WO2019130668A1 - Automated analyzer and automated analysis method - Google Patents

Automated analyzer and automated analysis method Download PDF

Info

Publication number
WO2019130668A1
WO2019130668A1 PCT/JP2018/032999 JP2018032999W WO2019130668A1 WO 2019130668 A1 WO2019130668 A1 WO 2019130668A1 JP 2018032999 W JP2018032999 W JP 2018032999W WO 2019130668 A1 WO2019130668 A1 WO 2019130668A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
data
automatic
measurement
output
Prior art date
Application number
PCT/JP2018/032999
Other languages
French (fr)
Japanese (ja)
Inventor
佑斗 風間
飯島 昌彦
千枝 藪谷
研二 小暮
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201880058137.9A priority Critical patent/CN111094993B/en
Priority to US16/646,386 priority patent/US11187712B2/en
Priority to EP18893760.1A priority patent/EP3734288B1/en
Priority to EP23200938.1A priority patent/EP4293361A2/en
Priority to JP2019562741A priority patent/JP6812577B2/en
Publication of WO2019130668A1 publication Critical patent/WO2019130668A1/en
Priority to US17/474,586 priority patent/US20210405079A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator
    • G01N2035/009Displaying information to the operator alarms, e.g. audible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control

Definitions

  • the present invention relates to the technology of an automatic analyzer for clinical examination.
  • the present invention also relates to a technique of alarm output in response to an abnormality, an error or the like in an automatic analyzer.
  • An automatic analyzer for clinical examination detects the concentration and amount of components of a target component substance contained in a sample (also called a sample) such as blood or urine based on optical measurement.
  • a sample also called a sample
  • absorptiometric method light from a light source is irradiated to a sample or a reaction solution (mixture of a sample and a reagent), and the amount of transmitted light at one or more wavelengths obtained as a result is measured to calculate absorbance. Then, in the absorptiometric method, the component amount of the target component substance is determined from the relationship between the absorbance and the concentration according to the Lambert-Beer law.
  • an automatic analyzer for clinical examination for example, one that realizes high sensitivity of immunoanalysis using a light scattering detection method using a light amount change of scattered light that easily catches a larger light amount change is known. ing.
  • the light scattering detection method light is irradiated to aggregates formed in the antigen-antibody reaction, and at least one of the light amount and the light intensity of the scattered light scattered by the aggregates is measured. Then, in the light scattering detection method, the component amount of the target component substance is determined from the light amount or the relationship between the light intensity and the concentration.
  • a range in which measurement and quantification are possible (sometimes referred to as "quantitative range", etc.) between an absorptiometer which is a photometer using absorptiometry and a scattering photometer which is a photometer using a light scattering detection method
  • quantitative range a range in which measurement and quantification are possible
  • an absorptiometer which is a photometer using absorptiometry
  • a scattering photometer which is a photometer using a light scattering detection method
  • Patent Document 1 describes that as an automatic analyzer, an optimum photometer can be determined according to the concentration range among a scattering photometer and an absorptiometer.
  • an abnormality or the like at the time of measurement is minor, for example, re-measurement etc. may be performed after coping with dilution of the sample, for example, so that an appropriate measurement result may be obtained. Therefore, there has also been developed an automatic analyzer having a function (which may be referred to as an automatic re-examination function) of performing re-examination including re-measurement automatically according to the abnormality or the like.
  • the object of the present invention relates to the technology of an automatic analyzer comprising two or more kinds of plural photometers, and it is possible to obtain a suitable output from measurement results and data alarms of plural photometers even when there is an abnormality at the time of measurement. It is to provide technology that can be realized. That is, the present invention is to provide a technology capable of reducing the load of the user on the output and preventing a determination error, a delay in the result report, and the like. In addition, another object of the present invention is to provide a technique capable of realizing more accurate measurement at high speed by suitable re-measurement control even in the case of an automatic analyzer having an automatic re-inspection function.
  • a representative embodiment of the present invention is an automatic analyzer, which is characterized by having the following configuration.
  • the automatic analyzer according to one embodiment includes a plurality of types of photometers having different quantitation ranges, and an analysis control unit that controls analysis including measurement using the plurality of photometers of a target sample.
  • the analysis control unit acquires a plurality of measurement results including a plurality of measurement values using the plurality of photometers, and when an abnormality is detected in the measurement using the plurality of photometers, When a data alarm according to the type of the abnormality is added to the measurement result using the corresponding photometer among the plurality of measurement results, and a plurality of data alarms are added to the plurality of measurement results, From the plurality of measurement results and the plurality of data alarms, the measurement results and the data alarm to be output are selected according to the combination of the plurality of data alarms, and the selected measurement results and the data And outputs to the user as an analysis result arm.
  • FIG. 2 is a diagram mainly showing a functional block configuration of an analysis control unit in the automatic analyzer of the first embodiment.
  • FIG. 2 is a view showing characteristics of two types of photometers in the automatic analyzer of the first embodiment.
  • FIG. 6 is a view showing a table of classification definitions of data alarms in the automatic analyzer of the first embodiment.
  • FIG. 7 is a diagram showing a first part as a correspondence table between data alarms and outputs in the automatic analyzer of the first embodiment.
  • FIG. 7 is a view showing a second part as a correspondence table in the automatic analyzer of the first embodiment.
  • FIG. 7 is a view showing a fourth part as a correspondence table in the automatic analyzer of the first embodiment.
  • FIG. 6 is a diagram showing a flow of output control processing in the automatic analyzer of the first embodiment.
  • FIG. 8 is a diagram showing a flow of priority output alarm determination processing in the first embodiment.
  • it is a figure which shows the flow of high level data alarm processing.
  • it is a figure showing the flow of the 1st portion of middle level data alarm processing.
  • Embodiment 1 it is a figure which shows the flow of a low level data alarm process.
  • FIG. 2 It is a figure which shows the example of a processing flow in the automatic analyzer of Embodiment 2 of this invention.
  • It is a figure which shows the flow of the 1st part of a middle level data alarm process in the automatic analyzer of Embodiment 3 of this invention.
  • Embodiment 3 it is a figure which shows the flow of the 2nd part of middle level data alarm processing.
  • the reaction between the sample and the reagent is roughly divided into two types, a color reaction and an agglutination reaction.
  • the color reaction is a reaction between a substrate and an enzyme, and is used in biochemical analysis.
  • biochemical analysis the amount of absorption of light (expressed as absorbance) by the colored reaction solution is measured to determine the amount of components.
  • the agglutination reaction is a reaction between an antigen and an antibody, and is used in an immunoassay.
  • the turbidity (represented as turbidity) of the reaction solution which changes due to the aggregation of the antigen and the antibody, is measured from the change in the amount of transmitted light to determine the amount of components.
  • the target component substance to be measured by immunoassay usually has a low blood concentration, and a highly sensitive detection system is required. Therefore, latex immunoassay and the like have been developed for immunoassays.
  • the turbidity change is made larger by increasing the size of the aggregate formed by the antigen-antibody reaction using a reagent in which the antibody or antigen is sensitized and bound to the latex particle surface, and the sensitivity is high. Measurement is possible.
  • the light scattering detection method generally has high detection sensitivity and good quantitativity for low concentration samples, but has many aggregates in high concentration samples and is not good for quantitative analysis due to the influence of multiple scattering.
  • absorption photometry generally does not have high detection sensitivity for low concentration samples, but it has better quantitativity for high concentration samples compared to light scattering detection methods, and a wide concentration range that can be quantified.
  • the absorptiometer which is a photometer using absorptiometry
  • the scattering photometer which is a photometer using a light scattering detection method, as described above.
  • an automatic analyzer has been developed in which two types of photometers are mounted on one unit and the dynamic range of measurement is expanded by utilizing the difference in the characteristics of the two types of photometers.
  • the measurement results of the scattering photometer are used in the low concentration region
  • the measurement results of the absorptiometer are used in the high concentration region.
  • Patent Document 1 discloses a method of selecting a photometer with high sensitivity based on variations in measured values of a standard solution used to create a calibration curve of each photometer, as a selection criterion of the photometer. Further, a method is disclosed in which a plurality of concentration ranges are set in advance, and two types of photometers are switched according to the concentration range to which the measured value of the photometer falls.
  • an automatic analyzer comprising an absorptiometer using absorption photometry and a scattering photometer using a light scattering detection method will be considered as two conventional photometers.
  • this automatic analyzer it is assumed that it has a simultaneous analysis function which is a function which measures and analyzes simultaneously using two types of photometers.
  • this automatic analyzer is assumed to have a data alarm function which is a function of appending a data alarm to the measurement result in accordance with detection of abnormality or the like at the time of measurement.
  • this automatic analyzer has a function of selecting and outputting one of suitable measurement results based on a predetermined judgment from the measurement results of two types of photometers in simultaneous analysis.
  • the judgment criteria and method for selecting the output for example, there is a method of selecting the measurement result of the photometer having a suitable quantitative range for the concentration of the target sample.
  • Embodiment 1 The automatic analyzer and the automatic analysis method according to the first embodiment of the present invention will be described with reference to FIGS.
  • the automatic analysis method according to the first embodiment is a method including the steps performed in the automatic analysis device according to the first embodiment.
  • the automatic analyzer includes an absorptiometer and a scatterometer as two types of photometers, and has a data alarm function and a simultaneous analysis function.
  • the data alarm function is a function to add a data alarm according to the abnormality or the like to the measurement result when an abnormality or the like at the time of measurement is detected.
  • the simultaneous analysis function is a function to simultaneously perform measurement and analysis ("simultaneous light absorption / scattering analysis") using two types of photometers.
  • the automatic analyzer according to the first embodiment has a function of selecting a suitable measurement result from a plurality of measurement results according to a target component substance of a test item and a suitable quantitative range of various photometers in simultaneous analysis. It can be measured with a wide dynamic range.
  • the automatic analyzer suitably selects the measurement result and the data alarm even when two types of measurement result and data alarm are obtained according to the abnormality at the time of measurement, etc. at the time of simultaneous analysis.
  • Output function (sometimes referred to as output control function).
  • the measurement result to be output, the data alarm, etc. are suitably selected according to the combination of the data alarm.
  • the measurement results include quantitative values such as measured values and calculated values, signal values, analysis result information, and the like.
  • the automatic analyzer according to the first embodiment also has an automatic retesting function, and even if two types of measurement results and data alarms are obtained as described above, the above-mentioned output control function suitably controls the automatic retesting.
  • the automatic analyzer according to the first embodiment suitably selects the measurement result to be output, the data alarm, and the automatic retest information according to the combination of the data alarm, and controls the automatic remeasurement and the like.
  • the automatic retest information includes the necessity of automatic retest, identification information of a photometer to be used, remeasurement conditions (for example, conditions such as dilution of a sample), and the like.
  • FIG. 1 shows the entire schematic configuration of the automatic analyzer 1 of the first embodiment.
  • the automatic analyzer 1 includes a sample disk 10, a reaction disk 20, a reagent disk 30, a sample dispensing mechanism 41, a reagent dispensing mechanism 42, a computer 100, an interface circuit 101, and the like.
  • the sample disc 10 is provided with a drive unit 12.
  • the reaction disk 20 is provided with a drive unit 22.
  • the reagent disc 30 is provided with a drive unit 32.
  • two types of photometers, an absorptiometer 44 and a scattering photometer 45 are installed.
  • the reaction disk 20 is provided with a thermostatic chamber 28.
  • a stirring unit 43, a washing unit 46 and the like are installed.
  • the computer 100 includes an analysis control unit 50, a storage unit 70, an output unit 71, an input unit 72, and the like.
  • the analysis control unit 50 is connected to each drive unit and each mechanism through an interface circuit 101 including a signal line and the like.
  • the computer 100 is configured by, for example, a PC, but is not limited to this.
  • the computer 100 may be configured by a circuit board such as an LSI substrate, or may be configured by a combination thereof.
  • the storage unit 70 is configured of a storage device such as a ROM, a RAM, and a non-volatile storage device.
  • sample cup 15 On the sample disk 10, a plurality of sample cups 15 are installed and held.
  • the sample cup 15 is a sample container for storing the sample 2.
  • the sample cups 15 are held on the disk body 11 of the sample disk 10 so as to be spaced apart from one another along the circumferential direction.
  • the drive unit 12 of the sample disk 10 drives and controls the sample disk 10 according to the control from the analysis control unit 50 (the control unit 53 in FIG. 2). At this time, the drive unit 12 rotates the disc main body 11 to move the plurality of sample cups 15 along the circumferential direction.
  • the sample disc 10 arranges one sample cup 15 out of the plurality of sample cups 15 installed in the disc main body 11 at a predetermined position along the circumferential direction by drive control of the drive unit 12.
  • the predetermined position is, for example, a sample suction position by the sample dispensing mechanism 41 or the like.
  • a plurality of sample cups 15 are arranged on the disc main body 11 in a row along the circumferential direction.
  • the sample cups 15 may be arranged in a plurality of rows concentrically with the disc main body 11.
  • the configuration example of FIG. 1 includes the sample disc 15 of the disc type, the present invention is not limited to this and may be a rack type.
  • the rack system uses a sample rack in which a plurality of sample containers are arranged and held in one or two dimensions.
  • the reagent disc 30 is placed next to the reaction disc 20.
  • a plurality of reagent bottles 35 are installed and held in the disk body 31 of the reagent disk 30.
  • the reagent bottle 35 is a reagent container for containing the reagent 4.
  • the respective reagent bottles 35 are spaced apart from one another along the circumferential direction of the disk main body 31 and held in parallel.
  • the reagent bottle 35 contains the reagent 4 of the type according to the target component substance of the inspection item in the automatic analyzer 1.
  • Each type of reagent 4 is housed in a separate reagent bottle 35.
  • the drive unit 32 of the reagent disc 30 rotates the disc main body 31 under the control of the analysis control unit 50 to move the plurality of reagent bottles 35 along the circumferential direction.
  • the reagent disc 30 arranges one reagent bottle 35 of the plurality of reagent bottles 35 installed in the disc main body 31 at a predetermined position of the reagent disc 30 by the drive control of the drive unit 32.
  • the predetermined position is, for example, a reagent suction position by the reagent dispensing mechanism 42 or the like.
  • the reagent disk 30 is provided with a reagent storage 38 provided with a cooling mechanism.
  • the plurality of reagent bottles 35 disposed on the disc main body 31 is cooled in a state where it is always kept in the cooling environment of the reagent storage container 38 even when the disc main body 31 rotates. Thereby, deterioration of the reagent 4 is prevented.
  • a cooling mechanism of the reagent cooler 38 for example, a method of circulating low temperature water, or a method of cooling in a gas phase by a Peltier element or the like is used.
  • the reaction disc 20 is disposed between the sample disc 10 and the reagent disc 30.
  • a plurality of reaction containers 25 are installed and held on the disk body 21 of the reaction disk 20.
  • the reaction container 25 is a container in which the reaction liquid 3 is produced.
  • the reaction solution 3 is a mixture of the sample 2 and the reagent 4.
  • the sample 2 is dispensed into the reaction container 25 by the sample dispensing mechanism 41, the reagent 4 is dispensed by the reagent dispensing mechanism 42, and the reaction liquid 3 is produced from a mixture of the sample 2 and the reagent 4.
  • the reaction vessels 25 are spaced apart from one another along the circumferential direction of the disk body 21 and held in parallel.
  • the reaction vessel 25 is made of a translucent material for measurement by the absorptiometer 44 and the scattering photometer 45.
  • the drive unit 22 of the reaction disk 20 rotates the disk body 21 to move the plurality of reaction containers 25 along the circumferential direction.
  • the reaction disk 20 arranges one reaction container 25 of the plurality of reaction containers 25 at a predetermined position provided along the circumferential direction by the rotation of the disk main body 21.
  • the predetermined position is, for example, a sample discharge position by the sample dispensing mechanism 41, a reagent discharge position by the reagent dispensing mechanism 42, or the like.
  • Each of the plurality of reaction containers 25 disposed on the disk body 21 of the reaction disk 20 is constantly immersed in constant temperature water (also referred to as constant temperature fluid) in the constant temperature chamber 28. Thereby, the reaction liquid 3 in the reaction vessel 25 is maintained at a constant reaction temperature (for example, about 37 ° C.).
  • the temperature and flow rate of the constant temperature bath water in the constant temperature bath 28 are controlled by the analysis control unit 50 (the constant temperature fluid control unit 54 of FIG. 2), and the amount of heat supplied to the reaction container 25 is controlled.
  • the stirring portion 43, the absorptiometer 44, the scattering photometer 45, and the washing portion are provided on the circumference and around the circumference of the reaction disc 20, with different positions. 46 mag is placed.
  • the sample dispensing mechanism 41 is disposed between the sample disc 10 and the reaction disc 20.
  • the sample dispensing mechanism 41 sucks the sample 2 from the sample cup 15 at the sample suction position of the sample disk 10 and discharges the sample 2 to the reaction container 25 at the sample discharge position of the reaction disk 20.
  • the sample dispensing mechanism 41 includes a movable arm and a dispensing nozzle.
  • the dispensing nozzle consists of a pipette nozzle attached to the moveable arm.
  • the sample dispensing mechanism 41 moves the dispensing nozzle to the sample suction position on the sample disk 10, and a predetermined amount of sample is placed in the dispensing nozzle from the sample cup 15 disposed at the sample suction position. Inhale sample 2 and store. Thereafter, the sample dispensing mechanism 41 moves the dispensing nozzle to the sample discharge position on the reaction disk 20, and discharges the sample 2 in the dispensing nozzle into the reaction container 25 disposed at the sample discharge position.
  • the reagent dispensing mechanism 42 is disposed between the reagent disc 30 and the reaction disc 20.
  • the reagent dispensing mechanism 42 sucks the reagent 4 from the reagent bottle 35 at the reagent suction position of the reagent disc 30, and discharges the reagent 4 to the reaction container 25 at the reagent discharge position of the reaction disc 20.
  • the reagent 4 to be dispensed is a reagent used for quantifying the target component substance which is an analysis item (also called a test item etc.) set corresponding to the target sample 2.
  • the reagent dispensing mechanism 42 similarly includes a movable arm and a dispensing nozzle.
  • the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent aspirating position on the reagent disc 30 during the reagent dispensing operation, and a predetermined amount of reagent from the reagent bottle 35 disposed at the reagent aspirating position into the dispensing nozzle 4 Inhale and store. Thereafter, the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent discharge position on the reaction disk 20, and discharges the reagent 4 in the dispensing nozzle into the reaction container 25 disposed at the reagent discharge position.
  • Each of the sample dispensing mechanism 41 and the reagent dispensing mechanism 42 is provided with a washing tank 46 in preparation for dispensing different types of samples 2 or reagents 4.
  • the cleaning tank 46 is a mechanism for cleaning the dispensing nozzle.
  • Each dispensing mechanism cleans each dispensing nozzle with the cleaning tank 46 before and after the dispensing operation. This prevents contamination of the samples 2 or of the reagents 4 with each other.
  • the dispensing nozzle of each dispensing mechanism is equipped with a sensor for detecting the liquid level of the sample 2 or the reagent 4. As a result, it is possible to monitor and detect measurement abnormalities due to the shortage of the sample 2 or the reagent 4.
  • the sample dispensing mechanism 41 is equipped with a pressure sensor that detects clogging of the dispensing nozzle. In this way, it is possible to monitor and detect a dispensing abnormality that occurs when an insoluble substance such as fibrin contained in the sample 2 clogs the dispensing nozzle.
  • the analysis control unit 50 can monitor and detect various abnormalities and the like at the time of measurement through a mechanism including those sensors.
  • the stirring unit 43 stirs the mixed solution of the sample 2 and the reagent 4 in the reaction container 25 disposed at a stirring position which is a predetermined position on the reaction disk 20. Thereby, the liquid mixture in the reaction vessel 25 is uniformly stirred, the reaction is promoted, and the reaction liquid 3 is prepared.
  • the stirring unit 43 includes, for example, a stirrer provided with a stirring blade or a stirring mechanism using ultrasonic waves.
  • each photometer of the absorptiometer 44 and the scattering photometer 45 has a light source and a light receiver as a basic structure.
  • the light source of each photometer for example, is disposed on the inner peripheral side of the reaction disc 20, and the light receiving unit of each photometer is disposed on the outer peripheral side of the reaction disc 20.
  • Each photometer is connected to the analysis control unit 50 (measurement unit 51 in FIG. 2).
  • the absorptiometer 44 measures the reaction liquid 3 of the reaction container 25 disposed at a measurement position (in particular, the first measurement position) which is a predetermined position on the reaction disc 20.
  • the scattering photometer 45 measures the reaction liquid 3 of the reaction container 25 disposed at a measurement position (in particular, a second measurement position) which is a predetermined position on the reaction disk 20.
  • the two photometers of the absorptiometer 44 and the scattering photometer 45 are disposed at predetermined positions on the circumference of the reaction disc 20 diagonally opposite to the center of rotation of the reaction disc 20. ing.
  • An absorptiometer 44 is disposed for the first measurement position, and a scattering photometer 45 is disposed for the second measurement position.
  • cleaning part 46 are arrange
  • the absorptiometer 44 irradiates light from the light source to the reaction liquid 3 of the reaction container 25 at the first measurement position. At that time, the absorptiometer 44 detects the transmitted light obtained from the reaction solution 3 by the light receiving unit, and describes at least one of the light amount or the light intensity of the transmitted light of a single or plural wavelengths (light amount / light intensity There are cases) to measure. Moreover, the absorptiometer 44 may obtain quantitative values, such as concentration, by predetermined calculation based on the measured value. The absorptiometer 44 outputs a signal containing measured or calculated values.
  • the scattering photometer 45 irradiates light from the light source to the reaction liquid 3 of the reaction container 25 at the second measurement position. At that time, the scattering photometer 45 detects the scattered light obtained from the reaction solution 3 by the light receiving unit, and measures at least one of the light amount or the light intensity (light amount / light intensity) of the scattered light. In addition, the scattering photometer 45 may obtain a quantitative value such as concentration by a predetermined calculation based on the measured value. The scatterometer 45 outputs a signal including measured or calculated values.
  • the cleaning unit 46 cleans the reaction container 25 disposed at the cleaning position on the reaction disk 20.
  • the washing unit 46 discharges the remaining reaction liquid 3 from the reaction container 25 in which the measurement and analysis are completed, and cleans the reaction container 25.
  • the cleaned reaction container 25 can be reused. That is, the next sample 2 is dispensed from the sample dispensing mechanism 41 to the reaction container 25 again, and the next reagent 4 is dispensed from the reagent dispensing mechanism 42.
  • FIG. 2 mainly shows a functional block configuration of the analysis control unit 50 in the configuration of FIG.
  • the analysis control unit 50 controls the whole of the automatic analyzer 1 and the automatic analysis sequence, and controls the analysis including the measurement.
  • the analysis control unit 50 is connected to the interface circuit 101, the output unit 71, the input unit 72, and the like.
  • the analysis control unit 50 performs output (that is, screen display, audio output, and the like) to the output unit 71.
  • the analysis control unit 50 receives an input from the input unit 72 (that is, an operation or the like by the user).
  • the user of the automatic analyzer 1 performs operations and tasks related to the clinical examination through the output unit 71 and the input unit 72.
  • the output unit 71 includes an output device such as a display device.
  • the output unit 71 may include an audio output device, and may emit an alarm sound.
  • the input unit 72 includes an input device such as a keyboard, a mouse, or an operation panel including operation buttons.
  • the analysis control unit 50 executes processing according to a program read from the storage unit 70 by a microprocessor such as a CPU of a PC, for example. Thus, each unit such as the measurement unit 51 is realized.
  • the analysis control unit 50 is a functional block realized by software program processing etc., and the measurement unit 51, the analysis unit 52, the control unit 53, the constant temperature fluid control unit 54, the data storage unit 55, the simultaneous analysis determination unit 56, the automatic retest determination
  • the unit 57 includes a measurement abnormality check unit 58, a priority output determination unit 59, and a priority output alarm determination unit 60.
  • the analysis control unit 50 controls various functions including a simultaneous analysis function described later, a measurement result selection function, a data alarm function, an output control function, and an automatic retest function.
  • the analysis control unit 50 mainly controls the operation control process and measurement of each mechanism and part of the automatic analyzer 1 as an analysis process for the sample 2 for which analysis has been requested by the measurement unit 51, the analysis unit 52, and the control unit 53. Perform data control processing etc.
  • the data storage unit 55 is configured using the storage unit 70, and reads and writes various data.
  • the data storage unit 55 stores various data related to analysis, including measurement results, data alarms, and automatic retest information.
  • the measurement unit 51 inputs a signal including the measurement values of the absorptiometer 44 and the scattered light clock 45 which are two types of photometers, and performs measurement processing.
  • This measurement process includes predetermined calculations. This calculation is, for example, calculating the concentration of the target component substance based on the light quantity / light intensity which is a measured value, or calculating the light intensity from the light quantity which is a measured value.
  • the measurement unit 51 stores the measurement result (measurement value or calculation value) in the data storage unit 55 as measurement data.
  • the analysis unit 52 performs analysis processing corresponding to automatic analysis with reference to measurement data of the measurement result of the data storage unit 55.
  • This analysis process is, for example, to calculate the concentration from the light intensity of the measurement data using a calibration curve. Alternatively, this analysis process is to calculate the component amount of the target component substance using the calculated concentration.
  • the analysis unit 52 determines, for each measurement result of each type of photometer, whether there is an abnormality or the like at the time of measurement, and if there is an abnormality or the like, data representing the abnormality or the like in the measurement result Add an alarm.
  • the determination by the analysis unit 52 is an independent determination for each type of photometer.
  • the analysis unit 52 makes the determination with reference to the control result information and the like stored in the data storage unit 55 by the control unit 53 when making a determination such as an abnormality at the time of measurement.
  • the control unit 53 is a drive control unit that performs drive control of each mechanism according to the automatic analysis sequence.
  • the control unit 53 performs drive control based on the analysis request information and the like of the target sample 2 stored in the data storage unit 55.
  • the control unit 53 controls each portion including each mechanism such as the drive unit 12, the drive unit 22, the drive unit 32, the sample dispensing mechanism 41, the reagent dispensing mechanism 42, the absorptiometer 44, and the scattered light watch 45.
  • the drive unit 12 drives and rotates the sample disk 10 according to the control from the control unit 53.
  • the control unit 53 drives and controls the sample dispensing mechanism 41 to perform a sample dispensing operation.
  • control unit 53 drives and controls the absorptiometer 44 to perform measurement at each measurement point of a predetermined period.
  • the control unit 53 controls the operation of each part at the time of analysis, and stores control result information representing the control state and result in the data storage unit 55.
  • control result information includes information representing the abnormality or the like.
  • the control unit 53 rotates each disc such as the sample disc 10 and arranges a container such as a target sample cup 15 at a predetermined position of each disc. By rotation of the disc, each container repeats rotational movement of a unit distance and rest on the circumference.
  • the control unit 53 produces the reaction solution 3 of each of the plurality of respective specimens 2 in each of the plurality of reaction containers 25 on the reaction disk 20 by controlling the operation of each of the disks and the specimen dispensing mechanism 41 and the like. Then, in the case of simultaneous analysis, the control unit 53 measures the light intensity / light intensity of the reaction liquid 3 of the target reaction container 25 disposed at each measurement position on the reaction disk 20 by control of two types of photometers. Let me do it.
  • the constant temperature fluid control unit 54 controls the temperature and flow rate of the constant temperature bath water in the constant temperature bath 28 of the reaction disk 20 to adjust the temperature of the reaction liquid 3 in the reaction container 25.
  • the simultaneous analysis determination unit 56 makes a determination for output control based on the measurement results of the two types of photometers in the case of the simultaneous analysis and the data alarm.
  • the automatic reinspection determination unit 57 is an abnormality etc. determination unit, and determines the necessity or the like of the automatic reinspection based on an abnormality or the like at the time of measurement for the measurement result using one type of photometer.
  • the measurement abnormality check unit 58 determines and checks whether or not an abnormality or the like represented by a data alarm has occurred in the measurement results of the two types of photometers.
  • the priority output determination unit 59 determines, for the measurement results of the two types of photometers, the measurement result to be output preferentially, based on the predetermined determination and the determination of the priority output setting.
  • the priority output alarm determination unit 60 determines, for example, a data alarm to be output with priority among the two types of data alarms attached to the two types of measurement results.
  • FIG. 3 shows the characteristics of the absorptiometer 44 and the scattered light clock 45 which are two types of photometers used in the first embodiment.
  • the two types of photometers differ in the characteristics of the quantitative range as shown in FIG.
  • the abscissa represents the theoretical value (unit [U / mL]) and the ordinate represents the measured value of each photometer (unit [U / mL]) with respect to the concentration of the target component substance of the target sample.
  • the area of the broken line indicates the quantitative range of the spectrophotometer 44, which is a type 1 photometer.
  • An area of a dashed dotted line indicates a quantitative range of the scattering photometer 45 which is the second type photometer.
  • a range 301 indicates the normal output range of the quantitative range of the absorptiometer 44.
  • the normal output range indicates, in other words, a range in which measurement and quantification can be suitably performed.
  • the range 302 shows the normal output range of the quantitative range of the scatterometer 45.
  • the range 303 indicates the overlapping range in the two types of ranges 301 and 302.
  • the range 303 is basically a range in which measurement results of any type of photometer may be used.
  • a suitable quantitative range for each photometer is set in advance for output control. That is, the respective ranges corresponding to the range 301, the range 302, the range 303, and the like (at least an upper limit value or a lower limit value defining the range) are set.
  • the range 301 of the absorptiometer 44 generally has a narrow width (a range of measured values relative to the theoretical value) centered on the reference straight line 300, and has a linear characteristic. In the range where the value is smaller than the range 301, the shape has a width that extends wider than the reference straight line 300, and the characteristic is a large error.
  • the range 302 of the scattering photometer 45 generally has a narrow width centered on the reference straight line 300 and has a linear characteristic. In the range where the value is larger than the range 302, the shape has a width that spreads in the region below the reference straight line 300, and the characteristic is a large error.
  • the analysis control unit 50 selects the measurement result to be output based on the determination of the above-mentioned characteristic (corresponding range) as follows. This determination is included in the definition of the correspondence table described later.
  • concentration of the target component substance for the relatively high concentration range (for example, the range of about 10 U / mL or more), as shown by the range 301, the quantification of the absorptiometer 44 is more accurate and suitable. . Therefore, the measurement result of the absorptiometer 44 is selected as an output.
  • the quantification of the scattering photometer 45 is more accurate and preferable. Therefore, the measurement result of the scattering photometer 45 is selected as an output.
  • any of the two types of measurement results can be basically used. is there.
  • the measurement result of one of the photometers of one type is selected as an output according to, for example, a priority output setting described later.
  • Each inspection item has a priority output setting.
  • the priority output setting is a setting as to which of the two photometers of the absorptiometer 44 and the scatterometer 45 to use and output the measurement result and the data alarm preferentially.
  • the automatic analyzer 1 has a priority output setting function, and the operator sets in advance priority output settings as default settings on the implementation, and stores corresponding priority output setting information.
  • As the priority output setting information which type of photometer is to be prioritized is set by a value of a predetermined format such as priority.
  • the priority output setting information can be set in advance, for example, through the input unit 72.
  • the on / off state of the priority output setting function is also set, and the state can also be variably set by the operator or the user. If you want to disable the priority output setting function, it is set to the off state. As described later, in the ON state, the priority output determination is performed based on the priority output setting information, and is not performed in the OFF state.
  • the automatic analyzer 1 has a simultaneous analysis function which is a function of performing measurement and analysis simultaneously using the two types of photometers with respect to the subject sample 2 based on the characteristics of the two types of photometers.
  • the automatic analyzer 1 performs simultaneous absorption and scattering analysis. In this function, measurement by the absorptiometer 44 and measurement by the scattering photometer 45 are performed for the target component substance of the same one inspection item of the same one sample 2 of interest, and two types of measurement results are obtained.
  • the automatic analyzer 1 measures the reaction process of the reaction liquid 3 of the reaction container 25 of the sample 2 of interest substantially simultaneously at the same time using two types of photometers.
  • the reaction process is a continuous measurement process including measurement at predetermined time points on the time axis at predetermined times at which the reaction container 25 is stopped at the measurement position of the photometer.
  • the automatic analyzer 1 selects a suitable measurement result based on the above-mentioned characteristics from the two types of measurement results in the simultaneous analysis. In the case where the automatic analyzer 1 falls within a relatively high concentration range (for example, the range excluding the range 301 to the range 303), the automatic analyzer 1 selects the measurement result of the absorptiometer 44 and performs the absorbance analysis. When the automatic analyzer 1 falls within a relatively low concentration range (for example, the range excluding the range 302 and the range 303), the automatic analyzer 1 selects the measurement result of the scattering photometer 45 and performs the scattered light analysis. This enables accurate measurement and analysis in a wide concentration range including high concentration and low concentration.
  • the automatic analyzer 1 has an automatic retesting function which is a function of controlling to automatically retest according to a predetermined judgment when an abnormality or the like at the time of measurement is detected.
  • the automatic retesting function is a function controlled in association with the data alarm function and the output control function.
  • the output control function includes a function of selecting automatic reinspection information for the automatic reinspection function.
  • an appropriate result can be obtained by performing remeasurement after measures such as dilution or reduction of the amount of sample 2 It is presumed that the possibility of being obtained is high. Therefore, when an abnormality or the like at the time of measurement is detected, the automatic analyzer 1 automatically outputs a part of the output according to the necessity of automatic retest and the remeasurement condition when necessary according to the combination of corresponding data alarms. Select as retest information. Then, the automatic analyzer 1 automatically controls the remeasurement according to the automatic reinspection information by the automatic reinspection function, and outputs the result of the reinspection.
  • the automatic analyzer 1 When the automatic analyzer 1 performs the automatic retest, the automatic analyzer 1 collects a new sample 2 from the sample cup 15 in which the target sample 2 is stored, according to the automatic retest request information and the automatic retest information. Reprocess including dispensing etc. to be stored. The automatic analyzer 1 remeasures the reaction container 25 using a photometer of the selected type. When a data alarm is further appended to the result of the automatic retest, the output selection corresponding to the combination of the data alarm may be applied in the same manner or may not be applied.
  • the automatic analyzer 1 has a data alarm function which is a function of appending a data alarm representing a detected abnormality or the like to the measurement result of the photometer. Even in the case of simultaneous analysis, the automatic analyzer 1 appends each data alarm to each measurement result of the two types of photometers according to detection of abnormality or the like. In particular, when there is an abnormality or the like in the measurement of the absorptiometer 44, the analysis unit 52 appends a first data alarm indicating the abnormality or the like to the first measurement result of the absorptiometer 44.
  • the analysis unit 52 appends a second data alarm indicating the abnormality or the like to the second measurement result of the scattering photometer 45.
  • Analysis data including the measurement result to which the data alarm is added is stored in the data storage unit 55.
  • Output control function In the case where there is an abnormality or the like at the time of the measurement, a data alarm may be added to the measurement results of all (both) of the plurality (two types) of photometers.
  • the automatic analyzer 1 has an output control function which is a function of selecting a measurement result to be output, a data alarm or the like according to a combination of data alarms. Further, this output control function includes a function of controlling an automatic retesting function, and includes a function of selecting automatic retest information to be output.
  • Examples of abnormalities or errors that may occur in an automatic analyzer include: Examples of mechanical abnormalities include insufficient sample amount, insufficient reagent amount, dispensing error due to clogging of the flow path of fibrin contained in the sample 2, and abnormality in the components of the sample 2.
  • Examples of the abnormality of the component of the sample 2 the case where the density
  • cases such as red color change of the sample 2 due to elution of blood cell component, and occurrence of turbidity of the sample 2 observed in dyslipidemic patients may be mentioned.
  • FIG. 4 shows, in the form of a table, classification definitions of a plurality of types of data alarms that can be output in response to an abnormality, an error or the like that may occur in the automatic analyzer 1.
  • various abnormalities and data alarms will be described.
  • an automatic analyzer there are two major technical means for alerting a user based on an abnormality, an error or the like that occurs during measurement and analysis.
  • the first means is a technique of adding a data alarm to the measurement result and outputting it.
  • identification information indicating whether the target component substance of the test item present in one or more test items for each sample is normal or abnormal, and in the case of an abnormality, the type indicating the type of the abnormality etc.
  • the following information is attached as a data alarm. Examples of the information indicating the type of abnormality or the like include an identification code, a mark, an explanatory note, and the like.
  • the user can recognize the type of abnormality or the like by checking the information on the display screen and confirming the information. Then, the user performs handling work and the like according to the abnormality or the like represented by the data alarm. For example, the user performs the handling operation according to the identification code of the data alarm, the operation manual of the automatic analyzer (it may be a guide on a display screen instead of paper) or the like.
  • the coping operation is an operation or an operation for improving the state such as an abnormality of the automatic analyzer so as to return to the normal state and making it possible to re-examine the state.
  • the second means is a technology for outputting a system alarm.
  • an alarm for example, voice output
  • a system alarm for example, an abnormality related to the entire automatic analyzer such as a temperature abnormality or an abnormality of a mechanism.
  • the system alarm can also be displayed on the screen as a data alarm added with system alarm identification information as one of the data alarms.
  • the automatic analyzer 1 has a data alarm function corresponding to at least the first means.
  • the automatic analyzer 1 has, as shown in FIG. 4, a plurality of types of data alarms that are predefined according to the type of abnormality or the like.
  • a plurality of types of data alarms are roughly divided into three groups and levels as described below.
  • (A) is a high level and first group data alarm
  • (B) is a middle level and second group data alarm
  • (C) is a low level and third group data alarm Indicates Note that high, middle and low are relative ones.
  • the improvement of the state includes the improvement of the sample 2 and the reagent 4, that is, the improvement of the reaction liquid 3 of the reaction container 25, and the improvement of the state of mechanisms such as the dispensing mechanism and the washing mechanism.
  • the improvement of the state means, for example, changing to a state in which the amount of sample 2 is reduced when the amount of sample of the reaction liquid 3 in the reaction container 25 is large, or changing to a state in which the amount of sample 2 is increased when the amount of sample is small. Etc.
  • the automatic analyzer 1 outputs a high-level data alarm as output control, and does not immediately perform automatic re-examination, and urges coping operation and operation including user's state improvement. .
  • the automatic analysis device 1 causes the automatic retest to be performed after the state is improved.
  • (B) Second group and middle level require re-examination because they are abnormal, etc., and therefore re-examination is possible without requiring user operation.
  • the second group and middle level require re-examination because they are abnormal, etc., and therefore re-examination is possible without requiring user operation.
  • the automatic analyzer 1 performs the same condition as the previous measurement (that is, at the time of measurement at which an abnormality or the like is detected) Conditions
  • the automatic analyzer 1 outputs a medium-level data alarm and tries to obtain a good measurement result by performing re-measurement under the re-measurement condition.
  • (C) Third group and low level correspond to the case where remeasurement is not necessary in the obtained measurement results, and the measurement results can be handled as a reference value and output is possible. In this case, the automatic analyzer 1 outputs a low level data alarm.
  • each data alarm is attached with an identification code or the like for the purpose of explanation and implementation.
  • An example of the identification code is indicated by "A1", "B1" or the like.
  • the first group and high level data alarms include, for example, the following five data alarms.
  • FIG. 4A shows the corresponding table part. In each row of the table, “A1” or the like in parentheses indicates the identification code of the data alarm. In this example, it has a sample shortage alarm A1, a reagent shortage alarm A2, a clogging detection alarm A3, a detergent shortage alarm A4, and a photometer abnormality alarm A5.
  • the clogging detection alarm A3 is a pressure sensor or the like provided in the sample dispensing mechanism 41, when it is determined that a blockage has occurred in the flow path, for example, when foreign matter is mixed in the dispensing nozzle at the time of aspiration of the sample 2 It is a data alarm that occurs.
  • Insufficient detergent alarm A4 is a data alarm generated due to the lack of detergent used for cleaning the dispensing nozzle and the reaction container 25 in the cleaning unit 46.
  • the photometer abnormality alarm A5 is a data alarm that is generated when an abnormality is detected in the optical system or the substrate (the light source or the light receiving unit described above) of the absorptiometer 44 or the scattering photometer 45.
  • the second group and middle level data alarms are roughly classified into (B-1) data alarms derived from reaction process abnormalities and (B-2) data alarms derived from sample concentration abnormalities.
  • B-1 data alarms derived from reaction process abnormalities
  • B-2 data alarms derived from sample concentration abnormalities.
  • the following data alarms may be mentioned, for example.
  • the corresponding table part is shown in FIG. 4 (B).
  • Examples of data alarms derived from reaction process abnormalities include cell blank abnormality alarm B1, absorbance difference abnormality alarm B2, scattered light intensity difference abnormality alarm B3, and calculation impossible alarm.
  • the cell blank abnormality alarm B1 This is a data alarm that occurs when there is a discrepancy with the cell blank value of another reaction vessel.
  • the cell blank value is an optical measurement value in a state where the reaction liquid 3 is not contained in the reaction container 25.
  • the absorbance difference abnormality alarm B2 indicates that the absorbance difference or the rate of change in absorbance between specific measurement points in the reaction process of the target component substance measured by the absorptiometer 44 satisfies a predetermined threshold set in advance. It is a data alarm that occurs when there is no or when the threshold is exceeded.
  • the scattered light intensity difference abnormality alarm B3 is configured such that the scattered light intensity difference or the scattered light intensity change rate between specific measurement points in the reaction process of the target component substance measured by the scattering photometer 45 is set in advance. It is a data alarm that occurs when the specified threshold is not met or exceeds the threshold.
  • the automatic analyzer 1 Since data alarms derived from these reaction process abnormalities are unlikely to have abnormalities in the mechanism of the automatic analyzer 1, sample 2 and reagent 4 etc., it is possible to cope with cases where automatic retesting is possible without the user performing state improvement work. Do. Therefore, in this case, as the output control, the automatic analyzer 1 causes the automatic retest as the remeasurement condition under the same condition as that of the previous measurement to obtain an accurate measurement result.
  • Prozone Alarm B4 is a data alarm that occurs when the amount of antigen or antibody in sample 2 in the immunoassay is excessive.
  • reaction ratio method the change in absorbance per unit time (or the change in scattered light intensity) and the change in absorbance at the end of the reaction (or change in scattered light intensity) from the reaction process of the target component substance of the test item Calculate the ratio to the amount) and compare it with the preset threshold.
  • antigen / antibody re-addition method an antigen or antibody is additionally added after completion of the reaction, and the change in absorbance or the change in scattered light intensity per unit time immediately after the addition is calculated and compared with the preset threshold value.
  • Quantitative range upper limit over alarm B5 is one of technical limit over, and is a data alarm that occurs when the upper limit value of the suitable quantitative range for each type of photometer set in advance is exceeded. For example, this data alarm occurs when the concentration of the sample 2 in the reaction solution 3 is too high for the photometric range. For example, in the case of measurement by the absorptiometer 44 in FIG. 3 described above, this data alarm occurs when the concentration of the sample 2 exceeds the upper limit value of the normal output range 301.
  • Quantitative range lower limit over alarm B6 is one of technical limit over, and is a data alarm that occurs when the lower limit value of the suitable quantitative range for each type of photometer set in advance is exceeded. For example, this data alarm occurs when the concentration of the sample 2 in the reaction solution 3 is too low relative to the quantitative range of the photometer. For example, in the case of measurement by the absorptiometer 44 in FIG. 3 described above, this data alarm occurs when the concentration of the sample 2 falls below the lower limit value of the normal output range 301.
  • the target component substance is excessively contained in the sample 2 in which the abnormality corresponding to the pro zone alarm B4 has occurred, and the concentration is high. Therefore, the quantitative range upper limit over alarm B5 is also generated simultaneously.
  • the pro zone alarm B4 occurs when the amount of the target component substance is more than that of the quantitative range upper limit alarm B5. Therefore, when these two data alarms occur simultaneously, the automatic analyzer 1 selects and outputs only the pro zone alarm B4 as output control.
  • the automatic analyzer 1 causes the automatic retest to be performed under the condition that the amount of the sample of the reaction liquid 3 is reduced (or the state where the sample 2 is diluted with the reagent 4) as remeasurement conditions.
  • the quantitative range lower limit over alarm B6 it indicates that the concentration of the target component substance in the sample 2 is too low. Therefore, in this case, the automatic analyzer 1 causes the automatic retest to be performed with the amount of the sample of the reaction liquid 3 increased as the remeasurement condition.
  • FIG. 4C shows the corresponding table portion. In this example, it has a serum information alarm C1, a reagent expiration alarm C2, and a sample carryover.
  • Serum information alarm C1 is a data alarm that occurs when a coexistent substance that affects the analysis of the target component substance is mixed in the sample 2 such as blood.
  • the coexisting substances include lipids, hemoglobin, bilirubin and the like.
  • the samples 2 also referred to as abnormal samples
  • the samples 2 in which the coexisting substances are mixed are called milk beads, hemolysis, and yellow, respectively.
  • Hemolysis (also referred to as red change) and yellow cause a color change of the sample 2 and therefore, the absorptiometer 44 is largely affected. Since the milk bottle causes a change in the turbidity of the sample 2, the influence on the scattering photometer 45 is large.
  • Serum information is information on coexistent substances as described above.
  • Serum information is usually measured by measuring the absorbance of the sample 2 itself using the light of the wavelength corresponding to each coexisting substance using the reagent 4 which does not react with the sample 2 separately from the analysis of the target component substance of the test item It is judged. Each measured absorbance is compared with each preset threshold value, and a serum information alarm C1 is added to one that exceeds the threshold value.
  • Reagent Expiration Date Alarm C2 is a data alarm that occurs when the expiration date of the reagent 4 registered in the automatic analyzer 1 has expired.
  • the automatic analyzer 1 handles and outputs the measurement result as a reference value as output control. In this case, the condition is not improved unless the sample 2 or the reagent 4 is replaced. Therefore, the automatic analyzer 1 makes automatic retest unnecessary and does not perform it.
  • the automatic analyzer 1 In the output control function of the automatic analyzer 1, based on the detection of an abnormality, the definition of the data alarm, and the predetermined determination by the analysis control unit 50 (in particular, the analysis unit 52) for each measurement of two types of photometers. A selected basically one data alarm is attached to the measurement result. Information in which a data alarm is added to the measurement result is temporarily stored in the data storage unit 55. Each unit such as the simultaneous analysis determination unit 56 performs output control with reference to the information in the data storage unit 55.
  • a plurality of data alarms may be candidates for appendage regarding the measurement results of one type of photometer.
  • the automatic analyzer 1 selects and appends one data alarm based on the pre-setting and the predetermined judgment.
  • This setting is a design matter of the data alarm function. For example, as the definition of the data alarm, the importance or the priority is set between a plurality of types of data alarms (corresponding abnormalities or the like). Although not shown in FIG. 4, for example, a priority number is set for each data alarm.
  • the analysis unit 52 selects the data alarm with the highest priority among the plurality of candidate data alarms.
  • an automatic analyzer of a modification it does not have the above priority setting, and a plurality of data alarms may be added to one measurement result.
  • the table of FIG. 4 also describes examples of other types of data alarms not having identification codes, and although they are not used for output control in the embodiment, they can be similarly used in other embodiments. .
  • the control unit 53 has not set a request for simultaneous analysis, but has set a request for analysis by one of two types of photometers ("absorbance analysis” or “scattered light analysis” as “single analysis") In this case, the measurement unit 51 and the analysis unit 52 perform analysis processing of the target specimen 2 based on the measurement value of the corresponding one photometer.
  • the measuring unit 51 measures the light intensity / light intensity of the target specimen 2 based on the measured value or the calculated value included in the signal from the photometer for each type of photometer. Based on the measurement value from the absorptiometer 44, the measurement unit 51 obtains the light amount / light intensity of the transmitted light by the reaction liquid 3 of the reaction container 25 in which the measurement value is obtained. In addition, the measurement unit 51 obtains the light amount / light intensity of the scattered light by the reaction liquid 3 of the reaction container 25 in which the measurement value is obtained based on the measurement value from the scattering photometer 45. For example, the measurement unit 51 calculates the light intensity based on the light amount of the transmitted light or the scattered light which is the measurement value.
  • the measurement unit 51 stores the data of the light intensity as measurement data in which the information of the reaction container 25 of the target to which the target sample 2 is dispensed is associated or the analysis request information of the sample 2. Store in section 55.
  • the measurement data includes information on the reaction process measured by the photometer (that is, a measured value at each measurement point, etc.).
  • the analysis request information includes information such as the target sample 2 and the reagent 4.
  • the analysis unit 52 analyzes the target component substance of the sample 2 in the target reaction liquid 3 with reference to the information of the measurement data by the measurement unit 51, and at least one of the concentration or the component amount of the target component substance Determine the amount ").
  • the analysis unit 52 reads out the light amount / light intensity of the transmitted light or the light amount / light intensity of the scattered light in the measurement data, and obtains the concentration of the target component substance.
  • the analysis unit 52 refers to the light intensity and refers to the information of the calibration curve, and calculates the concentration of the target component substance from the light intensity.
  • the analysis unit 52 converts the light intensity into a concentration using a calibration curve corresponding to the reagent 4 used for the reaction liquid 3 which has been prepared in advance.
  • the analysis unit 52 converts the transmitted light intensity into the concentration of the target component substance using a calibration curve for the absorptiometer 44.
  • the analysis unit 52 converts the scattered light intensity into the concentration of the target component substance using the calibration curve for the scattering photometer 45.
  • the calibration curve represents the relationship between the concentration of each target component substance determined using a sample such as a standard substance containing a target component substance of a known concentration, and the light amount / light intensity of transmitted light or scattered light.
  • calibration curve data of the reagent 4 of each reagent bottle 35 of the reagent disc 30 is stored in the data storage unit 55.
  • the analysis unit 52 stores the information of the concentration obtained by the analysis in the data storage unit 55 as analysis data associated with the reaction container 25 of the target sample 2 or the information of the analysis request.
  • the concentration of the target component substance is mainly dealt with as the measurement result.
  • the measurement result can be paraphrased as an analysis result, an analysis result, or the like.
  • the analysis unit 52 measures the target sample 2 based on the reaction process measured by each photometer, the analyzed concentration, the analysis parameter information set in advance, and the like. It is determined whether an error or an error has occurred.
  • the example of the abnormality etc. is as above-mentioned. If the analysis unit 52 determines that an abnormality or the like at the time of measurement has occurred, a data alarm corresponding to the type of abnormality or the like is added to the measurement result including the concentration corresponding to the type of photometer; They are stored in the data storage unit 55 as analysis data. When appending the data alarm, the analysis unit 52 appends the data alarm selected according to the classification definition as shown in FIG. 4 and the predetermined determination.
  • the control unit 53 monitors the occurrence of an abnormality, an error, or the like of the sample disc 10, the sample dispensing mechanism 41, and portions such as each mechanism including the respective photometers, while analyzing the target sample 2. And it is judged.
  • control result information including information indicating the abnormality or the like is stored in the data storage unit 55.
  • the analysis unit 52 refers to the control result information from the data storage unit 55 in addition to the measurement data.
  • the analysis unit 52 determines, based on the measurement data and the control result information, the presence or absence of an abnormality or the like at the time of measurement, and the type of the abnormality or the like.
  • the analysis control unit 50 performs output control processing of the analysis result of the target sample 2 as follows.
  • the analysis control unit 50 performs the processing of the second stage by the simultaneous analysis determination unit 56, the automatic retest determination unit 57, the measurement error check unit 58, the priority output determination unit 59, the priority output error determination unit 60, and the like.
  • the analysis control unit 50 outputs the analysis result on the display screen of the output unit 71 using them.
  • the analysis control unit 50 outputs analysis data including the measurement results of each of the two types of photometers to the simultaneous analysis determination unit 56 via the data storage unit 55.
  • the simultaneous analysis determination unit 56 refers to the analysis data from the data storage unit 55.
  • the analysis control unit 50 causes the automatic retest determination unit 57, the measurement abnormality check unit 58, the priority output determination unit 59, the priority output error determination unit 60, and the like to perform processing as necessary.
  • the simultaneous analysis determination unit 56 determines the target component based on the above-mentioned characteristics from the two types of measurement results. Depending on the concentration of the substance, etc., select one suitable measurement result. Furthermore, when one or more data alarms are added to the two types of measurement results, the analysis control unit 50 outputs the measurement results, the data alarms, and the like, according to the combination of the data alarms, as described below. And perform output control processing to select automatic retest information.
  • FIG. 5 to FIG. 8 show a correspondence table in which correspondence between combinations of a plurality of data alarms and outputs used for output control is defined in the automatic analyzer 1.
  • the correspondence table for the above-mentioned mid-level data alarm is shown.
  • the analysis control unit 50 and the output control function perform output control processing according to the definition of such a correspondence table.
  • this output control process is implemented as a software program process as in the process flow described later.
  • this correspondence table may be held as a table or the like on mounting (that is, determination etc. may be performed with reference to the table), or the table or the like may be implemented as a processing flow. It may be omitted.
  • FIG. 5 shows, as a first part of the correspondence table, a first example of the correspondence between the combination of the above-mentioned middle level data alarms and the output.
  • FIG. 5A particularly shows the combination of data alarms derived from (B-1) reaction process abnormality.
  • the first column “absorptivity” of the correspondence table indicates a first data alarm regarding the first measurement result using the absorptiometer 44.
  • the second column “Scattering” shows a second data alarm on the second measurement using scatterometer 45. That is, the set of the first column and the second column indicates a combination of two types of data alarms.
  • the third column “output” of the correspondence table indicates the selection regarding the measurement result as the output content selected in the case of the combination of the first column and the second column.
  • the fourth column “retest” in the correspondence table indicates the necessity (presence or absence) of automatic retest by the selected automatic retest function.
  • the fifth column “condition” of the correspondence table indicates an automatic re-examination condition (that is, a re-measurement condition etc.) in the case where one of the selected automatic re-examination requests is made.
  • Present indicates the necessity (presence) of automatic retest.
  • “None” represents the necessity (none) of automatic re-examination.
  • “Same” (value 1) represents the same conditions (remeasurement conditions etc.) as in the previous measurement.
  • “Loss weight” represents changing to a condition in which the sample 2 is reduced with respect to the condition at the time of the previous measurement.
  • the term “increase” represents changing to a condition in which the sample 2 is reduced with respect to the condition at the time of the previous measurement.
  • the analysis control unit 50 selects and outputs the measurement result of one of the photometers and the data alarm (B2 / B3) according to the determination of the priority output setting, and carries out the automatic retest information to make an automatic retest request under the same conditions as the previous time. I assume. The same output is obtained by combining other lines.
  • FIG. 5 particularly shows a combination of data alarms derived from (B-2) sample concentration abnormality.
  • FIG. 5 as values of the first column “absorptivity” and the second column “scattering”, according to FIG. “Absorbance and scattered light intensity over”, and 2.
  • There is a combination of 4 ⁇ 4 16 as a combination of these four types of values.
  • the analysis control unit 50 selects and outputs the first measurement result and the second data alarm (B4) of the absorptiometer 44, and performs an automatic retesting request to perform an automatic retest request under the conditions reduced from the previous conditions. It is information.
  • the 9th to 12th lines show the case of four combinations in which the "light absorption" data alarm is the quantitative range upper limit alarm B5, and the output selection is the same.
  • the 13th line to the 16th line are for the case of four combinations in which the “light absorption” data alarm is a quantitative range lower limit over alarm B5.
  • “output” “absorptive” (value 1)
  • “retest” “presence” (value 1)
  • “condition” “increase” as output selection. (Value 3).
  • the analysis control unit 50 selects and outputs the first measurement result of the absorptiometer 44 and the first data alarm (B6), and performs an automatic retesting request to perform an automatic retest request under the conditions increased with respect to the previous conditions. It is information.
  • the analysis control unit 50 selects and outputs the second measurement result of the scattering photometer 45 and the second data alarm (B6), and performs automatic retest information on which an automatic retest request is performed under the condition of increasing the previous condition. I assume.
  • FIG. 6 shows, as the second part of the correspondence table, a combination of (B-1) reaction process abnormality and (B-2) sample concentration abnormality in a medium level data alarm.
  • B-1) reaction process abnormality and (B-2) sample concentration abnormality in a medium level data alarm.
  • B-2) sample concentration abnormality in a medium level data alarm.
  • the values of the first column “absorptivity” and the second column “scattering” the aforementioned “B2 / B3”, “B1”, “impossible to calculate”, “absorbance / scattered light intensity difference over”, “B4”
  • lines 1 to 4 show that the data alarm for "absorptive light” is (B-1) "B2 / B3" of the reaction process abnormalities and the data alarm for "scattering” is (B-2) This is the case of four combinations where the sample concentration is abnormal.
  • “output” “absorptivity” (value 1)
  • “retest” “presence” (value 1)
  • “condition” “same” (value 1) as output selection.
  • “retest” “presence” (1)
  • condition “increase” (value 3).
  • the fifth to eighth lines indicate that the data alarm for "absorptive light” is “B1" of (B-1) reaction process abnormality, and the data alarm for "scattering" is (B-2) sample concentration abnormality , In the case of four combinations.
  • the output selection is similar to the first to fourth lines.
  • the “light absorption” data alarm is (B-2) the quantitative range upper limit alarm B5 of the sample concentration abnormalities, and the “scattering” data alarm is (B ⁇ 1) It is a case of three combinations which are reaction process abnormalities.
  • the data alarm of “absorptive light” is (B-2) quantitative range lower limit alarm B6 of the sample concentration abnormality, and the data alarm of “scattered” is (B ⁇ 1) It is a case of three combinations which are reaction process abnormalities.
  • “output” “absorbance” (value 1)
  • “retest” “presence” (value 1)
  • “condition” “increase” (value 3) as the output selection. .
  • FIG. 7 shows, as a third part of the correspondence table, a portion of a combination of a medium level (B-1) reaction process abnormality data alarm and a low level data alarm.
  • B-1 medium level reaction process abnormality data alarm
  • lines 1 to 4 show that the data alarm for "absorptive light” is (B-1) "B2 / B3" of reaction process abnormality, and the data alarm for "scattering” is 3 types of low level It is the case of three combinations.
  • “output” “scatter” (value 2)
  • “retest” “absent” (value 2)
  • “condition” “-” (no value) as output selection.
  • the analysis control unit 50 selects and outputs the second measurement result of the scattering photometer 45 and the second data alarm (low level), and does not perform an automatic retest request.
  • the fourth to sixth lines are the cases of three combinations in which the "light absorption" data alarm is "B4" and the "scatter” data alarm is three types of low level. Also in these cases, the same output selection is made.
  • Lines 10 to 12 show that the “light absorption” data alarm is a low level serum information alarm (C1 and “scatter” data alarm is three types of reaction process abnormality (B-1),
  • “output” “absorptive” (value 1)
  • “retest” “absent” (value 2)
  • “condition” “-” as the output selection.
  • the analysis control unit 50 selects and outputs the first measurement result and the first data alarm (low level) of the absorptiometer 44, and does not request an automatic retest.
  • FIG. 8 shows, as a fourth part of the correspondence table, a combination of a medium level (B-2) sample concentration abnormality data alarm and a low level data alarm.
  • B-2 medium level
  • lines 1 to 4 show that the “absorbance” data alarm is (B-2) “absorbance / scattered light intensity over” among the sample concentration abnormalities, and the “scatter” data alarm is at a low level.
  • “output” “absorptive light” (value 1)
  • “retest” “presence” (value 1)
  • “condition” “loss” (value 2) as output selection.
  • the fourth to sixth lines are the cases of three combinations in which the "light absorption” data alarm is "B4" and the "scatter” data alarm is three types of low level. Also in these cases, the same output selection is made.
  • the seventh to ninth lines are cases of three combinations in which the “absorbance” data alarm is “B5” and the “scatter” data alarm is three types of low level. Also in these cases, the same output selection is made.
  • the 13th to 16th lines show four combinations of “absorptive” data alarm is low level serum information alarm C1 and “scattered” data alarm is (B-2) four kinds of sample concentration abnormalities.
  • “output” “absorptivity” (value 1)
  • “retest” “absent” (value 2)
  • “condition” “ ⁇ ”.
  • “output” “scatter” (value 2)
  • “retest” “presence” (value 1)
  • condition” “increase” (value 3) as the output selection.
  • the combination of lines 17 to 20 has the same output selection.
  • the "absorbance" data alarm is the case of the low level reagent expiration alarm C2, and the same output selection is made.
  • FIG. 9 shows the flow of the first process of the analysis control unit 50.
  • the first process shows an output control process of selecting a measurement result and a data alarm to be output using one or both of two types of photometers.
  • This flow has steps S201 to S210. The steps will be described in the following order. Note that a plurality of processing flows after FIG. 9 are illustrated and described as a plurality of flow diagrams for the sake of explanation. These processing flows are logically connected between the steps, and can be regarded as one processing flow as a whole. That is, it is possible to realize also as one program processing as a whole by the CPU or the like of the analysis control unit 50.
  • the simultaneous analysis determination unit 56 confirms whether or not the format of the analysis request for the target sample 2 is a simultaneous analysis request. If it is a simultaneous analysis request (Y), the process proceeds to S204, and if it is not a simultaneous analysis request (N), the process proceeds to S202.
  • the case of not being a simultaneous analysis request corresponds to the setting of a single analysis request (absorptiometric analysis request or a scattered light analysis request) by one of the absorptiometer 44 and the scattering photometer 45. There may be other forms of analysis request. For example, there may be a “absorptive two-item simultaneous analysis” request. “Absorbent two-item simultaneous analysis” is to measure and analyze two target component substances simultaneously for the reaction liquid 3 in the reaction container 25 of the sample 2 of the same target using only the absorptiometer 44.
  • the simultaneous analysis determination unit 56 causes the output unit 71 to output all the data (including the measurement result and the data alarm) measured by one requested photometer.
  • the display screen of the output unit 71 displays the concentration which is the measurement result, and the data alarm added when there is an abnormality or the like at the time of measurement.
  • the automatic retest determination unit 57 determines, for the measurement result of the single analysis, necessity or the like of the automatic retest based on an abnormality or the like during measurement.
  • the automatic reexamination determination unit 57 determines that the automatic reexamination is unnecessary when the data alarm is not added to the measurement result or when the high level or low level data alarm is added. If unnecessary (not), the automatic retest request is not performed, and this flow ends.
  • the middle level data alarm is added to the measurement result, the automatic reexamination determination unit 57 determines that the automatic reexamination is necessary, and in that case (necessary), the process proceeds to S210.
  • the automatic reexamination determination unit 57 makes an automatic reexamination request under the automatic reexamination condition according to the type of the data alarm. That is, the automatic reinspection determination unit 57 stores the automatic reinspection request information including the remeasurement conditions and the like in the data storage unit 55.
  • the automatic reexamination function of the analysis control unit 50 controls the automatic reexamination in accordance with the automatic reexamination request information.
  • the simultaneous analysis determination unit 56 uses the first measurement result using the absorptiometer 44 and the scattering photometer 45 for the target sample 2 for which the request is made. All data including both the second measurement result and the second measurement result are output through the measurement error check unit 58 as follows. All the above data are stored in the data storage unit 55 by the measurement unit 53 and the analysis unit 52 described above.
  • the measurement abnormality check unit 58 determines whether a data alarm is added to the first measurement result and the second measurement result which are measurement results of the two types of photometers. That is, the measurement abnormality check unit 58 checks whether or not an abnormality or the like at the time of measurement represented by a data alarm has occurred in each measurement result. As a result of this determination, if there is an abnormality or the like only in the first measurement result (A), the process proceeds to S207, and if there is an abnormality or the like only in the second measurement result (B), the process proceeds to S209. In addition, when there is an abnormality or the like in both of the first measurement result and the second measurement result as a result of the determination (C), the process proceeds to S205 (FIG. 3). In addition, when there is no abnormality or the like in both the first measurement result and the second measurement result as a result of the determination (D), the process proceeds to S206.
  • the measurement time abnormality check unit 58 causes the output unit 71 to output all data related to the scattered light analysis, including the second measurement result. Thereby, on the display screen of the output unit 71, as a result of the simultaneous analysis, data having no abnormality or the like including the concentration obtained through the scattering photometer 45 is preferentially output to the user.
  • the measurement abnormality check unit 58 causes the output unit 71 to output all the data related to the absorbance analysis, including the first measurement result. Thereby, on the display screen of the output unit 71, data having no abnormality or the like, including the concentration obtained through the absorptiometer 44, is preferentially output to the user.
  • the priority output alarm determination unit 60 performs priority output alarm determination processing described later (FIG. 10). In this process, as a summary, which data alarm of the first data alarm attached to the first measurement result and the second data alarm attached to the second measurement result is selected and output preferentially Is a process of determining
  • the priority output determination unit 59 performs priority output determination processing on the first measurement result and the second measurement result which are measurement results of the two types of photometers. This process is a process of determining which of the measurement results of the two types of photometers is to be selected and output preferentially.
  • the priority output determination unit 59 refers to the data storage unit 55 for priority output setting information set in advance of the analysis request. For example, priority output setting information is set as one of the parameters of analysis request information.
  • the priority output setting information includes, for example, a setting value of priority output order indicating which of the first measurement result and the second measurement result is to be used as the priority output.
  • a value 1 represents a setting for preferentially outputting the first measurement result (“absorbance priority setting”)
  • a value 2 represents a setting for preferentially outputting the second measurement result (“scattering priority setting”) .
  • the priority output determination unit 59 selects one of the first measurement result and the second measurement result according to the priority output setting information of the analysis request information.
  • step S206 If it is determined in step S206 that the priority output setting function is in the on-state and the "scattering priority setting" is set (A), the process proceeds to step S207, and if the light absorption priority setting is set (B), the process proceeds to step S209. If the priority output setting function is off, that is, if there is no priority output setting between the two photometers (C), the process proceeds to S208.
  • the priority output determination unit 59 causes the output unit 71 to output all data including the second measurement result of the scattering photometer 45. As a result, on the display screen of the output unit 71, all the data including the second measurement result and having no abnormality or the like is preferentially output to the user.
  • the priority output determination unit 59 causes the output unit 71 to output all data including the first measurement result of the absorptiometer 44. As a result, on the display screen of the output unit 71, all the data including the first measurement result and having no abnormality or the like is preferentially output to the user.
  • the priority output determination unit 59 causes the output unit 71 to output all data including both the first measurement result and the second measurement result. As a result, on the display screen of the output unit 71, all data having no abnormality or the like including the measurement results of the two types of photometers are output to the user. After S207, S208, or S209, the present flow ends.
  • FIG. 10 shows a flow related to data alarm level classification determination processing as the first processing of the priority output alarm determination processing by the priority output alarm determination unit 60 in S205.
  • the data alarm associated with each measurement result of the two types of photometers is determined based on the above-mentioned classification definition of the group and the level, and the classification is determined.
  • This flow has steps S301 to S305. The steps will be described in the following order.
  • the priority output alarm determination unit 60 determines the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. Refer to 2 types of data alarms. The priority output alarm determination unit 60 determines whether or not the third group and the high level data alarm are included in one or both of the two types of data alarms. If it is included (Y), the process proceeds to S302, and if it is not included (N), the process proceeds to S303.
  • the priority output alarm determination unit 60 executes high-level data alarm processing described later (FIG. 11), and then ends this flow.
  • the priority output alarm determination unit 60 determines whether or not the second group and medium level data alarms are included in one or both of the two types of data alarms. If it is included (Y), the process proceeds to S304, and if it is not included (N), the process proceeds to S305.
  • the priority output alarm determination unit 60 executes middle-level data alarm processing described later (FIGS. 12 and 13), and then ends the present flow.
  • FIG. 11 shows the flow of the high level data alarm process of S302.
  • FIG. 11 has steps S401 to S405. The steps will be described in the following order.
  • the priority output alarm determination unit 60 determines whether a high level data alarm is added to both the first measurement result and the second measurement result, in other words, between the first data alarm and the second data alarm. Check if both are high level data alarms. If both are high level (Y), the process proceeds to S402; otherwise (N), the process proceeds to S403.
  • the priority output alarm determination unit 60 causes the output unit 71 to output, as an output, high-level data alarms of both the first data alarm and the second data alarm, and ends this flow.
  • the priority output alarm determination unit 60 confirms whether one of the first data alarm and the second data alarm, for example, the first data alarm of the light absorption is a high level data alarm. If the first data alarm is at the high level (Y), the priority output alarm determination unit 60 proceeds to S404, otherwise proceeds to S405 (N).
  • the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result of the light absorption and the first data alarm, and ends this flow.
  • the output control only the data alarm may be output without outputting the concentration or the like of the measurement result. If a measurement result is obtained, the measurement result and the data alarm may be output.
  • the high level data alarm is added when it is necessary for the user to improve the state of the mechanism, the sample 2, the reagent 4 and the like with respect to an abnormality or the like. Therefore, as described above, when a high level data alarm is added to both measurement results, as shown in S402, all the data alarms are output to alert the user and prompt improvement work. Is desirable. At this time, the above-mentioned system alarm may be output simultaneously with the data alarm.
  • FIG. 12 shows the part from step S501 to step S508.
  • FIG. 13 shows the process from step S509 to step S520 as a continuation of FIG.
  • the priority output alarm determination unit 60 sets the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. The type is further determined based on the above-mentioned classification definition. In S501, the priority output alarm determination unit 60 determines whether or not the first data alarm of the light absorption is a data alarm derived from the high concentration of the sample 2. As the data alarm of this type, the above-mentioned pro zone alarm B1, quantitative range upper limit over alarm B2 and the like correspond. If it is a data alarm of this type (Y), the process proceeds to S502, and if not (N), the process proceeds to S504.
  • the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result and the first data alarm. Then, in S503, the priority output alarm determination unit 60 requires automatic retesting using the absorptiometer 44, and the data of the automatic retesting request information as a condition for reducing the sample amount of the reaction container 25 of the target sample 2 Store in the storage unit 55.
  • the analysis control unit 50 performs automatic retest under the conditions according to the automatic retest request information, stores the result, and causes the output unit 71 to output the result. After S503, the present flow ends.
  • the priority output alarm determination unit 60 determines whether the second data alarm for scattering is a data alarm derived from the low concentration of the sample 2. As the data alarm of this type, the aforementioned quantitative range lower limit over alarm B3 corresponds. If it is a data alarm of this type (Y), the process proceeds to S505; otherwise (N), the process proceeds to S507.
  • the priority output alarm determination unit 60 causes the output unit 71 to output the second measurement result of the scattering and the second data alarm. Then, in S506, the priority output alarm determination unit 60 requires automatic retesting using the scattered light clock 45, and makes data on automatic retest request information as a condition for increasing the sample amount of the reaction container 25 of the target sample 2 Store in the storage unit 55.
  • the analysis control unit 50 performs automatic retest under the conditions according to the automatic retest request information, stores the result, and causes the output unit 71 to output the result. After S506, the present flow ends.
  • the priority output alarm determination unit 60 determines whether or not the second data alarm of the second measurement result of the scattering is a low level data alarm.
  • the above-described serum information alarm C1 or the like corresponds to this type of data alarm. If the level is low (Y), the process proceeds to S508, and if not (N), the process proceeds to S509 (FIG. 13).
  • the priority output alarm determination unit 60 causes the output unit 71 to output the second measurement result of the scattering and the second data alarm.
  • the second measurement result is output as a reference value, and the flow is ended without performing the automatic retest as unnecessary.
  • a data alarm derived from reaction process abnormality or a data alarm derived from low concentration of the sample 2 is added to the first measurement result, and the second measurement result is added.
  • the concentration of the target component substance of the sample 2 was lower than the lower limit value of the quantitative range of the absorptiometer 44. Therefore, although it could be quantified by the scattering photometer 45, it could not be quantified by the absorptiometer 44 because the concentration was low.
  • the priority output alarm determination unit 60 determines whether or not the second data alarm of the second measurement result using the scattering photometer 45 is an alarm derived from the high concentration of the sample 2 judge. If it is the type of data alarm (Y), the process proceeds to S510, and if not (N), the process proceeds to S513.
  • the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result and the first data alarm using the absorptiometer 44.
  • the priority output alarm determination unit 60 determines whether or not the first data alarm is an alarm derived from an abnormality in the reaction process. If it is the type of data alarm (Y), the process proceeds to S516, and if not (N), the process proceeds to S512.
  • the priority output alarm determination unit 60 requires automatic retest, and the data of the automatic retest request information under the same condition as the previous condition in which an abnormality or the like represented by the first data alarm (ie, reaction process abnormality or the like) occurs is Store in the storage unit 55.
  • an abnormality or the like represented by the first data alarm ie, reaction process abnormality or the like
  • S516 as a combination of data alarms, a data alarm derived from reaction process abnormality is added to the first measurement result, and a data alarm derived from high concentration of the sample 2 is added to the second measurement result.
  • the corresponding status is In this case, the concentration of the target component substance of the sample 2 exceeds the upper limit value of the quantitative range of the scattering photometer 45, and the absorptiometer 44 can determine that the measurement has failed.
  • the automatic analyzer 1 confirms whether the concentration of the target component substance of the sample 2 falls within the quantitative range of the absorptiometer 44 as a result of the automatic retest. Under the present circumstances, when the case where automatic re-examination is carried out on the conditions which reduce sample volume is considered, it may fall below the quantitative range of the scattering photometer 45. Therefore, automatic re-examination is performed under the same conditions as the previous one. After S516, the present flow ends.
  • the priority output alarm determination unit 60 further determines whether the first data alarm of the light absorption is an alarm derived from the low concentration of the sample 2. If it is the type of data alarm (Y), the process proceeds to S506; otherwise (N), the flow is ended without performing the automatic retest as unnecessary.
  • step S506 the automatic re-examination is performed under the condition of increasing the amount of sample, as described above.
  • the second measurement result exceeds the upper limit value of the quantitative range of the scattering photometer 45, and the first measurement result falls below the lower limit value of the quantitative range of the absorptiometer 44 Is the case.
  • the data alarm derived from the high concentration of the sample 2 is added to the second measurement result as the combination of the data alarm, and the first measurement
  • This combination corresponds to at least one of the sample 2 and the reagent 4 used for measurement having a cause of generating a low level data alarm.
  • this combination could not be quantified by the scattering photometer 45 because the concentration of the target component substance of the specimen 2 exceeds the upper limit value of the quantitative range of the scattering photometer 45, it can be quantified by the absorptiometer 44 Respond to Therefore, it is considered that this combination has occurred. That is, in the case of this combination, it can be determined that the measurement was normally performed in the first measurement result. Therefore, in this case, the first measurement result of the light absorption is output as a reference value, and the automatic retest is not performed.
  • the priority output alarm determination unit 60 determines whether or not the first data alarm for light absorption is a data alarm derived from a reaction process abnormality. If it is the type of data alarm (Y), the process proceeds to S514, and if not (N), the process proceeds to S518.
  • the priority output alarm determination unit 60 selects one of the measurement result and data alarm to be output preferentially from the two types of measurement result and data alarm according to the "priority output setting" set as a parameter in advance. Make it output. At this time, the priority output alarm determination unit 60 determines with reference to the setting value of the above-mentioned priority output setting information. If the setting value is a value representing "light absorption priority setting" (A), the process proceeds to S515, and if the value is a value representing "scattering priority setting" (B), the process proceeds to S517. As described above, in the "light absorption priority setting", the absorptiometer 44 is set as a photometer whose priority output order is higher than that of the scattered light clock 45. In the "scattering priority setting", the opposite priority output order is set.
  • the priority output alarm determination unit 60 selects the first measurement result of the absorptiometer 44 and the first data alarm according to the “absorption priority setting”, and causes the output unit 71 to output the first data alarm. After S515, the process proceeds to S516.
  • the priority output alarm determination unit 60 selects the second measurement result of the scattering photometer 45 and the second data alarm according to the “scattering priority setting”, and causes the output unit 71 to output the same. After S517, the process proceeds to S516.
  • the priority output alarm determination unit 60 requires an automatic retest, and makes an automatic retest request under the same conditions as the previous time. That is, the priority output alarm determination unit 60 stores, in the data storage unit 55, automatic retest request information that is the same remeasurement condition as the condition when an abnormality or the like indicated by the data alarm occurs.
  • the combination of data alarms in the case of S513 to S517 corresponds to a state in which data alarms originating from reaction process abnormalities are added to both the first measurement result and the second measurement result.
  • the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result of the light absorption and the first data alarm. Furthermore, in S519, the priority output alarm determination unit 60 determines whether or not the first data alarm is an alarm derived from the low concentration of the sample 2. If it is the type of data alarm (Y), the process proceeds to S520; otherwise (N), the flow is ended without performing the automatic retest.
  • the priority output alarm determination unit 60 stores, in the data storage unit 55, automatic retest request information under the condition of increasing the sample amount, and causes the automatic retest to be performed.
  • FIG. 14 shows the low level data alarm process of S305.
  • FIG. 14 has steps S601 to S607. The steps will be described in the following order.
  • the priority output alarm determination unit 60 determines the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. Check whether both are low level data alarms. If both are low level (Y), the process proceeds to S602; otherwise (N), the process proceeds to S605.
  • the priority output alarm determination unit 60 performs priority output determination based on the "priority output setting", and selects and outputs one of the measurement results and data alarms to be preferentially output.
  • the priority output alarm determination unit 60 proceeds to S603 if the “scattering priority output” is (B), and proceeds to S604 if the “light absorption priority output” is (A).
  • the priority output alarm determination unit 60 selects the second measurement result and the second data alarm according to the “scattering priority output”, and causes the output unit 71 to output the same. Thereafter, the flow is ended without performing the automatic retest.
  • the priority output alarm determination unit 60 selects the first measurement result and the first data alarm according to the “absorptive light priority output” and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
  • the priority output alarm determination unit 60 confirms whether only the first data alarm for light absorption is at a low level. If only the first data alarm is low (Y), the process proceeds to S606, otherwise (N), that is, if only the second data alarm for the scattering is low, the process proceeds to S607.
  • the priority output alarm determination unit 60 selects the first measurement result of the light absorption and the first data alarm, and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
  • the priority output alarm determination unit 60 selects the second measurement result of the scattering and the second data alarm, and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
  • the automatic analyzer 1 includes the two types of photometers of the absorptiometer 44 and the scattering photometer 45, and uses two types of photometers for the target component substance of each inspection item. Perform simultaneous analysis.
  • the automatic analyzer 1 refers to two types of data alarms that can be added to two types of measurement results. Then, when there are two types of data alarms caused by an abnormality or the like at the time of measurement in both of the two types of measurement results, the automatic analyzer 1 outputs suitable measurements according to the combination of those data alarms. Select the result and data alarm etc.
  • the automatic analyzer 1 performs output control so as to limit and reduce the amount of information of analysis result output to the user.
  • the automatic analyzer 1 more accurate analysis results can be obtained by simultaneous analysis than in the prior art example, and even when there are abnormalities or the like during measurement, the user's judgment or operation on the analysis results output Can reduce the load on As the user, when viewing the analysis result output on the display screen, information such as suitable measurement results and data alarms are automatically selected and limited, so recognition and judgment of the state are easy, and the handling work It is easy to do. As a result, it is possible to prevent the user from making a mistake and to prevent the result report delay.
  • the automatic analyzer 1 automatically performs suitable automatic re-examination control according to the combination of data alarms.
  • the automatic analyzer 1 determines the necessity and conditions of the automatic re-examination so as to reflect at least one of the device state and the sample component state, even when there is an abnormality or the like in both of the two types of measurement.
  • the automatic analyzer 1 determines the necessity and conditions of the suitable automatic retest according to the combination, controls the automatic retest, and outputs the result. Therefore, the automatic re-examination function of the automatic analysis device 1 can be effectively used, more accurate results (concentration and the like) can be obtained in a shorter time by the automatic re-examination, and delay in reporting results by the user can be prevented.
  • Modification (1) The following can be mentioned as a modification of the automatic analyzer 1 of the first embodiment.
  • the present invention is not limited to this, and the invention is similarly applicable to the case where three or more types of three or more photometers are provided.
  • the present invention is also applicable to the case where a plurality of photometers of a certain type are provided. For example, if three photometers are provided, simultaneous analysis using three photometers may be performed. Alternatively, simultaneous analysis may be performed using two types of photometers selected according to settings and an analysis request among the three types.
  • the output selection control may be similarly performed in association with a combination of a plurality of data alarms added to the plurality of measurement results.
  • the data alarm corresponding to abnormality or the like is roughly classified into three groups and levels, and it has been described that different output control is performed according to the combination thereof.
  • the classification of the data alarm is not limited to three. As shown in the correspondence table, it may be a configuration in which an association of output selection including the measurement result and the data alarm is defined for each combination of data alarms related to the measurement results of a plurality of types of photometers.
  • Modification (3) In the first embodiment, if there is a combination of two types of measurement results and data alarms that cause no problem even if either information is output, there is little problem with “Priority output setting”. Based on the information, one of the information is selected and output. Not limited to this, as a modified example, in the case of the specific combination as described above, the "priority output setting" function may not be used. In this modification, based on a fixed setting on implementation, in the case of the specific combination as described above, only one specified information is output or both information is output.
  • step S507 of the middle level data alarm process of FIG. 12 the following step S507-1 is provided before proceeding to step S508 according to the determination result (Y).
  • step S507-1 it is determined whether a low level data alarm is attached to the first measurement result of the light absorption. If it is noted (Y), the process proceeds to step S601 in FIG.
  • step S508 middle level data alarm processing and low level data alarm processing are realized as one flow diagram.
  • the process flow of FIG. 10 only the determination regarding the high level in S301 is performed.
  • the high level data alarm processing of S302 is performed, and when the high level is not included (N), the above middle level and low level processing are integrated. Processing flow is performed.
  • data alarms related to a plurality (two types) of photometers are classified into the above three groups and levels.
  • the middle level was further classified into (B-1) data alarm derived from reaction process abnormality and (B-2) data alarm derived from specimen concentration abnormality.
  • data alarms derived from abnormal sample concentration were classified into data alarms derived from high concentration and data alarms derived from low concentration. Then, as shown in FIG. 5 etc., the output is selected according to the combination of the data alarm.
  • the automatic analyzer refers to the individual data alarms appended to the measurement results using the individual photometers on the processing flow, and directly outputs the output according to the combination of those data alarms. select.
  • the correspondence between the combination of the data alarm and the output is defined in advance, as in the example of the correspondence table described above.
  • the processing flow in the second embodiment is implemented based on the specification.
  • the analysis control unit 50 refers to data such as two types of measurement results and data alarms stored in the data storage unit 55 as processing results by the analysis unit 52.
  • the analysis control unit 50 determines the combination of the data alarms referred to in the processing flow, and selects the measurement result, the data alarm, and the automatic retest information as the output to be associated according to the combination.
  • FIG. 15 shows a part of a process flow configuration example in the automatic analyzer 1 of the second embodiment.
  • the automatic analyzer 1 performs the process according to the flow as shown in FIG. 15 instead of the flow of FIG.
  • the analysis control unit 50 first determines, for example, whether or not the aforementioned sample shortage alarm A1 is added as a first data alarm to the first measurement result of the absorptiometer 44 in step S151. judge.
  • the process proceeds to S152. If not indicated (N), the process proceeds to another step (omitted).
  • the analysis control unit 50 determines whether the second measurement result using the scattering photometer 45 is accompanied by the sample shortage alarm A1 as a second data alarm. If it is indicated (Y), the process proceeds to S153, and if it is not indicated (N), the process proceeds to S154.
  • the case of appending in S152 (Y) corresponds to the case where both are the sample shortage alarm A1 as a combination of two types of data alarms. In S151 and S152, confirmation of such a combination is performed.
  • the analysis control unit 50 causes the first data alarm and the second data alarm, which are both two types of data alarms, to be output as an output according to the first combination in S153. .
  • the processing contents at this time are the same as the processing contents at S401 and S402 of the high level data alarm processing of FIG. 11 of the first embodiment.
  • the analysis control unit 50 determines whether the above-mentioned reagent shortage alarm A2 is added as the second data alarm of the second measurement result. If it is indicated (Y), the process proceeds to S155, and if not indicated (N), the process proceeds to another step (omitted). That is, in S151 and S154, the combination in which the first data alarm is the inspection shortage alarm A1 and the second data alarm is the reagent shortage alarm A2 is confirmed.
  • the analysis control unit 50 outputs the first data alarm and the second data alarm as an output according to the second combination in S155 if the combination, for example, the second combination.
  • the automatic analyzer 1 determines a corresponding combination of all possible combinations of data alarms for two types of data alarms, and determines the corresponding combination according to the determined combinations. Similarly to the first embodiment, the output is selected based on a predetermined criterion.
  • the automatic analyzer according to the third embodiment of the present invention will be described with reference to FIGS.
  • the automatic analyzer 1 according to the third embodiment not only the data alarm corresponding to the abnormality at the time of measurement is added to each measurement result of the two types of photometers by the determination of the analysis control unit 50 but also automatic retest Automatic re-test information related to the function is created and added.
  • the analysis unit 52 appends a data alarm according to an abnormality or the like to the measurement result of a certain photometer, and determines the necessity of automatic retest and the remeasurement condition or the like.
  • the analysis unit 52 adds automatic retest information including information such as necessity / unnecessity of automatic retest and remeasurement conditions in association with the information of the target sample 2 or the reaction container 25, the measurement result and the data alarm, and analyzes
  • the data is stored in the data storage unit 55 as data.
  • a processing unit such as the simultaneous analysis determination unit 56 of the analysis control unit 50 analyzes data including measurement results, data alarms, and automatic retest information related to each of the two types of photometers stored in the data storage unit 55.
  • the simultaneous analysis determination unit 56 or the like selects an output based on a standard defined in a predetermined correspondence table in accordance with a combination of the data alarm and the automatic retest information in the two types of data.
  • the selected output ie, analysis result output information
  • the automatic analyzer 1 of the third embodiment differs from the first embodiment in the processing relating to the automatic reinspection function.
  • the analysis unit 52 temporarily makes a determination regarding the automatic re-examination function for each measurement result of individual photometers, and creates and adds automatic re-examination information.
  • the automatic retest information (retest flag information described below) added by the analysis unit 52 has a different meaning from the above-described automatic retest information.
  • the analysis control unit 50 selects and determines an output including the automatic retest information comprehensively again according to a combination of two types of measurement results including the automatic retest information and the data alarm.
  • the analysis unit 52 creates and adds automatic retest information (described as retest flag information) of a predetermined format. For example, when adding a first data alarm according to an abnormality at the time of measurement, etc. to the first measurement result using the absorptiometer 44, the analysis unit 52 determines whether or not the automatic retest is necessary, and remeasurement if necessary. Determine the conditions etc. The analysis unit 52 adds automatic retest information (first retest flag) according to the determination result to the first measurement result and the first data alarm. Similarly, when adding the second data alarm according to the abnormality at the time of measurement, etc.
  • the analysis unit 52 determines whether or not the automatic retest is necessary, and if necessary Determine the measurement conditions etc.
  • the analysis unit 52 adds automatic retest information (second retest flag) according to the determination result to the second measurement result and the second data alarm.
  • the retest flag is a value representing the necessity (presence or absence) of the automatic retest, the remeasurement condition, and the like using the corresponding type of photometer.
  • the analysis unit 52 stores the data including the measurement result, the data alarm, and the retest flag in the data storage unit 55 in such a manner as to associate the measurement value of the object with the analysis request information of the reaction container 25 or the corresponding sample 2 that acquired the measurement value. .
  • the retest flag is classified into the following four according to the type of data alarm.
  • the identifiers of the retest flag are F1 to F4.
  • First Retest Flag F1 “No Retest Flag”: The first retest flag F1 indicates that automatic retest is unnecessary (absent). Note that the retest flag itself may not be added instead of the first retest flag F1.
  • Second retesting flag F2 "Same condition retesting flag”: The second retesting flag F2 needs (represents) automatic retesting, and as a condition, at the time of the previous measurement (ie, an abnormality etc. is detected) Represents the same remeasurement conditions as in
  • Third retesting flag F3 "weight loss retesting flag”: The third retesting flag F3 indicates that automatic retesting is necessary (present) and that the amount of sample is reduced from the condition at the time of the previous measurement and Represents to do.
  • Fourth retesting flag F4 “increased retesting flag”: The fourth retesting flag F4 indicates that automatic retesting is necessary (present) and that the amount of sample is increased relative to the condition at the time of the previous measurement and Represents to do.
  • the processing flow in the third embodiment is similar to, for example, the level determination process of FIG. 10 of the first embodiment and the high level data alarm process of FIG. 11 described above.
  • FIG. 16 and FIG. 17 show the flow of middle level data alarm processing by the analysis control unit 50 (particularly the simultaneous analysis determination unit 56 etc.) in the third embodiment.
  • FIG. 16 shows steps S701 to S708.
  • FIG. 17 shows step S709 to step S720 following FIG. This process is performed when the middle level data alarm is included in the data alarms appended to the two types of measurement results as in the flow of step S304 in FIG.
  • the output is selected based on the determination of the retest flag.
  • the analysis control unit 50 determines whether or not the “decreased retest flag” (third retest flag F3) is added as a retest flag to the first measurement result and the first data alarm of the absorptiometer 44. . If it is added (Y), the processing proceeds to S702, and if it is not added (N), the processing proceeds to S704.
  • the analysis control unit 50 causes the output unit 71 to output the first measurement result and the first data alarm. Then, in S703, the analysis control unit 50 determines that the automatic re-examination is necessary, and stores, in the data storage unit 55, the automatic re-examination request information as a condition for reducing the sample amount from the previous condition. The analysis control unit 50 controls the automatic retest according to the automatic retest request information, and outputs the result. After S703, the present flow ends.
  • the above-mentioned “weight re-examination flag” (third re-examination flag F3) is added when the concentration of the target component substance of the sample 2 is too high. If the concentration of the target component substance of the sample 2 is determined to be too high (for example, exceeding the upper limit value of the quantitative range) in the first measurement result using the absorptiometer 44 suitable for measuring the high concentration component, the low concentration The reliability of the second measurement result using the scattering photometer 45 suitable for the measurement of the component is also low. Therefore, in this case, the first measurement result is output, and the automatic re-examination is performed under the condition of reducing the amount as described above. Thereby, the measurement result at the time of re-examination is attempted to be within the quantitative range of the absorptiometer 44.
  • the analysis control unit 50 determines whether the “increase retest flag” (the fourth retest flag F4) is added to the second measurement result and the second data alarm of the scattering photometer 45. If it is added (Y), the processing proceeds to S705, and if it is not added (N), the processing proceeds to S707.
  • the analysis control unit 50 causes the output unit 71 to output the second measurement result and the second data alarm. Then, in S706, the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information as a condition for increasing the sample amount with respect to the previous condition. The analysis control unit 50 controls the automatic reexamination according to the automatic reexamination request information. After S705, this flow ends.
  • the above-mentioned “increase re-examination flag” (fourth re-examination flag F4) is added when the concentration of the target component substance of the sample 2 is too low.
  • the concentration of the target component substance of the sample 2 is too low (for example, lower than the lower limit value of the quantitative range)
  • high concentration The reliability of the first measurement result using the absorptiometer 44 suitable for the measurement of the component is low. Therefore, in this case, the second measurement result is output, and the automatic retest is performed under the condition of increasing the amount as described above. Thereby, the measurement result at the time of re-examination is attempted to be within the quantitative range of the scatterometer 45 or the absorptiometer 44.
  • step S 707 The analysis control unit 50 determines whether or not the “No retest flag” (first retest flag F 1) is added to the second measurement result and the second data alarm. Alternatively, this step S 707 may be confirmation as to whether or not the retest flag itself is added. If it is added (Y), the process proceeds to S708, and if it is not added (N), the process proceeds to S709.
  • the analysis control unit 50 causes the output unit 71 to output the second measurement result and the second data alarm, and does not perform the automatic retest, and ends the present flow after S708.
  • the analysis control unit 50 causes the output unit 71 to output the first measurement result of the absorptiometer 44 and the first data alarm.
  • the analysis control unit 50 determines whether or not the same condition retest flag (second retest flag F2) is added to the first measurement result. If it is added (Y), the process proceeds to S716, and if it is not added (N), the process proceeds to S712.
  • the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information under the same conditions as the conditions at the time of the previous measurement.
  • the analysis control unit 50 controls the automatic reexamination according to the automatic reexamination request information. After S716, this flow ends.
  • the analysis control unit 50 further determines whether the increase re-examination flag (the fourth re-examination flag F4) is added to the first measurement result. If it is added (Y), the process proceeds to S706, and if it is not added (N), the flow is ended without performing the automatic retest.
  • the increase re-examination flag the fourth re-examination flag F4
  • the analysis control unit 50 determines whether the condition retest flag (second retest flag F2) is added to the first measurement result. If it is added (Y), the process proceeds to S714, and if it is not added (N), the process proceeds to S718.
  • the analysis control unit 50 performs priority output determination in accordance with “priority output setting”. If it is “absorptive output priority” (A), the process proceeds to S715, and if it is “scattering priority output” (B), the process proceeds to S717.
  • the analysis control unit 50 causes the output unit 71 to output the first measurement result using the absorptiometer 44 and the corresponding first data alarm according to the “absorbance priority output”.
  • the analysis control unit causes the output unit 71 to output the second measurement result using the scattering photometer 45 and the corresponding second data alarm according to the “scattering priority output”.
  • the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information that is the same as the condition at the time of the previous measurement.
  • the analysis control unit 50 causes the output unit 71 to output the first measurement result and the first data alarm using the absorptiometer 44.
  • the analysis control unit 50 determines whether the increase re-examination flag (the fourth re-examination flag F4) is added to the first measurement result. If it is added (Y), the process proceeds to S720, and if it is not added (N), the flow is ended without performing the automatic retest.
  • the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information as a condition for increasing the sample amount with respect to the previous condition. After S720, this flow ends.
  • the output (measurement result, data alarm, and the retest flag for each type of photometer, the output (measurement result, data alarm, and automatic Select retest information).
  • the following method may be used, for example, when determining the condition for decreasing the amount of sample or the condition for increasing the amount as a remeasurement condition or the like which is a condition of the automatic retest.
  • the method using a value such as a predetermined amount or a ratio set in advance, the value of the predetermined amount or the ratio is reflected on the value of the previous condition by addition or multiplication. Determine the sample volume etc.
  • some candidate sample amount conditions may be defined and set in advance, and the sample amount of the remeasurement condition may be determined by selecting and switching from these conditions. .

