WO2019130465A1 - Surgical treatment device - Google Patents

Surgical treatment device Download PDF

Info

Publication number
WO2019130465A1
WO2019130465A1 PCT/JP2017/046871 JP2017046871W WO2019130465A1 WO 2019130465 A1 WO2019130465 A1 WO 2019130465A1 JP 2017046871 W JP2017046871 W JP 2017046871W WO 2019130465 A1 WO2019130465 A1 WO 2019130465A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
detection
unit
irradiation
energy
Prior art date
Application number
PCT/JP2017/046871
Other languages
French (fr)
Japanese (ja)
Inventor
賢 藤沼
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/046871 priority Critical patent/WO2019130465A1/en
Publication of WO2019130465A1 publication Critical patent/WO2019130465A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves

Definitions

  • the present invention relates to a surgical device.
  • Patent Document 1 In surgical treatment of living tissue, there is known a surgical treatment apparatus which uses laser doppler to determine the presence or absence of a blood vessel hidden in fat or the like inside living tissue and informs the operator (for example, Patent Document 1) reference.).
  • the laser Doppler method detects blood flow in living tissue, although the presence or absence of blood vessels can be determined by determining the presence or absence of blood flow, the blood vessel wall present outside the blood flow is detected. You can not do it. For this reason, even if the surgical procedure is performed while avoiding the detected blood flow portion, when the surgical procedure is performed on the living tissue very near the blood flow portion, the surgical procedure is performed on the blood vessel wall existing outside the blood flow. There is a possibility that the treatment will be applied unintentionally.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a surgical treatment apparatus capable of preventing an unintended surgical treatment from being performed on a blood vessel wall.
  • the detection laser beam is applied to a living tissue by an energy emitting unit for emitting therapeutic energy, a detection laser beam irradiation unit for emitting a detection laser beam, and the detection laser beam irradiation unit.
  • a blood flow detection unit for detecting a blood flow in the surgical operation apparatus, wherein the irradiation range of the detection laser light is set larger than the incident range of the therapeutic energy emitted from the energy emission unit. It is.
  • the detection laser light emitted from the detection laser light irradiation unit is irradiated to the living tissue
  • the return light returning from the inside of the living tissue is detected by the light detection unit, and the detected return light is used.
  • the blood flow detection unit detects a blood flow in the irradiation range of the detection laser light in the living tissue.
  • the therapeutic energy is ejected from the energy ejection unit, whereby the treatment can be performed on the incident range of the therapeutic energy in the living tissue.
  • the irradiation range of the detection laser beam is set larger than the incident range of the therapeutic energy, it is positioned around the blood flow when the blood flow is detected by the irradiation of the detection laser beam.
  • the vessel wall can be prevented from overlapping the incident range of the therapeutic energy to prevent an unintentional surgical operation on the vessel wall.
  • the irradiation range of the detection laser beam may be set larger than the influence range of the therapeutic energy emitted from the energy emission unit by a predetermined size.
  • the irradiation range of the detection laser light is set larger than the influence range of the therapeutic energy. Therefore, when the blood flow is detected by the irradiation of the detection laser light, the periphery of the blood flow is detected.
  • the vessel wall can be prevented from being unintentionally influenced by the surgical procedure by preventing the vessel wall located in the vessel from overlapping the range of influence of the therapeutic energy.
  • the irradiation range of the detection laser beam may be set larger by a predetermined dimension over all directions outside the incident range of the therapeutic energy. By doing this, it is possible to obtain a difference which is always separated by a predetermined dimension between the incident range of the therapeutic energy and the blood flow when the blood flow is detected by the irradiation of the detection laser light. By setting this difference to be larger than the thickness dimension of the blood vessel wall, the blood vessel wall does not overlap with the incident range of the therapeutic energy, thereby preventing an unintentional surgical operation on the blood vessel wall. be able to.
  • the irradiation range of the detection laser beam may be set larger by a predetermined dimension over all directions outside the influence range of the therapeutic energy.
  • the predetermined dimension may be 1 mm or more.
  • the blood vessel wall of a thick blood vessel which may cause serious bleeding if cut, has a thickness of about 0.5 mm.
  • the above-mentioned mode it may have an energy injection prohibition part which forbids injection of the above-mentioned therapeutic energy by the above-mentioned energy ejection part, when blood flow is detected by the above-mentioned blood flow detection part.
  • the energy injection prohibiting unit prohibits the injection of the therapeutic energy, so the operator does not intend and the incident range of the therapeutic energy is Even if the blood vessel wall is brought close to the blood vessel wall, the emission of therapeutic energy is prohibited before the incident area overlaps the blood vessel wall, and it is possible to more reliably prevent an unintended surgical operation on the blood vessel wall.
