WO2019130719A1 - Stoker-furnace sealing device and stoker furnace - Google Patents

Stoker-furnace sealing device and stoker furnace Download PDF

Info

Publication number
WO2019130719A1
WO2019130719A1 PCT/JP2018/037825 JP2018037825W WO2019130719A1 WO 2019130719 A1 WO2019130719 A1 WO 2019130719A1 JP 2018037825 W JP2018037825 W JP 2018037825W WO 2019130719 A1 WO2019130719 A1 WO 2019130719A1
Authority
WO
WIPO (PCT)
Prior art keywords
grate
stoker
stage
combustion stage
combustion
Prior art date
Application number
PCT/JP2018/037825
Other languages
French (fr)
Japanese (ja)
Inventor
勇紀 小柴
成貴 小高
寺部 保典
勝 秋元
聡明 小原
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to SG11202000754PA priority Critical patent/SG11202000754PA/en
Priority to DK18895280.8T priority patent/DK3734155T3/en
Priority to CN201880001829.XA priority patent/CN110214249B/en
Priority to RU2020114355A priority patent/RU2744998C1/en
Priority to BR112020008052-7A priority patent/BR112020008052B1/en
Priority to EP18895280.8A priority patent/EP3734155B1/en
Publication of WO2019130719A1 publication Critical patent/WO2019130719A1/en
Priority to PH12020500214A priority patent/PH12020500214A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H7/00Inclined or stepped grates
    • F23H7/06Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding
    • F23H7/08Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding reciprocating along their axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H2900/00Special features of combustion grates