Abstract

The present invention makes it possible for an automated analyzer comprising two or more types of photometers to obtain suitable output of the measurement results of the plurality of photometers and suitable data alarm output even if there is an abnormality, or the like, at the time of measurement. This automated analyzer comprises, for example, two types of photometers having different quantitative ranges and an analysis control unit for controlling analysis that includes measurement of a given sample using the two types of photometers. If two types of data alarms corresponding to abnormalities, or the like, during measurement have been added to the two types of measurement results from the two types of photometers (step S204(C)), the analysis control unit selects measurement result and data alarm output corresponding to the combination of the two types of data alarms and outputs the same to a user as analysis results (step S205).

Description

自動分析装置および自動分析方法Automatic analyzer and automatic analysis method
 本発明は、臨床検査用の自動分析装置の技術に関する。また、本発明は、自動分析装置における異常やエラー等に応じたアラーム出力の技術に関する。 The present invention relates to the technology of an automatic analyzer for clinical examination. The present invention also relates to a technique of alarm output in response to an abnormality, an error or the like in an automatic analyzer.
 臨床検査用の自動分析装置は、血液や尿等の検体(試料とも呼ばれる)中に含まれる目的成分物質の濃度や成分量を光学的な測定に基づいて検出する。目的成分物質の検出方法としては、検体の透過光量を測定する吸光光度法を用いるものが多い。吸光光度法では、光源からの光を検体または反応液(検体と試薬との混合液)に照射し、その結果得られる1つ以上の波長の透過光量等を測定して吸光度を算出する。そして、吸光光度法では、ランベルト・ベール(Lambert-Beer)の法則に従い、吸光度と濃度との関係から、目的成分物質の成分量を求める。 An automatic analyzer for clinical examination detects the concentration and amount of components of a target component substance contained in a sample (also called a sample) such as blood or urine based on optical measurement. As a method of detecting a target component substance, there are many methods using absorption photometry which measures the amount of transmitted light of a sample. In the absorptiometric method, light from a light source is irradiated to a sample or a reaction solution (mixture of a sample and a reagent), and the amount of transmitted light at one or more wavelengths obtained as a result is measured to calculate absorbance. Then, in the absorptiometric method, the component amount of the target component substance is determined from the relationship between the absorbance and the concentration according to the Lambert-Beer law.
 また、臨床検査用の自動分析装置としては、例えば、より大きな光量変化を捉えやすい散乱光の光量変化を利用する光散乱検出法を用いて、免疫分析の高感度化を実現するものが知られている。光散乱検出法では、抗原抗体反応で生成される凝集塊に光を照射し、その凝集塊によって散乱された散乱光の光量または光強度の少なくとも一方を測定する。そして、光散乱検出法では、その光量または光強度と濃度との関係から、目的成分物質の成分量を求める。 In addition, as an automatic analyzer for clinical examination, for example, one that realizes high sensitivity of immunoanalysis using a light scattering detection method using a light amount change of scattered light that easily catches a larger light amount change is known. ing. In the light scattering detection method, light is irradiated to aggregates formed in the antigen-antibody reaction, and at least one of the light amount and the light intensity of the scattered light scattered by the aggregates is measured. Then, in the light scattering detection method, the component amount of the target component substance is determined from the light amount or the relationship between the light intensity and the concentration.
 吸光光度法を用いる光度計である吸光光度計と、光散乱検出法を用いる光度計である散乱光度計とでは、測定および定量が可能な範囲(「定量範囲」等と記載する場合がある)を含め特性に違いがある。そこで、近年では、それらの2種類の両方の光度計の特性の違いを利用し、2種類の光度計を1台に搭載して測定のダイナミックレンジを広げた自動分析装置が開発されている。 A range in which measurement and quantification are possible (sometimes referred to as "quantitative range", etc.) between an absorptiometer which is a photometer using absorptiometry and a scattering photometer which is a photometer using a light scattering detection method There are differences in the characteristics, including Therefore, in recent years, an automatic analyzer has been developed in which two types of photometers are mounted on one unit and the dynamic range of measurement is expanded by utilizing the difference in the characteristics of the two types of photometers.
 上記自動分析装置に関する先行技術例として、特開2014-6160号公報(特許文献1)が挙げられる。特許文献1では、自動分析装置として、散乱光度計と吸光光度計のうち濃度範囲に応じて最適な光度計を決定できる旨が記載されている。 As a prior art example regarding the above-mentioned automatic analysis device, JP-A-2014-6160 (patent document 1) is mentioned. Patent Document 1 describes that as an automatic analyzer, an optimum photometer can be determined according to the concentration range among a scattering photometer and an absorptiometer.
特開2014-6160号公報JP, 2014-6160, A
 ところで、臨床検査用の自動分析装置は、測定結果の信頼性を高めるため、以下のようなアラームを出力する機能(データアラーム機能と記載する場合がある)を有するものが多い。この機能では、測定中の異常やエラー等を監視し、検知した場合に、測定結果情報に、その異常等の種別を表す所定のデータをデータアラームとして付記して出力する。 By the way, many automatic analyzers for clinical examination have a function (which may be described as a data alarm function) for outputting an alarm as described below in order to improve the reliability of the measurement result. In this function, an abnormality or error in measurement is monitored, and when it is detected, predetermined data representing the type of the abnormality or the like is appended to the measurement result information as a data alarm and output.
 測定時の異常等が軽微である場合には、例えば検体の希釈等の対処の後に、再測定等を行うことで、適切な測定結果が得られる可能性が高い。そのため、その異常等に応じて自動的に再測定を含む再検査を行う機能(自動再検機能と記載する場合がある)を有する自動分析装置も開発されてきた。 If an abnormality or the like at the time of measurement is minor, for example, re-measurement etc. may be performed after coping with dilution of the sample, for example, so that an appropriate measurement result may be obtained. Therefore, there has also been developed an automatic analyzer having a function (which may be referred to as an automatic re-examination function) of performing re-examination including re-measurement automatically according to the abnormality or the like.
 例えば、特許文献1の自動分析装置では、正常な測定の場合、言い換えると異常等が検知されなかった場合に、2種類の光度計の測定結果から出力を選択する手法が開示されている。しかしながら、2種類以上の複数の光度計を備え、データアラーム機能、および測定結果を選択する機能等を有する自動分析装置では、測定時の異常等がある場合に、2種類以上の複数の測定結果およびデータアラームから、どのように出力を選択すれば好適であるかについては、未検討である。例えば、その装置では、2種類の光度計を用いた分析の際、各光度計の測定で異常等が検知され、2種類の測定結果の両方に、それぞれのデータアラームが付記される場合が生じ得る。すなわち、同時に2種類以上の複数のデータアラームが生じる場合がある。その場合、ユーザに対する出力をどのように選択すれば好適であるかは不明であった。 For example, in the automatic analyzer of Patent Document 1, there is disclosed a method of selecting an output from measurement results of two types of photometers in the case of normal measurement, in other words, when an abnormality or the like is not detected. However, in an automatic analyzer equipped with two or more types of photometers and having a data alarm function and a function to select measurement results, etc., if there is an abnormality at the time of measurement, two or more types of measurement results It is unexamined how it is preferable to select an output from the and data alarms. For example, in the case of analysis using two types of photometers, an abnormality or the like is detected in the measurement of each photometer, and a case may occur in which each data alarm is added to both of the two types of measurement results. obtain. That is, two or more types of multiple data alarms may occur simultaneously. In that case, it was unclear how to select the output for the user.
 上記自動分析装置では、複数の種類の測定結果およびデータアラームの全てを出力する場合、あるいは1つの測定結果およびデータアラームを選択して出力する場合、いずれの場合でも、ユーザにとって判断しにくい場合がある。ユーザとしては、その出力がどのような状態や意味を表しているのかがわかりにくく、測定の正誤や適切性、再検査や対処作業の要否等の判断が必要であり、判断に応じた作業や操作が必要である。すなわち、上記自動分析装置では、出力に対してユーザの負荷が大きく、判断ミスや結果報告遅延等も発生する可能性がある。 In the above-mentioned automatic analyzer, when outputting all of a plurality of types of measurement results and data alarms, or when selecting and outputting one measurement result and data alarms, it may be difficult for the user to judge in any case. is there. It is difficult for the user to understand what kind of state or meaning the output represents, and it is necessary to judge whether the measurement is correct or incorrect, reexamination, necessity of reexamination work, etc. And operations are required. That is, in the above-mentioned automatic analysis device, the load on the user against the output is large, and there is a possibility that a judgment error, a delay in result report, etc. may occur.
 また、上記自動分析装置で、さらに自動再検機能との組み合わせを考えた場合、2種類以上の複数のデータアラームが生じた場合に再測定をどのように制御すれば好適であるかについても未検討であり、自動再検機能の有効活用ができない。 Also, considering the combination with the automatic retesting function in the above-mentioned automatic analyzer, we have not yet considered how to control the remeasurement when two or more types of multiple data alarms occur. Therefore, the automatic retesting function can not be used effectively.
 本発明の目的は、2種類以上の複数の光度計を備える自動分析装置の技術に関して、測定時の異常等があった場合でも、複数の光度計の測定結果およびデータアラームからの好適な出力を実現できる技術を提供することである。すなわち、出力に対するユーザの負荷を軽減でき、判断ミスや結果報告遅延等を防止できる技術を提供することである。また、本発明の他の目的は、さらに自動再検機能を有する自動分析装置の場合でも、好適な再測定の制御によって、より正確な測定を高速に実現できる技術を提供することである。 The object of the present invention relates to the technology of an automatic analyzer comprising two or more kinds of plural photometers, and it is possible to obtain a suitable output from measurement results and data alarms of plural photometers even when there is an abnormality at the time of measurement. It is to provide technology that can be realized. That is, the present invention is to provide a technology capable of reducing the load of the user on the output and preventing a determination error, a delay in the result report, and the like. In addition, another object of the present invention is to provide a technique capable of realizing more accurate measurement at high speed by suitable re-measurement control even in the case of an automatic analyzer having an automatic re-inspection function.
 本発明のうち代表的な実施の形態は、自動分析装置であって、以下に示す構成を有することを特徴とする。一実施の形態の自動分析装置は、定量範囲が異なる複数種類の複数の光度計と、対象の検体について前記複数の光度計を用いた測定を含む分析を制御する分析制御部と、を備え、前記分析制御部は、前記複数の光度計を用いた複数の測定値を含む複数の測定結果を取得し、前記複数の光度計を用いた測定の際に、異常を検知した場合には、前記複数の測定結果のうちの対応する光度計を用いた測定結果に、前記異常の種別に応じたデータアラームを付記し、前記複数の測定結果に複数のデータアラームが付記されている場合には、前記複数の測定結果および前記複数のデータアラームから、前記複数のデータアラームの組み合わせに対応させて、出力する測定結果およびデータアラームを選択し、選択した前記測定結果および前記データアラームを分析結果としてユーザに対して出力する。 A representative embodiment of the present invention is an automatic analyzer, which is characterized by having the following configuration. The automatic analyzer according to one embodiment includes a plurality of types of photometers having different quantitation ranges, and an analysis control unit that controls analysis including measurement using the plurality of photometers of a target sample. The analysis control unit acquires a plurality of measurement results including a plurality of measurement values using the plurality of photometers, and when an abnormality is detected in the measurement using the plurality of photometers, When a data alarm according to the type of the abnormality is added to the measurement result using the corresponding photometer among the plurality of measurement results, and a plurality of data alarms are added to the plurality of measurement results, From the plurality of measurement results and the plurality of data alarms, the measurement results and the data alarm to be output are selected according to the combination of the plurality of data alarms, and the selected measurement results and the data And outputs to the user as an analysis result arm.
 本発明のうち代表的な実施の形態によれば、2種類以上の複数の光度計を備える自動分析装置の技術に関して、測定時の異常等があった場合でも、複数の光度計の測定結果およびデータアラームからの好適な出力を実現できる。すなわち、出力に対するユーザの負荷を軽減でき、判断ミスや結果報告遅延等も防止できる。また、代表的な実施の形態によれば、さらに自動再検機能を有する自動分析装置の場合でも、好適な再測定の制御によって、より正確な測定を高速に実現できる。 According to a typical embodiment of the present invention, regarding the technology of an automatic analyzer provided with two or more types of plural photometers, measurement results of plural photometers and even when there is an abnormality or the like at the time of measurement Favorable output from data alarm can be realized. That is, it is possible to reduce the load of the user on the output, and to prevent a determination error, a delay in the result report and the like. Further, according to the representative embodiment, even in the case of an automatic analyzer having an automatic retesting function, more accurate measurement can be realized at high speed by the control of suitable remeasurement.
本発明の実施の形態1の自動分析装置の全体概略構成を示す図である。It is a figure which shows the whole schematic structure of the automatic analyzer of Embodiment 1 of this invention. 実施の形態1の自動分析装置で、主に分析制御部の機能ブロック構成を示す図である。FIG. 2 is a diagram mainly showing a functional block configuration of an analysis control unit in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、2種類の光度計の特性を示す図である。FIG. 2 is a view showing characteristics of two types of photometers in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、データアラームの分類定義の表を示す図である。FIG. 6 is a view showing a table of classification definitions of data alarms in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、データアラームと出力との対応表として、第1部分を示す図である。FIG. 7 is a diagram showing a first part as a correspondence table between data alarms and outputs in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、対応表として、第2部分を示す図である。FIG. 7 is a view showing a second part as a correspondence table in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、対応表として、第3部分を示す図である。It is a figure which shows the 3rd part by the automatic analyzer of Embodiment 1 as a corresponding | compatible table. 実施の形態1の自動分析装置で、対応表として、第4部分を示す図である。FIG. 7 is a view showing a fourth part as a correspondence table in the automatic analyzer of the first embodiment. 実施の形態1の自動分析装置で、出力制御処理のフローを示す図である。FIG. 6 is a diagram showing a flow of output control processing in the automatic analyzer of the first embodiment. 実施の形態1で、優先出力アラーム判定処理のフローを示す図である。FIG. 8 is a diagram showing a flow of priority output alarm determination processing in the first embodiment. 実施の形態1で、高レベルデータアラーム処理のフローを示す図である。In Embodiment 1, it is a figure which shows the flow of high level data alarm processing. 実施の形態1で、中レベルデータアラーム処理の第1部分のフローを示す図である。In Embodiment 1, it is a figure showing the flow of the 1st portion of middle level data alarm processing. 実施の形態1で、中レベルデータアラーム処理の第2部分のフローを示す図である。In Embodiment 1, it is a figure showing the flow of the 2nd part of middle level data alarm processing. 実施の形態1で、低レベルデータアラーム処理のフローを示す図である。図である。In Embodiment 1, it is a figure which shows the flow of a low level data alarm process. FIG. 本発明の実施の形態2の自動分析装置における、処理フロー例を示す図である。It is a figure which shows the example of a processing flow in the automatic analyzer of Embodiment 2 of this invention. 本発明の実施の形態3の自動分析装置における、中レベルデータアラーム処理の第1部分のフローを示す図である。It is a figure which shows the flow of the 1st part of a middle level data alarm process in the automatic analyzer of Embodiment 3 of this invention. 実施の形態3で、中レベルデータアラーム処理の第2部分のフローを示す図である。In Embodiment 3, it is a figure which shows the flow of the 2nd part of middle level data alarm processing.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Note that, in all the drawings for describing the embodiment, the same reference numeral is attached to the same part in principle, and the repeated description thereof will be omitted.
 [課題等]
 前提や課題等について補足説明する。検体と試薬との反応には、呈色反応と凝集反応との、大別して2種類の反応が用いられる。呈色反応は、基質と酵素との反応であり、生化学分析で用いられる。生化学分析では、呈色した反応液による光の吸収量(吸光度として表される)を測定し、成分量を求める。凝集反応は、抗原と抗体との反応であり、免疫分析で用いられる。免疫分析では、抗原と抗体との凝集により変化する反応液の濁り(濁度として表される)を透過光量の変化から測定し、成分量を求める。免疫分析で測定される目的成分物質は、通常、血中濃度が低く、高感度な検出システムが要求される。そのため、免疫分析では、ラテックス免疫比濁法等が開発されてきた。ラテックス免疫比濁法では、ラテックス粒子表面に抗体または抗原を感作、結合させた試薬を用い、抗原抗体反応で生成する凝集塊のサイズを大きくすることで、濁度変化を大きくし、高感度な測定を可能とする。
[Issues etc]
Supplementary explanation of assumptions and issues. The reaction between the sample and the reagent is roughly divided into two types, a color reaction and an agglutination reaction. The color reaction is a reaction between a substrate and an enzyme, and is used in biochemical analysis. In biochemical analysis, the amount of absorption of light (expressed as absorbance) by the colored reaction solution is measured to determine the amount of components. The agglutination reaction is a reaction between an antigen and an antibody, and is used in an immunoassay. In the immunoassay, the turbidity (represented as turbidity) of the reaction solution, which changes due to the aggregation of the antigen and the antibody, is measured from the change in the amount of transmitted light to determine the amount of components. The target component substance to be measured by immunoassay usually has a low blood concentration, and a highly sensitive detection system is required. Therefore, latex immunoassay and the like have been developed for immunoassays. In the latex immunoturbidimetric method, the turbidity change is made larger by increasing the size of the aggregate formed by the antigen-antibody reaction using a reagent in which the antibody or antigen is sensitized and bound to the latex particle surface, and the sensitivity is high. Measurement is possible.
 光散乱検出法は、一般的に、低濃度検体では検出感度が高く定量性が良いが、高濃度検体では、凝集塊が多く、多重散乱の影響によって、定量性が良くない。一方、吸光光度法は、一般的に、低濃度検体での検出感度は高くないが、光散乱検出法と比べ、高濃度検体では定量性が良く、定量可能な濃度範囲も広い。吸光光度法を用いる光度計である吸光光度計と、光散乱検出法を用いる光度計である散乱光度計とでは、上記のように、測定および定量が可能な範囲を含め特性に違いがある。そこで、近年では、それらの2種類の両方の光度計の特性の違いを利用し、2種類の光度計を1台に搭載して測定のダイナミックレンジを広げた自動分析装置が開発されている。この自動分析装置では、例えば、低濃度領域では散乱光度計の測定結果を使用し、高濃度領域では吸光光度計の測定結果を使用する。 The light scattering detection method generally has high detection sensitivity and good quantitativity for low concentration samples, but has many aggregates in high concentration samples and is not good for quantitative analysis due to the influence of multiple scattering. On the other hand, absorption photometry generally does not have high detection sensitivity for low concentration samples, but it has better quantitativity for high concentration samples compared to light scattering detection methods, and a wide concentration range that can be quantified. As described above, there are differences in characteristics between the absorptiometer, which is a photometer using absorptiometry, and the scattering photometer, which is a photometer using a light scattering detection method, as described above. Therefore, in recent years, an automatic analyzer has been developed in which two types of photometers are mounted on one unit and the dynamic range of measurement is expanded by utilizing the difference in the characteristics of the two types of photometers. In this automatic analyzer, for example, the measurement results of the scattering photometer are used in the low concentration region, and the measurement results of the absorptiometer are used in the high concentration region.
 特許文献1では、光度計の選択基準について、各光度計の検量線の作成に用いる標準液の測定値のばらつきから、高感度な光度計を選択する手法が開示されている。また、予め複数の濃度範囲が設定され、光度計の測定値が該当する濃度範囲に応じて、2種類の光度計を切り替える手法が開示されている。 Patent Document 1 discloses a method of selecting a photometer with high sensitivity based on variations in measured values of a standard solution used to create a calibration curve of each photometer, as a selection criterion of the photometer. Further, a method is disclosed in which a plurality of concentration ranges are set in advance, and two types of photometers are switched according to the concentration range to which the measured value of the photometer falls.
 本発明の実施の形態に対する比較例の自動分析装置として、従来の2種類の光度計として、吸光光度法を用いる吸光光度計および光散乱検出法を用いる散乱光度計を備える自動分析装置を考える。また、この自動分析装置では、2種類の光度計を用いて同時に測定および分析を行う機能である同時分析機能を有するとする。また、この自動分析装置では、測定時の異常等の検知に応じて測定結果にデータアラームを付記する機能であるデータアラーム機能を有するとする。また、この自動分析装置では、同時分析の際、2種類の光度計の測定結果から、所定の判断に基づいて、いずれか一方の好適な測定結果を選択して出力する機能を有するとする。その出力選択のための判断基準および方式としては、例えば、対象検体の濃度について、好適な定量範囲を持つ方の光度計の測定結果を選択する方式が挙げられる。 As an automatic analyzer according to a comparative example of the embodiment of the present invention, an automatic analyzer comprising an absorptiometer using absorption photometry and a scattering photometer using a light scattering detection method will be considered as two conventional photometers. Moreover, in this automatic analyzer, it is assumed that it has a simultaneous analysis function which is a function which measures and analyzes simultaneously using two types of photometers. In addition, this automatic analyzer is assumed to have a data alarm function which is a function of appending a data alarm to the measurement result in accordance with detection of abnormality or the like at the time of measurement. Further, this automatic analyzer has a function of selecting and outputting one of suitable measurement results based on a predetermined judgment from the measurement results of two types of photometers in simultaneous analysis. As the judgment criteria and method for selecting the output, for example, there is a method of selecting the measurement result of the photometer having a suitable quantitative range for the concentration of the target sample.
 しかしながら、この比較例の自動分析装置では、同時分析の際、測定時の異常等があった場合には、2種類の測定結果に伴って2種類のデータアラームが生じる場合がある。吸光光度計と散乱光度計とで、それぞれ独立に、測定結果およびデータアラームが得られる。この場合に、2種類の測定結果およびデータアラームから、どのように出力する測定結果およびデータアラームを選択すれば好適であるかについて、従来では未検討であった。比較例の装置で、上記2種類の測定結果およびデータアラームが生じた場合に、信頼性が低い方の測定結果およびデータアラームを選択して出力してしまうことは、ユーザの判断ミスや結果報告遅延等につながるため、望ましくない。 However, in the automatic analyzer of this comparative example, when there is an abnormality or the like at the time of measurement at the time of simultaneous analysis, two types of data alarms may occur along with the two types of measurement results. Measurement results and data alarms are obtained independently for the absorptiometer and the scatterometer, respectively. In this case, conventionally, it has not been examined how it is preferable to select the measurement result and the data alarm to be output from the two types of measurement results and the data alarm. In the apparatus of the comparative example, when the above two types of measurement results and data alarms occur, selecting and outputting the measurement results and data alarms with lower reliability means that the user has made a mistake or a result report It is not desirable because it leads to delays and the like.
 (実施の形態1)
 図1~図14を用いて、本発明の実施の形態1の自動分析装置および自動分析方法について説明する。実施の形態1の自動分析方法は、実施の形態1の自動分析装置において実行されるステップを有する方法である。
Embodiment 1
The automatic analyzer and the automatic analysis method according to the first embodiment of the present invention will be described with reference to FIGS. The automatic analysis method according to the first embodiment is a method including the steps performed in the automatic analysis device according to the first embodiment.
 実施の形態1の自動分析装置は、2種類の光度計として吸光光度計および散乱光度計を備え、データアラーム機能および同時分析機能等を有する。データアラーム機能は、測定時の異常等を検知した場合に、測定結果にその異常等に応じたデータアラームを付記する機能である。同時分析機能は、2種類の光度計を用いて同時に測定および分析(「吸光・散乱同時分析」)を行う機能である。実施の形態1の自動分析装置は、同時分析の際、検査項目の目的成分物質や、各種の光度計の好適な定量範囲に応じて、複数の測定結果から好適な測定結果を選択する機能を有し、広いダイナミックレンジでの測定が可能である。 The automatic analyzer according to the first embodiment includes an absorptiometer and a scatterometer as two types of photometers, and has a data alarm function and a simultaneous analysis function. The data alarm function is a function to add a data alarm according to the abnormality or the like to the measurement result when an abnormality or the like at the time of measurement is detected. The simultaneous analysis function is a function to simultaneously perform measurement and analysis ("simultaneous light absorption / scattering analysis") using two types of photometers. The automatic analyzer according to the first embodiment has a function of selecting a suitable measurement result from a plurality of measurement results according to a target component substance of a test item and a suitable quantitative range of various photometers in simultaneous analysis. It can be measured with a wide dynamic range.
 そして、実施の形態1の自動分析装置は、同時分析の際、測定時の異常等に応じて、2種類の測定結果およびデータアラームが得られた場合でも、好適に測定結果およびデータアラームを選択して出力する機能(出力制御機能と記載する場合がある)を有する。この機能では、データアラームの組み合わせに応じて、出力する測定結果およびデータアラーム等を好適に選択する。なお、測定結果は、測定値や計算値等の定量値、シグナル値、分析結果情報等を含む。 The automatic analyzer according to the first embodiment suitably selects the measurement result and the data alarm even when two types of measurement result and data alarm are obtained according to the abnormality at the time of measurement, etc. at the time of simultaneous analysis. Output function (sometimes referred to as output control function). In this function, the measurement result to be output, the data alarm, etc. are suitably selected according to the combination of the data alarm. The measurement results include quantitative values such as measured values and calculated values, signal values, analysis result information, and the like.
 さらに、実施の形態1の自動分析装置では、自動再検機能も有し、上記のように2種類の測定結果およびデータアラームが得られた場合でも、上記出力制御機能によって、好適に自動再検を制御する。すなわち、実施の形態1の自動分析装置は、データアラームの組み合わせに応じて、出力する測定結果、データアラーム、および自動再検情報を好適に選択し、自動的な再測定等を制御する。なお、自動再検情報は、自動再検の要否、使用する光度計の識別情報、再測定条件(例えば検体の希釈等の条件)等を含む。 Furthermore, the automatic analyzer according to the first embodiment also has an automatic retesting function, and even if two types of measurement results and data alarms are obtained as described above, the above-mentioned output control function suitably controls the automatic retesting. Do. That is, the automatic analyzer according to the first embodiment suitably selects the measurement result to be output, the data alarm, and the automatic retest information according to the combination of the data alarm, and controls the automatic remeasurement and the like. The automatic retest information includes the necessity of automatic retest, identification information of a photometer to be used, remeasurement conditions (for example, conditions such as dilution of a sample), and the like.
 [自動分析装置]
 図1は、実施の形態1の自動分析装置1の全体概略構成を示す。自動分析装置1は、検体ディスク10、反応ディスク20、試薬ディスク30、検体分注機構41、試薬分注機構42、コンピュータ100、インタフェース回路101等を備える。検体ディスク10には駆動部12を備える。反応ディスク20には駆動部22を備える。試薬ディスク30には駆動部32を備える。また、反応ディスク20には、吸光光度計44と散乱光度計45との2種類の光度計が設置されている。また、反応ディスク20には、恒温槽28を備える。また、反応ディスク20には、撹拌部43や洗浄部46等が設置されている。
[Analyzer]
FIG. 1 shows the entire schematic configuration of the automatic analyzer 1 of the first embodiment. The automatic analyzer 1 includes a sample disk 10, a reaction disk 20, a reagent disk 30, a sample dispensing mechanism 41, a reagent dispensing mechanism 42, a computer 100, an interface circuit 101, and the like. The sample disc 10 is provided with a drive unit 12. The reaction disk 20 is provided with a drive unit 22. The reagent disc 30 is provided with a drive unit 32. Further, on the reaction disk 20, two types of photometers, an absorptiometer 44 and a scattering photometer 45, are installed. In addition, the reaction disk 20 is provided with a thermostatic chamber 28. Further, on the reaction disk 20, a stirring unit 43, a washing unit 46 and the like are installed.
 コンピュータ100は、分析制御部50、記憶部70、出力部71、入力部72等を備える。分析制御部50は、信号線等を含むインタフェース回路101を通じて、各駆動部や各機構と接続されている。コンピュータ100は、例えばPCで構成されるが、これに限らず、LSI基板等の回路基板で構成されてもよいし、それらの組み合わせで構成されてもよい。記憶部70は、ROM、RAM、不揮発性記憶装置等の記憶装置で構成される。 The computer 100 includes an analysis control unit 50, a storage unit 70, an output unit 71, an input unit 72, and the like. The analysis control unit 50 is connected to each drive unit and each mechanism through an interface circuit 101 including a signal line and the like. The computer 100 is configured by, for example, a PC, but is not limited to this. The computer 100 may be configured by a circuit board such as an LSI substrate, or may be configured by a combination thereof. The storage unit 70 is configured of a storage device such as a ROM, a RAM, and a non-volatile storage device.
 検体ディスク10には、複数の検体カップ15が設置され保持されている。検体カップ15は、検体2を収容する検体容器である。各検体カップ15は、検体ディスク10のディスク本体11上に、周方向に沿って相互に離間させて並設されて保持されている。 On the sample disk 10, a plurality of sample cups 15 are installed and held. The sample cup 15 is a sample container for storing the sample 2. The sample cups 15 are held on the disk body 11 of the sample disk 10 so as to be spaced apart from one another along the circumferential direction.
 検体ディスク10の駆動部12は、分析制御部50(図2の制御部53)からの制御に従って検体ディスク10を駆動制御する。その際、駆動部12は、ディスク本体11を回動させて、複数の検体カップ15を周方向に沿って移動させる。検体ディスク10は、駆動部12の駆動制御によって、ディスク本体11に設置されている複数の検体カップ15のうちの1つの検体カップ15を、周方向に沿った所定位置に配置する。所定位置は、例えば検体分注機構41による検体吸入位置等である。 The drive unit 12 of the sample disk 10 drives and controls the sample disk 10 according to the control from the analysis control unit 50 (the control unit 53 in FIG. 2). At this time, the drive unit 12 rotates the disc main body 11 to move the plurality of sample cups 15 along the circumferential direction. The sample disc 10 arranges one sample cup 15 out of the plurality of sample cups 15 installed in the disc main body 11 at a predetermined position along the circumferential direction by drive control of the drive unit 12. The predetermined position is, for example, a sample suction position by the sample dispensing mechanism 41 or the like.
 なお、図1の構成例では、検体ディスク10は、複数の検体カップ15がディスク本体11上に周方向に沿って一列の円周に配置されている。これに限らず、ディスク本体11の同心円状に複数列に検体カップ15が配置される構成としてもよい。また、図1の構成例では、ディスク方式の検体ディスク15を有するが、これに限らず、ラック方式としてもよい。ラック方式では、複数の検体容器が1次元または2次元で配列されて保持される検体ラックを用いる。 In the configuration example of FIG. 1, in the sample disc 10, a plurality of sample cups 15 are arranged on the disc main body 11 in a row along the circumferential direction. Not limited to this, the sample cups 15 may be arranged in a plurality of rows concentrically with the disc main body 11. Further, although the configuration example of FIG. 1 includes the sample disc 15 of the disc type, the present invention is not limited to this and may be a rack type. The rack system uses a sample rack in which a plurality of sample containers are arranged and held in one or two dimensions.
 試薬ディスク30は、反応ディスク20の隣に設置されている。試薬ディスク30のディスク本体31には、複数の試薬ボトル35が設置され保持されている。試薬ボトル35は、試薬4を収容する試薬容器である。各試薬ボトル35は、ディスク本体31の周方向に沿って相互に離間させて並設されて保持されている。試薬ボトル35には、自動分析装置1での検査項目の目的成分物質に応じた種類の試薬4が収容されている。試薬4の種類毎に、別々の試薬ボトル35に収容されている。 The reagent disc 30 is placed next to the reaction disc 20. A plurality of reagent bottles 35 are installed and held in the disk body 31 of the reagent disk 30. The reagent bottle 35 is a reagent container for containing the reagent 4. The respective reagent bottles 35 are spaced apart from one another along the circumferential direction of the disk main body 31 and held in parallel. The reagent bottle 35 contains the reagent 4 of the type according to the target component substance of the inspection item in the automatic analyzer 1. Each type of reagent 4 is housed in a separate reagent bottle 35.
 試薬ディスク30の駆動部32は、分析制御部50からの制御に従って、ディスク本体31を回動させて、複数の試薬ボトル35を周方向に沿って移動させる。試薬ディスク30は、駆動部32の駆動制御によって、ディスク本体31に設置されている複数の試薬ボトル35のうちの使用する1つの試薬ボトル35を、試薬ディスク30の所定位置に配置する。所定位置は、例えば試薬分注機構42による試薬吸入位置等である。 The drive unit 32 of the reagent disc 30 rotates the disc main body 31 under the control of the analysis control unit 50 to move the plurality of reagent bottles 35 along the circumferential direction. The reagent disc 30 arranges one reagent bottle 35 of the plurality of reagent bottles 35 installed in the disc main body 31 at a predetermined position of the reagent disc 30 by the drive control of the drive unit 32. The predetermined position is, for example, a reagent suction position by the reagent dispensing mechanism 42 or the like.
 試薬ディスク30には、冷却機構を備えた試薬保冷庫38が設けられている。ディスク本体31上に配置されている複数の試薬ボトル35は、ディスク本体31が回動しても、試薬保冷庫38の冷却環境に常時保持された状態で冷却される。これにより、試薬4の劣化防止が図られている。試薬保冷庫38の冷却機構としては、例えば、低温水を循環する方式、あるいはペルチェ素子により気相中にて冷却する方式等が用いられる。 The reagent disk 30 is provided with a reagent storage 38 provided with a cooling mechanism. The plurality of reagent bottles 35 disposed on the disc main body 31 is cooled in a state where it is always kept in the cooling environment of the reagent storage container 38 even when the disc main body 31 rotates. Thereby, deterioration of the reagent 4 is prevented. As a cooling mechanism of the reagent cooler 38, for example, a method of circulating low temperature water, or a method of cooling in a gas phase by a Peltier element or the like is used.
 反応ディスク20は、検体ディスク10と試薬ディスク30との間に設置されている。反応ディスク20のディスク本体21には、複数の反応容器25が設置され保持されている。反応容器25は、反応液3が作製される容器である。反応液3は、検体2と試薬4との混合液である。検体分注機構41によって反応容器25内に検体2が分注され、試薬分注機構42によって試薬4が分注され、その検体2と試薬4との混合液によって反応液3が作製される。各反応容器25は、ディスク本体21の周方向に沿って相互に離間させて並設されて保持されている。反応容器25は、吸光光度計44および散乱光度計45による測定のために、透光性材料により構成されている。反応ディスク20の駆動部22は、分析制御部50からの制御に従って、ディスク本体21を回動させて、複数の反応容器25を周方向に沿って移動させる。反応ディスク20は、ディスク本体21の回動によって、複数の反応容器25のうちの1つの反応容器25を、周方向に沿って設けられた所定位置に配置する。所定位置は、例えば検体分注機構41による検体吐出位置や、試薬分注機構42による試薬吐出位置等である。 The reaction disc 20 is disposed between the sample disc 10 and the reagent disc 30. A plurality of reaction containers 25 are installed and held on the disk body 21 of the reaction disk 20. The reaction container 25 is a container in which the reaction liquid 3 is produced. The reaction solution 3 is a mixture of the sample 2 and the reagent 4. The sample 2 is dispensed into the reaction container 25 by the sample dispensing mechanism 41, the reagent 4 is dispensed by the reagent dispensing mechanism 42, and the reaction liquid 3 is produced from a mixture of the sample 2 and the reagent 4. The reaction vessels 25 are spaced apart from one another along the circumferential direction of the disk body 21 and held in parallel. The reaction vessel 25 is made of a translucent material for measurement by the absorptiometer 44 and the scattering photometer 45. Under the control of the analysis control unit 50, the drive unit 22 of the reaction disk 20 rotates the disk body 21 to move the plurality of reaction containers 25 along the circumferential direction. The reaction disk 20 arranges one reaction container 25 of the plurality of reaction containers 25 at a predetermined position provided along the circumferential direction by the rotation of the disk main body 21. The predetermined position is, for example, a sample discharge position by the sample dispensing mechanism 41, a reagent discharge position by the reagent dispensing mechanism 42, or the like.
 反応ディスク20のディスク本体21上に配置されている複数の各々の反応容器25は、恒温槽28内の恒温槽水(恒温流体ともいう)に常時浸漬されている。これにより、反応容器25内の反応液3が一定の反応温度(例えば37℃程度)に保たれる。恒温槽28内の恒温槽水は、分析制御部50(図2の恒温流体制御部54)によって、温度および流量が制御され、反応容器25に供給される熱量が制御される。 Each of the plurality of reaction containers 25 disposed on the disk body 21 of the reaction disk 20 is constantly immersed in constant temperature water (also referred to as constant temperature fluid) in the constant temperature chamber 28. Thereby, the reaction liquid 3 in the reaction vessel 25 is maintained at a constant reaction temperature (for example, about 37 ° C.). The temperature and flow rate of the constant temperature bath water in the constant temperature bath 28 are controlled by the analysis control unit 50 (the constant temperature fluid control unit 54 of FIG. 2), and the amount of heat supplied to the reaction container 25 is controlled.
 反応ディスク20の周上および周付近には、検体分注機構41および試薬分注機構42に加え、互いの位置を異ならせて、撹拌部43、吸光光度計44、散乱光度計45、洗浄部46等が配置されている。 In addition to the sample dispensing mechanism 41 and the reagent dispensing mechanism 42, the stirring portion 43, the absorptiometer 44, the scattering photometer 45, and the washing portion are provided on the circumference and around the circumference of the reaction disc 20, with different positions. 46 mag is placed.
 検体分注機構41は、検体ディスク10と反応ディスク20との間に設置されている。検体分注機構41は、検体ディスク10の検体吸入位置の検体カップ15から検体2を吸入し、反応ディスク20の検体吐出位置の反応容器25に吐出する動作である検体分注動作を行う。検体分注機構41は、可動アームや分注ノズルを備える。分注ノズルは、可動アームに取り付けられたピペットノズルから成る。検体分注機構41は、検体分注動作の際、分注ノズルを検体ディスク10上の検体吸入位置に移動させ、検体吸入位置に配置された検体カップ15から、分注ノズル内に所定量の検体2を吸入して収容する。その後、検体分注機構41は、分注ノズルを反応ディスク20上の検体吐出位置に移動させて、検体吐出位置に配置された反応容器25内に、分注ノズル内の検体2を吐出する。 The sample dispensing mechanism 41 is disposed between the sample disc 10 and the reaction disc 20. The sample dispensing mechanism 41 sucks the sample 2 from the sample cup 15 at the sample suction position of the sample disk 10 and discharges the sample 2 to the reaction container 25 at the sample discharge position of the reaction disk 20. The sample dispensing mechanism 41 includes a movable arm and a dispensing nozzle. The dispensing nozzle consists of a pipette nozzle attached to the moveable arm. During the sample dispensing operation, the sample dispensing mechanism 41 moves the dispensing nozzle to the sample suction position on the sample disk 10, and a predetermined amount of sample is placed in the dispensing nozzle from the sample cup 15 disposed at the sample suction position. Inhale sample 2 and store. Thereafter, the sample dispensing mechanism 41 moves the dispensing nozzle to the sample discharge position on the reaction disk 20, and discharges the sample 2 in the dispensing nozzle into the reaction container 25 disposed at the sample discharge position.
 試薬分注機構42は、試薬ディスク30と反応ディスク20との間に設置されている。試薬分注機構42は、試薬ディスク30の試薬吸入位置の試薬ボトル35から試薬4を吸入し、反応ディスク20の試薬吐出位置の反応容器25に吐出する動作である試薬分注動作を行う。分注される試薬4は、対象の検体2に対応して設定された分析項目(検査項目等とも呼ばれる)である目的成分物質の定量に用いられる試薬である。試薬分注機構42は、同様に、可動アームや分注ノズルを備える。試薬分注機構42は、試薬分注動作の際、分注ノズルを試薬ディスク30上の試薬吸入位置に移動させ、試薬吸入位置に配置された試薬ボトル35から分注ノズル内に所定量の試薬4を吸入して収容する。その後、試薬分注機構42は、分注ノズルを反応ディスク20上の試薬吐出位置に移動させて、試薬吐出位置に配置された反応容器25内に、分注ノズル内の試薬4を吐出する。 The reagent dispensing mechanism 42 is disposed between the reagent disc 30 and the reaction disc 20. The reagent dispensing mechanism 42 sucks the reagent 4 from the reagent bottle 35 at the reagent suction position of the reagent disc 30, and discharges the reagent 4 to the reaction container 25 at the reagent discharge position of the reaction disc 20. The reagent 4 to be dispensed is a reagent used for quantifying the target component substance which is an analysis item (also called a test item etc.) set corresponding to the target sample 2. The reagent dispensing mechanism 42 similarly includes a movable arm and a dispensing nozzle. The reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent aspirating position on the reagent disc 30 during the reagent dispensing operation, and a predetermined amount of reagent from the reagent bottle 35 disposed at the reagent aspirating position into the dispensing nozzle 4 Inhale and store. Thereafter, the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent discharge position on the reaction disk 20, and discharges the reagent 4 in the dispensing nozzle into the reaction container 25 disposed at the reagent discharge position.
 検体分注機構41および試薬分注機構42には、異なる種類の検体2あるいは試薬4の分注に備えて、それぞれ、洗浄槽46が設けられている。洗浄槽46は、分注ノズルを洗浄するための機構である。各分注機構は、各分注ノズルを、分注動作の前後に洗浄槽46で洗浄する。これにより、検体2同士あるいは試薬4同士のコンタミネーションが防止される。また、各分注機構の分注ノズルには、検体2あるいは試薬4の液面を検知するセンサが備え付けられている。これにより、検体2あるいは試薬4の不足による測定異常が監視および検知可能である。加えて、検体分注機構41には、分注ノズルの詰まりを検知する圧力センサが備え付けられている。これにより、検体2に含まれるフィブリン等の不溶性物質が分注ノズルに詰まることで発生する分注異常が監視および検知可能である。分析制御部50は、それらのセンサを含む機構を通じて、測定時の各種の異常等を監視および検知可能である。 Each of the sample dispensing mechanism 41 and the reagent dispensing mechanism 42 is provided with a washing tank 46 in preparation for dispensing different types of samples 2 or reagents 4. The cleaning tank 46 is a mechanism for cleaning the dispensing nozzle. Each dispensing mechanism cleans each dispensing nozzle with the cleaning tank 46 before and after the dispensing operation. This prevents contamination of the samples 2 or of the reagents 4 with each other. Further, the dispensing nozzle of each dispensing mechanism is equipped with a sensor for detecting the liquid level of the sample 2 or the reagent 4. As a result, it is possible to monitor and detect measurement abnormalities due to the shortage of the sample 2 or the reagent 4. In addition, the sample dispensing mechanism 41 is equipped with a pressure sensor that detects clogging of the dispensing nozzle. In this way, it is possible to monitor and detect a dispensing abnormality that occurs when an insoluble substance such as fibrin contained in the sample 2 clogs the dispensing nozzle. The analysis control unit 50 can monitor and detect various abnormalities and the like at the time of measurement through a mechanism including those sensors.
 撹拌部43は、反応ディスク20上の所定位置である撹拌位置に配置された反応容器25内の検体2と試薬4との混合液を撹拌する。これにより、反応容器25内の混合液は、均一に攪拌されて、その反応が促進され、反応液3として作製される。撹拌部43には、例えば攪拌翼を備える攪拌機、あるいは超音波を用いた攪拌機構を備える。 The stirring unit 43 stirs the mixed solution of the sample 2 and the reagent 4 in the reaction container 25 disposed at a stirring position which is a predetermined position on the reaction disk 20. Thereby, the liquid mixture in the reaction vessel 25 is uniformly stirred, the reaction is promoted, and the reaction liquid 3 is prepared. The stirring unit 43 includes, for example, a stirrer provided with a stirring blade or a stirring mechanism using ultrasonic waves.
 2種類の光度計における、第1種光度計として1つの吸光光度計44を有し、第2種光度計として1つの散乱光度計45を有する。吸光光度計44および散乱光度計45の各光度計は、基本的な構造として、光源および受光部を有する。各光度計の光源は、例えば、反応ディスク20の内周側に配置されており、各光度計の受光部は、反応ディスク20の外周側に配置されている。各光度計は、分析制御部50(図2の測定部51)と接続されている。 In two types of photometers, it has one absorptiometer 44 as a first type photometer and has one scattering photometer 45 as a second type photometer. Each photometer of the absorptiometer 44 and the scattering photometer 45 has a light source and a light receiver as a basic structure. The light source of each photometer, for example, is disposed on the inner peripheral side of the reaction disc 20, and the light receiving unit of each photometer is disposed on the outer peripheral side of the reaction disc 20. Each photometer is connected to the analysis control unit 50 (measurement unit 51 in FIG. 2).
 吸光光度計44は、反応ディスク20上の所定位置である測定位置(特に第1測定位置)に配置された反応容器25の反応液3についての測定を行う。散乱光度計45は、反応ディスク20上の所定位置である測定位置(特に第2測定位置)に配置された反応容器25の反応液3についての測定を行う。図1の構成例では、吸光光度計44および散乱光度計45の2つの光度計は、反応ディスク20の周上で、反応ディスク20の回動中心を通る対角線上に対向する所定位置に設置されている。第1測定位置に対して吸光光度計44が、第2測定位置に対して散乱光度計45が配置されている。なお、周上、第1測定位置と第2測定位置との間の所定位置には、撹拌部43や洗浄部46が配置されている。 The absorptiometer 44 measures the reaction liquid 3 of the reaction container 25 disposed at a measurement position (in particular, the first measurement position) which is a predetermined position on the reaction disc 20. The scattering photometer 45 measures the reaction liquid 3 of the reaction container 25 disposed at a measurement position (in particular, a second measurement position) which is a predetermined position on the reaction disk 20. In the configuration example of FIG. 1, the two photometers of the absorptiometer 44 and the scattering photometer 45 are disposed at predetermined positions on the circumference of the reaction disc 20 diagonally opposite to the center of rotation of the reaction disc 20. ing. An absorptiometer 44 is disposed for the first measurement position, and a scattering photometer 45 is disposed for the second measurement position. In addition, the stirring part 43 and the washing | cleaning part 46 are arrange | positioned on the circumference | surroundings and the predetermined position between a 1st measurement position and a 2nd measurement position.