  • the energy injection prohibition unit prohibits the injection of the therapeutic energy by the energy injection unit when the blood flow detected by the blood flow detection unit is equal to or more than a predetermined threshold.
  • a predetermined threshold There are large blood flows in thick blood vessels where serious bleeding may be a concern when cut.
  • the treatment of the thick blood vessel is unintentionally performed because the injection of therapeutic energy by the energy ejection unit is prohibited. What is done can be prevented more reliably.
  • the energy emitting unit may emit a therapeutic laser beam.
  • the detection laser light may have a wavelength smaller in absorption coefficient with respect to the living tissue than the treatment laser light. By doing this, the detection laser beam can be made to reach a deeper part of the living tissue than the treatment laser beam, and the detection laser beam can be irradiated to a wider range including the irradiation range of the treatment laser beam. Can.
  • the irradiation range on the living tissue surface of the detection laser beam includes a circle having a diameter of 3.5 mm or more centered on the irradiation range on the living tissue surface of the therapeutic laser beam. It may have a shape.
  • the laser light emitting unit for guiding is provided for irradiating the guide laser light having a predetermined focal distance, and the laser light emitting unit for guiding is for the detection laser light emitting unit.
  • the relative position in the irradiation direction of the guide laser beam may be determined in advance. In this way, the living body tissue can be irradiated with the detection laser beam in a predetermined irradiation range simply by aiming the guide laser beam at the site where the operator wants to treat.
  • FIG. 1 It is a whole block diagram which shows the surgical treatment apparatus which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view explaining the internal structure of the front-end
  • FIG. 8 shows the injection end of the surgical treatment apparatus of FIG. 7; It is a figure which shows an example of the irradiation range of the therapeutic laser beam and the detection laser beam which are inject
  • the surgical treatment apparatus 1 is, as shown in FIG. 1, a treatment laser beam (therapy energy), a detection laser beam, and a treatment laser beam from the tip that is held by the operator and made to face the living tissue X. It comprises a treatment probe 2 capable of emitting a guide laser beam, and an apparatus main body 3 connected to the treatment probe 2.
  • a treatment laser beam therapy energy
  • a detection laser beam detection laser beam
  • a treatment laser beam from the tip that is held by the operator and made to face the living tissue X.
  • It comprises a treatment probe 2 capable of emitting a guide laser beam, and an apparatus main body 3 connected to the treatment probe 2.
  • the device body 3 includes a therapeutic laser light source 4 for generating therapeutic laser light, a detection laser light source 5 for generating detection laser light, a guiding laser light source 6 for generating guiding laser light, and a treatment probe. 2.
  • a light detection unit 7 for detecting return light from the living tissue X collected by 2; a blood flow detection unit 8 for detecting the presence or absence of blood flow based on the return light detected by the light detection unit 7;
  • the laser light source 4 for treatment, the laser light source 5 for detection, and the light source control part (energy injection prohibition part) 9 which controls the laser light source 6 for guidance based on the operation in the probe 2 and the detection result by the blood flow detection part 8 ing.
  • the therapeutic laser light source 4 is adapted to generate therapeutic laser light having a wavelength of, for example, 2000 nm, which is selected from 400 to 600 nm, for example, 500 nm, or 1350 to 2000 nm.
  • the detection laser light source 5 is configured to generate a detection laser beam having a wavelength selected from 650 to 1300 nm.
  • the guide laser light source 6 is configured to generate guide laser light having a wavelength different from that of the treatment laser light and the detection laser light and in a visible light range that is easily visible to the naked eye.
  • the treatment laser light generated in the treatment laser light source 4, the detection laser light generated in the detection laser light source 5, and the guide laser light generated in the guide laser light source 6 are connected to the light sources 4, 5 and 6, respectively.
  • the light is output to the outside via an optical fiber (energy emitting unit, laser light irradiation unit for guiding, laser light irradiation unit for detection) 10 and 11.
  • the optical fibers 10 and 11 are coupled by an optical coupler 12 and guided to the treatment probe 2.
  • the light detection unit 7 is a photodetector that detects return light from the living tissue X guided by the light receiving optical fiber 18 having the incident end disposed forward on the tip of the treatment probe 2.
  • the blood flow detection unit 8 is configured to measure a blood flow value on the basis of the return light detected by the light detection unit 7 through a known judgment algorithm by the laser Doppler method.
  • the blood flow detection unit 8 is configured to output detection information when the blood flow value is equal to or more than a predetermined threshold.
  • the detection information may include information on the presence or absence of the blood vessel (see FIG. 4) Y and information indicating the thickness of the blood vessel Y, or may include identification information as to whether it is an artery or a vein. .
  • the light source control unit 9 will be described later.
  • the treatment probe 2 is provided with an objective lens 14 disposed at the tip of a cylindrical casing 13, and the emitting ends 10a of the optical fibers 10, 11 at positions spaced from the objective lens 14 11a is placed.
