siの含有量が0.80質量%以下、Mnの含有量が0.60質量%以下、Pの含有量が0.04質量%以下、Sの含有量が0.03質量%以下、Niの含有量が0.50質量%以下、Crの含有量が11質量%以上19質量%以下、Nの含有量が0.02質量%以下、Alの含有量が0.05質量%以下、Tiの含有量が0.05質量%以上0.50質量%以下であり、残部がFeおよび不可避的不純物からなり、清浄度が0.04%以下であることが好ましい。 Moreover, in order to solve said subject, content of C is 0.08 mass% or less, content of Si is 0.80 mass% or less, and content of Mn of the spacer which concerns on one aspect of this invention 0.60 mass% or less, P content is 0.04 mass% or less, S content is 0.03 mass% or less, Ni content is 0.50 mass% or less, Cr content is 11 mass % To 19% by mass, the content of N is 0.02% by mass or less, the content of Al is 0.05% by mass or less, and the content of Ti is 0.05% by mass to 0.50% by mass or less Preferably, the balance consists of Fe and unavoidable impurities, and the cleanliness is 0.04% or less.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、Cの含有量が0.02質量%以下であることが好ましい。 Moreover, in order to solve said subject, it is preferable that content of C which is the spacer which concerns on one aspect of this invention is 0.02 mass% or less.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、TiN系介在物の含有量が0.004質量%以上0.02質量%以下であることが好ましい。 Moreover, in order to solve said subject, it is preferable that content of a TiN type | system | group inclusion is 0.004 mass% or more and 0.02 mass% or less of the spacer which concerns on one aspect of this invention.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、前記リング形状の前記板材は、900℃以上Ac1未満の温度で加圧焼鈍されることが好ましい。 Moreover, in order to solve said subject, it is preferable that the spacer which concerns on 1 aspect of this invention pressure-anneals the said board | plate material of the said ring shape at the temperature of 900 degreeC or more and less than Ac1.
 上記構成によれば、リング形状に成形されたフェライト系ステンレス鋼の板材が、900℃以上Ac1未満の温度で加圧焼鈍される。したがって、リング形状に成形されたことにより磁気特性が一旦低下した上記板材は、上記の加圧焼鈍によってその磁気特性が向上する。そのため、磁気特性が向上したスペーサを実現することができる。 According to the above configuration, the plate material of the ferritic stainless steel formed into a ring shape is pressure annealed at a temperature of 900 ° C. or more and less than Ac1. Accordingly, the above-mentioned pressure annealing improves the magnetic properties of the above-mentioned plate whose magnetic properties have once been lowered by being formed into a ring shape. Therefore, a spacer with improved magnetic properties can be realized.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサは、前記リング形状の前記板材は、900℃以上Ac1未満の温度で熱間閉塞鍛造プレスされることが好ましい。 Moreover, in order to solve said subject, it is preferable that the spacer which concerns on 1 aspect of this invention is hot closing forging press the said board | plate material of the said ring shape at the temperature of 900 degreeC or more and less than Ac1.