 吸光光度計44は、光源から第1測定位置の反応容器25の反応液3に光を照射する。その際、吸光光度計44は、反応液3から得られる透過光を、受光部によって検出し、単一または複数の波長の透過光の光量または光強度の少なくとも一方(光量/光強度と記載する場合がある)を測定する。また、吸光光度計44は、その測定値に基づいて、所定の計算によって、濃度等の定量値を得てもよい。吸光光度計44は、測定値または計算値を含む信号を出力する。 The absorptiometer 44 irradiates light from the light source to the reaction liquid 3 of the reaction container 25 at the first measurement position. At that time, the absorptiometer 44 detects the transmitted light obtained from the reaction solution 3 by the light receiving unit, and describes at least one of the light amount or the light intensity of the transmitted light of a single or plural wavelengths (light amount / light intensity There are cases) to measure. Moreover, the absorptiometer 44 may obtain quantitative values, such as concentration, by predetermined calculation based on the measured value. The absorptiometer 44 outputs a signal containing measured or calculated values.
 散乱光度計45は、光源から第2測定位置の反応容器25の反応液3に光を照射する。その際、散乱光度計45は、反応液3から得られる散乱光を、受光部によって検出し、散乱光の光量または光強度の少なくとも一方(光量/光強度)を測定する。また、散乱光度計45は、その測定値に基づいて、所定の計算によって、濃度等の定量値を得てもよい。散乱光度計45は、測定値または計算値を含む信号を出力する。 The scattering photometer 45 irradiates light from the light source to the reaction liquid 3 of the reaction container 25 at the second measurement position. At that time, the scattering photometer 45 detects the scattered light obtained from the reaction solution 3 by the light receiving unit, and measures at least one of the light amount or the light intensity (light amount / light intensity) of the scattered light. In addition, the scattering photometer 45 may obtain a quantitative value such as concentration by a predetermined calculation based on the measured value. The scatterometer 45 outputs a signal including measured or calculated values.
 洗浄部46は、反応ディスク20上の洗浄位置に配置された反応容器25についての洗浄を行う。洗浄部46は、測定および分析が終了した反応容器25から、残っている反応液3を排出し、その反応容器25を洗浄する。洗浄された反応容器25は再使用可能となる。すなわち、その反応容器25には、再び、検体分注機構41から次の検体2が分注され、試薬分注機構42から次の試薬4が分注されることになる。 The cleaning unit 46 cleans the reaction container 25 disposed at the cleaning position on the reaction disk 20. The washing unit 46 discharges the remaining reaction liquid 3 from the reaction container 25 in which the measurement and analysis are completed, and cleans the reaction container 25. The cleaned reaction container 25 can be reused. That is, the next sample 2 is dispensed from the sample dispensing mechanism 41 to the reaction container 25 again, and the next reagent 4 is dispensed from the reagent dispensing mechanism 42.
 [分析制御部]
 図2は、図1の構成のうち主に分析制御部50の機能ブロック構成を示す。分析制御部50は、自動分析装置1の全体および自動分析シーケンスを制御し、測定を含む分析を制御する。分析制御部50は、インタフェース回路101、出力部71、入力部72等と接続されている。分析制御部50は、出力部71に対して出力(すなわち画面表示や音声出力等)を行う。分析制御部50は、入力部72からの入力(すなわちユーザによる操作等)を受け付ける。自動分析装置1のユーザは、出力部71および入力部72を介して臨床検査に関わる操作や作業を行う。出力部71は、表示装置等の出力装置を含む。表示装置の表示画面には、分析制御部50の出力制御によって、測定結果やデータアラーム等の情報が表示される。出力部71は、音声出力装置を含んでもよく、アラーム音声を発してもよい。入力部72は、キーボードやマウス、あるいは操作ボタンを含む操作パネル等の入力装置を含む。
[Analysis control unit]
FIG. 2 mainly shows a functional block configuration of the analysis control unit 50 in the configuration of FIG. The analysis control unit 50 controls the whole of the automatic analyzer 1 and the automatic analysis sequence, and controls the analysis including the measurement. The analysis control unit 50 is connected to the interface circuit 101, the output unit 71, the input unit 72, and the like. The analysis control unit 50 performs output (that is, screen display, audio output, and the like) to the output unit 71. The analysis control unit 50 receives an input from the input unit 72 (that is, an operation or the like by the user). The user of the automatic analyzer 1 performs operations and tasks related to the clinical examination through the output unit 71 and the input unit 72. The output unit 71 includes an output device such as a display device. Information such as a measurement result and a data alarm is displayed on the display screen of the display device by the output control of the analysis control unit 50. The output unit 71 may include an audio output device, and may emit an alarm sound. The input unit 72 includes an input device such as a keyboard, a mouse, or an operation panel including operation buttons.
 コンピュータ100および分析制御部50は、実装例としてPCで一体的に実現できるが、これに限らず実装可能である。分析制御部50は、例えばPCのCPU等のマイクロプロセッサによって、記憶部70から読み出したプログラムに従った処理を実行する。これにより、測定部51等の各部が実現される。分析制御部50は、ソフトウェアプログラム処理等によって実現される機能ブロックとして、測定部51、解析部52、制御部53、恒温流体制御部54、データ格納部55、同時分析判定部56、自動再検判定部57、測定時異常チェック部58、優先出力判定部59、および優先出力アラーム判定部60を有する。分析制御部50は、後述の同時分析機能、測定結果選択機能、データアラーム機能、出力制御機能、および自動再検機能等を含む各種の機能を制御する。分析制御部50は、主に測定部51、解析部52、および制御部53によって、分析依頼があった検体2についての分析処理として、自動分析装置1の各機構や部位の作動制御処理、測定データ制御処理等を行う。 Although the computer 100 and the analysis control unit 50 can be integrally realized by a PC as an implementation example, the present invention is not limited to this and can be implemented. The analysis control unit 50 executes processing according to a program read from the storage unit 70 by a microprocessor such as a CPU of a PC, for example. Thus, each unit such as the measurement unit 51 is realized. The analysis control unit 50 is a functional block realized by software program processing etc., and the measurement unit 51, the analysis unit 52, the control unit 53, the constant temperature fluid control unit 54, the data storage unit 55, the simultaneous analysis determination unit 56, the automatic retest determination The unit 57 includes a measurement abnormality check unit 58, a priority output determination unit 59, and a priority output alarm determination unit 60. The analysis control unit 50 controls various functions including a simultaneous analysis function described later, a measurement result selection function, a data alarm function, an output control function, and an automatic retest function. The analysis control unit 50 mainly controls the operation control process and measurement of each mechanism and part of the automatic analyzer 1 as an analysis process for the sample 2 for which analysis has been requested by the measurement unit 51, the analysis unit 52, and the control unit 53. Perform data control processing etc.
 データ格納部55は、記憶部70を用いて構成され、各種のデータの読み書き等を行う。データ格納部55には、分析に係わる、測定結果、データアラーム、および自動再検情報等を含む各種のデータが格納される。 The data storage unit 55 is configured using the storage unit 70, and reads and writes various data. The data storage unit 55 stores various data related to analysis, including measurement results, data alarms, and automatic retest information.
 測定部51は、2種類の光度計である吸光光度計44および散乱光時計45の測定値等を含む信号を入力して、測定処理を行う。この測定処理は、所定の計算を含む。この計算は、例えば、測定値である光量/光強度に基づいて目的成分物質の濃度を計算すること、あるいは、測定値である光量から光強度を計算すること等である。測定部51は、測定結果(測定値や計算値)を、測定データとして、データ格納部55に格納する。 The measurement unit 51 inputs a signal including the measurement values of the absorptiometer 44 and the scattered light clock 45 which are two types of photometers, and performs measurement processing. This measurement process includes predetermined calculations. This calculation is, for example, calculating the concentration of the target component substance based on the light quantity / light intensity which is a measured value, or calculating the light intensity from the light quantity which is a measured value. The measurement unit 51 stores the measurement result (measurement value or calculation value) in the data storage unit 55 as measurement data.
 解析部52は、データ格納部55の測定結果の測定データを参照して、自動分析に対応する解析処理を行う。この解析処理は、例えば測定データの光強度から検量線を用いて濃度を計算することである。あるいは、この解析処理は、計算済みの濃度を用いて、目的成分物質の成分量を計算することである。また、解析部52は、それぞれの種類の光度計の測定結果毎に、測定時の異常等の有無を判断し、その異常等がある場合には、その測定結果に、その異常等を表すデータアラームを付記する。なお、解析部52での判断は、光度計の種類毎に独立した判断である。なお、解析部52は、測定時の異常等の判断の際には、制御部53によってデータ格納部55に格納された制御結果情報等を参照して判断を行う。 The analysis unit 52 performs analysis processing corresponding to automatic analysis with reference to measurement data of the measurement result of the data storage unit 55. This analysis process is, for example, to calculate the concentration from the light intensity of the measurement data using a calibration curve. Alternatively, this analysis process is to calculate the component amount of the target component substance using the calculated concentration. Further, the analysis unit 52 determines, for each measurement result of each type of photometer, whether there is an abnormality or the like at the time of measurement, and if there is an abnormality or the like, data representing the abnormality or the like in the measurement result Add an alarm. The determination by the analysis unit 52 is an independent determination for each type of photometer. The analysis unit 52 makes the determination with reference to the control result information and the like stored in the data storage unit 55 by the control unit 53 when making a determination such as an abnormality at the time of measurement.
 制御部53は、自動分析シーケンスに従い、各機構の駆動制御を行う駆動制御部である。制御部53は、データ格納部55に格納された対象の検体2の分析依頼情報等に基づいて、駆動制御を行う。制御部53は、駆動部12、駆動部22、駆動部32、検体分注機構41、試薬分注機構42、吸光光度計44、散乱光時計45等の各機構を含む各部位を制御する。例えば、駆動部12は、制御部53からの制御に従って、検体ディスク10を駆動して回動させる。また、例えば、制御部53は、検体分注機構41を駆動制御して検体分注動作を行わせる。また、例えば、制御部53は、吸光光度計44を駆動制御して、所定の期間の各測定時点で測定を行わせる。制御部53は、分析時、各部位の動作を制御し、その制御の状態や結果を表す制御結果情報を、データ格納部55に格納する。なお、機構に異常等がある場合や、機構で異常等を検出した場合には、制御結果情報に、その異常等を表す情報が含まれている。 The control unit 53 is a drive control unit that performs drive control of each mechanism according to the automatic analysis sequence. The control unit 53 performs drive control based on the analysis request information and the like of the target sample 2 stored in the data storage unit 55. The control unit 53 controls each portion including each mechanism such as the drive unit 12, the drive unit 22, the drive unit 32, the sample dispensing mechanism 41, the reagent dispensing mechanism 42, the absorptiometer 44, and the scattered light watch 45. For example, the drive unit 12 drives and rotates the sample disk 10 according to the control from the control unit 53. Further, for example, the control unit 53 drives and controls the sample dispensing mechanism 41 to perform a sample dispensing operation. Further, for example, the control unit 53 drives and controls the absorptiometer 44 to perform measurement at each measurement point of a predetermined period. The control unit 53 controls the operation of each part at the time of analysis, and stores control result information representing the control state and result in the data storage unit 55. When there is an abnormality or the like in the mechanism or when an abnormality or the like is detected by the mechanism, the control result information includes information representing the abnormality or the like.
 制御部53は、検体ディスク10等の各ディスクを回動させ、各ディスクの所定位置に対象の検体カップ15等の容器を配置する。ディスクの回動によって、各容器は、周上で単位距離の回転移動と静止とを繰り返す。制御部53は、各ディスクや検体分注機構41等の動作の制御によって、反応ディスク20上の複数の各々の反応容器25に、複数の各々の検体2の反応液3を作製する。そして、制御部53は、同時分析の場合、2種類の光度計の制御によって、反応ディスク20上の各測定位置に配置された対象の反応容器25の反応液3について、光量/光強度の測定を行わせる。 The control unit 53 rotates each disc such as the sample disc 10 and arranges a container such as a target sample cup 15 at a predetermined position of each disc. By rotation of the disc, each container repeats rotational movement of a unit distance and rest on the circumference. The control unit 53 produces the reaction solution 3 of each of the plurality of respective specimens 2 in each of the plurality of reaction containers 25 on the reaction disk 20 by controlling the operation of each of the disks and the specimen dispensing mechanism 41 and the like. Then, in the case of simultaneous analysis, the control unit 53 measures the light intensity / light intensity of the reaction liquid 3 of the target reaction container 25 disposed at each measurement position on the reaction disk 20 by control of two types of photometers. Let me do it.
 恒温流体制御部54は、反応ディスク20の恒温槽28内の恒温槽水の温度および流量を制御して、反応容器25内の反応液3の温度を調整する。 The constant temperature fluid control unit 54 controls the temperature and flow rate of the constant temperature bath water in the constant temperature bath 28 of the reaction disk 20 to adjust the temperature of the reaction liquid 3 in the reaction container 25.
 同時分析判定部56は、同時分析の場合の2種類の光度計の測定結果およびデータアラームに基づいて、出力制御のための判定を行う。自動再検判定部57は、言い換えると異常等判定部であり、一方の種類の光度計を用いた測定結果について、測定時の異常等に基づいて、自動再検の要否等を判定する。測定時異常チェック部58は、2種類の光度計の測定結果に、データアラームで表される異常等が発生していたかどうかを判定、チェックする。優先出力判定部59は、2種類の光度計の測定結果について、所定の判断や優先出力設定の判断に基づいて、優先して出力する測定結果等を判定する。優先出力アラーム判定部60は、2種類の測定結果に付記されている2種類のデータアラームのうち優先して出力するデータアラーム等を判定する。 The simultaneous analysis determination unit 56 makes a determination for output control based on the measurement results of the two types of photometers in the case of the simultaneous analysis and the data alarm. In other words, the automatic reinspection determination unit 57 is an abnormality etc. determination unit, and determines the necessity or the like of the automatic reinspection based on an abnormality or the like at the time of measurement for the measurement result using one type of photometer. The measurement abnormality check unit 58 determines and checks whether or not an abnormality or the like represented by a data alarm has occurred in the measurement results of the two types of photometers. The priority output determination unit 59 determines, for the measurement results of the two types of photometers, the measurement result to be output preferentially, based on the predetermined determination and the determination of the priority output setting. The priority output alarm determination unit 60 determines, for example, a data alarm to be output with priority among the two types of data alarms attached to the two types of measurement results.
 [光度計の特性]
 図3は、実施の形態1で用いる2種類の光度計である吸光光度計44および散乱光時計45の特性を示す。2種類の光度計は、図3のように、定量範囲の特性が異なる。図3のグラフで、対象検体の目的成分物質の濃度に関して、横軸は理論値(単位[U/mL])、縦軸は各光度計の測定値(単位[U/mL])である。破線の領域は、第1種光度計である吸光光度計44の定量範囲を示す。一点鎖線の領域は、第2種光度計である散乱光度計45の定量範囲を示す。範囲301は、吸光光度計44の定量範囲のうちの正常出力範囲を示す。正常出力範囲は、言い換えると、好適に測定および定量が可能な範囲を示す。範囲302は、散乱光度計45の定量範囲のうちの正常出力範囲を示す。範囲303は、それらの2種類の範囲301,302における重複範囲を示す。範囲303は、基本的にいずれの種類の光度計の測定結果を使用してもよい範囲である。分析制御部50では、出力制御用に、予め、光度計毎の好適な定量範囲が設定されている。すなわち、範囲301、範囲302、範囲303等に対応する各範囲(少なくともその範囲を規定する上限値や下限値等)が設定されている。
[Characteristics of photometer]
FIG. 3 shows the characteristics of the absorptiometer 44 and the scattered light clock 45 which are two types of photometers used in the first embodiment. The two types of photometers differ in the characteristics of the quantitative range as shown in FIG. In the graph of FIG. 3, the abscissa represents the theoretical value (unit [U / mL]) and the ordinate represents the measured value of each photometer (unit [U / mL]) with respect to the concentration of the target component substance of the target sample. The area of the broken line indicates the quantitative range of the spectrophotometer 44, which is a type 1 photometer. An area of a dashed dotted line indicates a quantitative range of the scattering photometer 45 which is the second type photometer. A range 301 indicates the normal output range of the quantitative range of the absorptiometer 44. The normal output range indicates, in other words, a range in which measurement and quantification can be suitably performed. The range 302 shows the normal output range of the quantitative range of the scatterometer 45. The range 303 indicates the overlapping range in the two types of ranges 301 and 302. The range 303 is basically a range in which measurement results of any type of photometer may be used. In the analysis control unit 50, a suitable quantitative range for each photometer is set in advance for output control. That is, the respective ranges corresponding to the range 301, the range 302, the range 303, and the like (at least an upper limit value or a lower limit value defining the range) are set.
 吸光光度計44の範囲301では、概ね、基準直線300を中心として狭い幅(理論値に対する測定値の範囲)を持つ形状であり、線形の特性となっている。範囲301よりも値が小さい範囲では、基準直線300よりも広がる幅を持つ形状であり、誤差が大きい特性となっている。散乱光度計45の範囲302では、概ね、基準直線300を中心とする狭い幅を持つ形状であり、線形の特性となっている。範囲302よりも値が大きい範囲では、基準直線300よりも下側の領域で広がる幅を持つ形状であり、誤差が大きい特性となっている。 The range 301 of the absorptiometer 44 generally has a narrow width (a range of measured values relative to the theoretical value) centered on the reference straight line 300, and has a linear characteristic. In the range where the value is smaller than the range 301, the shape has a width that extends wider than the reference straight line 300, and the characteristic is a large error. The range 302 of the scattering photometer 45 generally has a narrow width centered on the reference straight line 300 and has a linear characteristic. In the range where the value is larger than the range 302, the shape has a width that spreads in the region below the reference straight line 300, and the characteristic is a large error.
 分析制御部50は、同時分析で2種類の測定結果が得られた際、以下のように、上記特性(対応する範囲)の判断に基づいて、出力する測定結果を選択する。この判断は、後述の対応表の規定に含まれている。目的成分物質の濃度について、相対的に高濃度の範囲(例えば10U/mL程度以上の範囲)については、範囲301で示すように、吸光光度計44の定量の方が正確であり、好適である。そのため、吸光光度計44の測定結果が出力として選択される。また、反対に、相対的に低濃度の範囲(例えば5U/mL程度以下の範囲)については、範囲302で示すように、散乱光度計45の定量の方が正確であり、好適である。そのため、散乱光度計45の測定結果が出力として選択される。 When two types of measurement results are obtained by simultaneous analysis, the analysis control unit 50 selects the measurement result to be output based on the determination of the above-mentioned characteristic (corresponding range) as follows. This determination is included in the definition of the correspondence table described later. With regard to the concentration of the target component substance, for the relatively high concentration range (for example, the range of about 10 U / mL or more), as shown by the range 301, the quantification of the absorptiometer 44 is more accurate and suitable. . Therefore, the measurement result of the absorptiometer 44 is selected as an output. Also, conversely, for a relatively low concentration range (for example, a range of about 5 U / mL or less), as shown by the range 302, the quantification of the scattering photometer 45 is more accurate and preferable. Therefore, the measurement result of the scattering photometer 45 is selected as an output.
 さらに、範囲303に対応した、相対的に中程度の濃度の範囲(例えば5U/mL程度以上で10U/mL程度以下の範囲)では、2種類の測定結果のいずれも基本的には使用可能である。この範囲の場合、例えば後述の優先出力設定に応じて、いずれかの一方の種類の光度計の測定結果が出力として選択される。検査項目毎に、優先出力設定を有する。 Furthermore, in a relatively medium concentration range (for example, a range of about 5 U / mL to about 10 U / mL) corresponding to the range 303, any of the two types of measurement results can be basically used. is there. In the case of this range, the measurement result of one of the photometers of one type is selected as an output according to, for example, a priority output setting described later. Each inspection item has a priority output setting.
 [優先出力設定]
 優先出力設定は、吸光光度計44と散乱光度計45との2種類のいずれの光度計の測定結果およびデータアラームを優先的に使用および出力するかについての設定である。自動分析装置1は、優先出力設定機能を有し、予め事業者によって実装上のデフォルト設定として優先出力設定が行われており、対応する優先出力設定情報が記憶されている。優先出力設定情報として、いずれの種類の光度計を優先するかが、優先順位等の所定の形式の値で設定されている。優先出力設定情報は、例えば予め入力部72を通じて設定可能である。自動分析装置1では、優先出力設定機能のオン状態またはオフ状態も設定されており、その状態も事業者またはユーザによって可変設定できる。優先出力設定機能を無効にしたい場合にはオフ状態に設定される。後述のように、オン状態の場合には、優先出力設定情報に基づいて、優先出力判定が行われ、オフ状態の場合には行われない。
[Priority output setting]
The priority output setting is a setting as to which of the two photometers of the absorptiometer 44 and the scatterometer 45 to use and output the measurement result and the data alarm preferentially. The automatic analyzer 1 has a priority output setting function, and the operator sets in advance priority output settings as default settings on the implementation, and stores corresponding priority output setting information. As the priority output setting information, which type of photometer is to be prioritized is set by a value of a predetermined format such as priority. The priority output setting information can be set in advance, for example, through the input unit 72. In the automatic analyzer 1, the on / off state of the priority output setting function is also set, and the state can also be variably set by the operator or the user. If you want to disable the priority output setting function, it is set to the off state. As described later, in the ON state, the priority output determination is performed based on the priority output setting information, and is not performed in the OFF state.
 [吸光・散乱同時分析機能]
 自動分析装置1は、上記2種類の光度計の特性に基づいて、対象の検体2について、2種類の光度計を用いて同時に測定および分析を行う機能である同時分析機能を有する。自動分析装置1は、検体2の目的成分物質についての同時分析依頼を受けた場合、吸光・散乱同時分析を行う。この機能では、対象の同じ1つの検体2の同じ1つの検査項目の目的成分物質について、吸光光度計44による測定と散乱光度計45による測定とを行い、2種類の測定結果を得る。その際、自動分析装置1は、対象の検体2の反応容器25の反応液3の反応過程を、2種類の光度計を用いて概略同時に測定する。なお、反応ディスク20上の2種類の測定位置で各測定を行うので、所定の時間差を有する。なお、反応過程は、光度計の測定位置に反応容器25が静止する所定の時間における、時間軸上の所定の複数回の時点毎の測定を含む、継続的な測定過程である。
[Absorption / scattering simultaneous analysis function]
The automatic analyzer 1 has a simultaneous analysis function which is a function of performing measurement and analysis simultaneously using the two types of photometers with respect to the subject sample 2 based on the characteristics of the two types of photometers. When receiving the simultaneous analysis request for the target component substance of the sample 2, the automatic analyzer 1 performs simultaneous absorption and scattering analysis. In this function, measurement by the absorptiometer 44 and measurement by the scattering photometer 45 are performed for the target component substance of the same one inspection item of the same one sample 2 of interest, and two types of measurement results are obtained. At that time, the automatic analyzer 1 measures the reaction process of the reaction liquid 3 of the reaction container 25 of the sample 2 of interest substantially simultaneously at the same time using two types of photometers. In addition, since each measurement is performed at two types of measurement positions on the reaction disk 20, it has a predetermined time difference. The reaction process is a continuous measurement process including measurement at predetermined time points on the time axis at predetermined times at which the reaction container 25 is stopped at the measurement position of the photometer.
 自動分析装置1は、同時分析の際の2種類の測定結果から、上記特性に基づいて、好適な測定結果を選択する。自動分析装置1は、相対的に高濃度範囲(例えば範囲301から範囲303を除いた範囲)に該当する場合には、吸光光度計44の方の測定結果を選択して吸光分析を行う。自動分析装置1は、相対的に低濃度範囲(例えば範囲302から範囲303を除いた範囲)に該当する場合には、散乱光度計45の測定結果を選択して散乱光分析を行う。これにより、高濃度および低濃度を含む広い濃度範囲で、精度良く測定および分析が可能である。 The automatic analyzer 1 selects a suitable measurement result based on the above-mentioned characteristics from the two types of measurement results in the simultaneous analysis. In the case where the automatic analyzer 1 falls within a relatively high concentration range (for example, the range excluding the range 301 to the range 303), the automatic analyzer 1 selects the measurement result of the absorptiometer 44 and performs the absorbance analysis. When the automatic analyzer 1 falls within a relatively low concentration range (for example, the range excluding the range 302 and the range 303), the automatic analyzer 1 selects the measurement result of the scattering photometer 45 and performs the scattered light analysis. This enables accurate measurement and analysis in a wide concentration range including high concentration and low concentration.
 [自動再検機能]
 自動分析装置1は、測定時の異常等が検知された場合に、所定の判断に応じて、自動的に再検査を行うように制御する機能である自動再検機能を有する。実施の形態1では、この自動再検機能は、データアラーム機能および出力制御機能との関連で制御される機能である。出力制御機能は、自動再検機能のための自動再検情報を選択する機能を含む。
[Auto retest function]
The automatic analyzer 1 has an automatic retesting function which is a function of controlling to automatically retest according to a predetermined judgment when an abnormality or the like at the time of measurement is detected. In the first embodiment, the automatic retesting function is a function controlled in association with the data alarm function and the output control function. The output control function includes a function of selecting automatic reinspection information for the automatic reinspection function.
 測定時の異常等として、例えば検体濃度異常等の軽微な異常等の場合には、検体2の希釈や検体量の低減または増量等の対処の後に、再測定を行うことで、適切な結果が得られる可能性が高いと推測される。そのため、自動分析装置1では、測定時の異常等を検知した場合、対応するデータアラームの組み合わせに応じて、自動再検の要否および必要の場合の再測定条件等を、出力の一部の自動再検情報として選択する。そして、自動分析装置1は、自動再検機能によって、その自動再検情報に従い、自動的に再測定を制御し、再検査の結果を出力する。 As an abnormality at the time of measurement, for example, in the case of a minor abnormality such as a sample concentration abnormality, an appropriate result can be obtained by performing remeasurement after measures such as dilution or reduction of the amount of sample 2 It is presumed that the possibility of being obtained is high. Therefore, when an abnormality or the like at the time of measurement is detected, the automatic analyzer 1 automatically outputs a part of the output according to the necessity of automatic retest and the remeasurement condition when necessary according to the combination of corresponding data alarms. Select as retest information. Then, the automatic analyzer 1 automatically controls the remeasurement according to the automatic reinspection information by the automatic reinspection function, and outputs the result of the reinspection.
 なお、自動分析装置1は、自動再検を行う場合、自動再検依頼情報および自動再検情報に従って、対象の検体2が格納されている検体カップ15から新たな検体2を採取して、反応容器25に格納する分注等を含む再処理を行う。自動分析装置1は、その反応容器25に対し、選択された種類の光度計を用いて再測定を行う。なお、自動再検の結果に、さらにデータアラームが付記される場合には、データアラームの組み合わせに応じた出力選択を同様に適用してもよいし、適用しない形態としてもよい。 When the automatic analyzer 1 performs the automatic retest, the automatic analyzer 1 collects a new sample 2 from the sample cup 15 in which the target sample 2 is stored, according to the automatic retest request information and the automatic retest information. Reprocess including dispensing etc. to be stored. The automatic analyzer 1 remeasures the reaction container 25 using a photometer of the selected type. When a data alarm is further appended to the result of the automatic retest, the output selection corresponding to the combination of the data alarm may be applied in the same manner or may not be applied.
 [データアラーム機能]
 自動分析装置1は、光度計の測定結果に対し、検知された異常等を表すデータアラームを付記する機能であるデータアラーム機能を有する。自動分析装置1は、同時分析の場合にも、2種類の光度計の各測定結果に対し、異常等の検知に応じて、それぞれのデータアラームを付記する。特に、解析部52は、吸光光度計44の測定の際に、異常等があった場合には、吸光光度計44の第1測定結果に、その異常等を表す第1データアラームを付記する。また、解析部52は、散乱光度計45の測定の際に、異常等があった場合には、散乱光度計45の第2測定結果に、その異常等を表す第2データアラームを付記する。データアラームが付記された測定結果を含む解析データが、データ格納部55に格納される。
[Data alarm function]
The automatic analyzer 1 has a data alarm function which is a function of appending a data alarm representing a detected abnormality or the like to the measurement result of the photometer. Even in the case of simultaneous analysis, the automatic analyzer 1 appends each data alarm to each measurement result of the two types of photometers according to detection of abnormality or the like. In particular, when there is an abnormality or the like in the measurement of the absorptiometer 44, the analysis unit 52 appends a first data alarm indicating the abnormality or the like to the first measurement result of the absorptiometer 44. Further, when there is an abnormality or the like at the time of measurement of the scattering photometer 45, the analysis unit 52 appends a second data alarm indicating the abnormality or the like to the second measurement result of the scattering photometer 45. Analysis data including the measurement result to which the data alarm is added is stored in the data storage unit 55.
 [出力制御機能]
 上記測定時に異常等があった場合で、複数(2種類)の光度計の全て(両方)の測定結果にデータアラームが付記される場合が生じ得る。自動分析装置1は、その場合に、データアラームの組み合わせに応じて、出力する測定結果およびデータアラーム等を選択する機能である出力制御機能を有する。また、この出力制御機能は、自動再検機能を制御する機能を含み、出力する自動再検情報を選択する機能を含む。
[Output control function]
In the case where there is an abnormality or the like at the time of the measurement, a data alarm may be added to the measurement results of all (both) of the plurality (two types) of photometers. In that case, the automatic analyzer 1 has an output control function which is a function of selecting a measurement result to be output, a data alarm or the like according to a combination of data alarms. Further, this output control function includes a function of controlling an automatic retesting function, and includes a function of selecting automatic retest information to be output.
 [測定時の異常等の例]
 自動分析装置で発生し得る異常やエラー等の例として以下が挙げられる。機構の異常の例としては、検体量の不足、試薬量の不足、検体2に含まれるフィブリンの流路詰まりによる分注ミス、検体2の成分の異常等が挙げられる。検体2の成分の異常の例としては、検体濃度異常として、検体2の濃度が光度計の定量範囲の外になる場合が挙げられる。すなわち、検体2の濃度が、光度計の定量範囲に比べて高すぎる場合または低すぎる場合が挙げられる。また、血球成分の溶出による検体2の赤色変化の場合や、脂質異常症患者にみられる検体2の濁りが発生している場合等が挙げられる。
[Example of abnormalities during measurement]
Examples of abnormalities or errors that may occur in an automatic analyzer include: Examples of mechanical abnormalities include insufficient sample amount, insufficient reagent amount, dispensing error due to clogging of the flow path of fibrin contained in the sample 2, and abnormality in the components of the sample 2. As an example of the abnormality of the component of the sample 2, the case where the density | concentration of the sample 2 becomes out of the quantitative range of a photometer as sample concentration abnormality is mentioned. That is, there are cases where the concentration of the sample 2 is too high or too low compared to the quantitative range of the photometer. In addition, cases such as red color change of the sample 2 due to elution of blood cell component, and occurrence of turbidity of the sample 2 observed in dyslipidemic patients may be mentioned.
 [データアラーム]
 図4は、自動分析装置1における、発生し得る異常やエラー等に応じて出力され得る複数の種類のデータアラームについての分類の定義を、表形式で示す。以下、まず、各種の異常やデータアラームについて説明する。一般的に、自動分析装置では、測定および分析中に発生する異常やエラー等に基づいて、ユーザに注意喚起するための技術的手段として、大別して以下の2つがある。
Data alarm
FIG. 4 shows, in the form of a table, classification definitions of a plurality of types of data alarms that can be output in response to an abnormality, an error or the like that may occur in the automatic analyzer 1. First, various abnormalities and data alarms will be described. Generally, in an automatic analyzer, there are two major technical means for alerting a user based on an abnormality, an error or the like that occurs during measurement and analysis.
 第1手段は、測定結果にデータアラームを付記して出力する技術である。この技術では、各検体に対して1つ以上存在する検査項目の目的成分物質のそれぞれの測定結果について、正常か異常かを表す識別情報、および異常の場合にはその異常等の種別を表す所定の情報を、データアラームとして付記する。異常等の種別を表す情報は、例えば識別コード、マーク、説明文等が挙げられる。 The first means is a technique of adding a data alarm to the measurement result and outputting it. In this technology, identification information indicating whether the target component substance of the test item present in one or more test items for each sample is normal or abnormal, and in the case of an abnormality, the type indicating the type of the abnormality etc. The following information is attached as a data alarm. Examples of the information indicating the type of abnormality or the like include an identification code, a mark, an explanatory note, and the like.
 ユーザは、自動分析装置からデータアラーム付きの測定結果の情報が出力された場合、表示画面でその情報をみて確認することで、発生した異常等の種別を認識できる。そして、ユーザは、そのデータアラームで表される異常等に応じて、対処作業等を行う。例えば、ユーザは、そのデータアラームの識別コードや、自動分析装置の操作マニュアル(紙に限らず表示画面でのガイドでもよい)等に従って、対処作業を行う。対処作業は、自動分析装置の異常等の状態を正常に戻るように改善して再検査が可能な状態にするための作業や操作である。 When the information of the measurement result with the data alarm is output from the automatic analyzer, the user can recognize the type of abnormality or the like by checking the information on the display screen and confirming the information. Then, the user performs handling work and the like according to the abnormality or the like represented by the data alarm. For example, the user performs the handling operation according to the identification code of the data alarm, the operation manual of the automatic analyzer (it may be a guide on a display screen instead of paper) or the like. The coping operation is an operation or an operation for improving the state such as an abnormality of the automatic analyzer so as to return to the normal state and making it possible to re-examine the state.
 第2手段は、システムアラームを出力する技術である。この技術では、例えば温度異常や、機構の異常等、自動分析装置の全体に関わる異常を、システムアラームとして、ユーザに対しアラーム(例えば音声出力)を発する。なお、システムアラームについても、データアラームのうちの1種として、システムアラーム識別情報を付記したデータアラームとして、画面表示させることが可能である。 The second means is a technology for outputting a system alarm. In this technology, an alarm (for example, voice output) is issued to the user as a system alarm, for example, an abnormality related to the entire automatic analyzer such as a temperature abnormality or an abnormality of a mechanism. The system alarm can also be displayed on the screen as a data alarm added with system alarm identification information as one of the data alarms.
 実施の形態1の自動分析装置1は、少なくとも上記第1手段に対応するデータアラーム機能を有する。自動分析装置1では、図4のように、異常等の種別に応じて予め定義される複数の種類のデータアラームを有する。実施の形態1で、複数の種類のデータアラームは、以下に示すように、3つのグループおよびレベルに大別される。図4の表で、(A)は、高レベルおよび第1グループのデータアラーム、(B)は、中レベルおよび第2グループのデータアラーム、(C)は、低レベルおよび第3グループのデータアラームを示す。なお、高、中、低は、相対的なものである。 The automatic analyzer 1 according to the first embodiment has a data alarm function corresponding to at least the first means. The automatic analyzer 1 has, as shown in FIG. 4, a plurality of types of data alarms that are predefined according to the type of abnormality or the like. In the first embodiment, a plurality of types of data alarms are roughly divided into three groups and levels as described below. In the table of FIG. 4, (A) is a high level and first group data alarm, (B) is a middle level and second group data alarm, and (C) is a low level and third group data alarm Indicates Note that high, middle and low are relative ones.
 (A)第1グループおよび高レベル: 第1グループおよび高レベルは、異常等があるため正確な測定結果を得るためには再検査が必要であるが、そのためにはユーザによって状態が改善された後でなければその再検査ができないという場合に対応する。状態の改善とは、検体2や試薬4の改善、すなわち反応容器25の反応液3の改善や、分注機構や洗浄機構等の機構の状態の改善を含む。状態の改善とは、例えば、反応容器25の反応液3の検体量が多い場合に検体2を減量した状態に変更することや、検体量が少ない場合に検体2を増量した状態に変更すること等である。自動分析装置1は、このような場合に、出力制御として、高レベルのデータアラームを出力させ、自動再検については即座には行わないようにし、ユーザによる状態の改善を含む対処作業や操作を促す。自動分析装置1は、状態が改善された状態となった後に、自動再検を行わせる。 (A) First group and high level: In the first group and high level, reexamination is necessary to obtain accurate measurement results because there are abnormalities etc. For that purpose, the condition has been improved by the user It corresponds to the case where the re-examination can not be performed unless it is later The improvement of the state includes the improvement of the sample 2 and the reagent 4, that is, the improvement of the reaction liquid 3 of the reaction container 25, and the improvement of the state of mechanisms such as the dispensing mechanism and the washing mechanism. The improvement of the state means, for example, changing to a state in which the amount of sample 2 is reduced when the amount of sample of the reaction liquid 3 in the reaction container 25 is large, or changing to a state in which the amount of sample 2 is increased when the amount of sample is small. Etc. In such a case, the automatic analyzer 1 outputs a high-level data alarm as output control, and does not immediately perform automatic re-examination, and urges coping operation and operation including user's state improvement. . The automatic analysis device 1 causes the automatic retest to be performed after the state is improved.
 (B)第2グループおよび中レベル: 第2グループおよび中レベルは、異常等があるために再検査が必要であるが、そのためにユーザの操作を必要とせずにその再検査が可能である場合に対応する。この場合は、再測定条件を制御した再検査によって、良好な測定結果が得られると推測できる場合に対応する。自動分析装置1は、この場合に、再測定条件として、例えば反応液3の試薬量を、前回の測定時(すなわち異常等が検知された測定時)と同じ条件、または増量した条件、または減量した条件とする。自動分析装置1は、このような場合に、中レベルのデータアラームを出力させ、その再測定条件で再測定を行わせることで、良好な測定結果の取得を試みる。 (B) Second group and middle level: The second group and middle level require re-examination because they are abnormal, etc., and therefore re-examination is possible without requiring user operation. Corresponds to In this case, it corresponds to the case where it can be inferred that a good measurement result can be obtained by the retesting in which the remeasurement conditions are controlled. In this case, as the re-measurement condition, for example, the automatic analyzer 1 performs the same condition as the previous measurement (that is, at the time of measurement at which an abnormality or the like is detected) Conditions In such a case, the automatic analyzer 1 outputs a medium-level data alarm and tries to obtain a good measurement result by performing re-measurement under the re-measurement condition.
 (C)第3グループおよび低レベル: 第3グループおよび低レベルは、得られた測定結果において、再測定が不要であり、その測定結果を参考値として取り扱って出力が可能な場合に対応する。自動分析装置1は、この場合に、低レベルのデータアラームを出力させる。 (C) Third group and low level: The third group and low level correspond to the case where remeasurement is not necessary in the obtained measurement results, and the measurement results can be handled as a reference value and output is possible. In this case, the automatic analyzer 1 outputs a low level data alarm.
 上記各グループおよびレベルのデータアラームは、さらに、以下のように各種のデータアラームを含むものとして定義される。なお、各データアラームは、説明上および実装上、識別コード等が付けられる。識別コードの例を“A1”,“B1”等で示す。 The above-mentioned data alarm of each group and level is further defined as including various data alarms as follows. Each data alarm is attached with an identification code or the like for the purpose of explanation and implementation. An example of the identification code is indicated by "A1", "B1" or the like.
 (A) 第1グループおよび高レベルのデータアラームは、例えば以下の5つのデータアラームがある。図4の(A)には、対応する表部分を示す。表の各行で、括弧内の“A1”等は、データアラームの識別コードを示す。本例では、検体不足アラームA1、試薬不足アラームA2、詰まり検知アラームA3、洗剤不足アラームA4、光度計異常アラームA5を有する。 (A) The first group and high level data alarms include, for example, the following five data alarms. FIG. 4A shows the corresponding table part. In each row of the table, “A1” or the like in parentheses indicates the identification code of the data alarm. In this example, it has a sample shortage alarm A1, a reagent shortage alarm A2, a clogging detection alarm A3, a detergent shortage alarm A4, and a photometer abnormality alarm A5.
 (1) 検体不足アラームA1は、検体分注機構41に備える液面検知センサ等によって、検体カップ15または反応容器25内の反応液3の検体2の量が不足であると判定された際に発生するデータアラームである。 (1) When the sample shortage alarm A1 is determined by the liquid level detection sensor or the like included in the sample dispensing mechanism 41 that the amount of the sample 2 of the reaction liquid 3 in the sample cup 15 or the reaction container 25 is insufficient. It is a data alarm that occurs.
 (2) 試薬不足アラームA2は、試薬分注機構42に備える液面検知センサ等によって、試薬ボトル35または反応容器25内の反応液3の試薬4の量が不足であると判定された際に発生するデータアラームである。 (2) When the reagent shortage alarm A2 determines that the amount of the reagent 4 of the reaction liquid 3 in the reagent bottle 35 or the reaction container 25 is insufficient by the liquid level detection sensor or the like provided in the reagent dispensing mechanism 42 It is a data alarm that occurs.
 (3) 詰まり検知アラームA3は、検体分注機構41に備える圧力センサ等によって、検体2の吸引時に分注ノズルに異物が混入した場合等、流路に詰まりが発生したと判定された際に発生するデータアラームである。 (3) The clogging detection alarm A3 is a pressure sensor or the like provided in the sample dispensing mechanism 41, when it is determined that a blockage has occurred in the flow path, for example, when foreign matter is mixed in the dispensing nozzle at the time of aspiration of the sample 2 It is a data alarm that occurs.
 (4) 洗剤不足アラームA4は、洗浄部46での分注ノズルや反応容器25の洗浄に用いる洗剤の不足によって発生するデータアラームである。 (4) Insufficient detergent alarm A4 is a data alarm generated due to the lack of detergent used for cleaning the dispensing nozzle and the reaction container 25 in the cleaning unit 46.
 (5) 光度計異常アラームA5は、吸光光度計44や散乱光度計45における光学系や基板等(前述の光源や受光部)に異常が検知された場合に発生するデータアラームである。 (5) The photometer abnormality alarm A5 is a data alarm that is generated when an abnormality is detected in the optical system or the substrate (the light source or the light receiving unit described above) of the absorptiometer 44 or the scattering photometer 45.
 (B) 第2グループおよび中レベルのデータアラームは、大別して、(B-1)反応過程異常に由来するデータアラームと、(B-2)検体濃度異常に由来するデータアラームとがある。それぞれ、例えば以下のようなデータアラームが挙げられる。図4の(B)には、対応する表部分を示す。 (B) The second group and middle level data alarms are roughly classified into (B-1) data alarms derived from reaction process abnormalities and (B-2) data alarms derived from sample concentration abnormalities. For example, the following data alarms may be mentioned, for example. The corresponding table part is shown in FIG. 4 (B).
 (B-1)反応過程異常に由来するデータアラームとしては、セルブランク異常アラームB1、吸光度差異常アラームB2、散乱光強度差異常アラームB3、計算不能アラーム等が挙げられる。 (B-1) Examples of data alarms derived from reaction process abnormalities include cell blank abnormality alarm B1, absorbance difference abnormality alarm B2, scattered light intensity difference abnormality alarm B3, and calculation impossible alarm.
 (1) セルブランク異常アラームB1は、検体2の目的成分物質の分析前に測定されるセルブランク値が、自動分析装置1に事前に記憶されているセルブランク値と乖離した場合、または比較対象とする別の反応容器のセルブランク値と乖離していた場合に発生するデータアラームである。なお、セルブランク値は、反応容器25に反応液3が入れられていない状態での光学的な測定値である。 (1) If the cell blank value measured before analysis of the target component substance of the sample 2 deviates from the cell blank value stored in advance in the automatic analyzer 1, or the comparison target is the cell blank abnormality alarm B1 This is a data alarm that occurs when there is a discrepancy with the cell blank value of another reaction vessel. The cell blank value is an optical measurement value in a state where the reaction liquid 3 is not contained in the reaction container 25.
 (2) 吸光度差異常アラームB2は、吸光光度計44で測定した目的成分物質の反応過程における、特定の測定時点間の吸光度差または吸光度変化率が、事前に設定されている規定の閾値に満たない場合、または閾値を超える場合に発生するデータアラームである。 (2) The absorbance difference abnormality alarm B2 indicates that the absorbance difference or the rate of change in absorbance between specific measurement points in the reaction process of the target component substance measured by the absorptiometer 44 satisfies a predetermined threshold set in advance. It is a data alarm that occurs when there is no or when the threshold is exceeded.