  • the therapeutic laser light generated in the therapeutic laser light source 4 and the guiding laser light generated in the guiding laser light source 6 are guided by the same first optical fiber 10.
  • the detection laser light generated in the detection laser light source 5 is guided by the second optical fiber 11 different from the first optical fiber 10.
  • the emission end 10a is disposed at a position closer to the objective lens 14 than the second optical fiber 11.
  • the treatment laser light and the guide laser light emitted from the emission end 10 a of the first optical fiber 10 are collected by the objective lens 14 at a predetermined focal length and are predetermined with respect to the tip of the treatment probe 2
  • a very small light spot A is focused and imaged on the surface of the living tissue X opposite to the spaced position.
  • the detection laser beam emitted from the emission end 11a of the second optical fiber 11 is collected by the objective lens 14 and a living body in a wider irradiation range B surrounding the position of the light spot A of the treatment laser beam.
  • the tissue X is irradiated.
  • the light spot (incidence range) A on the surface of the living tissue X of the treatment laser light varies depending on the type of living tissue X to be treated and the type of surgery, but a circle with a diameter of 0.1 to 0.5 mm It is set to.
  • the irradiation range B on the surface of the living tissue X of the detection laser beam is set to a circle having a diameter of 3.5 mm or more, centering on the center of the light spot A of the treatment laser beam.
  • the treatment probe 2 is provided with a grip 15 held by the operator, for example, for turning on and off the guide laser beam near a position where the operator's thumb will be placed when the grip 15 is held.
  • a first switch 16 and a second switch 17 for turning on and off the treatment laser beam and the detection laser beam are provided.
  • the light source control unit 9 operates the guide laser light source 6 to emit a guide laser beam.
  • the light source control unit 9 operates the detection laser light source 5 to emit detection laser light, and the blood flow detection unit 8.
  • the laser light for treatment is emitted by controlling the operation of the laser light source 4 for treatment according to the presence or absence of the detection information from.
  • the light source control unit 9 causes only the detection laser beam to be emitted, and when the detection information is output from the blood flow detection unit 8, the second switch 17 is turned on. Even in the state, by continuing to stop the operation of the therapeutic laser light source 4, the therapeutic laser light is prohibited from being emitted from the tip of the therapeutic probe 2. Further, the light source control unit 9 emits the treatment laser beam when the detection information is not output from the blood flow detection unit 8 in the state where the detection laser beam is emitted.
  • the operator holds the grip 15 of the treatment probe 2 and performs the surgical treatment.
  • the first switch 16 provided on the grip 15 is switched on.
  • the light source control unit 9 operates the guide laser light source 6 to emit the guide laser light from the tip of the treatment probe 2.
  • a light spot of the guide laser light is formed on the surface of the living tissue X.
  • the operator moves the treatment probe 2 to move the light spot of the guide laser light on the surface of the living tissue X so as to coincide with the portion to be treated.
  • the operator switches the second switch 17 to the on state.
  • the light source control unit 9 operates the detection laser light source 5 to emit the detection laser light from the tip of the treatment probe 2. And thereby, the living body tissue X is irradiated with the detection laser light in the irradiation range B surrounding the position where the light spot of the guide laser light is formed.
  • the detection laser light is irradiated onto the living tissue X in the set irradiation range B.
  • the detection laser light has a wavelength selected from 650 to 1300 nm, and this wavelength has a smaller light absorption coefficient with respect to the living tissue X than the therapeutic laser light, and thus reaches the deep part of the living tissue X be able to. That is, while the treatment laser beam is limitedly irradiated to the surface of the living tissue X, the detection laser beam is extended to a wide range in which the influence range C of the treatment laser beam is expanded outward in all directions.
  • the detection laser beam When the detection laser beam is irradiated to the living tissue X, the detection laser beam is incident on the living tissue X and scattered, and a part thereof is returned light and disposed at the tip of the treatment probe 2 The light is incident on the incident end of the light receiving optical fiber 18. The incident return light is guided to the light detection unit 7 through the light receiving optical fiber 18 and detected by the light detection unit 7.
  • the intensity information of the return light detected by the light detection unit 7 is sent to the blood flow detection unit 8, and the blood flow detection unit 8 measures a blood flow value through a determination algorithm by the laser Doppler method.
  • the blood flow detection unit 8 outputs detection information when the blood flow value is equal to or more than a predetermined threshold.
  • the emission of detection laser light to the detection of detection information is performed instantaneously.
  • the blood flow detection unit 8 When the measured blood flow rate is lower than the threshold, the blood flow detection unit 8 does not output anything, and the light source control unit 9 operates the therapeutic laser light source 4 to perform treatment. Laser light is emitted from the tip of the treatment probe 2 toward the living tissue X. At this time, as shown in FIG. 3, the light spot A of the therapeutic laser light is formed on the surface of the living tissue X, and the detecting laser light is applied to the living tissue X in an irradiation range B surrounding the periphery thereof.