Definitions

  • the present invention relates to a seal device for a stoker furnace and a stoker furnace.
  • a stoker furnace which can be incinerated efficiently without selecting a large amount of incinerators is known.
  • a stoker furnace what comprises stoke a stairway type and is provided with a drying stage, a combustion stage, and a post-combustion stage so that each function of drying, combustion, and a post-combustion can be performed is known.
  • the seal hardware pre-grate
  • the moving grate is moved. And prevents the inflow of combustion air from other than the grate (see, for example, Patent Document 1).
  • the seal hardware can rotate about the pin and move up and down following the movement of the moving grate.
  • rotational movement tends to adversely affect sealability.
  • the foreign matter gets caught between the seal hardware and the moving grate, the foreign matter can not be eliminated early and air may flow into the furnace from the caught gap, which may cause abnormal combustion. there were.
  • An object of the present invention is to provide a stoker furnace sealing device and a stoker furnace that can minimize the movement of a fore grate and suppress the reduction in sealing performance.
  • the seal device of the present invention comprises a plurality of fixed grates and a plurality of moving grates, and conveys the incineration material while transporting the material to be incinerated between the falling wall of the stoker furnace and the moving grate.
  • a seal device for a stoker furnace for sealing the front grate arranged so that its tip is in contact with the moving grate, and a top support plate fixed to the drop wall and supporting the top surface of the front grate
  • a support portion having a bottom support plate disposed below the top support plate and supporting the bottom surface of the front grate, the front grate as the front grate moves as the moving grate moves And a spring biased in a direction opposite to the moving direction.
  • the spring exerts a pulling force in the direction opposite to the moving direction of the moving grate. For this reason, even when waste biting occurs between the moving grate and the fore grate, a force acts on returning the fore grate sandwiching the waste.
  • the movement of the fore grate is limited by the support portion, the movement of the fore grate can be minimized, and the decrease in sealability can be suppressed.
  • a shaft-shaped member fixed to the front grate or the support portion and extending in one direction corresponding to the conveyance direction of the incineration material, and the shaft-like member being slidable in the one direction
  • a shaft support that supports the
  • the moving direction of the front grate can be restricted by the shaft-like member and the shaft support portion, and the contact state between the front grate and the moving grate can be improved.
  • the seal device includes a movement direction restricting portion for restricting the movement direction of the front grate to the advancing and retreating in one direction, and the movement direction restricting portion is a long penetration in the one direction formed in the front grate
  • a hole may be provided, and a guide member may be inserted into the through hole and fixed to the support portion.
  • the stoker furnace on which the sealing device of the present invention is disposed is a drying stage, a combustion stage, and a post-combustion stage, each of which supplies a material to be incinerated from a feeder and includes a plurality of fixed grates and a plurality of moving grates.
  • a sequential-type stoker furnace that performs drying, combustion, and post-combustion while sequentially transporting incineration materials, wherein the drying stage is disposed to be inclined such that the downstream side in the transport direction is directed downward, and the combustion is performed
  • the stage is connected to the drying stage and is inclined such that the downstream side in the conveying direction is upward
  • the post-combustion stage is connected to the combustion stage in the downstream direction such that the downstream side in the conveying direction is upward
  • the stack wall between the drying stage and the combustion stage in a state in which the front grate is pushed in the downstream direction of the transport direction, the seal for any of the above stoker furnaces Characterized by the arrangement of the device .
  • the seal device for any one of the above-mentioned stoker furnaces is applied to the falling wall between the feeder and the combustion stage in a state in which the fore grate is urged in the direction of drawing upstream May be arranged.
  • the present invention it is possible to minimize the movement of the pregrate and to suppress the decrease in sealability, that is, to improve the sealability.
  • FIG. 4 is a view on arrow IV-IV in FIG. 3 and is a cross-sectional view of the seal device of the present invention. It is a sectional side view of the seal device provided in the 2nd falling wall of the stoker furnace of FIG. It is a sectional side view of the seal device of the modification of the present invention.
  • the stoker furnace of the present embodiment is a stoker furnace for burning waste such as waste, and as shown in FIG.
  • the hopper 2 for temporarily storing the waste T and the incineration for burning the waste T
  • the feeder 4 pushes out the incineration material T supplied onto the feed table 7 continuously through the hopper 2 into the incinerator 3.
  • the feeder 4 reciprocates on the feed table 7 with a predetermined stroke by means of a feeder driving device 8.
  • the air box 6 supplies primary air from a blower (not shown) to each part of the stoker 5.
  • the incinerator 3 is provided above the stoker 5 and has a combustion chamber 9 consisting of a primary combustion chamber and a secondary combustion chamber. Connected to the incinerator 3 is a blower 10 for supplying secondary air to the combustion chamber 9.
  • the stoker 5 is a combustion device in which grates 15 and 16 are arranged in steps.
  • the incinerator T burns on the stoker 5.
  • the direction in which the incinerator T is transported is referred to as a transport direction D.
  • the incinerator T is transported on the stoker 5 in the transport direction D.
  • the left side is the upstream side D1 in the transport direction
  • the right side is the downstream side D2 in the transport direction.
  • the surface on which the grate 15, 16 is attached is referred to as a mounting surface, and the drying stage 11, the combustion stage 12, or the horizontal surface and the installation centering on the upstream end (11b, 12b, 13b) of the post-combustion stage 13
  • the angle formed by the faces is called the stoker tilt angle (setting angle). If the transport direction downstream side D2 of the installation surface is upward from the horizontal plane, the stoker inclination angle is a positive value. If the transport direction downstream side D2 of the installation surface is downward from the horizontal plane, the stoker inclination angle is a negative value. I will explain here.
  • the stalker 5 has a drying stage 11 for drying the incinerator T, a combustion stage 12 for incinerating the incinerator T, and an unburned part completely incinerated sequentially from the transport direction upstream side D1 of the incinerator T, And a post-combustion stage 13 for combustion).
  • the drying stage 11, the combustion stage 12, and the post-combustion stage 13 perform drying, combustion, and post-combustion, respectively, while sequentially transporting the incinerator T.
  • Each stage 11, 12, 13 has a plurality of fixed grates 15 and a plurality of moving grates 16.
  • the fixed grate 15 and the moving grate 16 are alternately arranged in the transport direction D.
  • the moving grate 16 reciprocates along the transport direction D.
  • the reciprocation of the moving grate 16 transports and agitates the incinerator T on the stoker 5. That is, the lower layer portion of the incinerator T is moved and replaced with the upper layer portion.
  • the drying stage 11 receives the incinerator T which is pushed out by the feeder 4 and dropped into the incinerator 3, evaporates the water of the incinerator T, and partially decomposes it.
  • the combustion stage 12 ignites the material T to be incinerated dried in the drying stage 11 by the primary air supplied from the lower air box 6, and burns the volatile matter and the fixed carbon content.
  • the post-combustion stage 13 burns the unburned components such as fixed carbon components passed without being sufficiently burned in the combustion stage 12 until it is completely ashed.
  • An ash outlet 17 is provided at the outlet of the post-combustion stage 13. Ash is discharged from the incinerator 3 through the ash outlet 17.
  • Each of the drying stage 11, the combustion stage 12 and the post-combustion stage 13 has a drive mechanism 18 for driving a moving grate 16. That is, the drying stage 11, the combustion stage 12, and the post-combustion stage 13 separately have drive mechanisms 18 for driving the plurality of moving grates 16.
  • the drive mechanism 18 is attached to a beam 19 provided on the stoker 5.
  • the drive mechanism 18 has a hydraulic cylinder 20 attached to the beam 19, an arm 21 operated by the hydraulic cylinder 20, and a beam 22 connected to the tip of the arm 21.
  • the beam 22 and the moving grate 16 are connected via a bracket 23.
  • the arm 21 operates by the expansion and contraction of the rod of the hydraulic cylinder 20.
  • the hydraulic cylinder 20 is used as the drive mechanism 18, the present invention is not limited to this.
  • a hydraulic motor, an electric cylinder, a conductive linear motor or the like can be adopted.
  • the form of the drive mechanism 18 is not limited to the form described above, and may be any form as long as the movable grate 16 can be reciprocated.
  • the beam 22 and the hydraulic cylinder 20 may be directly coupled and driven without arranging the arm 21.
  • the stoker furnace 1 has at least a part of the drying stage 11, the combustion stage 12, and the post combustion stage 13 at the same speed or driving speed of the moving grate 16 in the post combustion stage 13. Can be at different speeds. For example, when the incineration material T required to be sufficiently burned in the combustion stage 12 is charged, the speed of driving of the moving grate 16 of the combustion stage 12 is reduced to reduce the incineration material on the combustion stage 12 The transport speed of T can be reduced to allow sufficient combustion.
  • the fixed grate 15 and the moving grate 16 are such that the downstream side D2 in the conveying direction is upward with respect to the mounting surfaces 11a, 12a, 13a of the drying stage 11, the combustion stage 12, and the post combustion stage 13. It is arranged to be inclined. Moreover, the grate 15 and 16 is arrange
  • a part of the moving grate 16 of the drying stage 11 is a projecting grate 16P (the others are normal grates described later).
  • the movable grate 16 in the range R1 of 50% to 80% from the end of the downstream side D2 in the transport direction D of the drying stage 11 becomes the protuberance grate 16P.
  • the use of the protuberance grate 16P can improve the stirring power.
  • the fixed grate 15 is a grate without projections on the top surface of the tip, and this shape is called a normal grate.
  • the present invention is not limited thereto, and both the moving grate 16 and the fixed grate 15 may be provided with the projecting grate.
  • the range in which the protuberance grate 16P is provided is not limited to the above-mentioned range, and for example, all the grate of the drying stage 11 may be the protuberance grate 16P.
  • all grates (fixed grate and moving grate) in the drying stage may be normal grates.
  • a part of the moving grate 16 of the combustion stage 12 is a projecting grate 16P.
  • the movable grate 16 in the range R2 of 50% to 80% from the end of the downstream side D2 in the transport direction D of the combustion stage 12 is the protuberance grate 16P.
  • the other moving grates 16 of the combustion stage 12 are normal grates.
  • both the moving grate 16 and the fixed grate 15 may be provided with protrusions according to the nature and type of the material T to be incinerated, or all grates (fixed grate and moving grate ) May be a normal grate.
  • the grate of the post-combustion stage 13 is shown in FIG. 2 as the moving grate 16 and the fixed grate 15 as all normal grate, it is similar to the drying stage 11 and the combustion stage 12 with the projecting grate It may be adopted.
  • the drying stage 11 of the stoker 5 of the present embodiment is disposed downward. That is, the installation surface 11a of the drying stage 11 is inclined so that the downstream side in the transport direction is low.
  • the stoker inclination angle ⁇ 1 of the drying stage 11, which is the angle between the horizontal plane around the upstream end 11b of the drying stage 11 and the conveyance direction side of the mounting surface 11a is -15 ° (minus 15 °) Is an angle between -25 ° (minus 25 °).
  • the combustion stage 12 of the stoker 5 of the present embodiment is disposed upward. That is, the installation surface 12 a of the combustion stage 12 is inclined so that the downstream side in the transport direction is high.
  • the stoker inclination angle ⁇ 2 of the combustion stage 12 which is the angle on the conveyance direction side of the mounting surface 12a with the horizontal plane centering on the upstream end 12b of the combustion stage 12 is from + 5 ° (plus 5 °) It is an angle between + 15 ° (plus 15 °).
  • the post-combustion stage 13 of the stoker 5 of the present embodiment is disposed upward. That is, the installation surface 13a of the post-combustion stage 13 is inclined so that the downstream side in the transport direction is high.
  • the stoker inclination angle ⁇ 3 of the post-combustion stage 13 which is the angle between the horizontal surface centering on the upstream end 13b of the post-combustion stage 13 and the conveyance direction side of the mounting surface 13a is + 5 ° (plus 5 ° ) Is an angle between + 15 ° (plus 15 °).
  • the stoker 5 has a first sealing device 30A that seals between the first falling wall 27 and the moving grate 16.
  • the first seal device 30A is a device that prevents the inflow of combustion air from other than the grate when the moving grate 16 of the drying stage 11 moves.
  • the first seal device 30A supports the front grate 31 disposed so that its tip (the transport direction downstream side D2) is in contact with the moving grate 16, and the front grate 31 so as to slide. And a spring 35 (compression coil spring) that biases the supporting part 32 and the front grate 31 in the direction opposite to the direction in which the front grate 31 moves as the moving grate 16 moves; And a movement direction restriction unit 44 for restricting the movement direction.
  • the angle of the front grate 31 to the horizontal surface corresponds to the angle of the mounting surface 11a of the drying stage 11. That is, the front grate 31 of the first sealing device 30A is disposed such that the downstream side D2 in the transport direction is downward.
  • the moving direction of the front grate 31 is a direction along the conveying direction D, but strictly speaking, it is a direction along the mounting surface 11a of the drying stage 11 which is inclined so that the downstream side D2 is downward. .
  • the support portion 32 is fixed to the first falling wall 27 and fixed to the upper surface support plate 33 supporting the upper surface 31 a of the front grate 31 and to the upper surface support plate 33, and supports the bottom surface 31 b of the front grate 31. And a plate 34.
  • the front grate 31 has a rectangular plate shape, and includes a front grate main body 37 having a protrusion 31 c at its tip, and an axial member 38 connected to the rear end of the front grate main body 37. ing. An external thread groove is formed in at least a part of the shaft-like member 38. As shown in FIG. 3 and FIG. 4, the front grate main body 37 is a rectangular plate-like member.
  • the protrusion 31 c is formed to be in contact with the back surface 16 a of the movable grate 16.
  • the protrusions 31 c extend in the width direction of the incinerator 3 (the direction orthogonal to the sheet of FIG. 1). By the projections 31c contacting the moving grate 16 across the width direction, the inflow of combustion air from other than the grate is prevented.
  • the upper surface support plate 33 is a plate-like member that supports the upper surface 31 a of the front grate 31.
  • the upper surface support plate 33 and the front grate 31 are arranged such that the lower surface 33 a of the upper surface support plate 33 and the upper surface 31 a of the front grate 31 are in surface contact with each other.
  • the upper surface support plate 33 is disposed to be inclined such that the downstream side D2 in the transport direction is low.
  • a first shaft support portion 40 slidably supporting the axial member 38 of the front grate 31 along the moving direction M of the front grate 31 is provided. It is provided.
  • the first shaft support portion 40 of the present embodiment is a bearing provided on the first shaft support plate 39 formed by bending the upper surface support plate 33.
  • the bottom support plate 34 is a plate-like member that supports the lower surface 31 b of the front grate 31.
  • the bottom support plate 34 and the front grate 31 are disposed such that the top surface 34 a of the bottom support plate 34 and the bottom surface 31 b of the front grate 31 are in surface contact with each other.
  • the bottom support plate 34 is disposed such that the main surface of the top support plate 33 and the main surface of the bottom support plate 34 are parallel to each other.
  • the bottom support plate 34 is fixed to the top support plate 33 via a second shaft support plate 41 formed by bending an end portion of the bottom support plate 34 on the upstream side in the transport direction D1.
  • the second shaft support plate 41 is provided with a second shaft support portion 42 which supports the shaft-like member 38 of the front grate 31 in cooperation with the first shaft support portion 40.
  • the second shaft support portion 42 is a bearing provided on the second shaft support plate 41.
  • the first shaft support portion 40 and the second shaft support portion 42 are the direction M, which is one direction corresponding to the transport direction D, of the shaft-like member 38 of the front grate 31, and the upper surface support plate 33 and the bottom surface support It is supported along the direction parallel to the main surface of the plate 34.
  • the shaft-like member 38 extends along the direction M by being supported by the first shaft support 40 and the second shaft support 42.
  • the movement of the front grate 31 in the direction orthogonal to the direction M is restricted by the upper surface support plate 33 and the bottom surface support plate 34, but the axial movement of the axial member 38 is not restricted.
  • the movement direction limiting portion 44 includes two long through holes 45 along the direction M formed in the front grate 31, and two guide members 46 inserted into the through holes 45 and fixed to the support portion 32.
  • the through hole 45 is a long hole formed along the moving direction of the front grate 31.
  • the guide member 46 is a rod-like member provided to connect the upper surface support plate 33 and the bottom surface support plate 34.
  • the guide member 46 can be formed, for example, by a bolt.
  • the spring 35 is disposed between a nut 47 engaged with the male screw groove of the shaft-like member 38 and the first shaft support plate 39.
  • the shaft-shaped member 38 is inserted inside the spring 35.
  • One end of the spring 35 is fixed to the nut 47, and the other end of the spring 35 is fixed to the first shaft support plate 39. That is, the elastic force of the spring 35 acts on the nut 47 and the first shaft support plate 39.
  • the spring 35 of the seal device 30A of the first falling wall 27 is balanced in a state where it urges the front grate 31 in the direction of drawing the upstream side D1 toward the transport direction upstream. From this state, when the front grate 31 moves to the conveyance direction downstream side D2 with the movement of the movable grate 16 to the conveyance direction downstream side D2, the spring 35 is extended. By the spring 35 being extended from the balanced state, the front grate 31 is biased to the transport direction upstream side D1 (in the direction opposite to the direction in which the front grate 31 moves along with the movement of the moving grate 16). .
  • the spring 35 contracts.
  • the front grate 31 is biased to the downstream side D2 in the transport direction (opposite to the direction in which the front grate 31 moves with the movement of the moving grate 16).
  • a second falling wall 28 is formed between the drying stage 11 and the combustion stage 12.
  • the end 11 c on the downstream side of the drying stage 11 in the transport direction is formed to be higher in the vertical direction than the end 12 b on the upstream side of the combustion stage 12 in the transport direction.
  • the second falling wall 28 is provided with a second sealing device 30B.
  • the angle of the front grate 31 with respect to the horizontal plane corresponds to the angle of the mounting surface 12 a of the combustion stage 12. That is, the front grate 31 of the second sealing device 30B is disposed such that the downstream side D2 in the transport direction is upward.
  • the spring 35 of the second sealing device 30B is balanced in a state where it is urged in the direction of pushing the front grate 31 toward the downstream side D2 in the transport direction. From this state, when the front grate 31 moves to the conveyance direction downstream side D2 with the movement of the movable grate 16 to the conveyance direction downstream side D2, the spring 35 is extended. By the spring 35 being extended from the balanced state, the front grate 31 is biased to the transport direction upstream side D1 (in the direction opposite to the direction in which the front grate 31 moves along with the movement of the moving grate 16). .
  • the spring 35 contracts.
  • the front grate 31 is biased to the downstream side D2 in the transport direction (opposite to the direction in which the front grate 31 moves with the movement of the moving grate 16).
  • a third head wall 29 is formed between the combustion stage 12 and the post-combustion stage 13.
  • the end 12 c of the combustion stage 12 on the downstream side in the conveyance direction is formed to be higher in the vertical direction than the end 13 b on the upstream side of the conveyance direction of the rear combustion stage 13.
  • a third seal device 30C is provided on the third head wall 29.
  • the configuration of the third seal device 30C is the same as that of the second seal device 30B.
  • the spring 35 constituting the sealing device 30 can be adjusted by changing the position of the nut 47.
  • the sealing device 30 of the present embodiment can extend the spring 35 by bringing the nut 47 close to the front grate main body 37.
  • the end 12 c downstream of the combustion stage 12 in the transport direction and the end 13 c downstream of the post combustion stage 13 in the transport direction are substantially identical in the vertical direction, or the end of the post combustion stage 13 13 c is disposed above the end 12 c of the combustion stage 12.
  • the stoker furnace 1 of the present embodiment is an example in which the end 12 c downstream of the combustion stage 12 in the conveyance direction and the end 13 c downstream of the post combustion stage 13 in the conveyance direction are at the same position in the vertical direction.
  • the function of the drying stage 11 is to dry the moisture in the incinerator T efficiently by radiant heat from the flame above the incinerator T and sensible heat of the primary air from under the grate.
  • the radiation heat from the flame has a higher degree of contribution to drying than the sensible heat of the primary air, and the drying of the upper layer portion of the material T to be incinerated tends to proceed.
  • the drying speed is improved by moving the lower layer portion of the incinerator T upward by the stirring operation by the grate and replacing it with the upper layer portion.
  • the drying stage 11 basically does not burn, so it is necessary to ensure a sufficient length for water evaporation to proceed. Since the longer the length, the larger the apparatus and the more expensive it is, it is required to shorten the stoker length as much as possible.
  • the absolute value of the stoker inclination angle is larger than the repose angle of the incinerator T, it collapses under its own weight and a layer of the incinerator T is not formed.
  • the absolute value of the stoker inclination angle is made smaller than the repose angle of the incinerator T, the movement of the incinerator T by gravity (the movement by its own weight) is reduced although it is a stoker.
  • the mounting surface is upward, that is, when the stoker inclination angle is inclined at a positive value (positive value)
  • the gravity acts to push back the incinerator T from the transport direction.
  • the transport amount of the incinerator T by the stoker 5 is less than the amount of the incinerator T input, the transport limit is reached and the process becomes impossible.
  • the optimum stoker inclination angle varies depending on the amount of the incinerator T to be introduced and the moisture content of the incinerator T.
  • the case where the amount of incineration material T to be input is large and the moisture content is high (the amount of water content is large) will be described as a case where the input incineration material load is large.
  • the amount of incineration material T to be introduced is small and the water content is low, the load on the incineration object to be injected is small.
  • the horizontal axis represents the stoker inclination angle of the drying stage 11
  • the vertical axis represents the required stoker length of the drying stage 11.
  • the loading incineration load is largest in order from (1)
  • the required stoker length is a distance at which 95% of the water content of the incineration material T to be input is dried.
  • the “repose angle” on the horizontal axis indicates the repose angle of the material T to be incinerated.
  • the stoker inclination angle of ⁇ 30 ° is the limit for forming the layer of the incinerator T.
  • the necessary stoker length decreases as the stoker inclination angle becomes loose, but when the stoker inclination angle turns to a positive value, the necessary stoker length gradually becomes longer.
  • the incinerator T has any property and amount Stoke inclination angle of the optimum drying stage 11 that can properly process even if there is the shortest stocker length is an angle between -15 ° (minus 15 degrees) and -25 ° (minus 25 degrees) It turns out that it is a range.
  • the optimum value is -20 ° (minus 20 °).
  • the stoker inclination angle of the combustion stage 12 is between + 5 ° (plus 5 °) to + 15 ° (plus 15 °) The reason why it is suitable to use an angle will be described.
  • the function of the combustion stage 12 maintains the temperature of the layer of the incinerator T by radiant heat from the flame and self-combustion heat, promotes the generation of combustible gas by thermal decomposition of volatile matter, and burns fixed carbon remaining after thermal decomposition. It is something to do.
  • the required stoker length of the combustion stage 12 is determined by the time required to burn fixed carbon.
  • the horizontal axis is the stoker inclination angle of the combustion stage
  • the ordinate is the required stoker length of the combustion stage.
  • the relationship between the stoker inclination angle of the combustion stage and the required stoker length of the combustion stage is plotted from the case where the load is the largest (1) to the case where the input incineration load is the smallest (4) in order.
  • the required stoker length of the combustion stage is a distance at which 95% of the combustible fraction evaporates or burns.
  • the stoker inclination angle of ⁇ 30 ° is the limit for forming the layer of the incinerator T.
  • the required stoker length decreases as the angle becomes loose.
  • the appropriate range of the stoker inclination angle can be a range surrounded by a dashed dotted line shown in FIG.
  • the drying stage 11 has the Stoker inclination angle in the appropriate range, the moisture content reduction and the volume reduction of waste are promoted. Therefore, for example, even if the load at the drying stage 11 corresponds to (1), the load at the combustion stage 12 changes to one corresponding to (3) and (4).
  • the stoker inclination angle can be adopted. That is, by making the combustion stage upward, the residence time necessary for the combustion of fixed carbon can be secured, and the stoker length can be further shortened.
  • the horizontal axis represents the stoker inclination angle of the combustion stage 12
  • the vertical axis represents the stoker length necessary for both the drying stage 11 and the combustion stage 12, and the load of the incinerator T to be input is largest
  • the plot of the relationship between the stoker inclination angle of the combustion stage 12 and the stoker length necessary for both the drying stage 11 and the combustion stage 12 until the load of the incinerator T to be input is smallest (4) in order from It is.
  • the stoker inclination angle of the drying stage 11 is set to the optimal value of ⁇ 20 ° (minus 20 °).
  • the appropriate range of the stoker inclination angle of the combustion stage 12 is an angle between + 8 ° (plus 8 °) and + 12 ° (plus 12 °). Further, when the stoker inclination angle of the drying stage 11 is ⁇ 20 ° (minus 20 degrees) of the optimum value, the optimum value of the stoker inclination angle of the combustion stage 12 is + 10 ° (+10 degrees).
  • the necessary stoker length of the drying stage 11 and the combustion stage 12 can be made as short as possible by making each stoker inclination angle into an appropriate range, particularly an optimum value, and even if the post-combustion stage 13 is included A relatively small size and low cost stoker furnace can be used.
  • any kind of incineration material T can be conveyed without problems to the combustion stage 12 and the combustion stage 12 and the post-combustion stage 13 are upward By inclining, the material T to be incinerated is sufficiently burned and transported downstream of the combustion stage 12 without easily slipping or rolling off.
  • the drying stage 11 is rolled or the like and conveyed to the combustion stage 12 at an early stage.
  • the combustion stage 12 and the post-combustion stage 13 are inclined upward, the incinerator T which has rolled down the drying stage 11 does not further roll down the combustion stage 12 and the post-combustion stage 13.
  • the material T to be incinerated with a high water content is transported to the combustion stage 12 while being dried without staying in the drying stage 11, so that it is certainly incinerated in the combustion stage 12 as well.
  • the incinerator T can be continuously fed regardless of the property of the incinerator T, and the unburned residue of the incinerator T can be eliminated.
  • the end 13c downstream of the post-combustion stage 13 in the transport direction is substantially the same position as the end 12c downstream of the combustion stage 12 in the transport direction in the vertical direction, or from the end 12c of the combustion stage 12 Also placed above.
  • the incinerator T rolls off the drying stage 11 or the like, it is possible to prevent the incinerator T from being discharged from the post-combustion stage 13 without being sufficiently burned.
  • the spring 35 applies a pulling force in the direction opposite to the direction of movement of the movable grate 16 on the front grate 31 dragged and moved slightly by the movable grate 16. For this reason, even when dust biting occurs between the moving grate 16 and the front grate 31, a force acts on returning the front grate 31 sandwiching the dust. Further, since the moving direction of the front grate 31 is restricted by the support portion 32, the movement of the front grate 31 can be minimized, and the reduction in sealing performance can be suppressed.
  • the movement direction of the front grate 31 is restricted only by the shaft-like member 38 and the shaft support portions 40 and 42 in the direction in which the front grate 31 contacts the moving grate. It can be improved. Further, the moving direction restricting portion 44 configured by the through hole 45 and the guide member 46 can further improve the contact state between the front grate 31 and the moving grate 16.
  • the direction in which the sealing device 30 of the present invention is pushed in the biasing direction as described above is applied to the stoker furnace in which the drying stage 11 faces downward at the above angle and the combustion stage 12 and the post combustion stage 13 face at the above angle.
  • the sealability of the stoker furnace can be improved by appropriately setting and arranging in the “drawing direction” and the “drawing direction”.
  • the structure of the shaft-like member 38 of the sealing device 30 and the structure of the shaft support portion is not limited to the above-described structure.
  • the shaft-like member 38B may be fixed to the support 32B (upper surface support plate 33B), and the cylindrical shaft support 40B may be fixed to the front grate main body 37.
  • the spring 35 connects the nut 47 and the shaft support 40B.
  • the shaft support portion 40B can slide on the inner peripheral surface of the through hole 41a formed in the second shaft support plate 41 of the bottom surface support plate 34. That is, as long as the front grate 31 can be biased in the direction opposite to the direction in which the front grate 31 moves as the moving grate 16 moves, any configuration is possible.
  • the sealing device 30 is not limited to the present embodiment, and can be effectively applied to a stoker furnace in which a plate-like moving grate exists just under the falling wall and reciprocates, but as in the present embodiment If the direction of inclination of each step is different, it is more preferable because the equipment cost can be reduced by the same mechanism.
  • the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within the scope of the present invention are also included.
  • the configuration for biasing the front grate 31 is not limited to the above-described configuration. For example, not the compression coil spring but a tension coil spring or a disc spring may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