 (3) 散乱光強度差異常アラームB3は、散乱光度計45で測定した目的成分物質の反応過程における、特定の測定時点間の散乱光強度差または散乱光強度変化率が、事前に設定されている規定の閾値に満たない場合、または閾値を超える場合に発生するデータアラームである。 (3) The scattered light intensity difference abnormality alarm B3 is configured such that the scattered light intensity difference or the scattered light intensity change rate between specific measurement points in the reaction process of the target component substance measured by the scattering photometer 45 is set in advance. It is a data alarm that occurs when the specified threshold is not met or exceeds the threshold.
 これらの反応過程異常に由来するデータアラームは、自動分析装置1の機構、検体2、試薬4等に異常がある可能性は低いため、ユーザによる状態改善作業無しで自動再検が可能な場合に対応する。そのため、この場合、自動分析装置1は、出力制御として、正確な測定結果を得るために、再測定条件として前回の測定時と同じ条件として、自動再検を行わせる。 Since data alarms derived from these reaction process abnormalities are unlikely to have abnormalities in the mechanism of the automatic analyzer 1, sample 2 and reagent 4 etc., it is possible to cope with cases where automatic retesting is possible without the user performing state improvement work. Do. Therefore, in this case, as the output control, the automatic analyzer 1 causes the automatic retest as the remeasurement condition under the same condition as that of the previous measurement to obtain an accurate measurement result.
 (B-2)試料濃度異常に由来するアラームとしては、プロゾーンアラームB4、定量範囲上限オーバアラームB5、吸光度・散乱光強度オーバアラーム、定量範囲下限オーバアラームB6、リピート上限アラーム、リピート下限アラーム等がある。 (B-2) As alarms derived from sample concentration abnormality, prozone alarm B4, quantitative range upper limit alarm B5, absorbance / scattered light intensity over alarm, quantitative range lower limit alarm B6, repeat upper limit alarm, repeat lower limit alarm, etc. There is.
 (1) プロゾーンアラームB4は、免疫分析での検体2中の抗原または抗体の量が過剰な場合に発生するデータアラームである。これに関する判定方法としては、公知の反応速度比法や、抗原/抗体再添加法等がある。反応速度比法では、検査項目の目的成分物質の反応過程から、反応初期の単位時間当たりの吸光度変化量(または散乱光強度変化量)と反応終了時点での吸光度変化量(または散乱光強度変化量)との比を算出して、事前に設定されている閾値と比較する。抗原/抗体再添加法では、反応終了後に抗原または抗体を追加で添加し、添加直後の単位時間当たりの吸光度変化量または散乱光強度変化量を算出して、事前に設定されている閾値と比較する。 (1) Prozone Alarm B4 is a data alarm that occurs when the amount of antigen or antibody in sample 2 in the immunoassay is excessive. As a determination method regarding this, there are a known reaction rate ratio method, an antigen / antibody re-addition method, and the like. In the reaction ratio method, the change in absorbance per unit time (or the change in scattered light intensity) and the change in absorbance at the end of the reaction (or change in scattered light intensity) from the reaction process of the target component substance of the test item Calculate the ratio to the amount) and compare it with the preset threshold. In the antigen / antibody re-addition method, an antigen or antibody is additionally added after completion of the reaction, and the change in absorbance or the change in scattered light intensity per unit time immediately after the addition is calculated and compared with the preset threshold value. Do.
 (2) 定量範囲上限オーバアラームB5は、テクニカルリミットオーバの1つであり、事前設定されている光度計の種類毎の好適な定量範囲の上限値を超える場合に発生するデータアラームである。例えば、反応液3の検体2の濃度が、光度計の定量範囲に対して高過ぎる場合に、このデータアラームが発生する。例えば、前述の図3で、吸光光度計44での測定の場合に、検体2の濃度が、正常出力範囲301の上限値を超える場合、このデータアラームが発生する。 (2) Quantitative range upper limit over alarm B5 is one of technical limit over, and is a data alarm that occurs when the upper limit value of the suitable quantitative range for each type of photometer set in advance is exceeded. For example, this data alarm occurs when the concentration of the sample 2 in the reaction solution 3 is too high for the photometric range. For example, in the case of measurement by the absorptiometer 44 in FIG. 3 described above, this data alarm occurs when the concentration of the sample 2 exceeds the upper limit value of the normal output range 301.
 (3) 定量範囲下限オーバアラームB6は、テクニカルリミットオーバの1つであり、事前設定されている光度計の種類毎の好適な定量範囲の下限値を超える場合に発生するデータアラームである。例えば、反応液3の検体2の濃度が、光度計の定量範囲に対して低過ぎる場合に、このデータアラームが発生する。例えば、前述の図3で、吸光光度計44での測定の場合に、検体2の濃度が、正常出力範囲301の下限値を下回る場合、このデータアラームが発生する。 (3) Quantitative range lower limit over alarm B6 is one of technical limit over, and is a data alarm that occurs when the lower limit value of the suitable quantitative range for each type of photometer set in advance is exceeded. For example, this data alarm occurs when the concentration of the sample 2 in the reaction solution 3 is too low relative to the quantitative range of the photometer. For example, in the case of measurement by the absorptiometer 44 in FIG. 3 described above, this data alarm occurs when the concentration of the sample 2 falls below the lower limit value of the normal output range 301.
 通常、プロゾーンアラームB4に対応する異常が発生した検体2には、目的成分物質が過剰に含まれ、濃度が高いため、定量範囲上限オーバアラームB5も同時に発生する。プロゾーンアラームB4は、定量範囲上限オーバアラームB5の場合よりも目的成分物質が過剰な場合に発生する。そのため、自動分析装置1は、これらの2つのデータアラームが同時に発生した場合には、出力制御として、プロゾーンアラームB4のみを選択して出力させる。これらのデータアラームは、自動分析装置1の機構、検体2、試薬4等には異常が無いため、自動再検が可能な場合に対応する。 Usually, the target component substance is excessively contained in the sample 2 in which the abnormality corresponding to the pro zone alarm B4 has occurred, and the concentration is high. Therefore, the quantitative range upper limit over alarm B5 is also generated simultaneously. The pro zone alarm B4 occurs when the amount of the target component substance is more than that of the quantitative range upper limit alarm B5. Therefore, when these two data alarms occur simultaneously, the automatic analyzer 1 selects and outputs only the pro zone alarm B4 as output control. These data alarms correspond to the case where automatic retesting is possible because there is no abnormality in the mechanism of the automatic analyzer 1, the sample 2, the reagent 4 and the like.
 プロゾーンアラームB4や定量範囲上限オーバアラームB5が発生した場合、検体2中の目的成分物質の濃度が高過ぎることを示している。そのため、自動分析装置1は、この場合、再測定条件として、反応液3の検体量を減量した状態(または検体2を試薬4で希釈した状態)として、自動再検を行わせる。また、定量範囲下限オーバアラームB6が発生した場合、検体2中の目的成分物質の濃度が低過ぎることを示している。そのため、この場合、自動分析装置1は、再測定条件として、反応液3の検体量を増量した状態として、自動再検を行わせる。 When the pro zone alarm B4 or the quantitative range upper limit over alarm B5 occurs, it indicates that the concentration of the target component substance in the sample 2 is too high. Therefore, in this case, the automatic analyzer 1 causes the automatic retest to be performed under the condition that the amount of the sample of the reaction liquid 3 is reduced (or the state where the sample 2 is diluted with the reagent 4) as remeasurement conditions. In addition, when the quantitative range lower limit over alarm B6 occurs, it indicates that the concentration of the target component substance in the sample 2 is too low. Therefore, in this case, the automatic analyzer 1 causes the automatic retest to be performed with the amount of the sample of the reaction liquid 3 increased as the remeasurement condition.
 (C) 第3グループおよび低レベルのデータアラームとしては、例えば以下の2つが挙げられる。図4の(C)には、対応する表部分を示す。本例では、血清情報アラームC1、試薬有効期限切れアラームC2、検体キャリーオーバを有する。 (C) Examples of the third group and low level data alarms include the following two. FIG. 4C shows the corresponding table portion. In this example, it has a serum information alarm C1, a reagent expiration alarm C2, and a sample carryover.
 (1) 血清情報アラームC1は、血液等の検体2に目的成分物質の分析に影響を与える共存物質が混入している場合に発生するデータアラームである。共存物質には、脂質、ヘモグロビン、ビリルビン等がある。それらの共存物質が混入した検体2(異常検体ともいう)は、それぞれ、乳ビ、溶血、黄色と呼ばれる。溶血(赤色変化ともいう)と黄色は、検体2の色変化を起こすため、主に吸光光度計44への影響が大きい。乳ビは、検体2の濁度変化を起こすため、主に散乱光度計45への影響が大きい。血清情報は、上記のような共存物質に関する情報である。血清情報は、通常、検査項目の目的成分物質の分析とは別に、検体2と反応しない試薬4を用いて各共存物質に対応した波長の光を用いて検体2自体の吸光度を測定することで判定される。測定された各吸光度を、事前に設定されている各閾値と比較し、閾値を超えたものに対し、血清情報アラームC1が付加される。 (1) Serum information alarm C1 is a data alarm that occurs when a coexistent substance that affects the analysis of the target component substance is mixed in the sample 2 such as blood. The coexisting substances include lipids, hemoglobin, bilirubin and the like. The samples 2 (also referred to as abnormal samples) in which the coexisting substances are mixed are called milk beads, hemolysis, and yellow, respectively. Hemolysis (also referred to as red change) and yellow cause a color change of the sample 2 and therefore, the absorptiometer 44 is largely affected. Since the milk bottle causes a change in the turbidity of the sample 2, the influence on the scattering photometer 45 is large. Serum information is information on coexistent substances as described above. Serum information is usually measured by measuring the absorbance of the sample 2 itself using the light of the wavelength corresponding to each coexisting substance using the reagent 4 which does not react with the sample 2 separately from the analysis of the target component substance of the test item It is judged. Each measured absorbance is compared with each preset threshold value, and a serum information alarm C1 is added to one that exceeds the threshold value.
 (2) 試薬有効期限切れアラームC2は、自動分析装置1に登録されている試薬4の有効期限が切れている場合に発生するデータアラームである。 (2) Reagent Expiration Date Alarm C2 is a data alarm that occurs when the expiration date of the reagent 4 registered in the automatic analyzer 1 has expired.
 これらの低レベルのデータアラームが出力された場合、測定自体は正常に終了して測定結果が得られている。そのため、自動分析装置1は、出力制御として、その測定結果を参考値として取り扱って出力させる。また、この場合、検体2または試薬4を交換しなければ状態が改善しない。そのため、自動分析装置1は、自動再検を不要とし、行わないようにする。 When these low level data alarms are output, the measurement itself ends normally and the measurement results are obtained. Therefore, the automatic analyzer 1 handles and outputs the measurement result as a reference value as output control. In this case, the condition is not improved unless the sample 2 or the reagent 4 is replaced. Therefore, the automatic analyzer 1 makes automatic retest unnecessary and does not perform it.
 自動分析装置1の出力制御機能では、2種類の光度計の測定毎に、異常等の検知、上記データアラームの定義、および分析制御部50(特に解析部52)による所定の判断に基づいて、選択された基本的に1つのデータアラームが、測定結果に付記される。測定結果にデータアラームが付記された情報が、一旦データ格納部55に格納される。同時分析判定部56等の各部は、データ格納部55の情報を参照して、出力制御を行う。 In the output control function of the automatic analyzer 1, based on the detection of an abnormality, the definition of the data alarm, and the predetermined determination by the analysis control unit 50 (in particular, the analysis unit 52) for each measurement of two types of photometers. A selected basically one data alarm is attached to the measurement result. Information in which a data alarm is added to the measurement result is temporarily stored in the data storage unit 55. Each unit such as the simultaneous analysis determination unit 56 performs output control with reference to the information in the data storage unit 55.
 なお、異常等の種別によっては、1種類の光度計の測定結果に関して、複数のデータアラームが、付記の候補となる場合もある。自動分析装置1では、その場合には、事前の設定や所定の判断に基づいて、1つのデータアラームを選択して付記する。この設定は、データアラーム機能の設計事項である。例えば、予めデータアラームの定義として、複数の種類のデータアラーム(対応する異常等)の間には、重要度や優先順位が設定される。図4では図示していないが、例えばデータアラーム毎に、優先順位番号が設定される。解析部52は、候補の複数のデータアラームのうち最も優先順位が高いデータアラームを選択する。なお、変形例の自動分析装置としては、上記のような優先順位設定を持たず、1つの測定結果に複数のデータアラームが付記されてもよい。 Note that, depending on the type of abnormality or the like, a plurality of data alarms may be candidates for appendage regarding the measurement results of one type of photometer. In that case, the automatic analyzer 1 selects and appends one data alarm based on the pre-setting and the predetermined judgment. This setting is a design matter of the data alarm function. For example, as the definition of the data alarm, the importance or the priority is set between a plurality of types of data alarms (corresponding abnormalities or the like). Although not shown in FIG. 4, for example, a priority number is set for each data alarm. The analysis unit 52 selects the data alarm with the highest priority among the plurality of candidate data alarms. In addition, as an automatic analyzer of a modification, it does not have the above priority setting, and a plurality of data alarms may be added to one measurement result.
 上記では、3つのレベルのデータアラームおよび対応する異常等についていくつかの具体例を挙げて説明したが、これらに限定されず、他の各種類の異常等およびデータアラームについても同様に適用可能である。図4の表では、識別コードを付けていない他の種類のデータアラームの例も記載しており、実施の形態では出力制御には使用しないが、他の実施の形態では同様に使用可能である。 Although the three levels of data alarms and corresponding abnormalities have been described above with some specific examples, the present invention is not limited thereto, and the same applies to other types of abnormalities and data alarms. is there. The table of FIG. 4 also describes examples of other types of data alarms not having identification codes, and although they are not used for output control in the embodiment, they can be similarly used in other embodiments. .
 [分析処理(1)]
 次に、自動分析装置1の出力制御機能に関するデータアラームの組み合わせに応じた出力制御処理について説明する。まず、第1段階として、図2の分析制御部50の測定部51、解析部52、および制御部53によって行われる分析処理について説明する。分析制御部50は、分析依頼を受けた対象の検体2の分析処理を行う。その際、制御部53は、分析依頼として同時分析依頼が設定されているか否かを判定する。制御部53は、同時分析依頼が設定されている場合には、測定部51および解析部52に、2種類の光度計から得られる各測定値(前述の信号)に基づいて、対象の検体2の各分析処理(吸光分析および散乱光分析)を行わせる。制御部53は、同時分析依頼が設定されておらず、2種類の光度計の一方による分析(「単一分析」として「吸光分析」または「散乱光分析」)の分析依頼が設定されている場合には、測定部51および解析部52に、対応する一方の光度計の測定値に基づいて、対象の検体2の分析処理を行わせる。
[Analysis process (1)]
Next, an output control process according to a combination of data alarms related to the output control function of the automatic analyzer 1 will be described. First, an analysis process performed by the measurement unit 51, the analysis unit 52, and the control unit 53 of the analysis control unit 50 in FIG. 2 will be described as a first step. The analysis control unit 50 performs analysis processing of the target sample 2 for which the analysis request has been received. At this time, the control unit 53 determines whether the simultaneous analysis request is set as the analysis request. When the simultaneous analysis request is set, the control unit 53 causes the measurement unit 51 and the analysis unit 52 to select the target sample 2 based on the respective measurement values (the aforementioned signals) obtained from the two types of photometers. Perform each analytical process (Absorptiometry and Scattered Light Analysis) of The control unit 53 has not set a request for simultaneous analysis, but has set a request for analysis by one of two types of photometers ("absorbance analysis" or "scattered light analysis" as "single analysis") In this case, the measurement unit 51 and the analysis unit 52 perform analysis processing of the target specimen 2 based on the measurement value of the corresponding one photometer.
 測定部51は、光度計の種類毎に、光度計からの信号に含む測定値または計算値に基づいて、対象の検体2について、光量/光強度を測定する。測定部51は、吸光光度計44からの測定値に基づいて、その測定値が取得された反応容器25の反応液3による透過光の光量/光強度を求める。また、測定部51は、散乱光度計45からの測定値に基づいて、その測定値が取得された反応容器25の反応液3による散乱光の光量/光強度を求める。例えば、測定部51は、測定値である透過光または散乱光の光量に基づいて、光強度を計算する。そして、測定部51は、その光強度の情報を、対象の検体2が分注されている対象の反応容器25の情報、またはその検体2の分析依頼情報と対応付けた測定データとして、データ格納部55に格納する。なお、測定部51では、光強度に限らず、他のパラメータを測定や計算してもよい。また、測定データは、光度計で測定された反応過程の情報(すなわち測定時点毎の測定値等)を含む。分析依頼情報には、対象の検体2や試薬4等の情報を含む。 The measuring unit 51 measures the light intensity / light intensity of the target specimen 2 based on the measured value or the calculated value included in the signal from the photometer for each type of photometer. Based on the measurement value from the absorptiometer 44, the measurement unit 51 obtains the light amount / light intensity of the transmitted light by the reaction liquid 3 of the reaction container 25 in which the measurement value is obtained. In addition, the measurement unit 51 obtains the light amount / light intensity of the scattered light by the reaction liquid 3 of the reaction container 25 in which the measurement value is obtained based on the measurement value from the scattering photometer 45. For example, the measurement unit 51 calculates the light intensity based on the light amount of the transmitted light or the scattered light which is the measurement value. Then, the measurement unit 51 stores the data of the light intensity as measurement data in which the information of the reaction container 25 of the target to which the target sample 2 is dispensed is associated or the analysis request information of the sample 2. Store in section 55. In addition, in the measurement part 51, you may measure and calculate not only light intensity but another parameter. In addition, the measurement data includes information on the reaction process measured by the photometer (that is, a measured value at each measurement point, etc.). The analysis request information includes information such as the target sample 2 and the reagent 4.
 解析部52は、測定部51による測定データの情報を参照し、対象の反応液3中の検体2の目的成分物質を解析し、目的成分物質の濃度または成分量の少なくとも一方(「濃度/成分量」)を求める。解析部52は、測定データにおける透過光の光量/光強度、あるいは散乱光の光量/光強度を読み出して、目的成分物質の濃度を求める。例えば、解析部52は、光強度を参照し、また、検量線の情報を参照し、その光強度から目的成分物質の濃度を計算する。その際、解析部52は、事前に作成されている、反応液3に用いられた試薬4に対応する検量線を用いて、光強度から濃度へ換算する。吸光光度計44を用いる場合、解析部52は、透過光強度を、吸光光度計44用の検量線を用いて、目的成分物質の濃度に換算する。散乱光度計45を用いる場合、解析部52は、散乱光強度を、散乱光度計45用の検量線を用いて、目的成分物質の濃度に換算する。 The analysis unit 52 analyzes the target component substance of the sample 2 in the target reaction liquid 3 with reference to the information of the measurement data by the measurement unit 51, and at least one of the concentration or the component amount of the target component substance Determine the amount "). The analysis unit 52 reads out the light amount / light intensity of the transmitted light or the light amount / light intensity of the scattered light in the measurement data, and obtains the concentration of the target component substance. For example, the analysis unit 52 refers to the light intensity and refers to the information of the calibration curve, and calculates the concentration of the target component substance from the light intensity. At this time, the analysis unit 52 converts the light intensity into a concentration using a calibration curve corresponding to the reagent 4 used for the reaction liquid 3 which has been prepared in advance. When the absorptiometer 44 is used, the analysis unit 52 converts the transmitted light intensity into the concentration of the target component substance using a calibration curve for the absorptiometer 44. When the scattering photometer 45 is used, the analysis unit 52 converts the scattered light intensity into the concentration of the target component substance using the calibration curve for the scattering photometer 45.
 検量線は、既知の濃度の目的成分物質を含んでいる標準物質等の検体を用いて求められた各目的成分物質の濃度と、透過光あるいは散乱光の光量/光強度との関係を表す。予め、データ格納部55には、試薬ディスク30の各試薬ボトル35の試薬4の検量線データが格納されている。 The calibration curve represents the relationship between the concentration of each target component substance determined using a sample such as a standard substance containing a target component substance of a known concentration, and the light amount / light intensity of transmitted light or scattered light. In advance, calibration curve data of the reagent 4 of each reagent bottle 35 of the reagent disc 30 is stored in the data storage unit 55.
 そして、解析部52は、解析で得た濃度の情報を、対象の検体2の反応容器25または分析依頼の情報と対応付けた解析データとして、データ格納部55に格納する。なお、実施の形態では、測定結果として、主に、目的成分物質の濃度を扱う。なお、測定結果は、分析結果や解析結果等と言い換えも可能である。 Then, the analysis unit 52 stores the information of the concentration obtained by the analysis in the data storage unit 55 as analysis data associated with the reaction container 25 of the target sample 2 or the information of the analysis request. In the embodiment, the concentration of the target component substance is mainly dealt with as the measurement result. The measurement result can be paraphrased as an analysis result, an analysis result, or the like.
 また、解析部52は、上記解析の際、各光度計で測定された反応過程や、解析した濃度、および事前に設定されている分析パラメータ情報等に基づいて、対象の検体2についての測定時に異常やエラー等が発生していたかどうかを判定する。その異常等の例は前述の通りである。解析部52は、測定時の異常等が発生していると判定した場合には、光度計の種類に応じた濃度を含む測定結果に、その異常等の種別に対応したデータアラームを付記し、それらを解析データとしてデータ格納部55に格納する。解析部52は、データアラームを付記する際には、図4のような分類定義および所定の判定に従って選択したデータアラームを付記する。 In addition, when performing the analysis, the analysis unit 52 measures the target sample 2 based on the reaction process measured by each photometer, the analyzed concentration, the analysis parameter information set in advance, and the like. It is determined whether an error or an error has occurred. The example of the abnormality etc. is as above-mentioned. If the analysis unit 52 determines that an abnormality or the like at the time of measurement has occurred, a data alarm corresponding to the type of abnormality or the like is added to the measurement result including the concentration corresponding to the type of photometer; They are stored in the data storage unit 55 as analysis data. When appending the data alarm, the analysis unit 52 appends the data alarm selected according to the classification definition as shown in FIG. 4 and the predetermined determination.
 制御部53は、対象の検体2の分析作業中、検体ディスク10や検体分注機構41や各光度計を含む各機構等の部位の制御と共に、それらの部位の異常やエラー等の発生を監視および判定している。制御部52で機構の異常等を検知した場合、その異常等を表す情報を含む制御結果情報が、データ格納部55に格納される。解析部52は、データ格納部55から測定データに加えてその制御結果情報を参照する。解析部52は、測定データおよび制御結果情報に基づいて、測定時の異常等の有無や、その異常等の種別を判定する。 The control unit 53 monitors the occurrence of an abnormality, an error, or the like of the sample disc 10, the sample dispensing mechanism 41, and portions such as each mechanism including the respective photometers, while analyzing the target sample 2. And it is judged. When an abnormality or the like of the mechanism is detected by the control unit 52, control result information including information indicating the abnormality or the like is stored in the data storage unit 55. The analysis unit 52 refers to the control result information from the data storage unit 55 in addition to the measurement data. The analysis unit 52 determines, based on the measurement data and the control result information, the presence or absence of an abnormality or the like at the time of measurement, and the type of the abnormality or the like.
 上記のように、第1段階として、測定部51、解析部52、および制御部53による分析結果として、測定結果を含むデータが、データ格納部55に格納される。測定時の異常等があった場合には、測定結果にデータアラームが付記されたデータが得られる。同時分析の場合には、光度計の種類毎に、それぞれのデータが得られる。その上で、分析制御部50は、第2段階として、対象の検体2についての分析結果の出力制御処理を、以下のように行う。分析制御部50は、第2段階の処理を、同時分析判定部56、自動再検判定部57、測定時異常チェック部58、優先出力判定部59、および優先出力エラー判定部60等によって行う。分析制御部50は、それらを用いて、出力部71の表示画面に対する分析結果の出力を行う。 As described above, as the first step, data including the measurement result is stored in the data storage unit 55 as an analysis result by the measurement unit 51, the analysis unit 52, and the control unit 53. When there is an abnormality or the like at the time of measurement, data in which a data alarm is added to the measurement result is obtained. In the case of simultaneous analysis, respective data are obtained for each type of photometer. Then, as a second step, the analysis control unit 50 performs output control processing of the analysis result of the target sample 2 as follows. The analysis control unit 50 performs the processing of the second stage by the simultaneous analysis determination unit 56, the automatic retest determination unit 57, the measurement error check unit 58, the priority output determination unit 59, the priority output error determination unit 60, and the like. The analysis control unit 50 outputs the analysis result on the display screen of the output unit 71 using them.
 [分析処理(2)]
 次に、図2等を参照しながら、第2段階の出力制御処理について説明する。分析制御部50は、同時分析の場合、データ格納部55を介して、上記2種類の光度計毎の測定結果を含む解析データを、同時分析判定部56に出力する。同時分析判定部56は、データ格納部55からその解析データを参照する。また、分析制御部50は、必要に応じて、自動再検判定部57、測定時異常チェック部58、優先出力判定部59、および優先出力エラー判定部60等に処理を行わせる。
[Analytical processing (2)]
Next, output control processing in the second stage will be described with reference to FIG. In the case of simultaneous analysis, the analysis control unit 50 outputs analysis data including the measurement results of each of the two types of photometers to the simultaneous analysis determination unit 56 via the data storage unit 55. The simultaneous analysis determination unit 56 refers to the analysis data from the data storage unit 55. Further, the analysis control unit 50 causes the automatic retest determination unit 57, the measurement abnormality check unit 58, the priority output determination unit 59, the priority output error determination unit 60, and the like to perform processing as necessary.
 分析制御部50は、同時分析の結果を、出力部71の表示画面でユーザに対して出力する際、同時分析判定部56によって、2種類の測定結果から、前述の特性に基づいて、目的成分物質の濃度の高低等に応じて、好適な一方の測定結果を選択する。さらに、分析制御部50は、2種類の測定結果に1つ以上のデータアラームが付記されている場合には、下記のように、データアラームの組み合わせに応じて、出力する測定結果、データアラーム、および自動再検情報を選択する出力制御処理を行う。 When the analysis control unit 50 outputs the result of simultaneous analysis to the user on the display screen of the output unit 71, the simultaneous analysis determination unit 56 determines the target component based on the above-mentioned characteristics from the two types of measurement results. Depending on the concentration of the substance, etc., select one suitable measurement result. Furthermore, when one or more data alarms are added to the two types of measurement results, the analysis control unit 50 outputs the measurement results, the data alarms, and the like, according to the combination of the data alarms, as described below. And perform output control processing to select automatic retest information.
 [対応表]
 図5~図8は、自動分析装置1で、出力制御に用いる、複数のデータアラームの組み合わせと出力との対応付けが定義されている対応表を示す。特に、前述の中レベルのデータアラームに関する対応表を示す。分析制御部50および出力制御機能は、このような対応表の規定に従った出力制御処理を行う。実施の形態1では、この出力制御処理が、後述の処理フローのようにソフトウェアプログラム処理として実装されている。なお、この対応表は、実装上のテーブル等として保持されていてもよいし(すなわちそのテーブルを参照して判定等が行われてもよい)、処理フローとして実装されることでそのテーブル等が省略されてもよい。
[Correspondence table]
FIG. 5 to FIG. 8 show a correspondence table in which correspondence between combinations of a plurality of data alarms and outputs used for output control is defined in the automatic analyzer 1. In particular, the correspondence table for the above-mentioned mid-level data alarm is shown. The analysis control unit 50 and the output control function perform output control processing according to the definition of such a correspondence table. In the first embodiment, this output control process is implemented as a software program process as in the process flow described later. Note that this correspondence table may be held as a table or the like on mounting (that is, determination etc. may be performed with reference to the table), or the table or the like may be implemented as a processing flow. It may be omitted.
 図5は、対応表の第1部分として、前述の中レベルのデータアラームの組み合わせと出力との対応付けの第1例を示す。図5の(A)は、特に(B-1)反応過程異常に由来するデータアラームの組み合わせについて示す。対応表の第1列「吸光」は、吸光光度計44を用いた第1測定結果に関する第1データアラームを示す。第2列「散乱」は、散乱光度計45を用いた第2測定結果に関する第2データアラームを示す。すなわち、第1列と第2列との組は、2種類のデータアラームの組み合わせを示す。対応表の第3列「出力」は、第1列と第2列との組である場合に選択される出力内容として特に測定結果に関する選択を示す。対応表の第4列「再検」は、選択される1つである自動再検機能による自動再検の要否(有無)を示す。対応表の第5列「条件」は、選択される1つである自動再検依頼を行う場合の自動再検条件(すなわち再測定条件等)を示す。 FIG. 5 shows, as a first part of the correspondence table, a first example of the correspondence between the combination of the above-mentioned middle level data alarms and the output. FIG. 5A particularly shows the combination of data alarms derived from (B-1) reaction process abnormality. The first column “absorptivity” of the correspondence table indicates a first data alarm regarding the first measurement result using the absorptiometer 44. The second column "Scattering" shows a second data alarm on the second measurement using scatterometer 45. That is, the set of the first column and the second column indicates a combination of two types of data alarms. The third column “output” of the correspondence table indicates the selection regarding the measurement result as the output content selected in the case of the combination of the first column and the second column. The fourth column “retest” in the correspondence table indicates the necessity (presence or absence) of automatic retest by the selected automatic retest function. The fifth column “condition” of the correspondence table indicates an automatic re-examination condition (that is, a re-measurement condition etc.) in the case where one of the selected automatic re-examination requests is made.
 図5の(A)では、第1列「吸光」や第2列「散乱」の値として、図4に従って、1.「吸光度差異常」(B2)/「散乱光強度差異常」(B3)と、2.「セルブランク異常」(B1)と、3.「計算不能」とを有する。これらの3種類の値の組み合わせとして、3×3=9の組み合わせがある。ここでは吸光度差異常アラームB2と散乱光強度差異常アラームB3とを1つにまとめているが、さらにそれらの組み合わせを考えてもよい。各組み合わせの行毎に、第3列「出力」、第4列「再検」、第5列「条件」の値が規定されている。第3列「出力」の値としては、「吸光」(値1)、「散乱」(値2)、「優先」(値3)の3種類の値がある。「吸光」(値1)は、吸光光度計44の方の第1測定結果および第1データアラームの選択を表す。「散乱」(値2)は、散乱光度計45の方の第2測定結果および第2データアラームの選択を表す。「優先」(値3)は、優先出力設定の判定に従った、2種類の一方の測定結果およびデータアラームの選択を表す。第4列「再検」の値としては、「有」(値1)、「無」(値2)の2種類の値がある。「有」(値1)は、自動再検の必要(有り)を表す。「無」(値2)は、自動再検の不要(無し)を表す。第5列「条件」の値としては、「同」(値1)、「減量」(値2)、「増量」(値3)の3種類の値がある。「同」(値1)は、前回の測定時と同じ条件(再測定条件等)を表す。「減量」(値2)は、前回の測定時の条件に対して検体2を減量した条件に変更することを表す。「増量」(値3)は、前回の測定時の条件に対して検体2を減量した条件に変更することを表す。 In FIG. 5A, as values of the first column “absorptivity” and the second column “scattering”, according to FIG. "Absorbance difference abnormality" (B2) / "scattered light intensity difference abnormality" (B3); "Cell blank error" (B1); It has "impossible to calculate". There is a combination of 3 × 3 = 9 as a combination of these three types of values. Here, although the absorbance difference abnormality alarm B2 and the scattered light intensity difference abnormality alarm B3 are put together into one, a combination of them may be considered. The values of the third column “output”, the fourth column “retest”, and the fifth column “condition” are defined for each row of each combination. There are three types of values of “output” in the third column, “absorptivity” (value 1), “scatter” (value 2), and “priority” (value 3). "Absorbance" (value 1) represents the selection of the first measurement result and the first data alarm towards the absorptiometer 44. "Scattering" (value 2) represents the selection of the second measurement result and the second data alarm towards the scatterometer 45. "Priority" (value 3) represents the selection of one of two types of measurement results and data alarms according to the determination of the priority output settings. There are two types of values of "re-examined" (value 1) and "absent" (value 2) as the values of the fourth column "retest". "Present" (value 1) indicates the necessity (presence) of automatic retest. "None" (value 2) represents the necessity (none) of automatic re-examination. There are three types of values of "condition" in the fifth column, "same" (value 1), "decrease" (value 2), and "increase" (value 3). “Same” (value 1) represents the same conditions (remeasurement conditions etc.) as in the previous measurement. “Loss weight” (value 2) represents changing to a condition in which the sample 2 is reduced with respect to the condition at the time of the previous measurement. The term "increase" (value 3) represents changing to a condition in which the sample 2 is reduced with respect to the condition at the time of the previous measurement.
 例として、第1行の組み合わせ(1-1)では、「吸光」-「散乱」のデータアラームの組として「B2/B3」-「B2/B3」であり、「出力」=「優先」(値3)、「再検」=「有」(1)、「条件」=「同」(値1)である。この場合、分析制御部50は、優先出力設定の判定に従って一方の光度計の測定結果およびデータアラーム(B2/B3)を選択して出力し、前回と同じ条件で自動再検依頼を行う自動再検情報とする。他の各行の組み合わせでも同様の出力となっている。 As an example, in the combination (1-1) of the first row, "B2 / B3"-"B2 / B3" is a combination of "absorbance"-"scatter" data alarm, and "output" = "priority" ( Value 3), “retest” = “presence” (1), “condition” = “same” (value 1). In this case, the analysis control unit 50 selects and outputs the measurement result of one of the photometers and the data alarm (B2 / B3) according to the determination of the priority output setting, and carries out the automatic retest information to make an automatic retest request under the same conditions as the previous time. I assume. The same output is obtained by combining other lines.
 図5の(B)は、同様に、特に(B-2)検体濃度異常に由来するデータアラームの組み合わせについて示す。図5の(B)では、第1列「吸光」や第2列「散乱」の値として、図4に従い、1.「吸光度・散乱光強度オーバ」と、2.「プロゾーン」(B4)と、3.「定量範囲上限オーバ」(B5)と、4.「定量範囲下限オーバ」(B6)とを有する。これらの4種類の値の組み合わせとして、4×4=16の組み合わせがある。 Similarly, (B) of FIG. 5 particularly shows a combination of data alarms derived from (B-2) sample concentration abnormality. In FIG. 5 (B), as values of the first column “absorptivity” and the second column “scattering”, according to FIG. “Absorbance and scattered light intensity over”, and 2. "Pro-zone" (B4); "Over the upper limit of quantitative range" (B5); "Over the lower limit of determination range" (B6). There is a combination of 4 × 4 = 16 as a combination of these four types of values.
 例として、第4行から第8行は、「吸光」のデータアラームがプロゾーンアラームB4である4つの組み合わせであり、出力選択としては、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「減量」(値2)である。これらの場合、分析制御部50は、吸光光度計44の第1測定結果および第2データアラーム(B4)を選択して出力し、前回の条件に対し減量した条件で自動再検依頼を行う自動再検情報とする。第9行から第12行は、「吸光」のデータアラームが定量範囲上限オーバアラームB5である4つの組み合わせの場合であり、出力選択としては、同様となっている。第13行から第16行は、「吸光」のデータアラームが定量範囲下限オーバアラームB5である4つの組み合わせの場合である。第13行、第14行、第15行の組み合わせでは、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「増量」(値3)である。これらの場合、分析制御部50は、吸光光度計44の第1測定結果および第1データアラーム(B6)を選択して出力し、前回の条件に対し増量した条件で自動再検依頼を行う自動再検情報とする。第16行の組み合わせでは、出力選択として、「出力」=「散乱」(値2)、「再検」=「有」(値1)、「条件」=「増量」(値3)である。この場合、分析制御部50は、散乱光度計45の第2測定結果および第2データアラーム(B6)を選択して出力し、前回の条件に対し増量した条件で自動再検依頼を行う自動再検情報とする。 As an example, lines 4 to 8 are four combinations in which the data alarm of "absorptivity" is pro zone alarm B4, and as the output selection, "output" = "absorptivity" (value 1), "retest" “=” Present ”(value 1),“ condition ”=“ loss ”(value 2). In these cases, the analysis control unit 50 selects and outputs the first measurement result and the second data alarm (B4) of the absorptiometer 44, and performs an automatic retesting request to perform an automatic retest request under the conditions reduced from the previous conditions. It is information. The 9th to 12th lines show the case of four combinations in which the "light absorption" data alarm is the quantitative range upper limit alarm B5, and the output selection is the same. The 13th line to the 16th line are for the case of four combinations in which the “light absorption” data alarm is a quantitative range lower limit over alarm B5. In the 13th, 14th, and 15th rows, “output” = “absorptive” (value 1), “retest” = “presence” (value 1), “condition” = “increase” as output selection. (Value 3). In these cases, the analysis control unit 50 selects and outputs the first measurement result of the absorptiometer 44 and the first data alarm (B6), and performs an automatic retesting request to perform an automatic retest request under the conditions increased with respect to the previous conditions. It is information. In the combination of the 16th line, “output” = “scatter” (value 2), “retest” = “presence” (value 1), and “condition” = “increase” (value 3) as the output selection. In this case, the analysis control unit 50 selects and outputs the second measurement result of the scattering photometer 45 and the second data alarm (B6), and performs automatic retest information on which an automatic retest request is performed under the condition of increasing the previous condition. I assume.
 図6は、対応表のうちの第2部分として、中レベルのデータアラームで、(B-1)反応過程異常と(B-2)検体濃度異常との組み合わせの部分を示す。ここでは、第1列「吸光」、第2列「散乱」の値として、前述の「B2/B3」、「B1」、「計算不能」、「吸光度・散乱光強度差オーバ」、「B4」、「B5」、「B6」の7種類の値がある。 FIG. 6 shows, as the second part of the correspondence table, a combination of (B-1) reaction process abnormality and (B-2) sample concentration abnormality in a medium level data alarm. Here, as the values of the first column “absorptivity” and the second column “scattering”, the aforementioned “B2 / B3”, “B1”, “impossible to calculate”, “absorbance / scattered light intensity difference over”, “B4” There are seven types of values, "B5" and "B6".
 例として、第1行から第4行は、「吸光」のデータアラームが(B-1)反応過程異常のうちの「B2/B3」であり、「散乱」のデータアラームが(B-2)検体濃度異常である、4つの組み合わせの場合である。第1行~第3行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「同」(値1)である。第4行では、出力選択としては、「出力」=「散乱」(値2)、「再検」=「有」(1)、「条件」=「増量」(値3)である。第5行から第8行は、「吸光」のデータアラームが(B-1)反応過程異常のうちの「B1」であり、「散乱」のデータアラームが(B-2)検体濃度異常である、4つの組み合わせの場合である。出力選択としては、第1行~第4行と同様となっている。 As an example, lines 1 to 4 show that the data alarm for "absorptive light" is (B-1) "B2 / B3" of the reaction process abnormalities and the data alarm for "scattering" is (B-2) This is the case of four combinations where the sample concentration is abnormal. In the first to third lines, “output” = “absorptivity” (value 1), “retest” = “presence” (value 1), and “condition” = “same” (value 1) as output selection. . In line 4, as the output selection, “output” = “scatter” (value 2), “retest” = “presence” (1), “condition” = “increase” (value 3). The fifth to eighth lines indicate that the data alarm for "absorptive light" is "B1" of (B-1) reaction process abnormality, and the data alarm for "scattering" is (B-2) sample concentration abnormality , In the case of four combinations. The output selection is similar to the first to fourth lines.
 また、例えば、第16行から第18行は、「吸光」のデータアラームが(B-2)検体濃度異常のうちのプロゾーンアラームB4であり、「散乱」のデータアラームが(B-1)反応過程異常である、3つの組み合わせの場合である。第16行~第18行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「減量」(値2)である。また、例えば、第19行から第21行は、「吸光」のデータアラームが(B-2)検体濃度異常のうちの定量範囲上限オーバアラームB5であり、「散乱」のデータアラームが(B-1)反応過程異常である、3つの組み合わせの場合である。第19行~第21行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「減量」(値2)である。また、例えば、第22行から第24行は、「吸光」のデータアラームが(B-2)検体濃度異常のうちの定量範囲下限オーバアラームB6であり、「散乱」のデータアラームが(B-1)反応過程異常である、3つの組み合わせの場合である。第22行~第24行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「増量」(値3)である。 Also, for example, in lines 16 to 18, the data alarm of "absorptivity" is (B-2) prozone alarm B4 of the sample concentration abnormalities and the data alarm of "scatter" is (B-1) It is a case of three combinations which are reaction process abnormalities. In lines 16 to 18, “output” = “absorbance” (value 1), “retest” = “presence” (value 1), and “condition” = “loss” (value 2) as output selection. . Also, for example, in the 19th line through the 21st line, the “light absorption” data alarm is (B-2) the quantitative range upper limit alarm B5 of the sample concentration abnormalities, and the “scattering” data alarm is (B− 1) It is a case of three combinations which are reaction process abnormalities. In lines 19 to 21, as output selection, “output” = “absorptive light” (value 1), “retest” = “presence” (value 1), “condition” = “loss” (value 2) . Also, for example, in lines 22 to 24, the data alarm of “absorptive light” is (B-2) quantitative range lower limit alarm B6 of the sample concentration abnormality, and the data alarm of “scattered” is (B− 1) It is a case of three combinations which are reaction process abnormalities. In lines 22 to 24, “output” = “absorbance” (value 1), “retest” = “presence” (value 1), “condition” = “increase” (value 3) as the output selection. .
 図7は、対応表のうちの第3部分として、中レベルの(B-1)反応過程異常のデータアラームと低レベルのデータアラームとの組み合わせの部分を示す。ここでは、第1列「吸光」、第2列「散乱」の値として、前述の「B2/B3」、「B1」、「計算不能」、「血清情報(C1)」、「検体キャリーオーバ」、「試薬有効期限切れ(C2)」の6種類の値がある。 FIG. 7 shows, as a third part of the correspondence table, a portion of a combination of a medium level (B-1) reaction process abnormality data alarm and a low level data alarm. Here, as the values of the first column “absorptive light” and the second column “scattering”, the aforementioned “B2 / B3”, “B1”, “calculation impossible”, “serum information (C1)”, “specimen carryover” There are six types of values, "Reagent Expired (C2)".
 例として、第1行から第4行は、「吸光」のデータアラームが(B-1)反応過程異常のうちの「B2/B3」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。第1行~第3行では、出力選択として、「出力」=「散乱」(値2)、「再検」=「無」(値2)、「条件」=「-」(値無し)である。これらの場合、分析制御部50は、散乱光度計45の第2測定結果および第2データアラーム(低レベル)を選択して出力し、自動再検依頼を行わない。同様に、第4行~第6行は、「吸光」のデータアラームが「B4」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。これらの場合も、同様の出力選択となっている。 For example, lines 1 to 4 show that the data alarm for "absorptive light" is (B-1) "B2 / B3" of reaction process abnormality, and the data alarm for "scattering" is 3 types of low level It is the case of three combinations. In the first to third lines, “output” = “scatter” (value 2), “retest” = “absent” (value 2), “condition” = “-” (no value) as output selection. . In these cases, the analysis control unit 50 selects and outputs the second measurement result of the scattering photometer 45 and the second data alarm (low level), and does not perform an automatic retest request. Similarly, the fourth to sixth lines are the cases of three combinations in which the "light absorption" data alarm is "B4" and the "scatter" data alarm is three types of low level. Also in these cases, the same output selection is made.
 第10行から第12行は、「吸光」のデータアラームが低レベルの血清情報アラーム(C1であり、「散乱」のデータアラームが(B-1)反応過程異常の3種類である、3つの組み合わせの場合である。第10行~第12行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「無」(値2)、「条件」=「-」(値無し)である。これらの場合、分析制御部50は、吸光光度計44の第1測定結果および第1データアラーム(低レベル)を選択して出力し、自動再検依頼を行わない。同様に、第16行~第18行は、「吸光」のデータアラームが試薬有効期限切れアラームC2であり、「散乱」のデータアラームが(B-1)反応過程異常の3種類である、3つの組み合わせの場合である。これらの場合も、同様の出力選択となっている。 Lines 10 to 12 show that the “light absorption” data alarm is a low level serum information alarm (C1 and “scatter” data alarm is three types of reaction process abnormality (B-1), In the 10th to 12th lines, “output” = “absorptive” (value 1), “retest” = “absent” (value 2), “condition” = “-” as the output selection. In these cases, the analysis control unit 50 selects and outputs the first measurement result and the first data alarm (low level) of the absorptiometer 44, and does not request an automatic retest. In lines 16 to 18, there are three combinations of the “absorptive” data alarm being the reagent expiration alarm C2 and the “scattering” data alarm being three types of (B-1) reaction process abnormality. In these cases, similar output selection is It has become.
 図8は、対応表のうちの第4部分として、中レベルの(B-2)検体濃度異常のデータアラームと低レベルのデータアラームとの組み合わせの部分を示す。ここでは、第1列「吸光」、第2列「散乱」の値として、前述の「吸光度・散乱光強度オーバ」、「B4」、「B5」、「B6」、「血清情報(C1)」、「検体キャリーオーバ」、「試薬有効期限切れ(C2)」の7種類の値がある。 FIG. 8 shows, as a fourth part of the correspondence table, a combination of a medium level (B-2) sample concentration abnormality data alarm and a low level data alarm. Here, as the values of the first column "absorptivity" and the second column "scattering", the above-mentioned "absorbance · scattered light intensity over", "B4", "B5", "B6", "serum information (C1)" , "Specimen carryover", and "reagent expired (C2)".