  • the light source control unit 9 stops the operation of the therapeutic laser light source 4 and Laser light is prohibited from being emitted from the tip of the treatment probe 2 toward the living tissue X.
  • the blood vessel wall Y1 of the thick blood vessel Y and the irradiation range B of the detection laser light overlap, but a large blood flow value larger than the threshold is not measured, and the irradiation of the therapeutic laser light Not prohibited.
  • the region Y2 inside the blood vessel Y overlaps the irradiation range B of the detection laser light as shown in FIG. 5 by moving the treatment probe 2
  • the blood flow value is measured, and the blood flow value is a threshold When it becomes above, irradiation of the therapeutic laser beam is prohibited.
  • the irradiation range B of the detection laser beam is formed in a circular shape having a diameter of 3.5 mm or more. Even if the influence range C of the therapeutic laser light when the diameter is about 0.5 mm is a circle having a diameter of 2.5 mm, the irradiation range B is larger by a predetermined dimension (1.0 mm).
  • the irradiation range B of the detection laser beam having a width of 0.5 mm or more exists outside the influence range C.
  • the thick blood vessel wall has a thickness of about 0.5 mm, which may cause serious bleeding if it is cut
  • the blood vessel wall Y1 with a thickness of about 0.5 mm Before overlapping with the influence range C, the blood flow can be detected to prohibit the irradiation of the therapeutic laser light.
  • the influence range C of the therapeutic laser light is not a range to which the therapeutic laser light is directly irradiated, but a range in which thermal effects or tissue degeneration or the like may occur due to the irradiation of the therapeutic laser light.
  • the irradiation range B is set larger than the incident range A or the affected range C by a predetermined dimension, It is possible to prevent surgical treatment of the blood vessel wall Y1.
  • the blood vessel wall Y1 located around the blood flow is a therapeutic laser light when the blood flow value above the threshold value is measured by the irradiation of the detection laser light.
  • the blood vessel Y can be prevented from being affected by the irradiation of the therapeutic laser light before overlapping with the influence range C of the therapeutic laser light. That is, even if the blood vessels Y cross each other or have branches, none of the plurality of blood vessels Y traveling in different directions is affected by the irradiation of the therapeutic laser light. It has the advantage of being able to
  • the irradiation range B of the detection laser light may include a shape including a circle having a diameter of 3.5 mm or more, for example, another shape such as an ellipse or a polygon. it can. It may change suitably according to the thickness and the kind of blood vessel Y which want to detect instead of the shape and size of these irradiation ranges.
  • Efficiency can also be improved.
  • two switches 16 and 17 are provided on the treatment probe 2 and the first switch 16 is turned on to emit a guide laser beam, and the second switch 17 is turned on to emit a detection laser beam and a treatment laser beam.
  • the treatment laser light may be emitted by the first switch 16, and the guide laser light and the detection laser light may be emitted by the second switch 17.
  • a third switch (not shown) may be provided on the treatment probe 2 and irradiation of detection laser light may be performed by turning on the second switch 17, and treatment laser light may be irradiated by the third switch.
  • the light source control unit 9 does not emit the treatment laser light by itself, and the treatment laser according to the presence or absence of the detection information from the blood flow detection unit 8 The operation of the light source 4 is controlled.
  • the irradiation of the treatment laser light and the detection laser light is performed. It was decided to make the ranges A and B different.
  • the second optical fiber 11 may be disposed to guide a plurality of (for example, five) detection laser beams at intervals.
  • the laser light and the guide laser light are condensed on the surface of the living tissue X to form a small light spot A, and the detection laser light is diffused to surround the light spot A of the therapeutic laser light. Irradiation may be performed over a wide range (irradiation range) D.
  • the detection laser beams emitted from the five second optical fibers 11 are irradiated to five circular irradiation areas D overlapping each other as shown in FIG. As described above, it is preferable to be configured to include a circular irradiation range B having a diameter of 3.5 mm.
  • the distances of the emission ends 10a and 11a of the optical fibers 10 and 11 with respect to the objective lens 14 are made substantially equal to guide the treatment laser light.
  • a GRIN lens 22 may be disposed at the end of the light emitting first optical fiber 10 so that a small diameter light beam is emitted.
  • an optical element 23 such as a prism is disposed so that the center position of the detection laser light approaches the center position of the treatment laser light. It is also good. Also in this case, the same irradiation range B as in the case of adopting the configuration of FIG. 2 can be achieved.
  • the detection is performed by arranging the first optical fiber 10 for guiding the treatment laser light and the second optical fiber 11 for guiding the detection laser light as close as possible.
  • the central position of the laser light may be brought close to the central position of the therapeutic laser light.