Provided is a stoker-furnace sealing device (30) that is provided with a plurality of fixed grates and a plurality of moving grates (16) and that seals the space between the moving grates (16) and a drop wall (27) of a stoker furnace that performs incineration of an object to be incinerated, while conveying the object to be incinerated. The stoker-furnace sealing device (30) includes: a front grate (31) that is disposed such that a distal end (31c) thereof is in contact with the moving grates (16); a supporting part (32) having a top-surface supporting plate (33) that is fixed to the drop wall (27) and that supports a top surface (31a) of the front grate (31) and a bottom-surface supporting plate (34) that is disposed below the top-surface supporting plate (33) and that supports a bottom surface (31b) of the front grate (31); and a spring (35) that biases the front grate (31) in the opposite direction from the direction in which the front grate (31) moves with movement of the moving grates (16).

Description

ストーカ炉用シール装置及びストーカ炉Stoker furnace seal device and stoker furnace
 本発明は、ストーカ炉用シール装置及びストーカ炉に関する。本願は、2017年12月28日に日本に出願された特願2017-253145号について優先権を主張し、その内容をここに援用する。 The present invention relates to a seal device for a stoker furnace and a stoker furnace. Priority is claimed on Japanese Patent Application No. 2017-253145, filed Dec. 28, 2017, the content of which is incorporated herein by reference.
 ごみ等の被焼却物を焼却する焼却炉として、大量の被焼却物を選別することなく効率的に焼却処理することができるストーカ炉が知られている。ストーカ炉としては、ストーカを階段式に構成し、乾燥、燃焼、後燃焼の各機能が果たせるように乾燥段、燃焼段、及び後燃焼段を備えているものが知られている。
 乾燥段、燃焼段、及び後燃焼段を備えたストーカ炉では、各段の間に存在する落差壁の直下に、シール金物(前火格子)を設置し、移動火格子が移動した場合にも、火格子以外からの燃焼空気の流入を防止している(例えば、特許文献1参照)。
As an incinerator which incinerates incinerated things such as waste, a stoker furnace which can be incinerated efficiently without selecting a large amount of incinerators is known. As a stoker furnace, what comprises stoke a stairway type and is provided with a drying stage, a combustion stage, and a post-combustion stage so that each function of drying, combustion, and a post-combustion can be performed is known.
In the stoker furnace equipped with the drying stage, the combustion stage, and the post-combustion stage, the seal hardware (pre-grate) is installed directly under the falling wall existing between the stages, and the moving grate is moved. And prevents the inflow of combustion air from other than the grate (see, for example, Patent Document 1).
特開平4-186010号公報Japanese Patent Application Laid-Open No. 4-186010
 上記従来のストーカ炉では、シール金物は、移動火格子の動きに追従してピンを軸に回転し、上下動することができる。しかし、回転移動はシール性に悪影響を与えやすい。また、シール金物と移動火格子の間に異物を噛み込んだ場合、早期に異物の解消ができず、噛み込んだ隙間から空気が炉内に流入してしまうことで、異常燃焼が生じる恐れがあった。 In the above-described conventional stoker furnace, the seal hardware can rotate about the pin and move up and down following the movement of the moving grate. However, rotational movement tends to adversely affect sealability. Also, if foreign matter gets caught between the seal hardware and the moving grate, the foreign matter can not be eliminated early and air may flow into the furnace from the caught gap, which may cause abnormal combustion. there were.
 この発明は、前火格子の移動を最小限に抑えて、シール性の低下を抑制することができるストーカ炉用シール装置、及びストーカ炉を提供することを目的とする。 An object of the present invention is to provide a stoker furnace sealing device and a stoker furnace that can minimize the movement of a fore grate and suppress the reduction in sealing performance.
 本発明のシール装置は、複数の固定火格子と複数の移動火格子を備え、被焼却物を搬送しつつ、前記被焼却物の焼却を行うストーカ炉の落差壁と移動火格子との間をシールするストーカ炉用シール装置であって、その先端が前記移動火格子に接するように配置された前火格子と、前記落差壁に固定され、前記前火格子の上面を支持する上面支持板と、前記上面支持板の下方に配置され、前記前火格子の底面を支持する底面支持板と、を有する支持部と、前記前火格子を、前記前火格子が前記移動火格子の移動に伴い移動する向きと逆の向きに付勢するバネと、を有することを特徴とする。 The seal device of the present invention comprises a plurality of fixed grates and a plurality of moving grates, and conveys the incineration material while transporting the material to be incinerated between the falling wall of the stoker furnace and the moving grate. A seal device for a stoker furnace for sealing, the front grate arranged so that its tip is in contact with the moving grate, and a top support plate fixed to the drop wall and supporting the top surface of the front grate A support portion having a bottom support plate disposed below the top support plate and supporting the bottom surface of the front grate, the front grate as the front grate moves as the moving grate moves And a spring biased in a direction opposite to the moving direction.
 このような構成によれば、移動火格子に引きずられてやや移動した前火格子には、バネにより移動火格子の移動の向きと逆の向きに引っ張る力が作用する。このため、移動火格子と前火格子との間にごみの噛み込みが発生した場合においても、当該ごみを挟み込んでいる前火格子を戻す力が作用する。また、支持部によって前火格子の移動が制限されるため、前火格子の移動を最小限に抑え、シール性の低下を抑制することができる。 According to such a configuration, on the front grate dragged slightly by the moving grate, the spring exerts a pulling force in the direction opposite to the moving direction of the moving grate. For this reason, even when waste biting occurs between the moving grate and the fore grate, a force acts on returning the fore grate sandwiching the waste. In addition, since the movement of the fore grate is limited by the support portion, the movement of the fore grate can be minimized, and the decrease in sealability can be suppressed.
 上記シール装置において、前記前火格子又は前記支持部に固定され、前記被焼却物の搬送方向に対応する一方向に延在する軸状部材と、前記軸状部材を前記一方向に摺動自在に支持する軸支持部と、を有してよい。 In the sealing device, a shaft-shaped member fixed to the front grate or the support portion and extending in one direction corresponding to the conveyance direction of the incineration material, and the shaft-like member being slidable in the one direction And a shaft support that supports the
 このような構成によれば、軸状部材及び軸支持部によって前火格子の移動方向を制限して、前火格子と移動火格子との接触状態を向上させることができる。 According to such a configuration, the moving direction of the front grate can be restricted by the shaft-like member and the shaft support portion, and the contact state between the front grate and the moving grate can be improved.
 上記シール装置において、前記前火格子の移動方向を前記一方向の進退に制限する移動方向制限部を有し、前記移動方向制限部は、前記前火格子に形成された前記一方向に長い貫通孔と、前記貫通孔に挿通され、前記支持部に固定されたガイド部材を有してよい。 The seal device includes a movement direction restricting portion for restricting the movement direction of the front grate to the advancing and retreating in one direction, and the movement direction restricting portion is a long penetration in the one direction formed in the front grate A hole may be provided, and a guide member may be inserted into the through hole and fixed to the support portion.
 このような構成によれば、移動方向制限部によって前火格子の移動方向を制限して、前火格子と移動火格子との接触状態を更に向上させることができる。 According to such a configuration, it is possible to further improve the contact state between the front grate and the moving grate by restricting the moving direction of the front grate by the movement direction limiting portion.
 本発明のシール装置が配置されるストーカ炉は、フィーダから被焼却物を供給し、複数の固定火格子と複数の移動火格子を備えた乾燥段、燃焼段、及び後燃焼段で、前記被焼却物を順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行う順送式のストーカ炉であって、前記乾燥段は、搬送方向下流側が下向きとなるように傾斜して配置され、前記燃焼段は、前記乾燥段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、前記後燃焼段は、前記燃焼段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、前記前火格子を前記搬送方向下流側に押し出す方向に付勢された状態で、前記乾燥段と前記燃焼段との間の前記落差壁に、上記いずれかのストーカ炉用シール装置を配置したことを特徴とする。 The stoker furnace on which the sealing device of the present invention is disposed is a drying stage, a combustion stage, and a post-combustion stage, each of which supplies a material to be incinerated from a feeder and includes a plurality of fixed grates and a plurality of moving grates. A sequential-type stoker furnace that performs drying, combustion, and post-combustion while sequentially transporting incineration materials, wherein the drying stage is disposed to be inclined such that the downstream side in the transport direction is directed downward, and the combustion is performed The stage is connected to the drying stage and is inclined such that the downstream side in the conveying direction is upward, and the post-combustion stage is connected to the combustion stage in the downstream direction such that the downstream side in the conveying direction is upward And the stack wall between the drying stage and the combustion stage in a state in which the front grate is pushed in the downstream direction of the transport direction, the seal for any of the above stoker furnaces Characterized by the arrangement of the device .
 上記ストーカ炉において、前記前火格子を搬送方向上流側に引き込む方向に付勢された状態で、前記フィーダと前記燃焼段との間の前記落差壁に、上記いずれかのストーカ炉用シール装置を配置してよい。 In the above-described stoker furnace, the seal device for any one of the above-mentioned stoker furnaces is applied to the falling wall between the feeder and the combustion stage in a state in which the fore grate is urged in the direction of drawing upstream May be arranged.
 本発明によれば、前火格子の移動を最小限に抑えて、シール性の低下を抑制、すなわちシール性を向上することができる。 According to the present invention, it is possible to minimize the movement of the pregrate and to suppress the decrease in sealability, that is, to improve the sealability.
本発明のストーカ炉用シール装置が配置されるストーカ炉の概略構成図である。It is a schematic block diagram of the stoker furnace in which the seal | sticker apparatus for stoker furnaces of this invention is arrange | positioned. 図1のストーカ炉のストーカ傾斜角を説明する図である。It is a figure explaining the stoker inclination angle of the stoker furnace of FIG. 図1のストーカ炉の第一落差壁に設けられているシール装置の側断面図である。It is a sectional side view of the seal device provided in the first falling wall of the stoker furnace of FIG. 図3のIV-IV矢視図であり、本発明のシール装置の断面図である。FIG. 4 is a view on arrow IV-IV in FIG. 3 and is a cross-sectional view of the seal device of the present invention. 図1のストーカ炉の第二落差壁に設けられているシール装置の側断面図である。It is a sectional side view of the seal device provided in the 2nd falling wall of the stoker furnace of FIG. 本発明の変形例のシール装置の側断面図である。It is a sectional side view of the seal device of the modification of the present invention. 本発明のストーカ炉用シール装置が配置されるストーカ炉の変形例を説明する図である。It is a figure explaining the modification of the stoker furnace in which the seal | sticker apparatus for stoker furnaces of this invention is arrange | positioned. 乾燥段のストーカ傾斜角の適正範囲は-15°乃至-25°の間の角度であることを説明するグラフである。It is a graph which demonstrates that the appropriate range of the stoker inclination angle of a drying stage is an angle between -15 ° and -25 °. 燃焼段のストーカ傾斜角の適正範囲は+5°乃至+15°の間の角度であることを説明するグラフである。It is a graph explaining that the appropriate range of the stoker inclination angle of a combustion stage is an angle between +5 degrees-+15 degrees. 乾燥段と燃焼段の双方を鑑みた場合、燃焼段のストーカ傾斜角の適正範囲は+8°乃至+12°の間の角度、最適値は+10°とする理由について説明するグラフである。When both the drying stage and the combustion stage are considered, the appropriate range of the stoker inclination angle of the combustion stage is an angle between + 8 ° and + 12 °, and the optimum value is a graph for explaining the reason of + 10 °.
〔実施形態〕
 以下、本発明のストーカ炉用シール装置が配置されるストーカ炉について図面を参照して詳細に説明する。
 本実施形態のストーカ炉は、ごみ等の被焼却物燃焼用ストーカ炉であり、図1に示すように、被焼却物Tを一時的に貯留するホッパ2と、被焼却物Tを燃焼させる焼却炉3と、焼却炉3に被焼却物Tを供給するフィーダ4と、焼却炉3の底部側に設けられたストーカ5(乾燥段11、燃焼段12、及び後燃焼段13の火格子15、16を含む)と、ストーカ5の下方に設けられた風箱6と、ストーカ5の落差壁27(第一落差壁)、28(第二落差壁)、29(第三落差壁)に設けられたシール装置30(ストーカ炉用シール装置)と、を備えている。
[Embodiment]
Hereinafter, a stoker furnace in which the seal device for a stoker furnace of the present invention is disposed will be described in detail with reference to the drawings.
The stoker furnace of the present embodiment is a stoker furnace for burning waste such as waste, and as shown in FIG. 1, the hopper 2 for temporarily storing the waste T and the incineration for burning the waste T The furnace 3, the feeder 4 for supplying the incinerator 3 to the incinerator 3, the stoker 5 provided on the bottom side of the incinerator 3 (the drying stage 11, the combustion stage 12, and the grate 15 of the post-combustion stage 13, 16), the wind box 6 provided below the stoker 5 and the head wall 27 (first head wall), 28 (second head wall), 29 (third head wall) of the stoker 5 And a seal device 30 (stoker furnace seal device).
 フィーダ4は、ホッパ2を介して連続的にフィードテーブル7上に供給された被焼却物Tを焼却炉3内に押し出す。フィーダ4は、フィーダ駆動装置8によってフィードテーブル7上を所定のストロークで往復運動する。
 風箱6は、送風機(図示せず)からの一次空気をストーカ5の各部に供給する。
 焼却炉3は、ストーカ5の上方に設けられ、一次燃焼室と二次燃焼室からなる燃焼室9を有している。焼却炉3には、燃焼室9に二次空気を供給する送風機10が接続されている。
The feeder 4 pushes out the incineration material T supplied onto the feed table 7 continuously through the hopper 2 into the incinerator 3. The feeder 4 reciprocates on the feed table 7 with a predetermined stroke by means of a feeder driving device 8.
The air box 6 supplies primary air from a blower (not shown) to each part of the stoker 5.
The incinerator 3 is provided above the stoker 5 and has a combustion chamber 9 consisting of a primary combustion chamber and a secondary combustion chamber. Connected to the incinerator 3 is a blower 10 for supplying secondary air to the combustion chamber 9.
 ストーカ5は、火格子15、16を階段状に並べた燃焼装置である。被焼却物Tは、ストーカ5上で燃焼する。
 以下、被焼却物Tが搬送される方向を搬送方向Dと呼ぶ。被焼却物Tは、ストーカ5上を搬送方向Dに搬送される。図1、図2、及び図3において、左側が搬送方向上流側D1であり、右側が搬送方向下流側D2である。また、火格子15、16が取り付けられる面を据付面と呼び、乾燥段11、燃焼段12、又は後燃焼段13の上流側の端部(11b、12b、13b)を中心として、水平面と据付面とによって形成される角度をストーカ傾斜角(据付角度)と呼ぶ。据付面の搬送方向下流側D2が水平面より上向きの場合は、ストーカ傾斜角は正の値とし、据付面の搬送方向下流側D2が水平面より下向きの場合は、ストーカ傾斜角は負の値として、ここでは説明する。
The stoker 5 is a combustion device in which grates 15 and 16 are arranged in steps. The incinerator T burns on the stoker 5.
Hereinafter, the direction in which the incinerator T is transported is referred to as a transport direction D. The incinerator T is transported on the stoker 5 in the transport direction D. In FIG. 1, FIG. 2 and FIG. 3, the left side is the upstream side D1 in the transport direction, and the right side is the downstream side D2 in the transport direction. Also, the surface on which the grate 15, 16 is attached is referred to as a mounting surface, and the drying stage 11, the combustion stage 12, or the horizontal surface and the installation centering on the upstream end (11b, 12b, 13b) of the post-combustion stage 13 The angle formed by the faces is called the stoker tilt angle (setting angle). If the transport direction downstream side D2 of the installation surface is upward from the horizontal plane, the stoker inclination angle is a positive value. If the transport direction downstream side D2 of the installation surface is downward from the horizontal plane, the stoker inclination angle is a negative value. I will explain here.
 ストーカ5は、被焼却物Tの搬送方向上流側D1から順に、被焼却物Tを乾燥させる乾燥段11と、被焼却物Tを焼却する燃焼段12と、未燃分を完全に焼却(後燃焼)する後燃焼段13と、を有している。ストーカ5では、乾燥段11、燃焼段12、及び後燃焼段13で、被焼却物Tを順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行う。
 各々の段11、12、13は、複数の固定火格子15と、複数の移動火格子16と、を有している。
 固定火格子15と移動火格子16とは、搬送方向Dで交互に配置されている。移動火格子16は、搬送方向Dに沿って往復運動する。移動火格子16の往復運動によってストーカ5上の被焼却物Tが搬送されるとともに攪拌される。即ち、被焼却物Tの下層部が動かされ、上層部と入れ替えられる。
The stalker 5 has a drying stage 11 for drying the incinerator T, a combustion stage 12 for incinerating the incinerator T, and an unburned part completely incinerated sequentially from the transport direction upstream side D1 of the incinerator T, And a post-combustion stage 13 for combustion). In the stoker 5, the drying stage 11, the combustion stage 12, and the post-combustion stage 13 perform drying, combustion, and post-combustion, respectively, while sequentially transporting the incinerator T.
Each stage 11, 12, 13 has a plurality of fixed grates 15 and a plurality of moving grates 16.