 例として、第1行から第4行は、「吸光」のデータアラームが(B-2)検体濃度異常のうちの「吸光度・散乱光強度オーバ」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。第1行~第3行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「有」(値1)、「条件」=「減量」(値2)である。同様に、第4行~第6行は、「吸光」のデータアラームが「B4」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。これらの場合も、同様の出力選択となっている。同様に、第7行~第9行は、「吸光」のデータアラームが「B5」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。これらの場合も、同様の出力選択となっている。同様に、第10行~第12行は、「吸光」のデータアラームが「B6」であり、「散乱」のデータアラームが低レベルの3種類である、3つの組み合わせの場合である。これらの場合、出力選択として、「出力」=「散乱」(値2)、「再検」=「無」(値2)、「条件」=「-」である。 As an example, lines 1 to 4 show that the “absorbance” data alarm is (B-2) “absorbance / scattered light intensity over” among the sample concentration abnormalities, and the “scatter” data alarm is at a low level. In the case of three combinations of three. In the first to third lines, “output” = “absorptive light” (value 1), “retest” = “presence” (value 1), “condition” = “loss” (value 2) as output selection. . Similarly, the fourth to sixth lines are the cases of three combinations in which the "light absorption" data alarm is "B4" and the "scatter" data alarm is three types of low level. Also in these cases, the same output selection is made. Similarly, the seventh to ninth lines are cases of three combinations in which the “absorbance” data alarm is “B5” and the “scatter” data alarm is three types of low level. Also in these cases, the same output selection is made. Similarly, the 10th to 12th lines are the cases of three combinations in which the “absorptive” data alarm is “B6” and the “scattering” data alarm is three types of low level. In these cases, “output” = “scatter” (value 2), “retest” = “absent” (value 2), and “condition” = “-” as the output selection.
 第13行から第16行は、「吸光」のデータアラームが低レベルの血清情報アラームC1であり、「散乱」のデータアラームが(B-2)検体濃度異常の4種類である、4つの組み合わせの場合である。第13行~第15行では、出力選択として、「出力」=「吸光」(値1)、「再検」=「無」(値2)、「条件」=「-」である。第16行では、出力選択として、「出力」=「散乱」(値2)、「再検」=「有」(値1)、「条件」=「増量」(値3)となっている。同様に、第17行から第20行の組み合わせでは、同様の出力選択となっている。同様に、第21行から第24行の組み合わせでは、「吸光」のデータアラームが低レベルの試薬有効期限切れアラームC2の場合であり、同様の出力選択となっている。 The 13th to 16th lines show four combinations of “absorptive” data alarm is low level serum information alarm C1 and “scattered” data alarm is (B-2) four kinds of sample concentration abnormalities. In the case of In lines 13 to 15, as output selection, “output” = “absorptivity” (value 1), “retest” = “absent” (value 2), and “condition” = “−”. In the sixteenth line, “output” = “scatter” (value 2), “retest” = “presence” (value 1), and “condition” = “increase” (value 3) as the output selection. Similarly, the combination of lines 17 to 20 has the same output selection. Similarly, in the combination of the 21st line to the 24th line, the "absorbance" data alarm is the case of the low level reagent expiration alarm C2, and the same output selection is made.
 [処理フロー]
 次に、図9~図14を参照しながら、自動分析装置1の分析制御部50による出力制御処理のフローについて説明する。
Processing flow
Next, a flow of output control processing by the analysis control unit 50 of the automatic analyzer 1 will be described with reference to FIGS. 9 to 14.
 [(1)出力制御処理]
 図9は、分析制御部50の第1処理のフローを示す。この第1処理は、2種類の光度計の一方または両方を用いて、出力する測定結果およびデータアラーム等を選択する出力制御処理を示す。本フローはステップS201~S210を有する。以下、ステップの順に説明する。なお、図9以降の複数の処理フローは、説明上、複数のフロー図として分けて図示および説明している。これらの処理フローは、ステップ間で論理的に接続されており、全体で1つの処理フローとして捉えることもできる。すなわち、分析制御部50のCPU等による全体で1つのプログラム処理としても実現できる。
[(1) Output control processing]
FIG. 9 shows the flow of the first process of the analysis control unit 50. The first process shows an output control process of selecting a measurement result and a data alarm to be output using one or both of two types of photometers. This flow has steps S201 to S210. The steps will be described in the following order. Note that a plurality of processing flows after FIG. 9 are illustrated and described as a plurality of flow diagrams for the sake of explanation. These processing flows are logically connected between the steps, and can be regarded as one processing flow as a whole. That is, it is possible to realize also as one program processing as a whole by the CPU or the like of the analysis control unit 50.
 (S201) 同時分析判定部56は、対象の検体2についての分析依頼の形式が、同時分析依頼であるか否かを確認する。同時分析依頼である場合(Y)にはS204へ、同時分析依頼ではない場合(N)にはS202へ進む。なお、同時分析依頼ではない場合とは、吸光光度計44または散乱光度計45のいずれか一方による単一分析依頼(吸光分析依頼または散乱光分析依頼)が設定されていることに対応する。他の形式の分析依頼があってもよい。例えば、「吸光2項目同時分析」依頼があってもよい。「吸光2項目同時分析」は、吸光光度計44のみを用いて、同じ対象の検体2の反応容器25内の反応液3について、2種類の目的成分物質を同時に測定および分析するものである。 (S201) The simultaneous analysis determination unit 56 confirms whether or not the format of the analysis request for the target sample 2 is a simultaneous analysis request. If it is a simultaneous analysis request (Y), the process proceeds to S204, and if it is not a simultaneous analysis request (N), the process proceeds to S202. The case of not being a simultaneous analysis request corresponds to the setting of a single analysis request (absorptiometric analysis request or a scattered light analysis request) by one of the absorptiometer 44 and the scattering photometer 45. There may be other forms of analysis request. For example, there may be a “absorptive two-item simultaneous analysis” request. “Absorbent two-item simultaneous analysis” is to measure and analyze two target component substances simultaneously for the reaction liquid 3 in the reaction container 25 of the sample 2 of the same target using only the absorptiometer 44.
 (S202) 単一分析依頼の場合、同時分析判定部56は、依頼された一方の光度計で測定された全てのデータ(測定結果およびデータアラームを含む)を出力部71に出力させる。これにより、出力部71の表示画面には、単一分析の結果として、測定結果である濃度や、測定時の異常等があった場合に付記されているデータアラームが表示される。 (S202) In the case of a single analysis request, the simultaneous analysis determination unit 56 causes the output unit 71 to output all the data (including the measurement result and the data alarm) measured by one requested photometer. As a result of the single analysis, the display screen of the output unit 71 displays the concentration which is the measurement result, and the data alarm added when there is an abnormality or the like at the time of measurement.
 (S203) さらに、自動再検判定部57では、単一分析の測定結果について、測定時の異常等に基づいて、自動再検の要否等を判定する。自動再検判定部57は、測定結果にデータアラームが付記されていない場合や、高レベルまたは低レベルのデータアラームが付記されている場合には、自動再検が不要と判定する。不要の場合(否)には、自動再検依頼を行わず、本フローを終了する。自動再検判定部57は、測定結果に、中レベルのデータアラームが付記されている場合には、自動再検が必要と判定し、その場合(要)にはS210へ進む。 (S203) Furthermore, the automatic retest determination unit 57 determines, for the measurement result of the single analysis, necessity or the like of the automatic retest based on an abnormality or the like during measurement. The automatic reexamination determination unit 57 determines that the automatic reexamination is unnecessary when the data alarm is not added to the measurement result or when the high level or low level data alarm is added. If unnecessary (not), the automatic retest request is not performed, and this flow ends. When the middle level data alarm is added to the measurement result, the automatic reexamination determination unit 57 determines that the automatic reexamination is necessary, and in that case (necessary), the process proceeds to S210.
 (S210) 自動再検判定部57は、そのデータアラームの種類に応じた自動再検条件による自動再検依頼を行う。すなわち、自動再検判定部57は、再測定条件等を含む自動再検依頼情報を、データ格納部55に格納する。分析制御部50の自動再検機能は、その自動再検依頼情報に従って自動再検を制御する。 (S210) The automatic reexamination determination unit 57 makes an automatic reexamination request under the automatic reexamination condition according to the type of the data alarm. That is, the automatic reinspection determination unit 57 stores the automatic reinspection request information including the remeasurement conditions and the like in the data storage unit 55. The automatic reexamination function of the analysis control unit 50 controls the automatic reexamination in accordance with the automatic reexamination request information.
 一方、同時分析判定部56は、S201で同時分析依頼である場合、その依頼があった対象の検体2についての、吸光光度計44を用いた第1測定結果と、散乱光度計45を用いた第2測定結果との両方を含む全てのデータを、以下のように、測定時異常チェック部58を介して出力させる。上記全てのデータは、前述の測定部53および解析部52によってデータ格納部55に格納されている。 On the other hand, when the simultaneous analysis determination unit 56 requests the simultaneous analysis in S201, the simultaneous analysis determination unit 56 uses the first measurement result using the absorptiometer 44 and the scattering photometer 45 for the target sample 2 for which the request is made. All data including both the second measurement result and the second measurement result are output through the measurement error check unit 58 as follows. All the above data are stored in the data storage unit 55 by the measurement unit 53 and the analysis unit 52 described above.
 (S204) 測定時異常チェック部58は、2種類の光度計の測定結果である第1測定結果および第2測定結果に、データアラームが付記されているか否かを判定する。すなわち、測定時異常チェック部58は、各測定結果に、データアラームで表される測定時の異常等が発生していたかどうかをチェックする。この判定の結果として、第1測定結果のみに異常等があった場合(A)にはS207へ進み、第2測定結果のみに異常等があった場合(B)にはS209へ進む。また、判定の結果として、第1測定結果と第2測定結果との両方に異常等があった場合(C)にはS205(図3)へ進む。また、判定の結果として、第1測定結果と第2測定結果との両方に異常等が無かった場合(D)にはS206へ進む。 (S204) The measurement abnormality check unit 58 determines whether a data alarm is added to the first measurement result and the second measurement result which are measurement results of the two types of photometers. That is, the measurement abnormality check unit 58 checks whether or not an abnormality or the like at the time of measurement represented by a data alarm has occurred in each measurement result. As a result of this determination, if there is an abnormality or the like only in the first measurement result (A), the process proceeds to S207, and if there is an abnormality or the like only in the second measurement result (B), the process proceeds to S209. In addition, when there is an abnormality or the like in both of the first measurement result and the second measurement result as a result of the determination (C), the process proceeds to S205 (FIG. 3). In addition, when there is no abnormality or the like in both the first measurement result and the second measurement result as a result of the determination (D), the process proceeds to S206.
 (S207) 測定時異常チェック部58は、第2測定結果を含む、散乱光分析に係わる全てのデータを、出力部71から出力させる。これにより、出力部71の表示画面では、同時分析の結果として、散乱光度計45を通じて得られた濃度を含む、異常等が無いデータが、優先的にユーザに対して出力される。 (S207) The measurement time abnormality check unit 58 causes the output unit 71 to output all data related to the scattered light analysis, including the second measurement result. Thereby, on the display screen of the output unit 71, as a result of the simultaneous analysis, data having no abnormality or the like including the concentration obtained through the scattering photometer 45 is preferentially output to the user.
 (S209) 測定時異常チェック部58は、第1測定結果を含む、吸光度分析に係わる全てのデータを、出力部71から出力させる。これにより、出力部71の表示画面では、吸光光度計44を通じて得られた濃度を含む、異常等が無いデータが、優先的にユーザに対して出力される。 (S209) The measurement abnormality check unit 58 causes the output unit 71 to output all the data related to the absorbance analysis, including the first measurement result. Thereby, on the display screen of the output unit 71, data having no abnormality or the like, including the concentration obtained through the absorptiometer 44, is preferentially output to the user.
 (S205) 優先出力アラーム判定部60は、後述(図10)の優先出力アラーム判定処理を行う。この処理は、概要としては、第1測定結果に付記された第1データアラームと、第2測定結果に付記された第2データアラームとのいずれのデータアラームを選択して優先的に出力するかを判定する処理である。 (S205) The priority output alarm determination unit 60 performs priority output alarm determination processing described later (FIG. 10). In this process, as a summary, which data alarm of the first data alarm attached to the first measurement result and the second data alarm attached to the second measurement result is selected and output preferentially Is a process of determining
 (S206) 優先出力判定部59は、2種類の光度計の測定結果である第1測定結果と第2測定結果とについて、優先出力判定処理を行う。この処理は、2種類の光度計の測定結果のうちいずれの種類の測定結果を選択して優先的に出力するかを判定する処理である。優先出力判定部59は、この判定の際、分析依頼の事前に設定されている優先出力設定情報をデータ格納部55から参照する。例えば、分析依頼情報のパラメータの1つとして、優先出力設定情報が設定されている。優先出力設定情報は、例えば、第1測定結果と第2測定結果とのいずれを優先出力とするかを表す優先出力順位の設定値を含む。例えば、優先出力順位として、値1が第1測定結果を優先出力する設定(「吸光優先設定」)を表し、値2が第2測定結果を優先出力する設定(「散乱優先設定」)を表す。いずれの優先設定も、基本的には一方の種類の光度計の測定結果のみを出力させるものである。優先出力判定部59は、分析依頼情報の優先出力設定情報に従って、第1測定結果と第2測定結果との一方を選択する。 (S206) The priority output determination unit 59 performs priority output determination processing on the first measurement result and the second measurement result which are measurement results of the two types of photometers. This process is a process of determining which of the measurement results of the two types of photometers is to be selected and output preferentially. At the time of this determination, the priority output determination unit 59 refers to the data storage unit 55 for priority output setting information set in advance of the analysis request. For example, priority output setting information is set as one of the parameters of analysis request information. The priority output setting information includes, for example, a setting value of priority output order indicating which of the first measurement result and the second measurement result is to be used as the priority output. For example, as a priority output order, a value 1 represents a setting for preferentially outputting the first measurement result (“absorbance priority setting”), and a value 2 represents a setting for preferentially outputting the second measurement result (“scattering priority setting”) . In either priority setting, basically, only the measurement result of one type of photometer is output. The priority output determination unit 59 selects one of the first measurement result and the second measurement result according to the priority output setting information of the analysis request information.
 S206で、優先出力設定機能のオン状態の場合で、「散乱優先設定」である場合(A)にはS207へ進み、「吸光優先設定」である場合(B)にはS209へ進む。また、優先出力設定機能のオフ状態の場合、すなわち2種類の光度計の間に優先出力設定が無い場合(C)には、S208へ進む。 If it is determined in step S206 that the priority output setting function is in the on-state and the "scattering priority setting" is set (A), the process proceeds to step S207, and if the light absorption priority setting is set (B), the process proceeds to step S209. If the priority output setting function is off, that is, if there is no priority output setting between the two photometers (C), the process proceeds to S208.
 (S207) 優先出力判定部59は、散乱光度計45の第2測定結果を含む全てのデータを、出力部71から出力させる。これにより、出力部71の表示画面では、第2測定結果を含む異常等が無い全データが、優先的にユーザに対して出力される。 (S207) The priority output determination unit 59 causes the output unit 71 to output all data including the second measurement result of the scattering photometer 45. As a result, on the display screen of the output unit 71, all the data including the second measurement result and having no abnormality or the like is preferentially output to the user.
 (S209) 優先出力判定部59は、吸光光度計44の第1測定結果を含む全てのデータを、出力部71から出力させる。これにより、出力部71の表示画面では、第1測定結果を含む異常等が無い全データが、優先的にユーザに対して出力される。 (S209) The priority output determination unit 59 causes the output unit 71 to output all data including the first measurement result of the absorptiometer 44. As a result, on the display screen of the output unit 71, all the data including the first measurement result and having no abnormality or the like is preferentially output to the user.
 (S208) 優先出力判定部59は、第1測定結果と第2測定結果とを含む、両方の全データを、出力部71から出力させる。これにより、出力部71の表示画面では、2種類の光度計の各測定結果を含む異常等が無い全データが、ユーザに対して出力される。S207、S208、またはS209の後、本フローが終了する。 (S208) The priority output determination unit 59 causes the output unit 71 to output all data including both the first measurement result and the second measurement result. As a result, on the display screen of the output unit 71, all data having no abnormality or the like including the measurement results of the two types of photometers are output to the user. After S207, S208, or S209, the present flow ends.
 [(2)優先出力アラーム判定処理]
 次に、図10以降を用いて、図9のステップS205の優先出力アラーム判定処理の内容について説明する。図10は、S205の優先出力アラーム判定部60による優先出力アラーム判定処理のうち、第1処理として、データアラームレベル分類判定処理に関わるフローを示す。この処理では、2種類の光度計の各測定結果に伴うデータアラームについて、前述のグループおよびレベルの分類定義に基づいて、いずれに該当するか、分類を判定する。本フローはステップS301~S305を有する。以下、ステップの順に説明する。
[(2) Priority output alarm determination process]
Next, the contents of the priority output alarm determination process of step S205 of FIG. 9 will be described using FIG. FIG. 10 shows a flow related to data alarm level classification determination processing as the first processing of the priority output alarm determination processing by the priority output alarm determination unit 60 in S205. In this process, the data alarm associated with each measurement result of the two types of photometers is determined based on the above-mentioned classification definition of the group and the level, and the classification is determined. This flow has steps S301 to S305. The steps will be described in the following order.
 (S301) 優先出力アラーム判定部60は、吸光光度計44の第1測定結果に付記されている第1データアラームと、散乱光度計45の第2測定結果に付記されている第2データアラームとの2種類のデータアラームを参照する。優先出力アラーム判定部60は、2種類のデータアラームについて、その一方または両方に、第3グループおよび高レベルのデータアラームが含まれているか否かを判定する。含まれている場合(Y)にはS302へ進み、含まれていない場合(N)にはS303へ進む。 (S301) The priority output alarm determination unit 60 determines the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. Refer to 2 types of data alarms. The priority output alarm determination unit 60 determines whether or not the third group and the high level data alarm are included in one or both of the two types of data alarms. If it is included (Y), the process proceeds to S302, and if it is not included (N), the process proceeds to S303.
 (S302) 優先出力アラーム判定部60は、後述(図11)の高レベルデータアラーム処理を実行し、その後、本フローを終了する。 (S302) The priority output alarm determination unit 60 executes high-level data alarm processing described later (FIG. 11), and then ends this flow.
 (S303) 優先出力アラーム判定部60は、2種類のデータアラームについて、その一方または両方に、第2グループおよび中レベルのデータアラームが含まれているか否かを判定する。含まれている場合(Y)にはS304へ進み、含まれていない場合(N)にはS305へ進む。 (S303) The priority output alarm determination unit 60 determines whether or not the second group and medium level data alarms are included in one or both of the two types of data alarms. If it is included (Y), the process proceeds to S304, and if it is not included (N), the process proceeds to S305.
 (S304) 優先出力アラーム判定部60は、後述(図12、図13)の中レベルデータアラーム処理を実行し、その後、本フローを終了する。 (S304) The priority output alarm determination unit 60 executes middle-level data alarm processing described later (FIGS. 12 and 13), and then ends the present flow.
 (S305) 上記S303で、含まれていない場合(N)とは、すなわち第3グループおよび低レベルのデータアラームが含まれている場合に相当する。S305では、優先出力アラーム判定部60は、後述(図14)の低レベルアラーム処理を実行する。 (S305) If not included (N) in S303 above, that is, if a third group and low level data alarms are included. In S305, the priority output alarm determination unit 60 executes low level alarm processing described later (FIG. 14).
 [(3)高レベルデータアラーム処理]
 図11は、上記S302の高レベルデータアラーム処理のフローを示す。図11は、ステップS401~S405を有する。以下、ステップの順に説明する。
[(3) High level data alarm processing]
FIG. 11 shows the flow of the high level data alarm process of S302. FIG. 11 has steps S401 to S405. The steps will be described in the following order.
 (S401) 優先出力アラーム判定部60は、第1測定結果と第2測定結果との両方に高レベルのデータアラームが付記されているかどうか、言い換えると、第1データアラームと第2データアラームとの両方が高レベルのデータアラームであるかどうかを確認する。両方が高レベルである場合(Y)にはS402へ進み、そうでない場合(N)にはS403へ進む。 (S401) The priority output alarm determination unit 60 determines whether a high level data alarm is added to both the first measurement result and the second measurement result, in other words, between the first data alarm and the second data alarm. Check if both are high level data alarms. If both are high level (Y), the process proceeds to S402; otherwise (N), the process proceeds to S403.
 (S402) 優先出力アラーム判定部60は、出力として、第1データアラームと第2データアラームとの両方の高レベルのデータアラームを、出力部71に出力させ、本フローを終了する。 (S402) The priority output alarm determination unit 60 causes the output unit 71 to output, as an output, high-level data alarms of both the first data alarm and the second data alarm, and ends this flow.
 (S403) 優先出力アラーム判定部60は、第1データアラームと第2データアラームとの一方、例えば吸光の方の第1データアラームが、高レベルのデータアラームであるかどうかを確認する。優先出力アラーム判定部60は、第1データアラームが高レベルである場合(Y)にはS404へ進み、そうではない場合(N)にはS405へ進む。 (S403) The priority output alarm determination unit 60 confirms whether one of the first data alarm and the second data alarm, for example, the first data alarm of the light absorption is a high level data alarm. If the first data alarm is at the high level (Y), the priority output alarm determination unit 60 proceeds to S404, otherwise proceeds to S405 (N).
 (S404) 優先出力アラーム判定部60は、吸光の方の第1測定結果および第1データアラームを、出力部71に出力させ、本フローを終了する。 (S404) The priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result of the light absorption and the first data alarm, and ends this flow.
 (S405) S405へ進む場合とは、すなわち、散乱の方の第2測定結果に付記されている第2データアラームが高レベルのデータアラームである場合に対応する。そのため、S405で、優先出力アラーム判定部60は、第2測定結果および第2データアラームを、出力部71に出力させ、本フローを終了する。 (S405) The case of proceeding to S405 corresponds to the case where the second data alarm attached to the second measurement result of the scattering is a high level data alarm. Therefore, in S405, the priority output alarm determination unit 60 causes the output unit 71 to output the second measurement result and the second data alarm, and the flow ends.
 上記処理に関して、高レベルのデータアラームが生じた場合には、測定が失敗しており、測定結果が得られていないことが多い。そのため、この場合には、出力制御としては、測定結果の濃度等を出力せずに、データアラームのみを出力するだけでもよい。測定結果が得られている場合には、その測定結果およびデータアラームを出力させてもよい。 In the case of the above processing, when a high level data alarm occurs, the measurement has failed and the measurement result is often not obtained. Therefore, in this case, as the output control, only the data alarm may be output without outputting the concentration or the like of the measurement result. If a measurement result is obtained, the measurement result and the data alarm may be output.
 また、高レベルのデータアラームは、前述のように、異常等に対する、ユーザによる機構、検体2、試薬4等の状態の改善作業が必要な場合に付記される。そのため、上記のように、両方の測定結果に高レベルのデータアラームが付記されている場合、S402のように、それらの全てのデータアラームを出力させて、ユーザに注意喚起し、改善作業を促すことが望ましい。また、その際には、前述したシステムアラームを、データアラームと同時に出力させるようにしてもよい。 Further, as described above, the high level data alarm is added when it is necessary for the user to improve the state of the mechanism, the sample 2, the reagent 4 and the like with respect to an abnormality or the like. Therefore, as described above, when a high level data alarm is added to both measurement results, as shown in S402, all the data alarms are output to alert the user and prompt improvement work. Is desirable. At this time, the above-mentioned system alarm may be output simultaneously with the data alarm.
 [(4)中レベルアラーム処理]
 図12、図13は、上記S304の中レベルデータアラーム処理を示す。この処理は、あり得る場合の大別としては、(a)第1データアラームと第2データアラームとの両方が中レベルである場合と、(b)第1データアラームのみが中レベルである場合と、(c)第2データアラームのみが中レベルである場合と、を有する。図12は、ステップS501からステップS508までの部分を示す。図13は、図12の続きとして、ステップS509以降のステップS520までを示す。
[(4) Middle level alarm processing]
12 and 13 show the middle level data alarm process of S304. This process is roughly divided into two cases: (a) when both the first data alarm and the second data alarm are at the middle level, and (b) when only the first data alarm is at the middle level And (c) the case where only the second data alarm is at the medium level. FIG. 12 shows the part from step S501 to step S508. FIG. 13 shows the process from step S509 to step S520 as a continuation of FIG.
 (S501) 優先出力アラーム判定部60は、吸光光度計44の第1測定結果に付記されている第1データアラームと、散乱光度計45の第2測定結果に付記されている第2データアラームとについて、前述の分類定義に基づいて、さらに詳しい種別を判定する。S501で、優先出力アラーム判定部60は、吸光の方の第1データアラームが、検体2の高濃度に由来するデータアラームであるか否かを判定する。この種別のデータアラームとしては、前述のプロゾーンアラームB1、定量範囲上限オーバアラームB2等が相当する。この種別のデータアラームである場合(Y)にはS502へ進み、そうでない場合(N)にはS504へ進む。 (S501) The priority output alarm determination unit 60 sets the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. The type is further determined based on the above-mentioned classification definition. In S501, the priority output alarm determination unit 60 determines whether or not the first data alarm of the light absorption is a data alarm derived from the high concentration of the sample 2. As the data alarm of this type, the above-mentioned pro zone alarm B1, quantitative range upper limit over alarm B2 and the like correspond. If it is a data alarm of this type (Y), the process proceeds to S502, and if not (N), the process proceeds to S504.
 (S502,S503) S502で、優先出力アラーム判定部60は、第1測定結果および第1データアラームを、出力部71に出力させる。そして、S503で、優先出力アラーム判定部60は、吸光光度計44を用いた自動再検を必要とし、対象の検体2の反応容器25の検体量を減量する条件とした自動再検依頼情報を、データ格納部55に格納する。分析制御部50は、その自動再検依頼情報に従い、その条件での自動再検を行い、その結果を格納し、出力部71に出力させる。S503の後、本フローが終了する。 (S502, S503) In S502, the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result and the first data alarm. Then, in S503, the priority output alarm determination unit 60 requires automatic retesting using the absorptiometer 44, and the data of the automatic retesting request information as a condition for reducing the sample amount of the reaction container 25 of the target sample 2 Store in the storage unit 55. The analysis control unit 50 performs automatic retest under the conditions according to the automatic retest request information, stores the result, and causes the output unit 71 to output the result. After S503, the present flow ends.
 上記S501~S503の場合では、以下のような判断や出力制御が行われている。高濃度成分の測定に好適な吸光光度計44を用いた第1測定結果において、検体2の目的成分物質の濃度が高過ぎると判定された場合、低濃度成分の測定に好適な散乱光度計45での第2測定結果の信頼性も低い。そのため、S502のように、吸光の方の第1測定結果および第1データアラームのみを出力し、S503のように、減量した条件での自動再検を行わせる。これにより、再検時の測定結果が吸光光度計44の好適な定量範囲(前述の正常出力範囲)に入るように試みる。 In the case of S501 to S503, the following judgment and output control are performed. In the first measurement result using the absorptiometer 44 suitable for measurement of high concentration components, when it is determined that the concentration of the target component substance of the sample 2 is too high, a scattering photometer 45 suitable for measurement of low concentration components The reliability of the second measurement result in Therefore, as in S502, only the first measurement result of the light absorption and the first data alarm are output, and as in S503, the automatic retest is performed under the reduced condition. Thereby, the measurement result at the time of re-examination is attempted to be within the suitable quantitative range (the aforementioned normal output range) of the absorptiometer 44.
 (S504) 優先出力アラーム判定部60は、散乱の方の第2データアラームが、検体2の低濃度に由来するデータアラームであるか否かを判定する。この種別のデータアラームとしては、前述の定量範囲下限オーバアラームB3が相当する。この種別のデータアラームである場合(Y)にはS505へ進み、そうではない場合(N)にはS507へ進む。 (S504) The priority output alarm determination unit 60 determines whether the second data alarm for scattering is a data alarm derived from the low concentration of the sample 2. As the data alarm of this type, the aforementioned quantitative range lower limit over alarm B3 corresponds. If it is a data alarm of this type (Y), the process proceeds to S505; otherwise (N), the process proceeds to S507.
 (S505,S506) S505で、優先出力アラーム判定部60は、散乱の方の第2測定結果および第2データアラームを、出力部71に出力させる。そして、S506で、優先出力アラーム判定部60は、散乱光時計45を用いた自動再検を必要とし、対象の検体2の反応容器25の検体量を増量する条件とした自動再検依頼情報を、データ格納部55に格納する。分析制御部50は、その自動再検依頼情報に従い、その条件での自動再検を行い、その結果を格納し、出力部71に出力させる。S506の後、本フローが終了する。 (S505, S506) In S505, the priority output alarm determination unit 60 causes the output unit 71 to output the second measurement result of the scattering and the second data alarm. Then, in S506, the priority output alarm determination unit 60 requires automatic retesting using the scattered light clock 45, and makes data on automatic retest request information as a condition for increasing the sample amount of the reaction container 25 of the target sample 2 Store in the storage unit 55. The analysis control unit 50 performs automatic retest under the conditions according to the automatic retest request information, stores the result, and causes the output unit 71 to output the result. After S506, the present flow ends.
 上記S504~S506の場合では、以下のような判定および出力制御が行われている。低濃度成分の測定に好適な散乱光度計45を用いた第2測定結果において、検体2の目的成分物質の濃度が低過ぎると判定された場合、高濃度成分の測定に好適な吸光光度計44での第1測定結果の信頼性が低い。そのため、S505のように、散乱の方の第2測定結果および第2データアラームのみを出力し、S506のように、増量した条件での自動再検を行わせる。これにより、再検時の測定結果が散乱光度計45または吸光光度計44の好適な定量範囲に入るように試みる。 In the case of the above S504 to S506, the following determination and output control are performed. In the second measurement result using the scattering photometer 45 suitable for measurement of low concentration components, when it is determined that the concentration of the target component substance of the sample 2 is too low, an absorptiometer 44 suitable for measurement of high concentration components The reliability of the first measurement result in Therefore, as in S505, only the second measurement result of the scattering and the second data alarm are output, and as in S506, the automatic retest is performed under the increased condition. Thereby, the measurement result at the time of re-examination is attempted to be within the suitable quantitative range of the scatterometer 45 or the absorptiometer 44.
 (S507) 優先出力アラーム判定部60は、散乱の方の第2測定結果の第2データアラームについて、低レベルのデータアラームであるか否かを判定する。この種別のデータアラームとしては、前述の血清情報アラームC1等が相当する。この低レベルである場合(Y)にはS508へ進み、そうではない場合(N)にはS509(図13)へ進む。 (S507) The priority output alarm determination unit 60 determines whether or not the second data alarm of the second measurement result of the scattering is a low level data alarm. The above-described serum information alarm C1 or the like corresponds to this type of data alarm. If the level is low (Y), the process proceeds to S508, and if not (N), the process proceeds to S509 (FIG. 13).
 (S508) 優先出力アラーム判定部60は、散乱の方の第2測定結果および第2データアラームを、出力部71に出力させる。この場合、第2測定結果については参考値として出力させ、自動再検については不要として行わずに、本フローを終了する。 (S508) The priority output alarm determination unit 60 causes the output unit 71 to output the second measurement result of the scattering and the second data alarm. In this case, the second measurement result is output as a reference value, and the flow is ended without performing the automatic retest as unnecessary.
 上記S508の場合、2種類のデータアラームの組み合わせとしては、第1測定結果に、反応過程異常に由来するデータアラーム、または検体2の低濃度に由来するデータアラームが付記され、第2測定結果に、低レベルのデータアラームが付記されている状態が該当する。この組み合わせでは、測定に用いた検体2または試薬4の少なくとも一方が、低レベルのデータアラームを発生させる原因を有している。なおかつ、この組み合わせでは、検体2の目的成分物質の濃度が、吸光光度計44の定量範囲の下限値を下回っていた。そのため、散乱光度計45では定量可能であったが、吸光光度計44では濃度が低く定量できなかった。その結果、このような組み合わせが発生したと考えられる。つまり、この組み合わせの場合では、散乱光度計45を用いた測定自体は正常に行われたと判断できる。そのため、この場合では、散乱の方の第2測定結果を参考値として出力させ、自動再検を行わないようにしている。 In the case of S508, as a combination of two types of data alarms, a data alarm derived from reaction process abnormality or a data alarm derived from low concentration of the sample 2 is added to the first measurement result, and the second measurement result is added. This corresponds to the situation where a low level data alarm is attached. In this combination, at least one of the sample 2 and the reagent 4 used for the measurement has a cause of generating a low level data alarm. Moreover, in this combination, the concentration of the target component substance of the sample 2 was lower than the lower limit value of the quantitative range of the absorptiometer 44. Therefore, although it could be quantified by the scattering photometer 45, it could not be quantified by the absorptiometer 44 because the concentration was low. As a result, it is considered that such a combination has occurred. That is, in the case of this combination, it can be determined that the measurement itself using the scattering photometer 45 was performed normally. Therefore, in this case, the second measurement result of the scattering is output as a reference value, and the automatic retest is not performed.
 (S509) 図13のS509で、優先出力アラーム判定部60は、散乱光度計45を用いた第2測定結果の第2データアラームについて、検体2の高濃度に由来するアラームであるか否かを判定する。その種別のデータアラームである場合(Y)にはS510へ進み、そうではない場合(N)にはS513へ進む。 (S509) In S509 of FIG. 13, the priority output alarm determination unit 60 determines whether or not the second data alarm of the second measurement result using the scattering photometer 45 is an alarm derived from the high concentration of the sample 2 judge. If it is the type of data alarm (Y), the process proceeds to S510, and if not (N), the process proceeds to S513.
 (S510) 優先出力アラーム判定部60は、吸光光度計44を用いた第1測定結果および第1データアラームを、出力部71に出力させる。 (S510) The priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result and the first data alarm using the absorptiometer 44.
 (S511) さらに、優先出力アラーム判定部60は、第1データアラームについて、反応過程の異常に由来するアラームであるか否かを判定する。その種別のデータアラームである場合(Y)にはS516へ進み、そうではない場合(N)にはS512へ進む。 (S511) Further, the priority output alarm determination unit 60 determines whether or not the first data alarm is an alarm derived from an abnormality in the reaction process. If it is the type of data alarm (Y), the process proceeds to S516, and if not (N), the process proceeds to S512.
 (S516) 優先出力アラーム判定部60は、自動再検を必要とし、第1データアラームで表す異常等(すなわち反応過程異常等)が発生した前回の条件と同じ条件とした自動再検依頼情報を、データ格納部55に格納する。S516の場合、データアラームの組み合わせとしては、第1測定結果に、反応過程異常に由来するデータアラームが付記され、かつ、第2測定結果に、検体2の高濃度に由来するデータアラームが付記されている状態が該当する。この場合、検体2の目的成分物質の濃度が散乱光度計45の定量範囲の上限値を超えており、吸光光度計44では測定に失敗したと判断できる。そのため、この場合、前回と同じ条件で再測定を行わせる。自動分析装置1は、自動再検の結果、検体2の目的成分物質の濃度が、吸光光度計44の定量範囲内に入るか否かを確認する。この際、検体量を減量する条件での自動再検を行う場合を考えると、散乱光度計45の定量範囲を下回る可能性がある。そのため、前回と同じ条件での自動再検を行わせている。S516の後、本フローを終了する。 (S516) The priority output alarm determination unit 60 requires automatic retest, and the data of the automatic retest request information under the same condition as the previous condition in which an abnormality or the like represented by the first data alarm (ie, reaction process abnormality or the like) occurs is Store in the storage unit 55. In the case of S516, as a combination of data alarms, a data alarm derived from reaction process abnormality is added to the first measurement result, and a data alarm derived from high concentration of the sample 2 is added to the second measurement result. The corresponding status is In this case, the concentration of the target component substance of the sample 2 exceeds the upper limit value of the quantitative range of the scattering photometer 45, and the absorptiometer 44 can determine that the measurement has failed. Therefore, in this case, remeasurement is performed under the same conditions as the previous time. The automatic analyzer 1 confirms whether the concentration of the target component substance of the sample 2 falls within the quantitative range of the absorptiometer 44 as a result of the automatic retest. Under the present circumstances, when the case where automatic re-examination is carried out on the conditions which reduce sample volume is considered, it may fall below the quantitative range of the scattering photometer 45. Therefore, automatic re-examination is performed under the same conditions as the previous one. After S516, the present flow ends.
 (S512) S512へ進んだ場合、さらに、優先出力アラーム判定部60は、吸光の方の第1データアラームについて、検体2の低濃度に由来するアラームであるか否かを判定する。その種別のデータアラームである場合(Y)にはS506へ進み、そうではない場合(N)には、自動再検を不要として行わずに、本フローを終了する。 (S512) When the process proceeds to S512, the priority output alarm determination unit 60 further determines whether the first data alarm of the light absorption is an alarm derived from the low concentration of the sample 2. If it is the type of data alarm (Y), the process proceeds to S506; otherwise (N), the flow is ended without performing the automatic retest as unnecessary.
 上記S512からS506に進んだ場合では、前述と同様に、検体量を増量する条件で自動再検が行われる。この場合、データアラームの組み合わせとしては、第2測定結果で、散乱光度計45の定量範囲の上限値を超え、第1測定結果で、吸光光度計44の定量範囲の下限値を下回っている状態が該当する。この場合、2種類の光度計の両方で測定に失敗している可能性が高い。そのため、上記のように、同じ条件で再測定を行わせて、正常な結果の取得を試みる。 In the case where the process proceeds from step S512 to step S506, the automatic re-examination is performed under the condition of increasing the amount of sample, as described above. In this case, as the combination of the data alarm, the second measurement result exceeds the upper limit value of the quantitative range of the scattering photometer 45, and the first measurement result falls below the lower limit value of the quantitative range of the absorptiometer 44 Is the case. In this case, there is a high possibility that measurement has failed in both of the two photometers. Therefore, as described above, re-measurement is performed under the same conditions to try to obtain a normal result.
 上記S512からそうではない場合(N)で自動再検せずに終了する場合、データアラームの組み合わせとしては、第2測定結果に、検体2の高濃度に由来するデータアラームが付記され、第1測定結果に、低レベルのデータアラームが付記されている状態が該当する。この組み合わせは、測定に用いた検体2または試薬4の少なくとも一方が、低レベルのデータアラームを発生する原因を有していることに対応する。なおかつ、この組み合わせは、検体2の目的成分物質の濃度が、散乱光度計45の定量範囲の上限値を超えるため、散乱光度計45では定量できなかったが、吸光光度計44では定量可能であったことに対応する。そのため、この組み合わせが発生したと考えられる。つまり、この組み合わせの場合、第1測定結果では、正常に測定が行われたと判断できる。そのため、この場合、吸光の方の第1測定結果を参考値として出力させ、自動再検を行わないようにする。 In the case where the process ends from the above S512 without automatic retesting in the case (N), the data alarm derived from the high concentration of the sample 2 is added to the second measurement result as the combination of the data alarm, and the first measurement This corresponds to the situation where a low level data alarm is attached to the result. This combination corresponds to at least one of the sample 2 and the reagent 4 used for measurement having a cause of generating a low level data alarm. Furthermore, although this combination could not be quantified by the scattering photometer 45 because the concentration of the target component substance of the specimen 2 exceeds the upper limit value of the quantitative range of the scattering photometer 45, it can be quantified by the absorptiometer 44 Respond to Therefore, it is considered that this combination has occurred. That is, in the case of this combination, it can be determined that the measurement was normally performed in the first measurement result. Therefore, in this case, the first measurement result of the light absorption is output as a reference value, and the automatic retest is not performed.
 (S513) 優先出力アラーム判定部60は、吸光の方の第1データアラームについて、反応過程異常に由来するデータアラームであるか否かを判定する。その種別のデータアラームである場合(Y)にはS514へ進み、そうではない場合(N)にはS518へ進む。 (S513) The priority output alarm determination unit 60 determines whether or not the first data alarm for light absorption is a data alarm derived from a reaction process abnormality. If it is the type of data alarm (Y), the process proceeds to S514, and if not (N), the process proceeds to S518.
 (S514) 優先出力アラーム判定部60は、事前にパラメータとして設定されている「優先出力設定」に従って、2種類の測定結果およびデータアラームから、優先出力する一方の測定結果およびデータアラームを選択して出力させる。この際、優先出力アラーム判定部60は、前述の優先出力設定情報の設定値を参照して判定する。その設定値が、「吸光優先設定」を表す値である場合(A)にはS515へ進み、「散乱優先設定」を表す値である場合(B)にはS517へ進む。前述のように、「吸光優先設定」では、吸光光度計44の方が散乱光時計45よりも優先出力順位が高い光度計として設定されている。「散乱優先設定」では、逆の優先出力順位が設定されている。 (S514) The priority output alarm determination unit 60 selects one of the measurement result and data alarm to be output preferentially from the two types of measurement result and data alarm according to the "priority output setting" set as a parameter in advance. Make it output. At this time, the priority output alarm determination unit 60 determines with reference to the setting value of the above-mentioned priority output setting information. If the setting value is a value representing "light absorption priority setting" (A), the process proceeds to S515, and if the value is a value representing "scattering priority setting" (B), the process proceeds to S517. As described above, in the "light absorption priority setting", the absorptiometer 44 is set as a photometer whose priority output order is higher than that of the scattered light clock 45. In the "scattering priority setting", the opposite priority output order is set.
 (S515) 優先出力アラーム判定部60は、「吸光優先設定」に応じて、吸光光度計44の第1測定結果および第1データアラームを選択して、出力部71に出力させる。S515の後、S516へ進む。 (S515) The priority output alarm determination unit 60 selects the first measurement result of the absorptiometer 44 and the first data alarm according to the “absorption priority setting”, and causes the output unit 71 to output the first data alarm. After S515, the process proceeds to S516.
 (S517) 優先出力アラーム判定部60は、「散乱優先設定」に応じて、散乱光度計45の第2測定結果および第2データアラームを選択して、出力部71に出力させる。S517の後、S516へ進む。 (S517) The priority output alarm determination unit 60 selects the second measurement result of the scattering photometer 45 and the second data alarm according to the “scattering priority setting”, and causes the output unit 71 to output the same. After S517, the process proceeds to S516.
 (S516) S515またはS517の後、S516で、優先出力アラーム判定部60は、自動再検を必要とし、前回と同じ条件での自動再検依頼を行う。すなわち、優先出力アラーム判定部60は、データアラームが表す異常等が発生した時の条件と同じ再測定条件等とした自動再検依頼情報を、データ格納部55に格納する。 (S516) After S515 or S517, in S516, the priority output alarm determination unit 60 requires an automatic retest, and makes an automatic retest request under the same conditions as the previous time. That is, the priority output alarm determination unit 60 stores, in the data storage unit 55, automatic retest request information that is the same remeasurement condition as the condition when an abnormality or the like indicated by the data alarm occurs.
 上記S513~S517の場合におけるデータアラームの組み合わせは、第1測定結果と第2測定結果との両方にそれぞれ反応過程異常に由来するデータアラームが付記されている状態が該当する。この場合、2種類の光度計の両方で測定に失敗したと判断できる。そのため、この場合、基本的には、2種類のいずれの光度計の測定結果およびデータアラームを出力しても構わない。そのため、上記処理例では、S514で「優先出力設定」の判定に基づいて一方の測定結果およびデータアラームを選択し、S516で前回と同じ条件での自動再検を行わせて、正常な結果の取得を試みている。 The combination of data alarms in the case of S513 to S517 corresponds to a state in which data alarms originating from reaction process abnormalities are added to both the first measurement result and the second measurement result. In this case, it can be determined that measurement has failed in both of the two photometers. Therefore, in this case, basically, measurement results and data alarms of any of two types of photometers may be output. Therefore, in the above processing example, one measurement result and data alarm are selected based on the determination of "priority output setting" in S514, and automatic re-examination under the same conditions as the previous time is performed in S516 to obtain a normal result. I'm trying.
 (S518,S519) S518で、優先出力アラーム判定部60は、吸光の方の第1測定結果および第1データアラームを、出力部71に出力させる。さらに、S519で、優先出力アラーム判定部60は、第1データアラームについて、検体2の低濃度に由来するアラームであるか否かを判定する。その種別のデータアラームである場合(Y)にはS520へ進み、そうではない場合(N)には、自動再検を行わずに本フローを終了する。 (S518, S519) In S518, the priority output alarm determination unit 60 causes the output unit 71 to output the first measurement result of the light absorption and the first data alarm. Furthermore, in S519, the priority output alarm determination unit 60 determines whether or not the first data alarm is an alarm derived from the low concentration of the sample 2. If it is the type of data alarm (Y), the process proceeds to S520; otherwise (N), the flow is ended without performing the automatic retest.
 (S520) 優先出力アラーム判定部60は、検体量を増量する条件での自動再検依頼情報を、データ格納部55に格納し、自動再検を行わせる。 (S520) The priority output alarm determination unit 60 stores, in the data storage unit 55, automatic retest request information under the condition of increasing the sample amount, and causes the automatic retest to be performed.