 上記構成によれば、リング形状に成形されたフェライト系ステンレス鋼の板材が、900℃以上Ac1未満の温度で熱間閉塞鍛造プレスされる。したがって、リング形状に成形されたことにより磁気特性が一旦低下した上記板材は、上記の熱間閉塞鍛造プレスによってその磁気特性が向上する。そのため、磁気特性が向上したスペーサを実現することができる。 According to the above configuration, the plate material of the ferritic stainless steel formed into a ring shape is subjected to the hot close forging press at a temperature of 900 ° C. or more and less than Ac1. Therefore, the above-mentioned plate material whose magnetic characteristics have once deteriorated due to being formed into a ring shape is improved in its magnetic characteristics by the above-mentioned hot close forging press. Therefore, a spacer with improved magnetic properties can be realized.
 また、上記の課題を解決するために、本発明の一態様に係るハードディスクドライブは、前記スペーサを備えていることが好ましい。上記構成によれば、磁気特性に優れたスペーサが備えられていることにより、ハードディスクドライブにおいて、スピンドルモータにかかる回転の負荷を軽減できる。 Moreover, in order to solve said subject, it is preferable that the hard disk drive which concerns on 1 aspect of this invention is equipped with the said spacer. According to the above configuration, by providing the spacer having excellent magnetic characteristics, it is possible to reduce the rotational load applied to the spindle motor in the hard disk drive.
 また、上記の課題を解決するために、本発明の一態様に係るスペーサの製造方法は、ハードディスクドライブに備えられるスペーサの製造方法であって、フェライト系ステンレス鋼の板材をリング形状に成形する第1工程と、前記第1工程にてリング形状に成形された前記板材を、900℃以上Ac1未満の温度で加熱しつつ加圧する第2工程と、を含んでいる。 Further, in order to solve the above-described problems, a method of manufacturing a spacer according to one aspect of the present invention is a method of manufacturing a spacer provided in a hard disk drive, and a method of forming a plate material of ferritic stainless steel into a ring shape And a second step of heating and pressing the plate material formed into a ring shape in the first step at a temperature of 900 ° C. or more and less than Ac 1.
 上記構成によれば、例えばリング形状に成形された後に何の処理も施されないスペーサと比較して、磁気特性が向上したスペーサを製造することができる。 According to the above configuration, it is possible to manufacture a spacer having improved magnetic characteristics as compared to, for example, a spacer which has not been subjected to any treatment after being formed into a ring shape.
 <付記事項>
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
<Additional items>
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 1  ハードディスクドライブ
 12 スペーサ
1 Hard Disk Drive 12 Spacer