The fixed grate 15 and the moving grate 16 are alternately arranged in the transport direction D. The moving grate 16 reciprocates along the transport direction D. The reciprocation of the moving grate 16 transports and agitates the incinerator T on the stoker 5. That is, the lower layer portion of the incinerator T is moved and replaced with the upper layer portion.
 乾燥段11は、フィーダ4によって押し出されて焼却炉3内に落下した被焼却物Tを受け、被焼却物Tの水分を蒸発させるとともに一部熱分解する。燃焼段12は、下方の風箱6から供給される一次空気によって、乾燥段11で乾燥した被焼却物Tに着火させ、揮発分および固定炭素分を燃焼させる。後燃焼段13は、燃焼段12で十分に燃焼されずに通過してきた固定炭素分等の未燃分を完全に灰になるまで燃焼させる。
 後燃焼段13の出口には、灰出し口17が設けられている。灰は、灰出し口17を通じて焼却炉3から排出される。
The drying stage 11 receives the incinerator T which is pushed out by the feeder 4 and dropped into the incinerator 3, evaporates the water of the incinerator T, and partially decomposes it. The combustion stage 12 ignites the material T to be incinerated dried in the drying stage 11 by the primary air supplied from the lower air box 6, and burns the volatile matter and the fixed carbon content. The post-combustion stage 13 burns the unburned components such as fixed carbon components passed without being sufficiently burned in the combustion stage 12 until it is completely ashed.
An ash outlet 17 is provided at the outlet of the post-combustion stage 13. Ash is discharged from the incinerator 3 through the ash outlet 17.
 乾燥段11、燃焼段12、及び後燃焼段13の各々は、移動火格子16を駆動する駆動機構18を有している。即ち、乾燥段11、燃焼段12、及び後燃焼段13は、複数の移動火格子16を駆動する駆動機構18をそれぞれ別個に有している。 Each of the drying stage 11, the combustion stage 12 and the post-combustion stage 13 has a drive mechanism 18 for driving a moving grate 16. That is, the drying stage 11, the combustion stage 12, and the post-combustion stage 13 separately have drive mechanisms 18 for driving the plurality of moving grates 16.
 駆動機構18は、ストーカ5に設けられている梁19に取り付けられている。駆動機構18は、梁19に取り付けられている油圧シリンダ20と、油圧シリンダ20によって動作するアーム21と、アーム21の先端に接続されているビーム22と、を有している。ビーム22と移動火格子16とは、ブラケット23を介して接続されている。 The drive mechanism 18 is attached to a beam 19 provided on the stoker 5. The drive mechanism 18 has a hydraulic cylinder 20 attached to the beam 19, an arm 21 operated by the hydraulic cylinder 20, and a beam 22 connected to the tip of the arm 21. The beam 22 and the moving grate 16 are connected via a bracket 23.
 駆動機構18によれば、油圧シリンダ20のロッドの伸縮によって、アーム21が動作する。アーム21の動作に伴いストーカ5の据付面11a、12a、13aに沿って移動するように構成されているビーム22が移動し、ビーム22に接続されている移動火格子16が駆動する。 According to the drive mechanism 18, the arm 21 operates by the expansion and contraction of the rod of the hydraulic cylinder 20. The beam 22, which is configured to move along the mounting surfaces 11a, 12a, 13a of the stoker 5 along with the operation of the arm 21, moves, and the moving grate 16 connected to the beam 22 is driven.
 駆動機構18は、油圧シリンダ20を用いているがこれに限ることはなく、例えば、油圧モータ、電動シリンダ、電導リニアモータ等を採用することができる。また、駆動機構18の形態は、上記した形態に限らず、移動火格子16を往復運動させることができれば、どのような形態のものでもよい。例えば、アーム21を配置せずに、ビーム22と油圧シリンダ20を直結して駆動してもよい。 Although the hydraulic cylinder 20 is used as the drive mechanism 18, the present invention is not limited to this. For example, a hydraulic motor, an electric cylinder, a conductive linear motor or the like can be adopted. The form of the drive mechanism 18 is not limited to the form described above, and may be any form as long as the movable grate 16 can be reciprocated. For example, the beam 22 and the hydraulic cylinder 20 may be directly coupled and driven without arranging the arm 21.
 ストーカ炉1は、乾燥段11、燃焼段12、及び後燃焼段13における移動火格子16の駆動の速度を、互いに同じ速度または乾燥段11、燃焼段12、及び後燃焼段13の少なくとも一部で異なる速度とすることができる。
 例えば、燃焼段12で十分に燃焼させることが求められる被焼却物Tが投入された場合に、燃焼段12の移動火格子16の駆動の速度を遅くして、燃焼段12上の被焼却物Tの搬送速度を遅くし、十分に燃焼させることができる。
The stoker furnace 1 has at least a part of the drying stage 11, the combustion stage 12, and the post combustion stage 13 at the same speed or driving speed of the moving grate 16 in the post combustion stage 13. Can be at different speeds.
For example, when the incineration material T required to be sufficiently burned in the combustion stage 12 is charged, the speed of driving of the moving grate 16 of the combustion stage 12 is reduced to reduce the incineration material on the combustion stage 12 The transport speed of T can be reduced to allow sufficient combustion.
 図2に示すように、固定火格子15及び移動火格子16は、乾燥段11、燃焼段12、及び後燃焼段13の据付面11a、12a、13aに対して搬送方向下流側D2が上向きとなるように傾斜して配置されている。また、火格子15、16は、火格子15、16の先端が搬送方向下流側D2を向くように配置されている。これにより、移動火格子16は、固定火格子15上の被焼却物Tを搬送方向下流側D2に送るように動作する。 As shown in FIG. 2, the fixed grate 15 and the moving grate 16 are such that the downstream side D2 in the conveying direction is upward with respect to the mounting surfaces 11a, 12a, 13a of the drying stage 11, the combustion stage 12, and the post combustion stage 13. It is arranged to be inclined. Moreover, the grate 15 and 16 is arrange | positioned so that the front-end | tip of the grate 15 and 16 may face the conveyance direction downstream D2. Thereby, the movable grate 16 operates to send the incinerator T on the fixed grate 15 to the downstream side D2 in the transport direction.
 乾燥段11の移動火格子16の一部は、突起付火格子16Pである(他は、後述のノーマル火格子である)。図2に示すように、乾燥段11の搬送方向Dの長さのうち、搬送方向下流側D2の端部から50%乃至80%の範囲R1の移動火格子16が突起付火格子16Pとなっている。突起付火格子16Pを使用することで、撹拌力を向上することができる。
 固定火格子15は、先端の上面に突起のない火格子であり、この形状をノーマル火格子という。
A part of the moving grate 16 of the drying stage 11 is a projecting grate 16P (the others are normal grates described later). As shown in FIG. 2, the movable grate 16 in the range R1 of 50% to 80% from the end of the downstream side D2 in the transport direction D of the drying stage 11 becomes the protuberance grate 16P. ing. The use of the protuberance grate 16P can improve the stirring power.
The fixed grate 15 is a grate without projections on the top surface of the tip, and this shape is called a normal grate.
 なお、本実施形態では、移動火格子16のみを突起付火格子16Pとしたが、これに限ることはなく、移動火格子16及び固定火格子15の両方を突起付火格子としてもよい。
 また、突起付火格子16Pを設ける範囲も上述した範囲に限ることはなく、例えば、乾燥段11の全ての火格子を突起付火格子16Pとしてもよい。
 さらに、被焼却物Tの性状や種類によっては、乾燥段におけるすべての火格子(固定火格子及び移動火格子)をノーマル火格子としてもよい。
In the present embodiment, only the movable grate 16 is used as the projecting grate 16P. However, the present invention is not limited thereto, and both the moving grate 16 and the fixed grate 15 may be provided with the projecting grate.
Further, the range in which the protuberance grate 16P is provided is not limited to the above-mentioned range, and for example, all the grate of the drying stage 11 may be the protuberance grate 16P.
Furthermore, depending on the nature and type of the material T to be incinerated, all grates (fixed grate and moving grate) in the drying stage may be normal grates.
 乾燥段11と同様に、燃焼段12の移動火格子16のうち、一部は、突起付火格子16Pである。具体的には、燃焼段12の搬送方向Dの長さのうち、搬送方向下流側D2の端部から50%乃至80%の範囲R2の移動火格子16が突起付火格子16Pとなっている。燃焼段12のその他の移動火格子16は、ノーマル火格子である。乾燥段11と同様に、被焼却物Tの性状や種類によって、移動火格子16及び固定火格子15の両方を突起付火格子としてもよいし、すべての火格子(固定火格子及び移動火格子)をノーマル火格子としてもよい。
 後燃焼段13の火格子は、図2では移動火格子16及び固定火格子15はいずれも全てノーマル火格子として示しているが、乾燥段11及び燃焼段12と同様に、突起付火格子を採用してもよい。
Similar to the drying stage 11, a part of the moving grate 16 of the combustion stage 12 is a projecting grate 16P. Specifically, the movable grate 16 in the range R2 of 50% to 80% from the end of the downstream side D2 in the transport direction D of the combustion stage 12 is the protuberance grate 16P. . The other moving grates 16 of the combustion stage 12 are normal grates. As in the drying stage 11, both the moving grate 16 and the fixed grate 15 may be provided with protrusions according to the nature and type of the material T to be incinerated, or all grates (fixed grate and moving grate ) May be a normal grate.
Although the grate of the post-combustion stage 13 is shown in FIG. 2 as the moving grate 16 and the fixed grate 15 as all normal grate, it is similar to the drying stage 11 and the combustion stage 12 with the projecting grate It may be adopted.
 次に、乾燥段11、燃焼段12、及び後燃焼段13のストーカ傾斜角(据付角度)について説明する。
 図2に示すように、本実施形態のストーカ5の乾燥段11は下向きに配置されている。すなわち、乾燥段11の据付面11aは、搬送方向下流側が低くなるように傾斜している。具体的には、乾燥段11の上流側の端部11bを中心とした水平面と据付面11aの搬送方向側の角度である乾燥段11のストーカ傾斜角θ1は、-15°(マイナス15度)から-25°(マイナス25度)の間の角度である。
Next, the stoker inclination angles (installation angles) of the drying stage 11, the combustion stage 12, and the post-combustion stage 13 will be described.
As shown in FIG. 2, the drying stage 11 of the stoker 5 of the present embodiment is disposed downward. That is, the installation surface 11a of the drying stage 11 is inclined so that the downstream side in the transport direction is low. Specifically, the stoker inclination angle θ1 of the drying stage 11, which is the angle between the horizontal plane around the upstream end 11b of the drying stage 11 and the conveyance direction side of the mounting surface 11a, is -15 ° (minus 15 °) Is an angle between -25 ° (minus 25 °).
 本実施形態のストーカ5の燃焼段12は上向きに配置されている。すなわち、燃焼段12の据付面12aは、搬送方向下流側が高くなるように傾斜している。具体的には、燃焼段12の上流側の端部12bを中心とした水平面と据付面12aの搬送方向側の角度である燃焼段12のストーカ傾斜角θ2は、+5°(プラス5度)から+15°(プラス15度)の間の角度である。 The combustion stage 12 of the stoker 5 of the present embodiment is disposed upward. That is, the installation surface 12 a of the combustion stage 12 is inclined so that the downstream side in the transport direction is high. Specifically, the stoker inclination angle θ2 of the combustion stage 12 which is the angle on the conveyance direction side of the mounting surface 12a with the horizontal plane centering on the upstream end 12b of the combustion stage 12 is from + 5 ° (plus 5 °) It is an angle between + 15 ° (plus 15 °).
 本実施形態のストーカ5の後燃焼段13は上向きに配置されている。すなわち後燃焼段13の据付面13aは、搬送方向下流側が高くなるように傾斜している。具体的には、後燃焼段13の上流側の端部13bを中心とした水平面と据付面13aの搬送方向側の角度である後燃焼段13のストーカ傾斜角θ3は、+5°(プラス5度)から+15°(プラス15度)の間の角度である。 The post-combustion stage 13 of the stoker 5 of the present embodiment is disposed upward. That is, the installation surface 13a of the post-combustion stage 13 is inclined so that the downstream side in the transport direction is high. Specifically, the stoker inclination angle θ3 of the post-combustion stage 13 which is the angle between the horizontal surface centering on the upstream end 13b of the post-combustion stage 13 and the conveyance direction side of the mounting surface 13a is + 5 ° (plus 5 ° ) Is an angle between + 15 ° (plus 15 °).
 フィードテーブル7と乾燥段11との間には、第一落差壁27(段差)が形成されている。ストーカ5は、第一落差壁27と移動火格子16との間をシールする第一シール装置30Aを有している。第一シール装置30Aは、乾燥段11の移動火格子16が移動した場合に、火格子以外からの燃焼空気の流入を防止する装置である。 Between the feed table 7 and the drying stage 11, a first falling wall 27 (step) is formed. The stoker 5 has a first sealing device 30A that seals between the first falling wall 27 and the moving grate 16. The first seal device 30A is a device that prevents the inflow of combustion air from other than the grate when the moving grate 16 of the drying stage 11 moves.
 図3に示すように、第一シール装置30Aは、その先端(搬送方向下流側D2)が移動火格子16に接するように配置された前火格子31と、前火格子31をスライド可能に支持する支持部32と、前火格子31を、前火格子31が移動火格子16の移動に伴って移動する向きと逆の向きに付勢するバネ35(圧縮コイルバネ)と、前火格子31の移動方向を制限する移動方向制限部44と、を有している。
 第一シール装置30Aは、前火格子31の水平面に対する角度が乾燥段11の据付面11aの角度に対応している。即ち、第一シール装置30Aの前火格子31は、搬送方向下流側D2が下向きとなるように配置されている。
 前火格子31の移動方向は、搬送方向Dに沿う方向であるが、厳密には、搬送方向下流側D2が下向きとなるように傾斜している乾燥段11の据付面11aに沿う方向である。
As shown in FIG. 3, the first seal device 30A supports the front grate 31 disposed so that its tip (the transport direction downstream side D2) is in contact with the moving grate 16, and the front grate 31 so as to slide. And a spring 35 (compression coil spring) that biases the supporting part 32 and the front grate 31 in the direction opposite to the direction in which the front grate 31 moves as the moving grate 16 moves; And a movement direction restriction unit 44 for restricting the movement direction.
In the first sealing device 30A, the angle of the front grate 31 to the horizontal surface corresponds to the angle of the mounting surface 11a of the drying stage 11. That is, the front grate 31 of the first sealing device 30A is disposed such that the downstream side D2 in the transport direction is downward.
The moving direction of the front grate 31 is a direction along the conveying direction D, but strictly speaking, it is a direction along the mounting surface 11a of the drying stage 11 which is inclined so that the downstream side D2 is downward. .
 支持部32は、第一落差壁27に固定され、前火格子31の上面31aを支持する上面支持板33と、上面支持板33に固定され、前火格子31の下面31bを支持する底面支持板34と、を有している。 The support portion 32 is fixed to the first falling wall 27 and fixed to the upper surface support plate 33 supporting the upper surface 31 a of the front grate 31 and to the upper surface support plate 33, and supports the bottom surface 31 b of the front grate 31. And a plate 34.
 前火格子31は、矩形板状をなし、先端に突起31cが設けられている前火格子本体37と、前火格子本体37の後端に接続されている軸状部材38と、を有している。軸状部材38の少なくとも一部には、雄ネジ溝が形成されている。
 図3、及び図4に示すように、前火格子本体37は、矩形状をなす板状の部材である。突起31cは、移動火格子16の背面16aに接触するように形成されている。突起31cは、焼却炉3の幅方向(図1の紙面に直交する方向)に延在している。突起31cが幅方向にわたって移動火格子16に接触することによって、火格子以外からの燃焼空気の流入が防止される。
The front grate 31 has a rectangular plate shape, and includes a front grate main body 37 having a protrusion 31 c at its tip, and an axial member 38 connected to the rear end of the front grate main body 37. ing. An external thread groove is formed in at least a part of the shaft-like member 38.
As shown in FIG. 3 and FIG. 4, the front grate main body 37 is a rectangular plate-like member. The protrusion 31 c is formed to be in contact with the back surface 16 a of the movable grate 16. The protrusions 31 c extend in the width direction of the incinerator 3 (the direction orthogonal to the sheet of FIG. 1). By the projections 31c contacting the moving grate 16 across the width direction, the inflow of combustion air from other than the grate is prevented.
 上面支持板33は、前火格子31の上面31aを支持する板状部材である。上面支持板33と前火格子31とは、上面支持板33の下面33aと前火格子31の上面31aとが面接触するように配置されている。
 上面支持板33は、搬送方向下流側D2が低くなるように傾斜して配置されている。上面支持板33の搬送方向上流側D1の端部には、前火格子31の軸状部材38を前火格子31の移動方向Mに沿って摺動自在に支持する第一軸支持部40が設けられている。本実施形態の第一軸支持部40は、上面支持板33を折り曲げることによって形成された第一軸支持板39に設けられた軸受である。
The upper surface support plate 33 is a plate-like member that supports the upper surface 31 a of the front grate 31. The upper surface support plate 33 and the front grate 31 are arranged such that the lower surface 33 a of the upper surface support plate 33 and the upper surface 31 a of the front grate 31 are in surface contact with each other.
The upper surface support plate 33 is disposed to be inclined such that the downstream side D2 in the transport direction is low. At the end of the transport direction D1 of the upper surface support plate 33, a first shaft support portion 40 slidably supporting the axial member 38 of the front grate 31 along the moving direction M of the front grate 31 is provided. It is provided. The first shaft support portion 40 of the present embodiment is a bearing provided on the first shaft support plate 39 formed by bending the upper surface support plate 33.
 底面支持板34は、前火格子31の下面31bを支持する板状部材である。底面支持板34と前火格子31とは、底面支持板34の上面34aと前火格子31の下面31bとが面接触するように配置されている。底面支持板34は、上面支持板33の主面と底面支持板34の主面とが平行となるように配置されている。 The bottom support plate 34 is a plate-like member that supports the lower surface 31 b of the front grate 31. The bottom support plate 34 and the front grate 31 are disposed such that the top surface 34 a of the bottom support plate 34 and the bottom surface 31 b of the front grate 31 are in surface contact with each other. The bottom support plate 34 is disposed such that the main surface of the top support plate 33 and the main surface of the bottom support plate 34 are parallel to each other.