  • the two optical fibers 10 and 11 are built in the housing 13 of the treatment probe 2 has been described, the two may be separately attachable and detachable.
  • the optical fiber for guiding the guiding laser light with the optical fiber 10 for guiding the therapeutic laser light, the guiding laser light irradiation part and the energy emitting part which is the therapeutic laser light irradiation part
  • the optical fiber 11 for guiding the detection laser light it may be common with the detection laser light irradiation unit, or another fiber may be used.
  • the guide laser light irradiation unit is visible light having a predetermined focal length, and at least the relative position in the irradiation direction of the laser light with respect to the detection laser light irradiation unit is It is preferable to be determined in advance.
  • the size is set so that the influence range C by the irradiation of the therapeutic laser light does not overlap the blood vessel wall Y1 when the blood flow is detected.
  • the size may be set so that the blood vessel wall Y1 does not overlap with the influence range C of the therapeutic laser light.
  • the probe which comprises an electrode is provided and the electric scalpel which performs a surgical procedure by electric energy is employ

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Laser Surgery Devices (AREA)

Abstract

In order to protect blood vessel walls from unintentional surgical treatment, this surgical treatment device (1) is provided with: an energy emission unit (10) for emitting therapeutic energy; a detection laser light irradiation unit (11) for emitting detection laser light; a light detection unit (7) for detecting return light returning from within a biological tissue (X) as a result of irradiation of the biological tissue (X) with the detection laser light by the detection laser light irradiation unit (11); and a blood flow detection unit (8) for detecting blood flow in the detection laser light-irradiated region within the biological tissue (X) using the return light detected by the light detection unit (7). The detection laser light-irradiated region is set to be larger than a region exposed to the therapeutic energy emitted from the energy emission unit (10).

Description

外科処置装置Surgical treatment device
 本発明は、外科処置装置に関するものである。 The present invention relates to a surgical device.
 生体組織の外科処置において、レーザドップラ法を用いて、生体組織の内側の脂肪等に隠れている血管の有無を判定し、術者に知らせる外科処置装置が知られている(例えば、特許文献1参照。)。 In surgical treatment of living tissue, there is known a surgical treatment apparatus which uses laser doppler to determine the presence or absence of a blood vessel hidden in fat or the like inside living tissue and informs the operator (for example, Patent Document 1) reference.).
WO2016/170897号公報WO 2016/170897
 しかしながら、レーザドップラ法は、生体組織内の血流を検出するものであるため、血流の有無の判定によって血管の有無を判定することはできるものの、血流の外側に存在する血管壁を検出することはできない。このため、検出された血流部分を回避して外科処置を行っていても、血流部分の極めて近くの生体組織に対する外科処置を行うと、血流の外側に存在する血管壁に対して外科処置が意図せず施されてしまう可能性がある。 However, since the laser Doppler method detects blood flow in living tissue, although the presence or absence of blood vessels can be determined by determining the presence or absence of blood flow, the blood vessel wall present outside the blood flow is detected. You can not do it. For this reason, even if the surgical procedure is performed while avoiding the detected blood flow portion, when the surgical procedure is performed on the living tissue very near the blood flow portion, the surgical procedure is performed on the blood vessel wall existing outside the blood flow. There is a possibility that the treatment will be applied unintentionally.
 本発明は、上述した事情に鑑みてなされたものであって、血管壁に対して意図しない外科処置が行われることを防止することができる外科処置装置を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a surgical treatment apparatus capable of preventing an unintended surgical treatment from being performed on a blood vessel wall.
 本発明の一態様は、治療用エネルギを射出するエネルギ射出部と、検知用レーザ光を照射する検知用レーザ光照射部と、該検知用レーザ光照射部により前記検知用レーザ光が生体組織に照射されることにより、前記生体組織内から戻る戻り光を検出する光検出部と、該光検出部により検出された前記戻り光を用いて、前記生体組織内の前記検知用レーザ光の照射範囲における血流を検知する血流検知部とを備え、前記検知用レーザ光の前記照射範囲が、前記エネルギ射出部から射出された前記治療用エネルギの入射範囲よりも大きく設定されている外科処置装置である。 According to one aspect of the present invention, the detection laser beam is applied to a living tissue by an energy emitting unit for emitting therapeutic energy, a detection laser beam irradiation unit for emitting a detection laser beam, and the detection laser beam irradiation unit. An irradiation range of the detection laser light in the living tissue using the light detecting unit that detects the returning light returning from the inside of the living tissue by being irradiated, and the returned light detected by the light detecting unit And a blood flow detection unit for detecting a blood flow in the surgical operation apparatus, wherein the irradiation range of the detection laser light is set larger than the incident range of the therapeutic energy emitted from the energy emission unit. It is.