Claims (9)

  1.  ハードディスクドライブに備えられるスペーサであって、
     フェライト系ステンレス鋼の板材をリング形状に成形した後、リング形状に成形された前記板材を900℃以上オーステナイト変態開始温度Ac1未満の温度で加熱しつつ加圧することにより製造されているスペーサ。
    A spacer provided in a hard disk drive,
    A spacer manufactured by forming a plate material of ferritic stainless steel into a ring shape and then heating and pressing the plate material formed into the ring shape at a temperature of 900 ° C. or more and less than austenite transformation start temperature Ac1.
  2.  前記スペーサに対して外部磁場10Oeを印加した場合の磁束密度B10が0.6T以上、平行度5μm以下、平面度1μm以下である請求項1に記載のスペーサ。 The spacer according to claim 1, wherein a magnetic flux density B10 when an external magnetic field 10 Oe is applied to the spacer is 0.6 T or more, parallelism 5 μm or less, and flatness 1 μm or less.
  3.  Cの含有量が0.08質量%以下、Siの含有量が0.80質量%以下、Mnの含有量が0.60質量%以下、Pの含有量が0.04質量%以下、Sの含有量が0.03質量%以下、Niの含有量が0.50質量%以下、Crの含有量が11質量%以上19質量%以下、Nの含有量が0.02質量%以下、Alの含有量が0.05質量%以下、Tiの含有量が0.05質量%以上0.50質量%以下であり、残部がFeおよび不可避的不純物からなり、
     清浄度が0.04%以下である請求項1または2に記載のスペーサ。
    The content of C is 0.08% by mass or less, the content of Si is 0.80% by mass or less, the content of Mn is 0.60% by mass or less, the content of P is 0.04% by mass or less, S The content is 0.03% by mass or less, the content of Ni is 0.50% by mass or less, the content of Cr is 11% by mass to 19% by mass or less, the content of N is 0.02% by mass or less, Al The content is 0.05% by mass or less, the content of Ti is 0.05% by mass or more and 0.50% by mass or less, and the balance is composed of Fe and unavoidable impurities,
    The spacer according to claim 1 or 2, wherein the cleanliness is 0.04% or less.
  4.  Cの含有量が0.02質量%以下である請求項3に記載のスペーサ。 The spacer according to claim 3, wherein the content of C is 0.02 mass% or less.
  5.  TiN系介在物の含有量が0.004質量%以上0.02質量%以下である請求項3または4に記載のスペーサ。 The spacer according to claim 3 or 4, wherein the content of the TiN-based inclusions is 0.004% by mass or more and 0.02% by mass or less.
  6.  前記リング形状の前記板材は、900℃以上オーステナイト変態開始温度Ac1未満の温度で加圧焼鈍される請求項1から5のいずれか1項に記載のスペーサ。 The spacer according to any one of claims 1 to 5, wherein the ring-shaped plate material is pressure annealed at a temperature of 900 ° C or more and less than an austenite transformation start temperature Ac1.
  7.  前記リング形状の前記板材は、900℃以上オーステナイト変態開始温度Ac1未満の温度で熱間閉塞鍛造プレスされる請求項1から5のいずれか1項に記載のスペーサ。 The spacer according to any one of claims 1 to 5, wherein the ring-shaped plate material is subjected to hot closing forging press at a temperature of 900 ° C or more and less than an austenite transformation start temperature Ac1.
  8.  請求項1から7のいずれか1項に記載のスペーサを備えたことを特徴とするハードディスクドライブ。 A hard disk drive comprising the spacer according to any one of claims 1 to 7.
  9.  ハードディスクドライブに備えられるスペーサの製造方法であって、
     フェライト系ステンレス鋼の板材をリング形状に成形する第1工程と、
     前記第1工程にてリング形状に成形された前記板材を、900℃以上オーステナイト変態開始温度Ac1未満の温度で加熱しつつ加圧する第2工程と、を含んでいる製造方法。
    A method of manufacturing a spacer provided in a hard disk drive, comprising:
    A first step of forming a plate material of ferritic stainless steel into a ring shape;
    And a second step of heating and pressing the plate material formed into a ring shape in the first step at a temperature of 900 ° C. or more and less than an austenite transformation start temperature Ac1.
PCT/JP2018/045292 2017-12-26 2018-12-10 Spacer, hard disk drive, and production method for spacer WO2019131084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880083573.1A CN111511937B (en) 2017-12-26 2018-12-10 Spacer, hard disk drive, and method for manufacturing spacer
PH12020550939A PH12020550939A1 (en) 2017-12-26 2020-06-18 Spacer, hard disk drive, and production method for spacer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249387A JP6753613B2 (en) 2017-12-26 2017-12-26 Spacer and hard disk drive
JP2017-249387 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131084A1 true WO2019131084A1 (en) 2019-07-04

Family

ID=67067246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045292 WO2019131084A1 (en) 2017-12-26 2018-12-10 Spacer, hard disk drive, and production method for spacer

Country Status (5)