 底面支持板34は、底面支持板34の搬送方向上流側D1の端部を折り曲げることによって形成された第二軸支持板41を介して上面支持板33に固定されている。第二軸支持板41には、第一軸支持部40と協働して前火格子31の軸状部材38を支持する第二軸支持部42が設けられている。第二軸支持部42は、第二軸支持板41に設けられた軸受である。 The bottom support plate 34 is fixed to the top support plate 33 via a second shaft support plate 41 formed by bending an end portion of the bottom support plate 34 on the upstream side in the transport direction D1. The second shaft support plate 41 is provided with a second shaft support portion 42 which supports the shaft-like member 38 of the front grate 31 in cooperation with the first shaft support portion 40. The second shaft support portion 42 is a bearing provided on the second shaft support plate 41.
 第一軸支持部40と第二軸支持部42とは、前火格子31の軸状部材38を、搬送方向Dに対応した一方向である方向Mであって、上面支持板33と底面支持板34の主面に平行な方向に沿うように支持する。換言すれば、軸状部材38は、第一軸支持部40及び第二軸支持部42に支持されることによって、方向Mに沿って延在する。
 前火格子31は、上面支持板33及び底面支持板34によって方向Mに直交する方向の動きは制限されているが、軸状部材38の軸線方向の動きは制限されていない。
The first shaft support portion 40 and the second shaft support portion 42 are the direction M, which is one direction corresponding to the transport direction D, of the shaft-like member 38 of the front grate 31, and the upper surface support plate 33 and the bottom surface support It is supported along the direction parallel to the main surface of the plate 34. In other words, the shaft-like member 38 extends along the direction M by being supported by the first shaft support 40 and the second shaft support 42.
The movement of the front grate 31 in the direction orthogonal to the direction M is restricted by the upper surface support plate 33 and the bottom surface support plate 34, but the axial movement of the axial member 38 is not restricted.
 移動方向制限部44は、前火格子31に形成された方向Mに沿って長い2つの貫通孔45と、貫通孔45に挿通され、支持部32に固定された2つのガイド部材46と、を有している。図4に示すように、貫通孔45は、前火格子31の移動方向に沿うように形成された長孔である。ガイド部材46は、上面支持板33と底面支持板34との間を接続するように設けられた棒状の部材である。ガイド部材46は、例えば、ボルトによって形成することができる。 The movement direction limiting portion 44 includes two long through holes 45 along the direction M formed in the front grate 31, and two guide members 46 inserted into the through holes 45 and fixed to the support portion 32. Have. As shown in FIG. 4, the through hole 45 is a long hole formed along the moving direction of the front grate 31. The guide member 46 is a rod-like member provided to connect the upper surface support plate 33 and the bottom surface support plate 34. The guide member 46 can be formed, for example, by a bolt.
 バネ35は、軸状部材38の雄ネジ溝に螺合するナット47と第一軸支持板39との間に配置されている。バネ35の内側には、軸状部材38が挿通されている。バネ35の一端はナット47に固定されており、バネ35の他端は第一軸支持板39に固定されている。即ち、バネ35の弾性力は、ナット47及び第一軸支持板39に作用する。 The spring 35 is disposed between a nut 47 engaged with the male screw groove of the shaft-like member 38 and the first shaft support plate 39. The shaft-shaped member 38 is inserted inside the spring 35. One end of the spring 35 is fixed to the nut 47, and the other end of the spring 35 is fixed to the first shaft support plate 39. That is, the elastic force of the spring 35 acts on the nut 47 and the first shaft support plate 39.
 第一落差壁27のシール装置30Aのバネ35は、前火格子31を搬送方向上流側D1に引き込む方向に付勢する状態でバランスしている。この状態から、移動火格子16の搬送方向下流側D2への移動に伴って前火格子31が搬送方向下流側D2に移動すると、バネ35は延ばされる。バネ35がバランスした状態から延ばされることにより、前火格子31は、搬送方向上流側D1(前火格子31が移動火格子16の移動に伴い移動する向きと逆の向き)に付勢される。 The spring 35 of the seal device 30A of the first falling wall 27 is balanced in a state where it urges the front grate 31 in the direction of drawing the upstream side D1 toward the transport direction upstream. From this state, when the front grate 31 moves to the conveyance direction downstream side D2 with the movement of the movable grate 16 to the conveyance direction downstream side D2, the spring 35 is extended. By the spring 35 being extended from the balanced state, the front grate 31 is biased to the transport direction upstream side D1 (in the direction opposite to the direction in which the front grate 31 moves along with the movement of the moving grate 16). .
 移動火格子16の搬送方向上流側D1への移動に伴って前火格子31が搬送方向上流側D1に移動すると、バネ35は縮まる。バネ35がバランスした状態から縮まることにより、前火格子31は、搬送方向下流側D2(前火格子31が移動火格子16の移動に伴い移動する向きと逆の向き)に付勢される。 When the front grate 31 moves to the transport direction upstream D1 with the movement of the moving grate 16 to the transport direction upstream D1, the spring 35 contracts. When the spring 35 is contracted from the balanced state, the front grate 31 is biased to the downstream side D2 in the transport direction (opposite to the direction in which the front grate 31 moves with the movement of the moving grate 16).
 乾燥段11と燃焼段12との間には、第二落差壁28が形成されている。乾燥段11の搬送方向下流側の端部11cは、燃焼段12の搬送方向上流側の端部12bよりも鉛直方向に高くなるように形成されている。
 第二落差壁28には、第二シール装置30Bが設けられている。図5に示すように、第二シール装置30Bは、前火格子31の水平面に対する角度が燃焼段12の据付面12aの角度に対応している。即ち、第二シール装置30Bの前火格子31は、搬送方向下流側D2が上向きとなるように配置されている。
A second falling wall 28 is formed between the drying stage 11 and the combustion stage 12. The end 11 c on the downstream side of the drying stage 11 in the transport direction is formed to be higher in the vertical direction than the end 12 b on the upstream side of the combustion stage 12 in the transport direction.
The second falling wall 28 is provided with a second sealing device 30B. As shown in FIG. 5, in the second seal device 30 </ b> B, the angle of the front grate 31 with respect to the horizontal plane corresponds to the angle of the mounting surface 12 a of the combustion stage 12. That is, the front grate 31 of the second sealing device 30B is disposed such that the downstream side D2 in the transport direction is upward.
 第二シール装置30Bのバネ35は、前火格子31を搬送方向下流側D2に押し出す方向に付勢された状態でバランスしている。この状態から、移動火格子16の搬送方向下流側D2への移動に伴って前火格子31が搬送方向下流側D2に移動すると、バネ35は延ばされる。バネ35がバランスした状態から延ばされることにより、前火格子31は、搬送方向上流側D1(前火格子31が移動火格子16の移動に伴い移動する向きと逆の向き)に付勢される。 The spring 35 of the second sealing device 30B is balanced in a state where it is urged in the direction of pushing the front grate 31 toward the downstream side D2 in the transport direction. From this state, when the front grate 31 moves to the conveyance direction downstream side D2 with the movement of the movable grate 16 to the conveyance direction downstream side D2, the spring 35 is extended. By the spring 35 being extended from the balanced state, the front grate 31 is biased to the transport direction upstream side D1 (in the direction opposite to the direction in which the front grate 31 moves along with the movement of the moving grate 16). .
 移動火格子16の搬送方向上流側D1への移動に伴って前火格子31が搬送方向上流側D1に移動すると、バネ35は縮まる。バネ35がバランスした状態から縮まることにより、前火格子31は、搬送方向下流側D2(前火格子31が移動火格子16の移動に伴い移動する向きと逆の向き)に付勢される。 When the front grate 31 moves to the transport direction upstream D1 with the movement of the moving grate 16 to the transport direction upstream D1, the spring 35 contracts. When the spring 35 is contracted from the balanced state, the front grate 31 is biased to the downstream side D2 in the transport direction (opposite to the direction in which the front grate 31 moves with the movement of the moving grate 16).
 同様に、燃焼段12と後燃焼段13との間には、第三落差壁29が形成されている。燃焼段12の搬送方向下流側の端部12cは、後燃焼段13の搬送方向上流側の端部13bよりも鉛直方向に高くなるように形成されている。
 第三落差壁29には、第三シール装置30Cが設けられている。第三シール装置30Cの構成は、第二シール装置30Bと同様である。
Similarly, a third head wall 29 is formed between the combustion stage 12 and the post-combustion stage 13. The end 12 c of the combustion stage 12 on the downstream side in the conveyance direction is formed to be higher in the vertical direction than the end 13 b on the upstream side of the conveyance direction of the rear combustion stage 13.
A third seal device 30C is provided on the third head wall 29. The configuration of the third seal device 30C is the same as that of the second seal device 30B.
 シール装置30を構成するバネ35は、ナット47の位置を変更することにより調整することができる。本実施形態のシール装置30は、ナット47を前火格子本体37に近づけることでバネ35を伸ばすことができる。 The spring 35 constituting the sealing device 30 can be adjusted by changing the position of the nut 47. The sealing device 30 of the present embodiment can extend the spring 35 by bringing the nut 47 close to the front grate main body 37.
 また、燃焼段12の搬送方向下流側の端部12cと後燃焼段13の搬送方向下流側の端部13cとは、鉛直方向で実質的に同位置か、または、後燃焼段13の端部13cが燃焼段12の端部12cよりも上方に配置されている。本実施形態のストーカ炉1は、燃焼段12の搬送方向下流側の端部12cと後燃焼段13の搬送方向下流側の端部13cを、鉛直方向で同一の位置とした例である。 Further, the end 12 c downstream of the combustion stage 12 in the transport direction and the end 13 c downstream of the post combustion stage 13 in the transport direction are substantially identical in the vertical direction, or the end of the post combustion stage 13 13 c is disposed above the end 12 c of the combustion stage 12. The stoker furnace 1 of the present embodiment is an example in which the end 12 c downstream of the combustion stage 12 in the conveyance direction and the end 13 c downstream of the post combustion stage 13 in the conveyance direction are at the same position in the vertical direction.
 次に、乾燥段11のストーカ傾斜角を-15°(マイナス15度)から-25°(マイナス25度)の間の角度とする理由について説明する。
 乾燥段11の機能は、被焼却物Tの上方にある火炎からの輻射熱及び火格子下からの一次空気の顕熱により効率良く被焼却物T中の水分を乾燥させることである。
 ここで、火炎からの輻射熱の方が、一次空気の顕熱に比べて乾燥への寄与度が高く、被焼却物Tの上層部の乾燥が進行しやすい。
 このため、火格子による撹拌動作によって、被焼却物Tの下層部を上方へ動かし、上層部と入れ替えることで乾燥速度を向上させている。
 しかし、撹拌動作を行っても、乾燥段11においては基本的に燃焼させるわけではないので、水分蒸発が十分に進むだけの長さの確保は必要となる。長さが長くなればなるほど装置が大型化しコストもかかるので、ストーカ長を可能な限り短くすることが求められる。
Next, the reason for setting the stoker inclination angle of the drying stage 11 to an angle between −15 ° (minus 15 °) and −25 ° (minus 25 °) will be described.
The function of the drying stage 11 is to dry the moisture in the incinerator T efficiently by radiant heat from the flame above the incinerator T and sensible heat of the primary air from under the grate.
Here, the radiation heat from the flame has a higher degree of contribution to drying than the sensible heat of the primary air, and the drying of the upper layer portion of the material T to be incinerated tends to proceed.
For this reason, the drying speed is improved by moving the lower layer portion of the incinerator T upward by the stirring operation by the grate and replacing it with the upper layer portion.
However, even if the stirring operation is performed, the drying stage 11 basically does not burn, so it is necessary to ensure a sufficient length for water evaporation to proceed. Since the longer the length, the larger the apparatus and the more expensive it is, it is required to shorten the stoker length as much as possible.
 ストーカ傾斜角の絶対値が被焼却物Tの安息角よりも大きいと、自重で崩れ、被焼却物Tの層が形成されないため、ストーカ5として成り立たない。一方、ストーカ傾斜角の絶対値を被焼却物Tの安息角より小さくしていくと、ストーカとして成り立つが、被焼却物Tの重力による移動(自重による移動)が減ってゆく。さらに、据付面が上向き、すなわちストーカ傾斜角が正の値(プラスの値)で傾斜している場合、重力は被焼却物Tを搬送方向から押し戻す方向に働く。
 ストーカ5による被焼却物Tの搬送量が投入された被焼却物Tの量を下回ると、搬送限界となり処理不能となる。
If the absolute value of the stoker inclination angle is larger than the repose angle of the incinerator T, it collapses under its own weight and a layer of the incinerator T is not formed. On the other hand, when the absolute value of the stoker inclination angle is made smaller than the repose angle of the incinerator T, the movement of the incinerator T by gravity (the movement by its own weight) is reduced although it is a stoker. Furthermore, when the mounting surface is upward, that is, when the stoker inclination angle is inclined at a positive value (positive value), the gravity acts to push back the incinerator T from the transport direction.
When the transport amount of the incinerator T by the stoker 5 is less than the amount of the incinerator T input, the transport limit is reached and the process becomes impossible.
 最適なストーカ傾斜角は、投入される被焼却物Tの量と被焼却物Tの含水率により異なる。ここでは、投入される被焼却物Tの量が多くかつ含水率が高い(水分量が多い)場合を、投入被焼却物負荷が大きい場合として説明を進める。逆に、投入される被焼却物Tの量が少なくかつ含水率が低い場合は、投入被焼却物負荷が小さい場合となる。 The optimum stoker inclination angle varies depending on the amount of the incinerator T to be introduced and the moisture content of the incinerator T. Here, the case where the amount of incineration material T to be input is large and the moisture content is high (the amount of water content is large) will be described as a case where the input incineration material load is large. Conversely, when the amount of incineration material T to be introduced is small and the water content is low, the load on the incineration object to be injected is small.
 図8は、横軸を乾燥段11のストーカ傾斜角、縦軸を乾燥段11の必要ストーカ長とし、投入被焼却物負荷が最も大きい場合(1)から順に、投入被焼却物負荷が最も小さい場合(4)まで、乾燥段11のストーカ傾斜角と乾燥段11の必要ストーカ長との関係をプロットした例を示すものである。
 ここで、必要ストーカ長とは、投入される被焼却物Tの水分の95%が乾燥する距離である。横軸の「安息角」は、被焼却物Tの安息角を示すものである。
In FIG. 8, the horizontal axis represents the stoker inclination angle of the drying stage 11, and the vertical axis represents the required stoker length of the drying stage 11. In the case where the loading incineration load is largest, the loading incineration load is smallest in order from (1) The case where the relationship between the stoker inclination angle of the drying stage 11 and the required stoker length of the drying stage 11 is plotted until case (4) is shown.
Here, the required stoker length is a distance at which 95% of the water content of the incineration material T to be input is dried. The “repose angle” on the horizontal axis indicates the repose angle of the material T to be incinerated.
 図8のグラフに示すように、ストーカ傾斜角-30°が被焼却物Tの層を形成する限界である。この層形成限界のストーカ傾斜角に対して、ストーカ傾斜角が緩くなるに従って、必要ストーカ長は減少するが、ストーカ傾斜角が正の値に転じると、必要ストーカ長は、徐々に長くなる。これは、ストーカ傾斜角が正の値になると、据付面が上向きになり、搬送速度が遅くなる結果、被焼却物Tの層が厚くなり、下層部の被焼却物Tの乾燥が進行しにくくなるからである。
 投入される被焼却物Tの負荷が最も大きい場合(1)から投入される被焼却物Tの負荷が最も小さい場合(4)までの4つのケースから、被焼却物Tがいかなる性状、量であっても適正に処理でき、かつ、ストーカ長を最も短くできる最適な乾燥段11のストーカ傾斜角は、-15°(マイナス15度)から-25°(マイナス25度)の間の角度が適正範囲であることが分かる。そして、最適値は-20°(マイナス20度)となる。
As shown in the graph of FIG. 8, the stoker inclination angle of −30 ° is the limit for forming the layer of the incinerator T. With respect to the stoker inclination angle at the layer formation limit, the necessary stoker length decreases as the stoker inclination angle becomes loose, but when the stoker inclination angle turns to a positive value, the necessary stoker length gradually becomes longer. This is because when the stoker inclination angle becomes a positive value, the installation surface is upward and the transport speed is slowed, the layer of the incinerator T becomes thick, and the drying of the incinerator T in the lower layer portion hardly progresses It is because
From the four cases from when the load of the incinerator T to be input is the largest (1) to when the load of the incinerator T to be input is the smallest (4), the incinerator T has any property and amount Stoke inclination angle of the optimum drying stage 11 that can properly process even if there is the shortest stocker length is an angle between -15 ° (minus 15 degrees) and -25 ° (minus 25 degrees) It turns out that it is a range. The optimum value is -20 ° (minus 20 °).
 次に、乾燥段11のストーカ傾斜角を上述のように適正範囲のものとした場合において、燃焼段12のストーカ傾斜角を+5°(プラス5度)乃至+15°(プラス15度)の間の角度にすることが適している理由について説明する。
 燃焼段12の機能は、火炎からの輻射熱、自己燃焼熱により被焼却物Tの層の温度を維持し、揮発分の熱分解による可燃ガスの発生促進、熱分解後に残った固定炭素の燃焼を行うものである。
Next, when the stoker inclination angle of the drying stage 11 is in the appropriate range as described above, the stoker inclination angle of the combustion stage 12 is between + 5 ° (plus 5 °) to + 15 ° (plus 15 °) The reason why it is suitable to use an angle will be described.
The function of the combustion stage 12 maintains the temperature of the layer of the incinerator T by radiant heat from the flame and self-combustion heat, promotes the generation of combustible gas by thermal decomposition of volatile matter, and burns fixed carbon remaining after thermal decomposition. It is something to do.