 上記S518~S520の場合におけるデータアラームの組み合わせは、第2測定結果に、反応過程異常に由来するデータアラームが付記され、第1測定結果に、検体2の低濃度に由来するデータアラームが付記さている状態が該当する。この場合、散乱光度計45では測定が失敗していると判断できる。そのため、S519では、吸光の方の第1測定結果および第1データアラームを出力させ、S520で自動再検を行わせる。これにより、自動再検時の測定結果が、吸光光度計44の定量範囲に入るように試みている。 In the combination of data alarms in the case of the above S518 to S520, a data alarm derived from reaction process abnormality is added to the second measurement result, and a data alarm derived from low concentration of the sample 2 is added to the first measurement result. State is applicable. In this case, the scattering photometer 45 can determine that the measurement has failed. Therefore, in S519, the first measurement result of the light absorption and the first data alarm are output, and in S520, the automatic retest is performed. Thereby, the measurement result at the time of the automatic retest is trying to be in the quantitative range of the absorptiometer 44.
 上記S519でそうではない場合(N)で自動再検を行わずに終了する場合、データアラームの組み合わせとしては、第2測定結果に、反応過程異常に由来するデータアラームが付記され、第1測定結果に、低レベルのデータアラームが付記されている状態が該当する。この場合、散乱光度計45では測定に失敗し、吸光光度計44では測定自体は正常に終了したと判断できる。そのため、この場合、S519で第1測定結果を参考値として出力させ、第1データアラームを出力させ、自動再検を行わない。 In the case where the process is not performed in S519 (N) and the process is ended without performing the automatic retest, a data alarm derived from the reaction process abnormality is added to the second measurement result as the combination of the data alarm, and the first measurement result The situation where the low level data alarm is attached is In this case, it can be determined that the measurement has failed in the scattering photometer 45, and the measurement itself has ended normally in the absorptiometer 44. Therefore, in this case, the first measurement result is output as a reference value in S519, the first data alarm is output, and the automatic retest is not performed.
 [(5)低レベルアラーム処理]
 図14は、上記S305の低レベルデータアラーム処理を示す。図14は、ステップS601~S607を有する。以下、ステップの順に説明する。
[(5) Low level alarm processing]
FIG. 14 shows the low level data alarm process of S305. FIG. 14 has steps S601 to S607. The steps will be described in the following order.
 (S601) 優先出力アラーム判定部60は、吸光光度計44の第1測定結果に付記されている第1データアラームと、散乱光度計45の第2測定結果に付記されている第2データアラームとの両方が、低レベルのデータアラームであるか否かを確認する。両方が低レベルである場合(Y)にはS602へ進み、そうではない場合(N)にはS605へ進む。 (S601) The priority output alarm determination unit 60 determines the first data alarm attached to the first measurement result of the absorptiometer 44 and the second data alarm attached to the second measurement result of the scattering photometer 45. Check whether both are low level data alarms. If both are low level (Y), the process proceeds to S602; otherwise (N), the process proceeds to S605.
 (S602) 優先出力アラーム判定部60は、「優先出力設定」に基づいた優先出力判定を行い、優先出力する一方の測定結果およびデータアラームを選択して出力させる。優先出力アラーム判定部60は、「散乱優先出力」である場合(B)にはS603へ進み、「吸光優先出力」である場合(A)にはS604へ進む。 (S602) The priority output alarm determination unit 60 performs priority output determination based on the "priority output setting", and selects and outputs one of the measurement results and data alarms to be preferentially output. The priority output alarm determination unit 60 proceeds to S603 if the “scattering priority output” is (B), and proceeds to S604 if the “light absorption priority output” is (A).
 (S603) 優先出力アラーム判定部60は、「散乱優先出力」に応じて、第2測定結果および第2データアラームを選択して、出力部71に出力させる。その後、自動再検を行わず、本フローを終了する。 (S603) The priority output alarm determination unit 60 selects the second measurement result and the second data alarm according to the “scattering priority output”, and causes the output unit 71 to output the same. Thereafter, the flow is ended without performing the automatic retest.
 (S604) 優先出力アラーム判定部60は、「吸光優先出力」に応じて、第1測定結果および第1データアラームを選択して、出力部71に出力させる。その後、自動再検を行わず、本フローを終了する。 (S604) The priority output alarm determination unit 60 selects the first measurement result and the first data alarm according to the “absorptive light priority output” and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
 (S605) 優先出力アラーム判定部60は、吸光の方の第1データアラームのみが低レベルであるかどうかを確認する。第1データアラームのみが低レベルである場合(Y)にはS606へ進み、そうではない場合(N)、すなわち散乱の方の第2データアラームのみが低レベルである場合にはS607へ進む。 (S605) The priority output alarm determination unit 60 confirms whether only the first data alarm for light absorption is at a low level. If only the first data alarm is low (Y), the process proceeds to S606, otherwise (N), that is, if only the second data alarm for the scattering is low, the process proceeds to S607.
 (S606) 優先出力アラーム判定部60は、吸光の方の第1測定結果および第1データアラームを選択して、出力部71に出力させる。その後、自動再検を行わず、本フローを終了する。 (S606) The priority output alarm determination unit 60 selects the first measurement result of the light absorption and the first data alarm, and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
 (S607) 優先出力アラーム判定部60は、散乱の方の第2測定結果および第2データアラームを選択して、出力部71に出力させる。その後、自動再検を行わず、本フローを終了する。 (S607) The priority output alarm determination unit 60 selects the second measurement result of the scattering and the second data alarm, and causes the output unit 71 to output the result. Thereafter, the flow is ended without performing the automatic retest.
 上記のように、低レベルのデータアラームを含む各組み合わせの場合には、測定自体は正常に終了していると判断できるため、測定結果を参考値として出力させ、自動再検を行わない。 As described above, in the case of each combination including a low level data alarm, it can be determined that the measurement itself has ended normally, so the measurement result is output as a reference value and automatic retest is not performed.
 [効果等]
 上記のように、実施の形態1の自動分析装置1は、吸光光度計44と散乱光度計45との2種類の光度計を備え、各検査項目の目的成分物質について2種類の光度計を用いた同時分析を行う。自動分析装置1は、2種類の測定結果に付記され得る2種類のデータアラームを参照する。そして、自動分析装置1は、2種類の測定結果の両方に測定時の異常等を原因とする2種類のデータアラームがある場合に、それらのデータアラームの組み合わせに応じて、出力する好適な測定結果およびデータアラーム等を選択する。このように、自動分析装置1は、2種類の光度計を用いた測定で異常等がある場合でも、ユーザに対する分析結果出力の情報量を限定、削減するように出力制御を行う。これにより、自動分析装置1によれば、従来技術例よりも、同時分析で正確な分析結果が得られると共に、測定時の異常等がある場合にも、分析結果出力に対するユーザの判断や操作等の負荷を低減できる。ユーザとしては、表示画面で分析結果出力を見た場合に、好適な測定結果およびデータアラーム等の情報が自動的に選択され限定されているので、状態の認識や判断が容易であり、対処作業がしやすい。そのため、ユーザによる判断ミスを防止でき、結果報告遅延を防止できる。
[Effects, etc.]
As described above, the automatic analyzer 1 according to the first embodiment includes the two types of photometers of the absorptiometer 44 and the scattering photometer 45, and uses two types of photometers for the target component substance of each inspection item. Perform simultaneous analysis. The automatic analyzer 1 refers to two types of data alarms that can be added to two types of measurement results. Then, when there are two types of data alarms caused by an abnormality or the like at the time of measurement in both of the two types of measurement results, the automatic analyzer 1 outputs suitable measurements according to the combination of those data alarms. Select the result and data alarm etc. As described above, even when there is an abnormality or the like in measurement using two types of photometers, the automatic analyzer 1 performs output control so as to limit and reduce the amount of information of analysis result output to the user. As a result, according to the automatic analyzer 1, more accurate analysis results can be obtained by simultaneous analysis than in the prior art example, and even when there are abnormalities or the like during measurement, the user's judgment or operation on the analysis results output Can reduce the load on As the user, when viewing the analysis result output on the display screen, information such as suitable measurement results and data alarms are automatically selected and limited, so recognition and judgment of the state are easy, and the handling work It is easy to do. As a result, it is possible to prevent the user from making a mistake and to prevent the result report delay.
 また、自動分析装置1は、2種類の光度計を用いた測定時に異常等があった場合でも、データアラームの組み合わせに応じて、自動的に好適な自動再検の制御を行う。自動分析装置1は、2種類の測定の両方に異常等があった場合でも、装置状態または検体成分状態の少なくとも一方を反映するように自動再検の要否および条件を判定する。自動分析装置1は、組み合わせに応じて、好適な自動再検の要否や条件を決定して、自動再検を制御し、その結果を出力する。よって、自動分析装置1の自動再検機能を有効活用でき、自動再検によって、より正確な結果(濃度等)を、より短時間で得ることができ、ユーザによる結果報告遅延を防止できる。 In addition, even when there is an abnormality or the like at the time of measurement using two types of photometers, the automatic analyzer 1 automatically performs suitable automatic re-examination control according to the combination of data alarms. The automatic analyzer 1 determines the necessity and conditions of the automatic re-examination so as to reflect at least one of the device state and the sample component state, even when there is an abnormality or the like in both of the two types of measurement. The automatic analyzer 1 determines the necessity and conditions of the suitable automatic retest according to the combination, controls the automatic retest, and outputs the result. Therefore, the automatic re-examination function of the automatic analysis device 1 can be effectively used, more accurate results (concentration and the like) can be obtained in a shorter time by the automatic re-examination, and delay in reporting results by the user can be prevented.
 [変形例(1)]
 実施の形態1の自動分析装置1の変形例として以下が挙げられる。実施の形態1では、2種類の2つの光度計を備える場合を説明したが、これに限らず、3種類以上の3つ以上の光度計を備える場合でも、同様に適用可能である。また、ある種類の光度計を複数個備える場合にも、同様に適用可能である。例えば、3種類の光度計を備える場合に、3種類の光度計を用いた同時分析を行ってもよい。あるいは、その3種類のうち、設定や分析依頼に従って選択された2種類の光度計を用いた同時分析を行ってもよい。それらの複数の測定結果に付記される複数のデータアラームの組み合わせに対応させて、同様に出力選択制御を行えばよい。
[Modification (1)]
The following can be mentioned as a modification of the automatic analyzer 1 of the first embodiment. Although the case where two types of two photometers are provided has been described in the first embodiment, the present invention is not limited to this, and the invention is similarly applicable to the case where three or more types of three or more photometers are provided. The present invention is also applicable to the case where a plurality of photometers of a certain type are provided. For example, if three photometers are provided, simultaneous analysis using three photometers may be performed. Alternatively, simultaneous analysis may be performed using two types of photometers selected according to settings and an analysis request among the three types. The output selection control may be similarly performed in association with a combination of a plurality of data alarms added to the plurality of measurement results.
 [変形例(2)]
 実施の形態1では、異常等に対応するデータアラームを、大別して3つのグループおよびレベルに分類し、それらの組み合わせに応じて、異なる出力制御が行われる旨を説明した。上記データアラームの分類は、3つに限らず可能である。対応表として示したように、複数の種類の光度計の測定結果に関するデータアラームの組み合わせ毎に、測定結果およびデータアラームを含む出力選択の対応付けが規定されている構成であればよい。
[Modification (2)]
In the first embodiment, the data alarm corresponding to abnormality or the like is roughly classified into three groups and levels, and it has been described that different output control is performed according to the combination thereof. The classification of the data alarm is not limited to three. As shown in the correspondence table, it may be a configuration in which an association of output selection including the measurement result and the data alarm is defined for each combination of data alarms related to the measurement results of a plurality of types of photometers.
 [変形例(3)]
 実施の形態1では、2種類の測定結果およびデータアラームのうちどちらの情報を出力してもユーザへの影響が小さいため特に問題無い、という組み合わせが発生した場合には、「優先出力設定」に基づいて、一方の情報を選択して出力させている。これに限らず、変形例としては、上記のような特定の組み合わせの場合に、「優先出力設定」機能を使用しない形態としてもよい。この変形例では、実装上の固定的な設定に基づいて、上記のような特定の組み合わせの場合に、規定の一方のみの情報が出力されるか、あるいは両方の情報が出力される。
[Modification (3)]
In the first embodiment, if there is a combination of two types of measurement results and data alarms that cause no problem even if either information is output, there is little problem with “Priority output setting”. Based on the information, one of the information is selected and output. Not limited to this, as a modified example, in the case of the specific combination as described above, the "priority output setting" function may not be used. In this modification, based on a fixed setting on implementation, in the case of the specific combination as described above, only one specified information is output or both information is output.
 [変形例(4)]
 前述の各フロー図では、出力制御処理上の処理順序の一例を示したが、これに限らず可能である。例えば、各レベルや異常等の種別の判定の順序を変更した処理フローとする構成も勿論可能である。実施の形態1の処理フロー構成の変形例として以下も可能である。図12の中レベルデータアラーム処理のステップS507で、判定結果(Y)によってステップS508へ進む前に、以下のステップS507-1を設ける。そのステップS507-1では、吸光の方の第1測定結果に低レベルのデータアラームが付記されているか否かを判定する。付記されている場合(Y)には、図14のステップS601へ進み、否の場合(N)には、ステップS508へ進む。すなわち、このフロー構成の場合、中レベルデータアラーム処理と低レベルデータアラーム処理とが1つのフロー図として実現される。この場合、図10の処理フローでは、S301の高レベルに関する判定のみを行う構成とする。S301で高レベルが含まれる場合(Y)には、S302の高レベルデータアラーム処理を行い、高レベルが含まれない場合(N)には、上記の中レベルおよび低レベルの処理が統合された処理フローが行われる。
[Modification (4)]
In the above-described flow diagrams, one example of the processing order in the output control process is shown, but the present invention is not limited to this. For example, it is of course possible to adopt a processing flow in which the order of determination of types such as levels and abnormalities is changed. The following is also possible as a modification of the processing flow configuration of the first embodiment. In step S507 of the middle level data alarm process of FIG. 12, the following step S507-1 is provided before proceeding to step S508 according to the determination result (Y). In step S507-1, it is determined whether a low level data alarm is attached to the first measurement result of the light absorption. If it is noted (Y), the process proceeds to step S601 in FIG. 14, and if it is not (N), the process proceeds to step S508. That is, in the case of this flow configuration, middle level data alarm processing and low level data alarm processing are realized as one flow diagram. In this case, in the process flow of FIG. 10, only the determination regarding the high level in S301 is performed. When the high level is included in S301 (Y), the high level data alarm processing of S302 is performed, and when the high level is not included (N), the above middle level and low level processing are integrated. Processing flow is performed.
 (実施の形態2)
 図15を用いて、本発明の実施の形態2の自動分析装置について説明する。実施の形態2等における基本的な構成は、実施の形態1と同様であり、以下では、実施の形態2等における実施の形態1とは異なる構成部分について説明する。
Second Embodiment
The automatic analyzer according to the second embodiment of the present invention will be described with reference to FIG. The basic configuration in the second embodiment and the like is the same as that in the first embodiment, and in the following, components different from the first embodiment in the second embodiment and the like will be described.
 [処理フロー]
 実施の形態1では、複数(2種類)の光度計に係わるデータアラームを、前述の3つのグループおよびレベルに分類した。中レベルについては、さらに、(B-1)反応過程異常に由来するデータアラームと、(B-2)検体濃度異常に由来するデータアラームとに分類した。また、検体濃度異常に由来するデータアラームについては、高濃度に由来するデータアラームと、低濃度に由来するデータアラームとに分類した。そして、図5等に示したように、データアラームの組み合わせに応じて、出力を選択するようにした。
Processing flow
In the first embodiment, data alarms related to a plurality (two types) of photometers are classified into the above three groups and levels. The middle level was further classified into (B-1) data alarm derived from reaction process abnormality and (B-2) data alarm derived from specimen concentration abnormality. In addition, data alarms derived from abnormal sample concentration were classified into data alarms derived from high concentration and data alarms derived from low concentration. Then, as shown in FIG. 5 etc., the output is selected according to the combination of the data alarm.
 実施の形態2では、複数(2種類)の光度計に係わるデータアラーム(対応する異常やエラー等)を、前述のグループおよびレベルに分類することは必須ではなく、発生し得る複数の個々のデータアラームを把握していればよい。実施の形態2の自動分析装置では、処理フロー上、個々の光度計を用いた測定結果に付記される個々のデータアラームを参照し、それらのデータアラームの組み合わせに応じて、直接的に出力を選択する。実施の形態2で、データアラームの組み合わせと出力との対応付けは、前述の対応表の例と同様に、予め規定されている。その規定に基づいて、実施の形態2での処理フローが実装されている。分析制御部50は、解析部52による処理結果としてデータ格納部55に格納された、2種類の測定結果およびデータアラーム等のデータを参照する。分析制御部50は、処理フロー上、参照したデータアラームの組み合わせを判定し、その組み合わせに応じて、対応付けられる出力として、測定結果、データアラーム、および自動再検情報を選択する。 In the second embodiment, it is not essential to classify data alarms (corresponding abnormalities, errors, etc.) related to a plurality (two types) of photometers into the aforementioned groups and levels, and a plurality of individual data which may occur. You only need to know the alarm. The automatic analyzer according to the second embodiment refers to the individual data alarms appended to the measurement results using the individual photometers on the processing flow, and directly outputs the output according to the combination of those data alarms. select. In the second embodiment, the correspondence between the combination of the data alarm and the output is defined in advance, as in the example of the correspondence table described above. The processing flow in the second embodiment is implemented based on the specification. The analysis control unit 50 refers to data such as two types of measurement results and data alarms stored in the data storage unit 55 as processing results by the analysis unit 52. The analysis control unit 50 determines the combination of the data alarms referred to in the processing flow, and selects the measurement result, the data alarm, and the automatic retest information as the output to be associated according to the combination.
 実施の形態2の処理フロー構成は、実施の形態1の処理フロー構成に対し、前述の図9のステップS205の優先出力アラーム判定処理の内容(図10等)が異なる。図15は、実施の形態2の自動分析装置1における処理フロー構成例の一部を示す。自動分析装置1では、2種類の光度計を用いた同時分析に関する出力制御処理の際、前述の図10等のフローに代えて、図15のようなフローで処理を行う。図15のフローで、分析制御部50は、例えば、まず、ステップS151で、吸光光度計44の第1測定結果に、第1データアラームとして前述の検体不足アラームA1が付記されているか否かを判定する。付記されている場合(Y)にはS152へ進み、付記されていない場合(N)には他のステップ(省略)へ進む。S152で、分析制御部50は、散乱光度計45を用いた第2測定結果に、第2データアラームとして検体不足アラームA1が付記されているか否かを判定する。付記されている場合(Y)にはS153へ進み、付記されていない場合(N)にはS154へ進む。S152で付記されている場合(Y)とは、すなわち、2種類のデータアラームの組み合わせとして、両方が検体不足アラームA1である場合に該当する。S151,S152では、そのような組み合わせの確認が行われている。その組み合わせ、例えば第1組み合わせとすると、分析制御部50は、S153で、その第1組み合わせに応じた出力として、2種類の両方のデータアラームである第1データアラームおよび第2データアラームを出力させる。この際の処理内容は、実施の形態1の図11の高レベルデータアラーム処理のS401,S402の処理内容と同様である。 The processing flow configuration of the second embodiment differs from the processing flow configuration of the first embodiment in the contents (FIG. 10 and the like) of the priority output alarm determination processing of step S205 of FIG. 9 described above. FIG. 15 shows a part of a process flow configuration example in the automatic analyzer 1 of the second embodiment. In the case of the output control process regarding simultaneous analysis using two types of photometers, the automatic analyzer 1 performs the process according to the flow as shown in FIG. 15 instead of the flow of FIG. In the flow of FIG. 15, the analysis control unit 50 first determines, for example, whether or not the aforementioned sample shortage alarm A1 is added as a first data alarm to the first measurement result of the absorptiometer 44 in step S151. judge. If it is indicated (Y), the process proceeds to S152. If not indicated (N), the process proceeds to another step (omitted). In S152, the analysis control unit 50 determines whether the second measurement result using the scattering photometer 45 is accompanied by the sample shortage alarm A1 as a second data alarm. If it is indicated (Y), the process proceeds to S153, and if it is not indicated (N), the process proceeds to S154. The case of appending in S152 (Y) corresponds to the case where both are the sample shortage alarm A1 as a combination of two types of data alarms. In S151 and S152, confirmation of such a combination is performed. Assuming that the combination, for example, the first combination, the analysis control unit 50 causes the first data alarm and the second data alarm, which are both two types of data alarms, to be output as an output according to the first combination in S153. . The processing contents at this time are the same as the processing contents at S401 and S402 of the high level data alarm processing of FIG. 11 of the first embodiment.
 また、例えば、S154では、分析制御部50は、第2測定結果の第2データアラームとして、前述の試薬不足アラームA2が付記されているか否かを判定する。付記されている場合(Y)にはS155へ進み、付記されていない場合(N)には他のステップ(省略)へ進む。すなわち、S151,S154では、第1データアラームが検査不足アラームA1で、第2データアラームが試薬不足アラームA2である組み合わせについて確認している。分析制御部50は、その組み合わせ、例えば第2組み合わせとすると、S155では、その第2組み合わせに応じた出力として、第1データアラームおよび第2データアラームを出力させる。 Also, for example, in S154, the analysis control unit 50 determines whether the above-mentioned reagent shortage alarm A2 is added as the second data alarm of the second measurement result. If it is indicated (Y), the process proceeds to S155, and if not indicated (N), the process proceeds to another step (omitted). That is, in S151 and S154, the combination in which the first data alarm is the inspection shortage alarm A1 and the second data alarm is the reagent shortage alarm A2 is confirmed. The analysis control unit 50 outputs the first data alarm and the second data alarm as an output according to the second combination in S155 if the combination, for example, the second combination.
 上記処理フロー例のように、実施の形態2の自動分析装置1では、2種類のデータアラームについて、発生し得る全てのデータアラームの組み合わせのうちの該当する組み合わせを判別し、判別した組み合わせに応じて、実施の形態1と同様に、所定の基準に基づいて、出力を選択する。 As in the above process flow example, the automatic analyzer 1 according to the second embodiment determines a corresponding combination of all possible combinations of data alarms for two types of data alarms, and determines the corresponding combination according to the determined combinations. Similarly to the first embodiment, the output is selected based on a predetermined criterion.
 上記のように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。 As described above, according to the second embodiment, the same effect as the first embodiment can be obtained.
 (実施の形態3)
 図16、図17を用いて、本発明の実施の形態3の自動分析装置について説明する。実施の形態3の自動分析装置1では、分析制御部50の判断によって、2種類の光度計の各測定結果に、測定時の異常等に応じたデータアラームが付記されるだけでなく、自動再検機能に係わる自動再検情報が作成され付加される。特に、解析部52は、ある光度計の測定結果に、異常等に応じたデータアラームを付記すると共に、自動再検の要否および再測定条件等を判断する。そして、解析部52は、自動再検の要否および再測定条件等の情報を含む自動再検情報を、対象の検体2または反応容器25の情報、測定結果およびデータアラームに関連付けて付加して、解析データとしてデータ格納部55に格納する。
Third Embodiment
The automatic analyzer according to the third embodiment of the present invention will be described with reference to FIGS. In the automatic analyzer 1 according to the third embodiment, not only the data alarm corresponding to the abnormality at the time of measurement is added to each measurement result of the two types of photometers by the determination of the analysis control unit 50 but also automatic retest Automatic re-test information related to the function is created and added. In particular, the analysis unit 52 appends a data alarm according to an abnormality or the like to the measurement result of a certain photometer, and determines the necessity of automatic retest and the remeasurement condition or the like. Then, the analysis unit 52 adds automatic retest information including information such as necessity / unnecessity of automatic retest and remeasurement conditions in association with the information of the target sample 2 or the reaction container 25, the measurement result and the data alarm, and analyzes The data is stored in the data storage unit 55 as data.
 分析制御部50の同時分析判定部56等の処理部は、上記データ格納部55に格納された、2種類の光度計のそれぞれに係わる、測定結果、データアラーム、および自動再検情報を含む解析データを参照する。そして、同時分析判定部56等は、それらの2種類のデータにおけるデータアラームおよび自動再検情報の組み合わせに応じて、所定の対応表で規定された基準に基づいて、出力を選択する。選択される出力(すなわち分析結果出力情報)は、実施の形態1と同様に、測定結果、データアラーム、および自動再検情報を含む。上記のように、実施の形態3の自動分析装置1では、実施の形態1に対し、自動再検機能に係わる処理が異なる。上記のように、実施の形態3では、解析部52で、一旦、個別の光度計の測定結果毎に、自動再検機能に係わる判断を行い、自動再検情報を作成して付加する。なお、解析部52で付加する自動再検情報(下記の再検フラグ情報)は、前述の自動再検情報とは意味が異なる。その後、分析制御部50は、自動再検情報を含む2種類の測定結果およびデータアラームの組み合わせに応じて、あらためて総合的に、自動再検情報を含む出力を選択、決定する。 A processing unit such as the simultaneous analysis determination unit 56 of the analysis control unit 50 analyzes data including measurement results, data alarms, and automatic retest information related to each of the two types of photometers stored in the data storage unit 55. Refer to Then, the simultaneous analysis determination unit 56 or the like selects an output based on a standard defined in a predetermined correspondence table in accordance with a combination of the data alarm and the automatic retest information in the two types of data. The selected output (ie, analysis result output information) includes measurement results, data alarms, and automatic retest information, as in the first embodiment. As described above, the automatic analyzer 1 of the third embodiment differs from the first embodiment in the processing relating to the automatic reinspection function. As described above, in the third embodiment, the analysis unit 52 temporarily makes a determination regarding the automatic re-examination function for each measurement result of individual photometers, and creates and adds automatic re-examination information. The automatic retest information (retest flag information described below) added by the analysis unit 52 has a different meaning from the above-described automatic retest information. Thereafter, the analysis control unit 50 selects and determines an output including the automatic retest information comprehensively again according to a combination of two types of measurement results including the automatic retest information and the data alarm.
 [自動再検情報(再検フラグ)]
 実施の形態3で、解析部52は、所定の形式の自動再検情報(再検フラグ情報と記載する)を作成し、付加する。解析部52は、例えば、吸光光度計44を用いた第1測定結果に、測定時の異常等に応じた第1データアラームを付記する際、自動再検の要否、および必要の場合の再測定条件等を判断する。解析部52は、判断結果に応じた自動再検情報(第1再検フラグ)を、第1測定結果および第1データアラームに付加する。同様に、解析部52は、散乱光度計45を用いた第2測定結果に、測定時の異常等に応じた第2データアラームを付記する際、自動再検の要否、および必要の場合の再測定条件等を判断する。解析部52は、判断結果に応じた自動再検情報(第2再検フラグ)を、第2測定結果および第2データアラームに付加する。
[Auto Retest Information (Retest Flag)]
In the third embodiment, the analysis unit 52 creates and adds automatic retest information (described as retest flag information) of a predetermined format. For example, when adding a first data alarm according to an abnormality at the time of measurement, etc. to the first measurement result using the absorptiometer 44, the analysis unit 52 determines whether or not the automatic retest is necessary, and remeasurement if necessary. Determine the conditions etc. The analysis unit 52 adds automatic retest information (first retest flag) according to the determination result to the first measurement result and the first data alarm. Similarly, when adding the second data alarm according to the abnormality at the time of measurement, etc. to the second measurement result using the scattering photometer 45, the analysis unit 52 determines whether or not the automatic retest is necessary, and if necessary Determine the measurement conditions etc. The analysis unit 52 adds automatic retest information (second retest flag) according to the determination result to the second measurement result and the second data alarm.
 再検フラグは、対応する種類の光度計を用いた、自動再検の要否(有無)、および再測定条件等を表す値である。解析部52は、測定結果、データアラーム、再検フラグを含むデータを、対象の測定値を取得した反応容器25または対応する検体2の分析依頼情報と対応付けるようにして、データ格納部55に格納する。 The retest flag is a value representing the necessity (presence or absence) of the automatic retest, the remeasurement condition, and the like using the corresponding type of photometer. The analysis unit 52 stores the data including the measurement result, the data alarm, and the retest flag in the data storage unit 55 in such a manner as to associate the measurement value of the object with the analysis request information of the reaction container 25 or the corresponding sample 2 that acquired the measurement value. .
 実施の形態3で、再検フラグとしては、データアラームの種別に応じて、以下の4つに分類される。再検フラグの識別子として、F1~F4とする。 In the third embodiment, the retest flag is classified into the following four according to the type of data alarm. The identifiers of the retest flag are F1 to F4.
 (1)第1再検フラグF1=「再検無しフラグ」: 第1再検フラグF1は、自動再検が不要(無し)であることを表す。なお、第1再検フラグF1の付加の代わりに、再検フラグ自体を付加しないこととしてもよい。 (1) First Retest Flag F1 = “No Retest Flag”: The first retest flag F1 indicates that automatic retest is unnecessary (absent). Note that the retest flag itself may not be added instead of the first retest flag F1.
 (2)第2再検フラグF2=「同条件再検フラグ」: 第2再検フラグF2は、自動再検が必要(有り)であること、かつ、条件として、前回の測定時(すなわち異常等が検知された時)と同じ再測定条件等とすることを表す。 (2) Second retesting flag F2 = "Same condition retesting flag": The second retesting flag F2 needs (represents) automatic retesting, and as a condition, at the time of the previous measurement (ie, an abnormality etc. is detected) Represents the same remeasurement conditions as in
 (3)第3再検フラグF3=「減量再検フラグ」: 第3再検フラグF3は、自動再検が必要(有り)であること、かつ、前回の測定時の条件に対し検体量を減量した条件とすることを表す。 (3) Third retesting flag F3 = "weight loss retesting flag": The third retesting flag F3 indicates that automatic retesting is necessary (present) and that the amount of sample is reduced from the condition at the time of the previous measurement and Represents to do.
 (4)第4再検フラグF4=「増量再検フラグ」: 第4再検フラグF4は、自動再検が必要(有り)であること、かつ、前回の測定時の条件に対し検体量を増量した条件とすることを表す。 (4) Fourth retesting flag F4 = “increased retesting flag”: The fourth retesting flag F4 indicates that automatic retesting is necessary (present) and that the amount of sample is increased relative to the condition at the time of the previous measurement and Represents to do.
 実施の形態3での処理フローとしては、例えば前述の実施の形態1の図10のレベル判定処理、図11の高レベルデータアラーム処理の部分については、同様である。 The processing flow in the third embodiment is similar to, for example, the level determination process of FIG. 10 of the first embodiment and the high level data alarm process of FIG. 11 described above.
 [処理フロー]
 図16、図17は、実施の形態3で、分析制御部50(特に同時分析判定部56等)による中レベルデータアラーム処理のフローを示す。図16は、ステップS701からステップS708までを示す。図17は、図16に続き、ステップS709からステップS720までを示す。この処理は、図10のステップS304への流れのように、2種類の測定結果に付記されるデータアラームに、中レベルのデータアラームが含まれている場合に行われる。図16の処理例では、上記再検フラグの判断に基づいて出力を選択している。
Processing flow
FIG. 16 and FIG. 17 show the flow of middle level data alarm processing by the analysis control unit 50 (particularly the simultaneous analysis determination unit 56 etc.) in the third embodiment. FIG. 16 shows steps S701 to S708. FIG. 17 shows step S709 to step S720 following FIG. This process is performed when the middle level data alarm is included in the data alarms appended to the two types of measurement results as in the flow of step S304 in FIG. In the processing example of FIG. 16, the output is selected based on the determination of the retest flag.
 (S701) 分析制御部50は、吸光光度計44の第1測定結果および第1データアラームに、再検フラグとして「減量再検フラグ」(第3再検フラグF3)が付加されているか否かを判定する。付加されている場合(Y)にはS702へ進み、付加されていない場合(N)にはS704へ進む。 (S701) The analysis control unit 50 determines whether or not the “decreased retest flag” (third retest flag F3) is added as a retest flag to the first measurement result and the first data alarm of the absorptiometer 44. . If it is added (Y), the processing proceeds to S702, and if it is not added (N), the processing proceeds to S704.
 (S702,S703) S702で、分析制御部50は、第1測定結果および第1データアラームを、出力部71に出力させる。そして、S703で、分析制御部50は、自動再検を必要と判断し、前回の条件に対して検体量を減量する条件とした自動再検依頼情報を、データ格納部55に格納する。分析制御部50は、その自動再検依頼情報に従って自動再検を制御し、結果を出力する。S703の後、本フローを終了する。 (S702, S703) In S702, the analysis control unit 50 causes the output unit 71 to output the first measurement result and the first data alarm. Then, in S703, the analysis control unit 50 determines that the automatic re-examination is necessary, and stores, in the data storage unit 55, the automatic re-examination request information as a condition for reducing the sample amount from the previous condition. The analysis control unit 50 controls the automatic retest according to the automatic retest request information, and outputs the result. After S703, the present flow ends.
 上記「減量再検フラグ」(第3再検フラグF3)は、検体2の目的成分物質の濃度が高過ぎる場合に付加される。高濃度成分の測定に好適な吸光光度計44を用いた第1測定結果で、検体2の目的成分物質の濃度が高過ぎる(例えば定量範囲の上限値を超える)と判定された場合、低濃度成分の測定に好適な散乱光度計45を用いた第2測定結果の信頼性も低い。そのため、この場合、第1測定結果の方を出力させ、上記のように減量する条件で自動再検を行わせる。これにより、再検時の測定結果が吸光光度計44の定量範囲に入るように試みる。 The above-mentioned “weight re-examination flag” (third re-examination flag F3) is added when the concentration of the target component substance of the sample 2 is too high. If the concentration of the target component substance of the sample 2 is determined to be too high (for example, exceeding the upper limit value of the quantitative range) in the first measurement result using the absorptiometer 44 suitable for measuring the high concentration component, the low concentration The reliability of the second measurement result using the scattering photometer 45 suitable for the measurement of the component is also low. Therefore, in this case, the first measurement result is output, and the automatic re-examination is performed under the condition of reducing the amount as described above. Thereby, the measurement result at the time of re-examination is attempted to be within the quantitative range of the absorptiometer 44.
 (S704) 分析制御部50は、散乱光度計45の第2測定結果および第2データアラームに、「増量再検フラグ」(第4再検フラグF4)が付加されているか否かを判定する。付加されているか場合(Y)にはS705へ進み、付加されていない場合(N)にはS707へ進む。 (S704) The analysis control unit 50 determines whether the “increase retest flag” (the fourth retest flag F4) is added to the second measurement result and the second data alarm of the scattering photometer 45. If it is added (Y), the processing proceeds to S705, and if it is not added (N), the processing proceeds to S707.
 (S705,S706) S705で、分析制御部50は、第2測定結果および第2データアラームを、出力部71に出力させる。そして、S706で、分析制御部50は、前回の条件に対して検体量を増量する条件とした自動再検依頼情報を、データ格納部55に格納する。分析制御部50は、その自動再検依頼情報に従って自動再検を制御する。S705の後、本フローを終了する。 (S705, S706) At S705, the analysis control unit 50 causes the output unit 71 to output the second measurement result and the second data alarm. Then, in S706, the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information as a condition for increasing the sample amount with respect to the previous condition. The analysis control unit 50 controls the automatic reexamination according to the automatic reexamination request information. After S705, this flow ends.
 上記「増量再検フラグ」(第4再検フラグF4)は、検体2の目的成分物質の濃度が低過ぎる場合に付加される。低濃度成分の測定に好適な散乱光度計45を用いた第2測定結果で、検体2の目的成分物質の濃度が低過ぎる(例えば定量範囲の下限値を下回る)と判定された場合、高濃度成分の測定に好適な吸光光度計44を用いた第1測定結果の信頼性が低い。そのため、この場合、第2測定結果の方を出力させ、上記のように増量する条件で自動再検を行わせる。これにより、再検時の測定結果が散乱光度計45または吸光光度計44の定量範囲に入るように試みる。 The above-mentioned “increase re-examination flag” (fourth re-examination flag F4) is added when the concentration of the target component substance of the sample 2 is too low. In the second measurement result using the scattering photometer 45 suitable for measurement of low concentration components, if it is determined that the concentration of the target component substance of the sample 2 is too low (for example, lower than the lower limit value of the quantitative range), high concentration The reliability of the first measurement result using the absorptiometer 44 suitable for the measurement of the component is low. Therefore, in this case, the second measurement result is output, and the automatic retest is performed under the condition of increasing the amount as described above. Thereby, the measurement result at the time of re-examination is attempted to be within the quantitative range of the scatterometer 45 or the absorptiometer 44.
 (S707) 分析制御部50は、第2測定結果および第2データアラームに、「再検無しフラグ」(第1再検フラグF1)が付加されているか否かを判定する。あるいは、このステップS707は、再検フラグ自体が付加されていないかどうかの確認としてもよい。付加されている場合(Y)にはS708へ進み、付加されていない場合(N)にはS709へ進む。 (S 707) The analysis control unit 50 determines whether or not the “No retest flag” (first retest flag F 1) is added to the second measurement result and the second data alarm. Alternatively, this step S 707 may be confirmation as to whether or not the retest flag itself is added. If it is added (Y), the process proceeds to S708, and if it is not added (N), the process proceeds to S709.
 (S708) 分析制御部50は、第2測定結果および第2データアラームを、出力部71に出力させ、自動再検を行わず、S708の後、本フローを終了する。 (S708) The analysis control unit 50 causes the output unit 71 to output the second measurement result and the second data alarm, and does not perform the automatic retest, and ends the present flow after S708.
 (S709) 図17で、S709に進む場合、第2測定結果に伴う再検フラグとしては、「減量再検フラグ」(第3再検フラグF3)または「同条件再検フラグ」(第2再検フラグF2)である場合に対応する。S709で、分析制御部50は、第2測定結果および第2データアラームに、「減量再検フラグ」(第3再検フラグF3)が付加されているか否かを判定する。付加されている場合(Y)にはS710へ進み、付加されていない場合(N)にはS713へ進む。 (S709) When proceeding to S709 in FIG. 17, as the retest flag associated with the second measurement result, “weight loss retest flag” (third retest flag F3) or “same retest flag” (second retest flag F2) It corresponds to a case. In S709, the analysis control unit 50 determines whether the “decrease retest flag” (third retest flag F3) is added to the second measurement result and the second data alarm. If it is added (Y), the process proceeds to S710, and if it is not added (N), the process proceeds to S713.
 (S710) 分析制御部50は、吸光光度計44の第1測定結果および第1データアラームを、出力部71を介して出力させる。 (S710) The analysis control unit 50 causes the output unit 71 to output the first measurement result of the absorptiometer 44 and the first data alarm.
 (S711) さらに、分析制御部50は、第1測定結果に、同条件再検フラグ(第2再検フラグF2)が付加されているか否かを判定する。付加されている場合(Y)にはS716へ進み、付加されていない場合(N)にはS712へ進む。 (S711) Further, the analysis control unit 50 determines whether or not the same condition retest flag (second retest flag F2) is added to the first measurement result. If it is added (Y), the process proceeds to S716, and if it is not added (N), the process proceeds to S712.
 (S716) 分析制御部50は、前回の測定時の条件と同じ条件とした自動再検依頼情報を、データ格納部55に格納する。分析制御部50は、その自動再検依頼情報に従って自動再検を制御する。S716の後、本フローを終了する。 (S716) The analysis control unit 50 stores, in the data storage unit 55, automatic retest request information under the same conditions as the conditions at the time of the previous measurement. The analysis control unit 50 controls the automatic reexamination according to the automatic reexamination request information. After S716, this flow ends.
 (S712) また、S712へ進んだ場合、分析制御部50は、さらに、第1測定結果に、増量再検フラグ(第4再検フラグF4)が付加されているか否かを判定する。付加されている場合(Y)にはS706へ進み、付加されていない場合(N)には、自動再検を行わずに、本フローを終了する。 (S712) Further, when the process proceeds to S712, the analysis control unit 50 further determines whether the increase re-examination flag (the fourth re-examination flag F4) is added to the first measurement result. If it is added (Y), the process proceeds to S706, and if it is not added (N), the flow is ended without performing the automatic retest.
 (S713) 分析制御部50は、第1測定結果に、同条件再検フラグ(第2再検フラグF2)が付加されているか否かを判定する。付加されている場合(Y)にはS714へ進み、付加されていなに場合(N)にはS718へ進む。 (S713) The analysis control unit 50 determines whether the condition retest flag (second retest flag F2) is added to the first measurement result. If it is added (Y), the process proceeds to S714, and if it is not added (N), the process proceeds to S718.
 (S714) 分析制御部50は、「優先出力設定」に従って優先出力判定を行う。「吸光優先出力」である場合(A)にはS715へ進み、「散乱優先出力」である場合(B)にはS717へ進む。 (S714) The analysis control unit 50 performs priority output determination in accordance with “priority output setting”. If it is “absorptive output priority” (A), the process proceeds to S715, and if it is “scattering priority output” (B), the process proceeds to S717.
 (S715) 分析制御部50は、「吸光優先出力」に応じて、吸光光度計44を用いた第1測定結果および対応する第1データアラームを、出力部71に出力させる。 (S 715) The analysis control unit 50 causes the output unit 71 to output the first measurement result using the absorptiometer 44 and the corresponding first data alarm according to the “absorbance priority output”.
 (S717) 分析制御部は、「散乱優先出力」に応じて、散乱光度計45を用いた第2測定結果および対応する第2データアラームを、出力部71に出力させる。 (S717) The analysis control unit causes the output unit 71 to output the second measurement result using the scattering photometer 45 and the corresponding second data alarm according to the “scattering priority output”.
 (S716) S715またはS717の後、S716で、分析制御部50は、前回の測定時の条件と同じ条件とした自動再検依頼情報を、データ格納部55に格納する。 (S716) After S715 or S717, in S716, the analysis control unit 50 stores, in the data storage unit 55, automatic retest request information that is the same as the condition at the time of the previous measurement.
 (S718) 分析制御部50は、吸光光度計44を用いた第1測定結果および第1データアラームを、出力部71に出力させる。 (S 718) The analysis control unit 50 causes the output unit 71 to output the first measurement result and the first data alarm using the absorptiometer 44.
 (S719) さらに、分析制御部50は、第1測定結果に、増量再検フラグ(第4再検フラグF4)が付加されているか否かを判定する。付加されている場合(Y)にはS720へ進み、付加されていない場合(N)には、自動再検を行わずに本フローを終了する。 (S719) Further, the analysis control unit 50 determines whether the increase re-examination flag (the fourth re-examination flag F4) is added to the first measurement result. If it is added (Y), the process proceeds to S720, and if it is not added (N), the flow is ended without performing the automatic retest.
 (S720) 分析制御部50は、前回の条件に対し検体量を増量する条件とした自動再検依頼情報を、データ格納部55に格納する。S720の後、本フローを終了する。 (S720) The analysis control unit 50 stores, in the data storage unit 55, automatic retest request information as a condition for increasing the sample amount with respect to the previous condition. After S720, this flow ends.
 上記処理例のように、実施の形態3では、各種類の光度計毎の、測定結果、データアラーム、および再検フラグの組み合わせに応じて、総合的に、出力(測定結果、データアラーム、および自動再検情報)を選択する。これにより、2種類の測定の両方に異常等がある場合でも、適切に自動再検を制御して速やかに再測定ができる。したがって、より正確な結果が得られると共に、ユーザの結果報告遅延等を防止できる。 As in the above processing example, in the third embodiment, according to the combination of the measurement result, the data alarm, and the retest flag for each type of photometer, the output (measurement result, data alarm, and automatic Select retest information). Thereby, even when there is an abnormality or the like in both of the two types of measurement, the automatic re-examination can be appropriately controlled to promptly perform the re-measurement. Therefore, more accurate results can be obtained, and delay in reporting results can be prevented.
 なお、上記自動再検の条件である再測定条件等として、検体量を減量する条件や増量する条件を決める際に、例えば以下のような方式を用いてもよい。その方式として、予め設定された所定の量あるいは比率等の値を用いて、前回の条件の値に、その所定の量や比率等の値を加算や乗算で反映することで、再測定条件の検体量等を決定する。あるいは、他の方式として、予め、いくつかの候補となる検体量の条件を定義および設定しておき、それらの条件から選択、切り替えるようにして、再測定条件の検体量を決定してもよい。 The following method may be used, for example, when determining the condition for decreasing the amount of sample or the condition for increasing the amount as a remeasurement condition or the like which is a condition of the automatic retest. As the method, using a value such as a predetermined amount or a ratio set in advance, the value of the predetermined amount or the ratio is reflected on the value of the previous condition by addition or multiplication. Determine the sample volume etc. Alternatively, as another method, some candidate sample amount conditions may be defined and set in advance, and the sample amount of the remeasurement condition may be determined by selecting and switching from these conditions. .
 以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、その要旨を逸脱しない範囲で種々変更可能である。 As mentioned above, although this invention was concretely demonstrated based on embodiment, this invention is not limited to above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.
 1…自動分析装置、2…検体、3…反応液、4…試薬、25…反応容器、44…吸光光度計、45…散乱光度計、50…分析制御部。 DESCRIPTION OF SYMBOLS 1 ... Automatic analyzer, 2 ... specimen, 3 ... reaction liquid, 4 ... reagent, 25 .. reaction container, 44 ... absorption spectrophotometer, 45 ... scattering photometer, 50 ... analysis control part.