 本態様によれば、検知用レーザ光照射部から射出された検知用レーザ光を生体組織に照射すると、生体組織内から戻る戻り光が光検出部により検出され、検出された戻り光を用いて生体組織内の検知用レーザ光の照射範囲における血流が血流検知部により検知される。一方、エネルギ射出部から治療用エネルギが射出されることにより、生体組織における治療用エネルギの入射範囲に治療を施すことができる。 According to this aspect, when the detection laser light emitted from the detection laser light irradiation unit is irradiated to the living tissue, the return light returning from the inside of the living tissue is detected by the light detection unit, and the detected return light is used. The blood flow detection unit detects a blood flow in the irradiation range of the detection laser light in the living tissue. On the other hand, the therapeutic energy is ejected from the energy ejection unit, whereby the treatment can be performed on the incident range of the therapeutic energy in the living tissue.
 この場合において、治療用エネルギの入射範囲よりも検知用レーザ光の照射範囲が大きく設定されているので、検知用レーザ光の照射により血流が検知された時点で、血流の周囲に位置する血管壁が治療用エネルギの入射範囲に重ならないようにして、血管壁に対して意図せず外科処置が行われることを防止することができる。 In this case, since the irradiation range of the detection laser beam is set larger than the incident range of the therapeutic energy, it is positioned around the blood flow when the blood flow is detected by the irradiation of the detection laser beam. The vessel wall can be prevented from overlapping the incident range of the therapeutic energy to prevent an unintentional surgical operation on the vessel wall.
 上記態様においては、前記検知用レーザ光の前記照射範囲が、前記エネルギ射出部から射出された前記治療用エネルギの影響範囲よりも所定寸法だけ大きく設定されていてもよい。
 このようにすることで、治療用エネルギの影響範囲よりも検知用レーザ光の照射範囲が大きく設定されているので、検知用レーザ光の照射により血流が検知された時点で、血流の周囲に位置する血管壁が治療用エネルギの影響範囲に重ならないようにして、血管壁に対して意図せず外科処置の影響が及ぶことを防止することができる。
In the above aspect, the irradiation range of the detection laser beam may be set larger than the influence range of the therapeutic energy emitted from the energy emission unit by a predetermined size.
By doing this, the irradiation range of the detection laser light is set larger than the influence range of the therapeutic energy. Therefore, when the blood flow is detected by the irradiation of the detection laser light, the periphery of the blood flow is detected. The vessel wall can be prevented from being unintentionally influenced by the surgical procedure by preventing the vessel wall located in the vessel from overlapping the range of influence of the therapeutic energy.
 また、上記態様においては、前記検知用レーザ光の前記照射範囲が、前記治療用エネルギの前記入射範囲の外側に全方位にわたって所定寸法だけ大きく設定されていてもよい。
 このようにすることで、検知用レーザ光の照射により血流が検知された時点で、常に治療用エネルギの入射範囲と血流との間に所定寸法だけ離間する差分を得ることができる。この差分を血管壁の厚さ寸法より大きく設定しておくことにより治療用エネルギの入射範囲に血管壁が重ならないようにして、血管壁に対して意図せず外科処置が行われることを防止することができる。
Further, in the above aspect, the irradiation range of the detection laser beam may be set larger by a predetermined dimension over all directions outside the incident range of the therapeutic energy.
By doing this, it is possible to obtain a difference which is always separated by a predetermined dimension between the incident range of the therapeutic energy and the blood flow when the blood flow is detected by the irradiation of the detection laser light. By setting this difference to be larger than the thickness dimension of the blood vessel wall, the blood vessel wall does not overlap with the incident range of the therapeutic energy, thereby preventing an unintentional surgical operation on the blood vessel wall. be able to.
 また、上記態様においては、前記検知用レーザ光の前記照射範囲が、前記治療用エネルギの前記影響範囲の外側に全方位にわたって所定寸法だけ大きく設定されていてもよい。
 このようにすることで、検知用レーザ光の照射により血流が検知された時点で、治療用エネルギの影響範囲と血流との間に所定寸法の差分を得ることができる。この差分を血管壁の厚さ寸法よりも大きく設定しておくことにより治療用エネルギの影響範囲に血管壁が重ならないようにして、血管壁に対して意図せず外科処置の影響が及ぶことを防止することができる。
Further, in the above aspect, the irradiation range of the detection laser beam may be set larger by a predetermined dimension over all directions outside the influence range of the therapeutic energy.
By doing this, when the blood flow is detected by the irradiation of the detection laser light, a difference of a predetermined size can be obtained between the affected range of the therapeutic energy and the blood flow. By setting this difference larger than the thickness dimension of the blood vessel wall, the blood vessel wall is unintentionally affected by the surgical treatment, so that the blood vessel wall does not overlap the affected range of the therapeutic energy. It can be prevented.