 ここで、揮発性可燃ガスの揮発に要する時間に比べて固定炭素の燃焼に要する時間の方が長いため、燃焼段12の必要ストーカ長は、固定炭素の燃焼に必要な時間によって決まる。 Here, since the time required to burn fixed carbon is longer than the time required to volatilize the volatile combustible gas, the required stoker length of the combustion stage 12 is determined by the time required to burn fixed carbon.
 図9は、乾燥段11のストーカ傾斜角を上述のように適正範囲のものとした場合において、横軸を燃焼段のストーカ傾斜角、縦軸を燃焼段の必要ストーカ長とし、投入被焼却物負荷が最も大きい場合(1)から順に、投入被焼却物負荷が最も小さい場合(4)まで、燃焼段のストーカ傾斜角と燃焼段の必要ストーカ長との関係をプロットしたものである。ここで、燃焼段の必要ストーカ長とは、可燃分の95%が揮発または燃焼する距離である。 In FIG. 9, when the stoker inclination angle of the drying stage 11 is in the appropriate range as described above, the horizontal axis is the stoker inclination angle of the combustion stage, and the ordinate is the required stoker length of the combustion stage. The relationship between the stoker inclination angle of the combustion stage and the required stoker length of the combustion stage is plotted from the case where the load is the largest (1) to the case where the input incineration load is the smallest (4) in order. Here, the required stoker length of the combustion stage is a distance at which 95% of the combustible fraction evaporates or burns.
 図9に示すように、ストーカ傾斜角-30°が被焼却物Tの層を形成する限界である。この層形成限界のストーカ傾斜角に対して、角度が緩くなるに従って、必要ストーカ長は減少する。搬送限界を考慮すると、ストーカ傾斜角の適正範囲は、図9に示す一点鎖線で囲む範囲とすることができる。 As shown in FIG. 9, the stoker inclination angle of −30 ° is the limit for forming the layer of the incinerator T. With respect to the stoker inclination angle at the layer formation limit, the required stoker length decreases as the angle becomes loose. In consideration of the transport limit, the appropriate range of the stoker inclination angle can be a range surrounded by a dashed dotted line shown in FIG.
 乾燥段11において投入被焼却物負荷が大きい場合であっても、乾燥段11はストーカ傾斜角が適正範囲であるため、ごみの含水率低減及び体積減少が促進される。このため、例えば乾燥段11で負荷が(1)に相当するものであっても燃焼段12では負荷は(3)、(4)に相当するものに変化するので、燃焼段12では、より大きなストーカ傾斜角を採用できるようになる。すなわち、燃焼段を上向きとすることができることで固定炭素の燃焼に必要な滞留時間の確保ができ、さらにストーカ長さを短くできる。 Even in the case where the input incineration material load is large in the drying stage 11, since the drying stage 11 has the Stoker inclination angle in the appropriate range, the moisture content reduction and the volume reduction of waste are promoted. Therefore, for example, even if the load at the drying stage 11 corresponds to (1), the load at the combustion stage 12 changes to one corresponding to (3) and (4). The stoker inclination angle can be adopted. That is, by making the combustion stage upward, the residence time necessary for the combustion of fixed carbon can be secured, and the stoker length can be further shortened.
 図10は、横軸を燃焼段12のストーカ傾斜角、縦軸を乾燥段11と燃焼段12の両方で必要なストーカ長とし、投入される被焼却物Tの負荷が最も大きい場合(1)から順に、投入される被焼却物Tの負荷が最も小さい場合(4)まで、燃焼段12のストーカ傾斜角と乾燥段11と燃焼段12の両方で必要なストーカ長との関係をプロットしたものである。ここで、乾燥段11のストーカ傾斜角は最適値の-20°(マイナス20度)としている。 In FIG. 10, the horizontal axis represents the stoker inclination angle of the combustion stage 12, and the vertical axis represents the stoker length necessary for both the drying stage 11 and the combustion stage 12, and the load of the incinerator T to be input is largest (1) The plot of the relationship between the stoker inclination angle of the combustion stage 12 and the stoker length necessary for both the drying stage 11 and the combustion stage 12 until the load of the incinerator T to be input is smallest (4) in order from It is. Here, the stoker inclination angle of the drying stage 11 is set to the optimal value of −20 ° (minus 20 °).
 図10に示すように、搬送限界を考慮すると、燃焼段12のストーカ傾斜角の適正範囲は、+8°(プラス8度)乃至+12°(プラス12度)の間の角度であることが分かる。また、乾燥段11のストーカ傾斜角が最適値の-20°(マイナス20度)の場合、燃焼段12のストーカ傾斜角の最適値は+10°(+10度)である。
 乾燥段11と燃焼段12の必要ストーカ長は、各々のストーカ傾斜角を適正範囲、特に最適値とすることで可能な限り短いストーカ長とすることができるので、後燃焼段13まで含めても、比較的小さなサイズかつ低コストなストーカ炉とすることができる。
As shown in FIG. 10, considering the transport limit, it can be seen that the appropriate range of the stoker inclination angle of the combustion stage 12 is an angle between + 8 ° (plus 8 °) and + 12 ° (plus 12 °). Further, when the stoker inclination angle of the drying stage 11 is −20 ° (minus 20 degrees) of the optimum value, the optimum value of the stoker inclination angle of the combustion stage 12 is + 10 ° (+10 degrees).
The necessary stoker length of the drying stage 11 and the combustion stage 12 can be made as short as possible by making each stoker inclination angle into an appropriate range, particularly an optimum value, and even if the post-combustion stage 13 is included A relatively small size and low cost stoker furnace can be used.
 乾燥段11が下向きに傾斜していることによって、どのような性状の被焼却物Tであっても燃焼段12まで滞りなく搬送することができ、かつ、燃焼段12及び後燃焼段13は上向きに傾斜していることによって、燃焼段12の下流に被焼却物Tが容易に滑り落ちたり、転がり落ちたりすることなく、十分に燃焼されて搬送される。 Since the drying stage 11 is inclined downward, any kind of incineration material T can be conveyed without problems to the combustion stage 12 and the combustion stage 12 and the post-combustion stage 13 are upward By inclining, the material T to be incinerated is sufficiently burned and transported downstream of the combustion stage 12 without easily slipping or rolling off.
 即ち、滑りやすい素材又は転がりやすい形状の被焼却物Tの場合、乾燥段11を転がるなどして燃焼段12まで早期に搬送されるので、乾燥段11では十分に乾燥できない可能性がある。しかしながら、燃焼段12と後燃焼段13とが上向きに傾斜していため、乾燥段11を転がり落ちた被焼却物Tが燃焼段12と後燃焼段13をさらに転がり落ちることはなく、燃焼段12で必ず十分に乾燥、焼却がなされる。含水率が高い被焼却物Tは、乾燥段11に滞留することなく、乾燥されつつ燃焼段12へ搬送されるので、やはり同様に、燃焼段12で必ず十分に焼却される。
 これにより、被焼却物Tの性状によらず被焼却物Tを連続投入でき、かつ、被焼却物Tの燃え残りを無くすることができる。
That is, in the case of a slippery material or a to-be-incinerated material T having a rollable shape, the drying stage 11 is rolled or the like and conveyed to the combustion stage 12 at an early stage. However, since the combustion stage 12 and the post-combustion stage 13 are inclined upward, the incinerator T which has rolled down the drying stage 11 does not further roll down the combustion stage 12 and the post-combustion stage 13. Always be fully dried and incinerated. The material T to be incinerated with a high water content is transported to the combustion stage 12 while being dried without staying in the drying stage 11, so that it is certainly incinerated in the combustion stage 12 as well.
Thereby, the incinerator T can be continuously fed regardless of the property of the incinerator T, and the unburned residue of the incinerator T can be eliminated.
 また、後燃焼段13の搬送方向下流側の端部13cを、鉛直方向において、燃焼段12の搬送方向下流側の端部12cと実質的に同位置、または、燃焼段12の端部12cよりも上方に配置した。これにより、仮に乾燥段11を被焼却物Tが転がり落ちる等した場合においても、被焼却物Tが十分に燃焼されないまま後燃焼段13から排出されることを防止することができる。 Further, the end 13c downstream of the post-combustion stage 13 in the transport direction is substantially the same position as the end 12c downstream of the combustion stage 12 in the transport direction in the vertical direction, or from the end 12c of the combustion stage 12 Also placed above. As a result, even if the incinerator T rolls off the drying stage 11 or the like, it is possible to prevent the incinerator T from being discharged from the post-combustion stage 13 without being sufficiently burned.
 上記実施形態によれば、移動火格子16に引きずられてやや移動した前火格子31には、バネ35により移動火格子16の移動の向きと逆の向きに引っ張る力が作用する。このため、移動火格子16と前火格子31との間にごみの噛み込みが発生した場合においても、当該ごみを挟み込んでいる前火格子31を戻す力が作用する。
 また、支持部32によって前火格子31の移動方向が制限されるため、前火格子31の移動を最小限に抑え、シール性の低下を抑制することができる。
According to the above embodiment, the spring 35 applies a pulling force in the direction opposite to the direction of movement of the movable grate 16 on the front grate 31 dragged and moved slightly by the movable grate 16. For this reason, even when dust biting occurs between the moving grate 16 and the front grate 31, a force acts on returning the front grate 31 sandwiching the dust.
Further, since the moving direction of the front grate 31 is restricted by the support portion 32, the movement of the front grate 31 can be minimized, and the reduction in sealing performance can be suppressed.
 また、軸状部材38と軸支持部40、42によって前火格子31の移動方向が移動火格子と接する方向のみに制限されることで、前火格子31と移動火格子16との接触状態を向上させることができる。
 また、貫通孔45とガイド部材46から構成される移動方向制限部44によって、前火格子31と移動火格子16との接触状態を更に向上させることができる。
In addition, the movement direction of the front grate 31 is restricted only by the shaft-like member 38 and the shaft support portions 40 and 42 in the direction in which the front grate 31 contacts the moving grate. It can be improved.
Further, the moving direction restricting portion 44 configured by the through hole 45 and the guide member 46 can further improve the contact state between the front grate 31 and the moving grate 16.
 また、乾燥段11が上記の角度で下向き、燃焼段12、後燃焼段13が上記の角度で上向きのストーカ炉に、本発明のシール装置30を、付勢方向を上述のように「押し出す方向」と「引き込む方向」に適宜設定して配置することで、当該ストーカ炉のシール性を向上することができる。 Also, the direction in which the sealing device 30 of the present invention is pushed in the biasing direction as described above is applied to the stoker furnace in which the drying stage 11 faces downward at the above angle and the combustion stage 12 and the post combustion stage 13 face at the above angle. The sealability of the stoker furnace can be improved by appropriately setting and arranging in the “drawing direction” and the “drawing direction”.
 なお、シール装置30の軸状部材38と、軸支持部の構造は、上記した構造に限ることはない。例えば、図6に示すように、軸状部材38Bを支持部32B(上面支持板33B)に固定し、円筒状の軸支持部40Bを前火格子本体37に固定してもよい。バネ35は、ナット47と、軸支持部40Bとを接続する。軸支持部40Bは、底面支持板34の第二軸支持板41に形成されている貫通孔41aの内周面を摺動可能である。
 即ち、前火格子31を、前火格子31が移動火格子16の移動に伴い移動する向きと逆の向きに付勢できれば、どのような構成としてもよい。
 また、シール装置30は本実施形態に限らず、落差壁の直下に板状の移動火格子が存在して往復運動するようなストーカ炉に効果的に適用可能であるが、本実施形態のようにストーカ各段の傾斜の向きが異なる場合は、同一の機構で対応できる分、機器コストが減るので、さらに好適である。
The structure of the shaft-like member 38 of the sealing device 30 and the structure of the shaft support portion is not limited to the above-described structure. For example, as shown in FIG. 6, the shaft-like member 38B may be fixed to the support 32B (upper surface support plate 33B), and the cylindrical shaft support 40B may be fixed to the front grate main body 37. The spring 35 connects the nut 47 and the shaft support 40B. The shaft support portion 40B can slide on the inner peripheral surface of the through hole 41a formed in the second shaft support plate 41 of the bottom surface support plate 34.
That is, as long as the front grate 31 can be biased in the direction opposite to the direction in which the front grate 31 moves as the moving grate 16 moves, any configuration is possible.
Further, the sealing device 30 is not limited to the present embodiment, and can be effectively applied to a stoker furnace in which a plate-like moving grate exists just under the falling wall and reciprocates, but as in the present embodiment If the direction of inclination of each step is different, it is more preferable because the equipment cost can be reduced by the same mechanism.
〔変形例〕
 以下、本発明のストーカ炉用シール装置が配置されるストーカ炉の変形例について図面を参照して詳細に説明する。なお、本変形例では、上述した実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図7に示すように、ストーカ5の燃焼段12と後燃焼段13との間には段差(落差壁)がない。即ち、燃焼段12と後燃焼段13とは、連続的に接続されている。換言すれば、燃焼段12の搬送方向下流側の端部12cと後燃焼段13の搬送方向上流側の端部13bとが同じ高さになるように形成されている。
 第二シール装置30Bは、乾燥段11と燃焼段12との間の第二落差壁28にのみ設けられている。
[Modification]
Hereinafter, modifications of the stoker furnace in which the seal device for a stoker furnace of the present invention is disposed will be described in detail with reference to the drawings. In addition, in this modification, it describes focusing on difference with embodiment mentioned above, and abbreviate | omits the description about the same part.
As shown in FIG. 7, there is no level difference (falling wall) between the combustion stage 12 and the post-combustion stage 13 of the stoker 5. That is, the combustion stage 12 and the post-combustion stage 13 are connected continuously. In other words, the end 12 c downstream of the combustion stage 12 in the transport direction and the end 13 b upstream of the post-combustion stage 13 in the transport direction are formed to have the same height.
The second sealing device 30 B is provided only on the second falling wall 28 between the drying stage 11 and the combustion stage 12.
 本変形例によれば、仮に乾燥段11を転がり落ちた被焼却物Tの勢いが強く、燃焼段12をその勢いで通過したとしても、少なくとも後燃焼段13で停止し、後燃焼段13から排出されることはない。そして、後燃焼段13と燃焼段12が段差なく連続的に接続されていることにより、万一、後燃焼段13まで十分に燃焼されない被焼却物Tが転がる等して進んだとしても、自重により燃焼段12まで戻され、燃焼を行うことができる。すなわち、不完全に燃焼された被焼却物Tの排出を極力低減することができる。
 本変形例においても、シール装置30を、付勢方向を上述のように「押し出す方向」と「引き込む方向」に適宜設定して配置することで、当該ストーカ炉のシール性を向上することができることは、実施例と同様である。
According to this modification, even if the momentum of the incinerator T which has rolled down the drying stage 11 is strong and the combustion stage 12 is passed by that momentum, it stops at least in the post-combustion stage 13 and from the post-combustion stage 13 It will not be discharged. And by the fact that the post-combustion stage 13 and the combustion stage 12 are continuously connected without a step, even if the to-be-incinerated material T which is not sufficiently burned up to the post-combustion stage 13 rolls and advances etc. Can be returned to the combustion stage 12 to perform combustion. That is, the discharge of the incompletely burned incinerator T can be reduced as much as possible.
Also in this modification, the sealability of the stoker furnace can be improved by appropriately setting the seal device 30 in the “push-out direction” and the “draw-in direction” as described above. Is the same as in the example.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、前火格子31を付勢する構成は、上記した構成に限ることはなく、例えば、圧縮コイルバネではなく引張コイルバネや皿バネを採用した構成としてもよい。
The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within the scope of the present invention are also included.
The configuration for biasing the front grate 31 is not limited to the above-described configuration. For example, not the compression coil spring but a tension coil spring or a disc spring may be adopted.
 1 ストーカ炉
 2 ホッパ
 3 焼却炉
 4 フィーダ
 5 ストーカ
 6 風箱
 7 フィードテーブル
 8 フィーダ駆動装置
 9 燃焼室
 10 送風機
 11 乾燥段
 11a 乾燥段の据付面
 12 燃焼段
 12a 燃焼段の据付面
 13 後燃焼段
 13a 後燃焼段の据付面
 15 固定火格子
 16 移動火格子
 16P 突起付火格子
 17 灰出し口
 18 駆動機構
 19 梁
 20 油圧シリンダ
 21 アーム
 22 ビーム
 23 ブラケット
 27 第一落差壁
 28 第二落差壁
 29 第三落差壁
 30 シール装置
 30A 第一シール装置
 30B 第二シール装置
 30C 第三シール装置
 31 前火格子
 31a 上面
 31b 下面
 31c 突起(先端)
 32 支持部
 33 上面支持板
 34 底面支持板
 35 バネ
 37 前火格子本体
 38、38B 軸状部材
 39 第一軸支持板
 40 第一軸支持部
 41 第二軸支持板
 42 第二軸支持部
 44 移動方向制限部
 45 貫通孔
 46 ガイド部材
 47 ナット
 D 搬送方向
 D1 搬送方向上流側
 D2 搬送方向下流側
 T 被焼却物
 θ1、θ2、θ3 ストーカ傾斜角
DESCRIPTION OF SYMBOLS 1 stoker furnace 2 hopper 3 incinerator 4 feeder 5 stoker 6 air box 7 feed table 8 feeder drive device 9 combustion chamber 10 blower 11 drying stage 11a drying stage mounting surface 12 combustion stage 12a combustion stage mounting surface 13 post-combustion stage 13a Mounting surface of the post-combustion stage 15 Fixed grate 16 Moving grate 16P Protrusion grate 17 Ash outlet 18 Drive mechanism 19 Beam 20 Hydraulic cylinder 21 Arm 22 Beam 23 Bracket 27 First falling wall 28 Second falling wall 29 Third Head wall 30 Sealing device 30A First sealing device 30B Second sealing device 30C Third sealing device 31 Front grate 31a Upper surface 31b Lower surface 31c Protrusion (tip)
32 support portion 33 upper surface support plate 34 bottom support plate 35 spring 37 front grate main body 38, 38B axial member 39 first shaft support plate 40 first shaft support portion 41 second shaft support plate 42 second shaft support portion 44 movement Direction limiting portion 45 Through hole 46 Guide member 47 Nut D Conveying direction D1 Conveying direction upstream D2 Conveying direction downstream T Incinerated material θ1, θ2, θ3 Stoker inclination angle