Claims (13)

  1.  定量範囲が異なる複数種類の複数の光度計と、対象の検体について前記複数の光度計を用いた測定を含む分析を制御する分析制御部と、を備え、
     前記分析制御部は、
     前記複数の光度計を用いた複数の測定値を含む複数の測定結果を取得し、
     前記複数の光度計を用いた測定の際に、異常を検知した場合には、前記複数の測定結果のうちの対応する光度計を用いた測定結果に、前記異常の種別に応じたデータアラームを付記し、
     前記複数の測定結果に複数のデータアラームが付記されている場合には、前記複数の測定結果および前記複数のデータアラームから、前記複数のデータアラームの組み合わせに対応させて、出力する測定結果およびデータアラームを選択し、選択した前記測定結果および前記データアラームを分析結果としてユーザに対して出力する、
     自動分析装置。
    A plurality of types of photometers having different quantification ranges, and an analysis control unit that controls analysis including measurement using the plurality of photometers for a target sample;
    The analysis control unit
    Obtaining a plurality of measurement results including a plurality of measurement values using the plurality of photometers;
    When an abnormality is detected in the measurement using the plurality of photometers, a data alarm corresponding to the type of the abnormality is displayed on the measurement result using the corresponding photometer among the plurality of measurement results. Note,
    When a plurality of data alarms are attached to the plurality of measurement results, the measurement results and data to be output corresponding to the combination of the plurality of data alarms from the plurality of measurement results and the plurality of data alarms Selecting an alarm and outputting the selected measurement result and the data alarm to the user as an analysis result;
    Automatic analyzer.
  2.  請求項1記載の自動分析装置において、
     前記分析制御部は、前記複数のデータアラームの組み合わせに対応させて、前記対象の検体に関する自動再検の要否と、前記自動再検で使用する光度計の種類と、前記自動再検での再測定条件と、を含む自動再検情報を選択し、前記自動再検情報に従って前記自動再検を制御する、
     自動分析装置。
    In the automatic analyzer according to claim 1,
    The analysis control unit is responsive to a combination of the plurality of data alarms, whether or not it is necessary to perform an automatic retest on the target sample, a type of photometer used in the automatic retest, and a remeasurement condition in the automatic retest. And selecting automatic re-examination information, and controlling the automatic re-examination according to the automatic re-examination information,
    Automatic analyzer.
  3.  請求項2記載の自動分析装置において、
     前記データアラームは、複数のレベルとして、高レベル、中レベル、低レベルに分類され、
     前記高レベルは、前記自動再検が必要であり、前記自動再検のために前記ユーザによる状態改善作業が必要であるレベルであり、
     前記中レベルは、前記自動再検が必要であり、前記自動再検のために前記ユーザによる状態改善作業が不要であるレベルであり、
     前記低レベルは、前記自動再検が不要であるレベルであり、
     前記分析制御部は、前記データアラームの組み合わせについて、前記レベルを判別し、前記レベルに対応させて、出力する前記自動再検情報を選択する、
     自動分析装置。
    In the automatic analyzer according to claim 2,
    The data alarms are classified into multiple levels: high level, medium level, low level,
    The high level is a level requiring the automatic retest and requiring the user to improve the state for the automatic retest.
    The middle level is a level that requires the automatic retest and does not require the user to improve the state for the automatic retest.
    The low level is a level at which the automatic retest is unnecessary.
    The analysis control unit determines the level of the combination of the data alarms, and selects the automatic re-examination information to be output corresponding to the level.
    Automatic analyzer.
  4.  請求項3記載の自動分析装置において、
     前記高レベルのデータアラームとして、検体不足アラーム、試薬不足アラーム、詰まり検知アラーム、洗剤不足アラーム、および光度計異常アラームのうちの少なくとも1つを有する、
     自動分析装置。
    In the automatic analyzer according to claim 3,
    The high level data alarm includes at least one of a sample shortage alarm, a reagent shortage alarm, a blockage detection alarm, a detergent shortage alarm, and a photometer abnormality alarm.
    Automatic analyzer.
  5.  請求項3記載の自動分析装置において、
     前記中レベルのデータアラームとして、反応過程異常に由来するデータアラームと、検体濃度異常に由来するデータアラームと、を有し、
     前記反応過程異常に由来するデータアラームとして、セルブランク異常アラーム、吸光度差異常アラーム、散乱光強度差異常アラームのうちの少なくとも1つを有し、
     前記検体濃度異常に由来するデータアラームとして、プロゾーンアラーム、定量範囲上限オーバアラーム、および定量範囲下限オーバアラームのうち少なくとも1つを有する、
     自動分析装置。
    In the automatic analyzer according to claim 3,
    The medium-level data alarm includes a data alarm derived from reaction process abnormality and a data alarm derived from sample concentration abnormality,
    The data alarm derived from the reaction process abnormality includes at least one of a cell blank abnormality alarm, an absorbance difference abnormality alarm, and a scattered light intensity difference abnormality alarm,
    The data alarm derived from the sample concentration abnormality includes at least one of a pro zone alarm, a quantitative range upper limit alarm, and a quantitative range lower limit alarm.
    Automatic analyzer.
  6.  請求項3記載の自動分析装置において、
     前記低レベルのデータアラームとして、血清情報アラームと試薬有効期限切れアラームとの少なくとも一方を有する、
     自動分析装置。
    In the automatic analyzer according to claim 3,
    Having at least one of a serum information alarm and a reagent expiration alarm as the low level data alarm,
    Automatic analyzer.
  7.  請求項2記載の自動分析装置において、
     前記分析制御部は、
     前記光度計の種類毎の測定結果に、前記データアラームを付記する判断と共に、前記自動再検に関する判断を行った結果に基づいて、前記自動再検の制御のための再検フラグ情報を付加し、
     前記複数の測定結果に付加されている複数の再検フラグ情報の組み合わせに対応させて、出力する前記測定結果、前記データアラーム、および前記自動再検情報を含む前記分析結果を選択する、
     自動分析装置。
    In the automatic analyzer according to claim 2,
    The analysis control unit
    Re-examination flag information for controlling the automatic re-examination is added to the measurement result for each type of the photometer based on the result of making the determination regarding the automatic re-examination together with the determination of appending the data alarm,
    The analysis result including the measurement result, the data alarm, and the automatic retest information to be output is selected according to a combination of a plurality of retest flag information added to the plurality of measurement results.
    Automatic analyzer.
  8.  請求項1記載の自動分析装置において、
     予め、優先出力設定として、前記複数の光度計のいずれの光度計を優先出力として使用するかが設定されており、
     前記分析制御部は、前記データアラームの組み合わせとして特定の組み合わせの場合には、前記優先出力設定に従って、前記出力する前記測定結果および前記データアラームを選択する、
     自動分析装置。
    In the automatic analyzer according to claim 1,
    As the priority output setting, it is set in advance which one of the plurality of photometers is to be used as the priority output,
    The analysis control unit, in the case of a specific combination as the combination of the data alarms, selects the measurement result to be output and the data alarm according to the priority output setting.
    Automatic analyzer.
  9.  請求項1記載の自動分析装置において、
     前記データアラームとして、生じ得る複数のデータアラームには、重要度に応じた順位が設定されており、
     前記分析制御部は、前記光度計の種類毎の前記測定結果について、前記データアラームを付記する際、前記重要度に応じて選択した1つのデータアラームを付記する、
     自動分析装置。
    In the automatic analyzer according to claim 1,
    The order according to the importance is set to a plurality of data alarms that can occur as the data alarm,
    The analysis control unit appends one data alarm selected according to the importance when appending the data alarm for the measurement result for each type of the photometer.
    Automatic analyzer.
  10.  請求項2記載の自動分析装置において、
     前記再測定条件として、前回の測定時の条件に対し、同じ条件と、検体量を減量する条件と、検体量を増量する条件と、を有する、
     自動分析装置。
    In the automatic analyzer according to claim 2,
    As the remeasurement conditions, the same conditions as those of the previous measurement, conditions for reducing the amount of sample, and conditions for increasing the amount of sample,
    Automatic analyzer.
  11.  請求項1記載の自動分析装置において、
     前記複数種類の複数の光度計として、吸光光度計と、散乱光度計と、を含む、
     自動分析装置。
    In the automatic analyzer according to claim 1,
    The plurality of types of photometers include an absorptiometer and a scattering photometer.
    Automatic analyzer.
  12.  自動分析装置における自動分析方法であって、
     前記自動分析装置は、定量範囲が異なる複数種類の複数の光度計と、対象の検体について前記複数の光度計を用いた測定を含む分析を制御する分析制御部と、を備え、
     前記分析制御部において実行されるステップとして、
     前記複数の光度計を用いた複数の測定値を含む複数の測定結果を取得するステップと、
     前記複数の光度計を用いた測定の際に、異常を検知した場合には、前記複数の測定結果のうちの対応する光度計を用いた測定結果に、前記異常の種別に応じたデータアラームを付記するステップと、
     前記複数の測定結果に複数のデータアラームが付記されている場合には、前記複数の測定結果および前記複数のデータアラームから、前記複数のデータアラームの組み合わせに対応させて、出力する測定結果およびデータアラームを選択し、選択した前記測定結果および前記データアラームを分析結果としてユーザに対して出力するステップと、
     を有する、自動分析方法。
    An automatic analysis method in an automatic analyzer,
    The automatic analyzer includes a plurality of types of photometers having different quantification ranges, and an analysis control unit that controls analysis including measurement using the plurality of photometers for a target sample.
    As a step executed in the analysis control unit,
    Obtaining a plurality of measurement results including a plurality of measurements using the plurality of photometers;
    When an abnormality is detected in the measurement using the plurality of photometers, a data alarm corresponding to the type of the abnormality is displayed on the measurement result using the corresponding photometer among the plurality of measurement results. Additional steps,
    When a plurality of data alarms are attached to the plurality of measurement results, the measurement results and data to be output corresponding to the combination of the plurality of data alarms from the plurality of measurement results and the plurality of data alarms Selecting an alarm and outputting the selected measurement result and the data alarm to a user as an analysis result;
    Have an automatic analysis method.
  13.  請求項12記載の自動分析方法において、
     前記分析制御部が、前記複数のデータアラームの組み合わせに対応させて、前記対象の検体に関する自動再検の要否と、前記自動再検で使用する光度計の種類と、前記自動再検での再測定条件と、を含む自動再検情報を選択し、前記自動再検情報に従って前記自動再検を制御するステップを有する、
     自動分析方法。
    In the automatic analysis method according to claim 12,
    The analysis control unit corresponds to the combination of the plurality of data alarms, whether or not it is necessary to perform an automatic retest on the target sample, the type of photometer used in the automatic retest, and the remeasurement condition in the automatic retest. And selecting automatic re-examination information, and controlling the automatic re-examination according to the automatic re-examination information,
    Automatic analysis method.
PCT/JP2018/032999 2017-12-26 2018-09-06 Automated analyzer and automated analysis method WO2019130668A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880058137.9A CN111094993B (en) 2017-12-26 2018-09-06 Automatic analysis device and automatic analysis method
US16/646,386 US11187712B2 (en) 2017-12-26 2018-09-06 Automated analyzer and automated analysis method
EP18893760.1A EP3734288B1 (en) 2017-12-26 2018-09-06 Automated analyzer and automated analysis method
EP23200938.1A EP4293361A2 (en) 2017-12-26 2018-09-06 Automated analyzer and automated analysis method
JP2019562741A JP6812577B2 (en) 2017-12-26 2018-09-06 Automatic analyzer and automatic analysis method
US17/474,586 US20210405079A1 (en) 2017-12-26 2021-09-14 Automated Analyzer and Automated Analysis Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-249513 2017-12-26
JP2017249513 2017-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/646,386 A-371-Of-International US11187712B2 (en) 2017-12-26 2018-09-06 Automated analyzer and automated analysis method
US17/474,586 Continuation US20210405079A1 (en) 2017-12-26 2021-09-14 Automated Analyzer and Automated Analysis Method