 また、上記態様においては、前記所定寸法が1mm以上であってもよい。
 切断された場合に重大な出血が懸念されるような太い血管の血管壁は0.5mm程度の厚さを有している。所定寸法を1mm以上とすることにより、血流検知部により血流が検知された時点で治療用エネルギの入射範囲に対する血管壁までの距離を十分に離しておくことができる。
In the above aspect, the predetermined dimension may be 1 mm or more.
The blood vessel wall of a thick blood vessel, which may cause serious bleeding if cut, has a thickness of about 0.5 mm. By setting the predetermined dimension to 1 mm or more, the distance from the blood vessel wall to the incident range of the therapeutic energy can be sufficiently separated when the blood flow is detected by the blood flow detection unit.
 また、上記態様においては、前記血流検知部により血流が検知されたときに前記エネルギ射出部による前記治療用エネルギの射出を禁止するエネルギ射出禁止部を備えていてもよい。
 このようにすることで、血流検知部により血流が検知された時点でエネルギ射出禁止部により治療用エネルギの射出が禁止されるので、術者が意図せず治療用エネルギの入射範囲を血管に近接させた場合でも入射範囲が血管壁に重なる前に治療用エネルギの射出が禁止され、血管壁に対して意図せず外科処置が行われることを、より確実に防止することができる。
In the above-mentioned mode, it may have an energy injection prohibition part which forbids injection of the above-mentioned therapeutic energy by the above-mentioned energy ejection part, when blood flow is detected by the above-mentioned blood flow detection part.
In this way, when the blood flow is detected by the blood flow detection unit, the energy injection prohibiting unit prohibits the injection of the therapeutic energy, so the operator does not intend and the incident range of the therapeutic energy is Even if the blood vessel wall is brought close to the blood vessel wall, the emission of therapeutic energy is prohibited before the incident area overlaps the blood vessel wall, and it is possible to more reliably prevent an unintended surgical operation on the blood vessel wall.
 また、上記態様においては、前記エネルギ射出禁止部は、前記血流検知部により検知された血流が所定の閾値以上である場合に前記エネルギ射出部による前記治療用エネルギの射出を禁止してもよい。
 切断された場合に重大な出血が懸念されるような太い血管には大きな血流がある。
 このようにすることで、血流が所定の閾値以上の太い血管が検知された場合に、エネルギ射出部による治療用エネルギの射出が禁止されるので、太い血管に対して意図せず外科処置が行われることを、より確実に防止することができる。
Further, in the above aspect, the energy injection prohibition unit prohibits the injection of the therapeutic energy by the energy injection unit when the blood flow detected by the blood flow detection unit is equal to or more than a predetermined threshold. Good.
There are large blood flows in thick blood vessels where serious bleeding may be a concern when cut.
In this way, when a thick blood vessel having a blood flow equal to or greater than a predetermined threshold value is detected, the treatment of the thick blood vessel is unintentionally performed because the injection of therapeutic energy by the energy ejection unit is prohibited. What is done can be prevented more reliably.
 また、上記態様においては、前記エネルギ射出部が、治療用レーザ光を射出してもよい。
 また、上記態様においては、前記検知用レーザ光が、前記治療用レーザ光よりも前記生体組織に対する吸光係数が小さい波長を有していてもよい。
 このようにすることで、検知用レーザ光を治療用レーザ光よりも生体組織の深部に到達させることができ、治療用レーザ光の照射範囲を含むより広い範囲に検知用レーザ光を照射することができる。
In the above aspect, the energy emitting unit may emit a therapeutic laser beam.
Further, in the above aspect, the detection laser light may have a wavelength smaller in absorption coefficient with respect to the living tissue than the treatment laser light.
By doing this, the detection laser beam can be made to reach a deeper part of the living tissue than the treatment laser beam, and the detection laser beam can be irradiated to a wider range including the irradiation range of the treatment laser beam. Can.
 また、上記態様においては、前記検知用レーザ光の前記生体組織表面における前記照射範囲が、前記治療用レーザ光の前記生体組織表面における前記照射範囲を中心とする直径3.5mm以上の円を含む形状を有していてもよい。
 このようにすることで、治療用レーザ光の照射範囲の直径が0.5mmである場合に、その外側に全方位にわたって広がる幅1mmの影響範囲に対し、さらに外側に幅0.5mmの範囲以上に広がるように検知用レーザ光の照射範囲を設定することができ、厚さ0.5mmの血管壁を有する血管に治療用レーザ光の影響範囲が重なるのを防止することができる。
In the above aspect, the irradiation range on the living tissue surface of the detection laser beam includes a circle having a diameter of 3.5 mm or more centered on the irradiation range on the living tissue surface of the therapeutic laser beam. It may have a shape.