Claims (5)

  1.  複数の固定火格子と複数の移動火格子を備え、被焼却物を搬送しつつ、前記被焼却物の焼却を行うストーカ炉の落差壁と移動火格子との間をシールするストーカ炉用シール装置であって、
     その先端が前記移動火格子に接するように配置された前火格子と、
     前記落差壁に固定され、前記前火格子の上面を支持する上面支持板と、前記上面支持板の下方に配置され、前記前火格子の底面を支持する底面支持板と、を有する支持部と、
     前記前火格子を、前記前火格子が前記移動火格子の移動に伴い移動する向きと逆の向きに付勢するバネと、を有することを特徴とするストーカ炉用シール装置。
    A sealing device for a stoker furnace which comprises a plurality of fixed grates and a plurality of moving grates, and seals between a falling wall of the stoker furnace which carries out incineration of the incineration material and the moving grate while transporting the incineration material. And
    A front grate disposed with its tip in contact with the moving grate;
    A support portion having a top support plate fixed to the falling wall and supporting the top surface of the front grate, and a bottom support plate disposed below the top support plate and supporting the bottom surface of the front grate ,
    A seal device for a stoker furnace, comprising: a spring that biases the front grate in a direction opposite to a direction in which the front grate moves as the moving grate moves.
  2.  前記前火格子又は前記支持部に固定され、前記被焼却物の搬送方向に対応する一方向に延在する軸状部材と、
     前記軸状部材を前記一方向に摺動自在に支持する軸支持部と、を有することを特徴とする請求項1に記載のストーカ炉用シール装置。
    An axial member fixed to the front grate or the support and extending in one direction corresponding to the conveying direction of the incinerator material;
    The seal apparatus for a stoker furnace according to claim 1, further comprising: a shaft support portion slidably supporting the shaft-like member in the one direction.
  3.  前記前火格子の移動方向を前記一方向の進退に制限する移動方向制限部を有し、
     前記移動方向制限部は、前記前火格子に形成された前記一方向に長い貫通孔と、
     前記貫通孔に挿通され、前記支持部に固定されたガイド部材を有することを特徴とする請求項2に記載のストーカ炉用シール装置。
    It has a movement direction restricting part which restricts the movement direction of the front grate to the one way advancing and retreating,
    The movement direction restricting part is a through hole elongated in the one direction formed in the front grate;
    The seal device for a stoker furnace according to claim 2, further comprising a guide member inserted into the through hole and fixed to the support portion.
  4.  フィーダから被焼却物を供給し、複数の固定火格子と複数の移動火格子を備えた乾燥段、燃焼段、及び後燃焼段で、前記被焼却物を順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行う順送式のストーカ炉であって、
     前記乾燥段は、搬送方向下流側が下向きとなるように傾斜して配置され、
     前記燃焼段は、前記乾燥段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、
     前記後燃焼段は、前記燃焼段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、
     前記前火格子を前記搬送方向下流側に押し出す方向に付勢された状態で、前記乾燥段と前記燃焼段との間の前記落差壁に、請求項1から請求項3のいずれか一項に記載のストーカ炉用シール装置を配置したことを特徴とするストーカ炉。
    The material to be incinerated is supplied from a feeder, and the material to be incinerated is sequentially conveyed in the drying stage, the combustion stage, and the post-combustion stage provided with a plurality of fixed grates and a plurality of moving grates, respectively, drying, combustion, And a post-combustion-type stoker furnace,
    The drying stage is inclined so that the downstream side in the transport direction is downward,
    The combustion stage is connected to the drying stage, and is disposed to be inclined such that the downstream side in the transport direction is upward,
    The post-combustion stage is connected to the combustion stage and is disposed to be inclined such that the downstream side in the transport direction is upward.
    In the falling wall between the drying stage and the combustion stage, in a state in which the fore grate is urged in a direction pushing the transport direction downstream, in any one of claims 1 to 3, A stoker furnace characterized in that the stoker furnace sealing device according to the invention is arranged.
  5.  前記前火格子を搬送方向上流側に引き込む方向に付勢された状態で、前記フィーダと前記燃焼段との間の前記落差壁に、前記ストーカ炉用シール装置を配置したことを特徴とする請求項4に記載のストーカ炉。 The sealing device for a stoker furnace is disposed on the falling wall between the feeder and the combustion stage in a state in which the fore grate is urged in a direction to draw in the upstream side in the transport direction. The stoker furnace of item 4.
PCT/JP2018/037825 2017-12-28 2018-10-10 Stoker-furnace sealing device and stoker furnace WO2019130719A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202000754PA SG11202000754PA (en) 2017-12-28 2018-10-10 Sealing device for stoker type incinerator, and stoker type incinerator
DK18895280.8T DK3734155T3 (en) 2017-12-28 2018-10-10 Sealing device for Stoker furnace and Stoker furnace
CN201880001829.XA CN110214249B (en) 2017-12-28 2018-10-10 Mechanical grate furnace and sealing device for same
RU2020114355A RU2744998C1 (en) 2017-12-28 2018-10-10 Sealing device for mechanical furnace incinerator and mechanical furnace incinerator itself
BR112020008052-7A BR112020008052B1 (en) 2017-12-28 2018-10-10 sealing device for furnace-type incinerator and furnace-type incinerator
EP18895280.8A EP3734155B1 (en) 2017-12-28 2018-10-10 Stoker-furnace sealing device and stoker furnace
PH12020500214A PH12020500214A1 (en) 2017-12-28 2020-01-28 Sealing device for stoker type incinerator, and stoker type incinerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253145 2017-12-28
JP2017253145A JP6393822B1 (en) 2017-12-28 2017-12-28 Stoker furnace sealing device and stoker furnace