Country Link
JP (1) JP6753613B2 (en)
CN (1) CN111511937B (en)
PH (1) PH12020550939A1 (en)
TW (1) TWI758572B (en)
WO (1) WO2019131084A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221654A (en) * 2002-01-31 2003-08-08 Daido Steel Co Ltd Free-cutting stainless steel
JP2004068118A (en) * 2002-08-08 2004-03-04 Nisshin Steel Co Ltd Ferritic stainless steel excellent in fine blanking workability
JP2004332021A (en) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd Pb-FREE FREE-CUTTING STAINLESS STEEL WITH EXCELLENT OUTGAS CHARACTERISTICS
US20080019037A1 (en) * 2006-07-24 2008-01-24 Samsung Electronics Co., Ltd. Disk spacer and hard disk drive having the same
JP2012123884A (en) * 2010-12-10 2012-06-28 Furukawa Electric Co Ltd:The Method of manufacturing blank material for magnetic disk, and blank material for magnetic disk
JP2013222487A (en) * 2012-04-17 2013-10-28 Ordeal Enterprise (Es) Private Ltd Spacer for use in magnetic disk unit and magnetic disk unit
JP2018156710A (en) * 2017-03-17 2018-10-04 日新製鋼株式会社 Method for manufacturing spacer component for hard disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578632C (en) * 2004-05-20 2010-01-06 美蓓亚株式会社 Fluid dynamic pressure bearing, spindle motor and storage disk drive device having the fluid dynamic pressure bearing and method of manufacturing same
JP5973952B2 (en) * 2013-04-19 2016-08-23 株式会社神戸製鋼所 Aluminum alloy substrate for magnetic disk and manufacturing method thereof
CN105980613B (en) * 2014-03-26 2018-06-22 新日铁住金不锈钢株式会社 Ferrite-group stainless steel and its manufacturing method
JP2016196019A (en) * 2015-04-03 2016-11-24 日新製鋼株式会社 Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet
CN108884520B (en) * 2016-03-25 2020-07-17 株式会社神户制钢所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221654A (en) * 2002-01-31 2003-08-08 Daido Steel Co Ltd Free-cutting stainless steel
JP2004068118A (en) * 2002-08-08 2004-03-04 Nisshin Steel Co Ltd Ferritic stainless steel excellent in fine blanking workability
JP2004332021A (en) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd Pb-FREE FREE-CUTTING STAINLESS STEEL WITH EXCELLENT OUTGAS CHARACTERISTICS
US20080019037A1 (en) * 2006-07-24 2008-01-24 Samsung Electronics Co., Ltd. Disk spacer and hard disk drive having the same
JP2012123884A (en) * 2010-12-10 2012-06-28 Furukawa Electric Co Ltd:The Method of manufacturing blank material for magnetic disk, and blank material for magnetic disk
JP2013222487A (en) * 2012-04-17 2013-10-28 Ordeal Enterprise (Es) Private Ltd Spacer for use in magnetic disk unit and magnetic disk unit
JP2018156710A (en) * 2017-03-17 2018-10-04 日新製鋼株式会社 Method for manufacturing spacer component for hard disk

Also Published As

Publication number Publication date
CN111511937B (en) 2021-03-12
JP2019112706A (en) 2019-07-11
CN111511937A (en) 2020-08-07
JP6753613B2 (en) 2020-09-09
PH12020550939A1 (en) 2021-05-10
TWI758572B (en) 2022-03-21
TW201930613A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
RU2724810C2 (en) Sheet or strip of feco alloy, fesi alloy or fe, method of their manufacture, transformer magnetic core made from said sheet or strip, and transformer including such core
KR100845072B1 (en) Iron Base Alloy Plate Material for Voice Coil Motor Magnetic Circuit Yoke and Yoke for Voice Coil Motor Magnetic Circuit
EP1763042A1 (en) Magnetic circuit with excellent corrosion resistance, and voice coil motor or actuator
US5496419A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
US20220018006A1 (en) High-strength nonmagnetic austenitic stainless steel and manufacturing method therefor
CN113396239A (en) Austenitic stainless steel and method for producing same
EP0684320A1 (en) Process of making electrical steels
JP6375127B2 (en) Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy
JP6284666B1 (en) Manufacturing method of hard disk spacer parts
JP6351780B1 (en) Ferritic stainless steel and spacer
WO2019131084A1 (en) Spacer, hard disk drive, and production method for spacer
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JPH08143994A (en) Wear resistant high magnetic permeability alloy and its production and magnetic recording reproducing head
JP6351781B1 (en) Ferritic stainless steel, spacer, and spacer manufacturing method
CN109306432A (en) Cold-rolled strip steel for bimetal saw blade backing material and manufacturing method thereof
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2010133023A (en) Ferritic stainless steel-based soft magnetic material and method for production thereof
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JP3685282B2 (en) Soft magnetic stainless steel with excellent maximum permeability
JP2003041350A (en) Martensitic stainless steel sheet for flapper valve and manufacturing method therefor
KR20040055327A (en) The method for producing hot coil of duplex stainless steel in good shape
JPH04276022A (en) Manufacture of ni-fe-cr series soft magnetic alloy sheet
JPS63235429A (en) Manufacture of nonmagnetic material
JP2007169760A (en) Method for producing iron-cobalt-based alloy
JPS60239978A (en) Gimbals plate and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895037

Country of ref document: EP

Kind code of ref document: A1