Publications (1)

Publication Number Publication Date
WO2019130668A1 true WO2019130668A1 (en) 2019-07-04

Family

ID=67063353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032999 WO2019130668A1 (en) 2017-12-26 2018-09-06 Automated analyzer and automated analysis method

Country Status (5)

Country Link
US (2) US11187712B2 (en)
EP (2) EP3734288B1 (en)
JP (3) JP6812577B2 (en)
CN (2) CN113777338A (en)
WO (1) WO2019130668A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021117191A (en) * 2020-01-29 2021-08-10 日本電子株式会社 Automatic analyzer and method for determining reaction abnormality
US20220228981A1 (en) * 2019-07-16 2022-07-21 Hitachi, Ltd. Sample measurement device and sample measurement method
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method
WO2024009645A1 (en) * 2022-07-07 2024-01-11 株式会社日立ハイテク Automated analysis system and alarm management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4136413A1 (en) * 2020-04-17 2023-02-22 VEGA Grieshaber KG Self-sufficient display for fill level and limit level measuring devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312964A (en) * 1986-07-04 1988-01-20 Hitachi Ltd Method and instrument for automatic discrete analysis
JPH08262031A (en) * 1995-03-17 1996-10-11 Hitachi Ltd Autoanalyzer
JP2000221198A (en) * 1999-02-03 2000-08-11 Toshiba Corp Automatic analyzing device and method for processing result of analysis used for the same
WO2010027037A1 (en) * 2008-09-03 2010-03-11 株式会社 日立ハイテクノロジーズ Automatic analyzer
JP2012233807A (en) * 2011-05-02 2012-11-29 Sysmex Corp Specimen processing device
JP2014006160A (en) 2012-06-25 2014-01-16 Hitachi High-Technologies Corp Automatic analyzer and sample measurement method
JP2015021952A (en) * 2013-07-23 2015-02-02 株式会社日立ハイテクノロジーズ Automatic analysis device and analysis method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963909A (en) * 1974-08-22 1976-06-15 The Perkin-Elmer Corporation Method and apparatus for computation in a kinetic analyzer
JP2649409B2 (en) * 1989-03-14 1997-09-03 株式会社日立製作所 Automated analysis methods for clinical tests
JPH0310161A (en) * 1989-06-08 1991-01-17 Hitachi Ltd System for instructing recheck
JP3558898B2 (en) * 1998-11-05 2004-08-25 株式会社日立製作所 Automatic analyzer and automatic analysis method
WO2006009251A1 (en) * 2004-07-22 2006-01-26 Wako Pure Chemical Industries, Ltd. Analysis assisting method, analyzer, remote computer, data analyzing method, program, and reagent container
JP4576307B2 (en) * 2005-09-12 2010-11-04 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2009057659A1 (en) * 2007-10-30 2009-05-07 Arkray, Inc. Method for analyzing sample and its device
JP2010008402A (en) * 2008-05-30 2010-01-14 Hitachi High-Technologies Corp Abnormality determination assistance method of reaction process data and automatic analyzer
EP3822952A1 (en) * 2008-08-20 2021-05-19 F. Hoffmann-La Roche AG System and method for quality assured analytical testing
JP5180761B2 (en) 2008-09-30 2013-04-10 トヨタ紡織株式会社 Intake manifold for internal combustion engine
JP5667989B2 (en) * 2009-12-04 2015-02-12 株式会社日立ハイテクノロジーズ Blood coagulation analyzer
JP5296015B2 (en) 2010-06-22 2013-09-25 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5738616B2 (en) * 2011-02-03 2015-06-24 シスメックス株式会社 Sample analysis system, sample analyzer, and sample analysis method
JP2012189552A (en) * 2011-03-14 2012-10-04 Sysmex Corp Reagent preparation device, reagent preparation method and specimen processing device
JP5897323B2 (en) * 2011-12-26 2016-03-30 株式会社日立ハイテクノロジーズ Automatic analyzer and measurement value abnormality detection method
JP5939833B2 (en) * 2012-02-24 2016-06-22 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6211806B2 (en) 2013-05-31 2017-10-11 株式会社日立ハイテクノロジーズ Automatic analyzer
EP3422015B1 (en) 2016-02-25 2021-01-06 Hitachi High-Tech Corporation Automated analysis device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312964A (en) * 1986-07-04 1988-01-20 Hitachi Ltd Method and instrument for automatic discrete analysis
JPH08262031A (en) * 1995-03-17 1996-10-11 Hitachi Ltd Autoanalyzer
JP2000221198A (en) * 1999-02-03 2000-08-11 Toshiba Corp Automatic analyzing device and method for processing result of analysis used for the same
WO2010027037A1 (en) * 2008-09-03 2010-03-11 株式会社 日立ハイテクノロジーズ Automatic analyzer
JP2012233807A (en) * 2011-05-02 2012-11-29 Sysmex Corp Specimen processing device
JP2014006160A (en) 2012-06-25 2014-01-16 Hitachi High-Technologies Corp Automatic analyzer and sample measurement method
JP2015021952A (en) * 2013-07-23 2015-02-02 株式会社日立ハイテクノロジーズ Automatic analysis device and analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220228981A1 (en) * 2019-07-16 2022-07-21 Hitachi, Ltd. Sample measurement device and sample measurement method
US11867628B2 (en) * 2019-07-16 2024-01-09 Hitachi, Ltd. Sample measurement device and sample measurement method
JP2021117191A (en) * 2020-01-29 2021-08-10 日本電子株式会社 Automatic analyzer and method for determining reaction abnormality
JP7357557B2 (en) 2020-01-29 2023-10-06 日本電子株式会社 Automatic analyzer and reaction abnormality determination method
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method
WO2024009645A1 (en) * 2022-07-07 2024-01-11 株式会社日立ハイテク Automated analysis system and alarm management method

Also Published As

Publication number Publication date
EP3734288B1 (en) 2023-11-08
CN111094993A (en) 2020-05-01
JP7427732B2 (en) 2024-02-05
JP6812577B2 (en) 2021-01-13
US20210405079A1 (en) 2021-12-30
CN113777338A (en) 2021-12-10
EP4293361A2 (en) 2023-12-20
US20200271677A1 (en) 2020-08-27
EP3734288A4 (en) 2021-09-29
JP2021063817A (en) 2021-04-22
CN111094993B (en) 2021-10-22
JP2022162076A (en) 2022-10-21
EP3734288A1 (en) 2020-11-04
JPWO2019130668A1 (en) 2020-10-22
JP7130723B2 (en) 2022-09-05
US11187712B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2019130668A1 (en) Automated analyzer and automated analysis method
US11674970B2 (en) Automatic analysis device and automatic analysis method
JP6013796B2 (en) Automatic analyzer and sample measurement method
JP5932540B2 (en) Automatic analyzer
JP5897323B2 (en) Automatic analyzer and measurement value abnormality detection method
US9400247B2 (en) Automatic analyzer
JP6785989B2 (en) Automatic analyzer
US11971425B2 (en) Automatic analysis device and automatic analysis method
JP7420976B2 (en) Automatic analyzer and analysis method
JP2014235020A (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018893760

Country of ref document: EP

Effective date: 20200727