Publications (1)

Publication Number Publication Date
WO2019130719A1 true WO2019130719A1 (en) 2019-07-04

Family

ID=63580003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037825 WO2019130719A1 (en) 2017-12-28 2018-10-10 Stoker-furnace sealing device and stoker furnace

Country Status (10)

Country Link
EP (1) EP3734155B1 (en)
JP (1) JP6393822B1 (en)
CN (1) CN110214249B (en)
BR (1) BR112020008052B1 (en)
DK (1) DK3734155T3 (en)
PH (1) PH12020500214A1 (en)
RU (1) RU2744998C1 (en)
SG (1) SG11202000754PA (en)
TW (1) TWI683978B (en)
WO (1) WO2019130719A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484874B1 (en) * 2018-08-30 2019-03-20 三菱重工環境・化学エンジニアリング株式会社 Stalker furnace
JP6481231B1 (en) * 2018-10-11 2019-03-13 三菱重工環境・化学エンジニアリング株式会社 Stalker furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136939U (en) * 1980-03-14 1981-10-16
JPH03112628U (en) * 1990-03-06 1991-11-18
JPH04186010A (en) 1990-11-16 1992-07-02 Nkk Corp Rear part seal device of fire grate
JP2001041434A (en) * 1999-07-23 2001-02-13 Takuma Co Ltd Step sliding stoker
JP2007113893A (en) * 2005-10-24 2007-05-10 Mhi Environment Engineering Co Ltd Front fire grate and stoker furnace
US20130186311A1 (en) * 2010-09-01 2013-07-25 Chongqing University Of Science & Technology Two-section type waste incinerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200047A (en) * 1977-04-01 1980-04-29 Claudius Peters Ag Two part grate for stokers with reciprocating grate plates
SU855345A1 (en) * 1979-08-03 1981-08-15 Ордена Трудового Красного Знамени Академия Коммунального Хозяйства Им.К.Д.Памфилова Icinerator
SU1441136A1 (en) * 1986-11-24 1988-11-30 Предприятие П/Я А-3513 Furnace for burning up solid domestic and industrial waste
CN88200266U (en) * 1988-01-08 1988-08-17 郑州锅炉厂 Side sealing device of chain grate
JP4186010B2 (en) * 1998-05-01 2008-11-26 株式会社イシダ Product processing equipment
DE29809506U1 (en) * 1998-05-27 1998-07-30 Fuguma Gmbh Storage element for a slide plate
CN1252415C (en) * 2003-04-24 2006-04-19 株式会社田熊 Fire grate for motor grate combustion appts. and sealing structure between side walls of combustion appts.
EP1975507A1 (en) * 2007-03-29 2008-10-01 ThyssenKrupp Xervon Energy GmbH Grate for combustion plants
CN106196077B (en) * 2016-08-17 2018-06-29 江苏天楹环保能源成套设备有限公司 A kind of large size domestic waste incineration grate furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136939U (en) * 1980-03-14 1981-10-16
JPH03112628U (en) * 1990-03-06 1991-11-18
JPH04186010A (en) 1990-11-16 1992-07-02 Nkk Corp Rear part seal device of fire grate
JP2001041434A (en) * 1999-07-23 2001-02-13 Takuma Co Ltd Step sliding stoker
JP2007113893A (en) * 2005-10-24 2007-05-10 Mhi Environment Engineering Co Ltd Front fire grate and stoker furnace
US20130186311A1 (en) * 2010-09-01 2013-07-25 Chongqing University Of Science & Technology Two-section type waste incinerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734155A4

Also Published As

Publication number Publication date
CN110214249B (en) 2020-11-06
EP3734155A4 (en) 2021-09-15
JP6393822B1 (en) 2018-09-19
RU2744998C1 (en) 2021-03-18
EP3734155B1 (en) 2023-12-20
PH12020500214A1 (en) 2020-10-19
EP3734155A1 (en) 2020-11-04
TW201930784A (en) 2019-08-01
SG11202000754PA (en) 2020-02-27
BR112020008052A2 (en) 2020-09-15
BR112020008052B1 (en) 2021-02-17
CN110214249A (en) 2019-09-06
DK3734155T3 (en) 2024-03-11
JP2019120414A (en) 2019-07-22
TWI683978B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
TWI683977B (en) Mechanical stoker type incinerator for combusting material to be incinerated
WO2019130719A1 (en) Stoker-furnace sealing device and stoker furnace
JP6450987B1 (en) Stalker furnace
WO2020044578A1 (en) Stoker furnace
JP6481231B1 (en) Stalker furnace
WO2020070926A1 (en) Stoker furnace
JP2014202422A (en) Stoker type incinerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895280

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008052

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895280

Country of ref document: EP

Effective date: 20200728

ENP Entry into the national phase

Ref document number: 112020008052

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200422