By doing this, when the diameter of the irradiation range of the therapeutic laser light is 0.5 mm, the range of 0.5 mm or more further outward with respect to the influence range of 1 mm in width spreading over all directions in the outside It is possible to set the irradiation range of the detection laser beam so as to widen, and to prevent overlapping of the influence range of the therapeutic laser beam on a blood vessel having a 0.5 mm thick blood vessel wall.
 また、上記態様においては、所定の焦点距離を有するガイド用レーザ光を照射するガイド用レーザ光照射部を備え、該ガイド用レーザ光照射部は、前記検知用レーザ光照射部に対して、前記ガイド用レーザ光の照射方向における相対的位置が予め決まっているように構成してもよい。
 このようにすることで、術者が治療を行いたい部位にガイド用レーザ光を一致するように照準を合わせるだけで、検知用レーザ光を所定の照射範囲で生体組織に照射させることができる。
Further, in the above aspect, the laser light emitting unit for guiding is provided for irradiating the guide laser light having a predetermined focal distance, and the laser light emitting unit for guiding is for the detection laser light emitting unit. The relative position in the irradiation direction of the guide laser beam may be determined in advance.
In this way, the living body tissue can be irradiated with the detection laser beam in a predetermined irradiation range simply by aiming the guide laser beam at the site where the operator wants to treat.
 本発明によれば、血管壁に対して意図しない外科処置が行われることを防止することができるという効果を奏する。 According to the present invention, it is possible to prevent an unintended surgical procedure from being performed on a blood vessel wall.
本発明の一実施形態に係る外科処置装置を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows the surgical treatment apparatus which concerns on one Embodiment of this invention. 図1の外科処置装置の処置用プローブの先端部の内部構造と射出されるレーザ光を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the internal structure of the front-end | tip part of the treatment probe of the surgical treatment apparatus of FIG. 1, and the laser beam inject | emitted. 図1の外科処置装置の処置用プローブからの治療用レーザ光および検知用レーザ光を血管から離れた箇所に照射した状態を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the state which irradiated the laser beam for medical treatment from the treatment probe of the surgical treatment apparatus of FIG. 1, and the laser beam for detection to the location away from the blood vessel. 図3の状態から検知用レーザ光が血管壁に重なる位置まで照射領域を近接させた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which made the irradiation area | region approach from the state of FIG. 3 to the position where the laser beam for detection overlaps with the blood-vessel wall. 図4の状態から検知用レーザ光により血流が検出される位置まで照射領域を近接させた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which made the irradiation area | region approach from the state of FIG. 4 to the position where a blood flow is detected by the detection laser beam. 図1の外科処置装置により、分岐を有する血管周りの生体組織を処置する場合を説明する図である。It is a figure explaining the case where the biological tissue around the blood vessel which has a branch is treated by the surgical treatment apparatus of FIG. 図2の外科処置装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the surgical treatment apparatus of FIG. 図7の外科処置装置の射出端を示す図である。FIG. 8 shows the injection end of the surgical treatment apparatus of FIG. 7; 図7の外科処置装置により射出される治療用レーザ光および検知用レーザ光の照射範囲の一例を示す図である。It is a figure which shows an example of the irradiation range of the therapeutic laser beam and the detection laser beam which are inject | emitted by the surgical treatment apparatus of FIG. 図2の外科処置装置の他の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other modification of the surgical treatment apparatus of FIG. 図2の外科処置装置の他の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other modification of the surgical treatment apparatus of FIG.
 本発明の一実施形態に係る外科処置装置1について、図面を参照して以下に説明する。
 本実施形態に係る外科処置装置1は、図1に示されるように、術者により保持されて、生体組織Xに対向させられる先端から治療用レーザ光(治療用エネルギ)、検知用レーザ光およびガイド用レーザ光を射出可能な処置用プローブ2と、該処置用プローブ2に接続された装置本体3とを備えている。
A surgical treatment apparatus 1 according to an embodiment of the present invention will be described below with reference to the drawings.
The surgical treatment apparatus 1 according to the present embodiment is, as shown in FIG. 1, a treatment laser beam (therapy energy), a detection laser beam, and a treatment laser beam from the tip that is held by the operator and made to face the living tissue X. It comprises a treatment probe 2 capable of emitting a guide laser beam, and an apparatus main body 3 connected to the treatment probe 2.
 装置本体3は、治療用レーザ光を発生する治療用レーザ光源4と、検知用レーザ光を発生する検知用レーザ光源5と、ガイド用レーザ光を発生するガイド用レーザ光源6と、処置用プローブ2により集光された生体組織Xからの戻り光を検出する光検出部7と、光検出部7により検出された戻り光に基づいて血流の有無を検知する血流検知部8と、処置用プローブ2における操作および血流検知部8による検知結果に基づいて治療用レーザ光源4、検知用レーザ光源5およびガイド用レーザ光源6を制御する光源制御部(エネルギ射出禁止部)9とを備えている。 The device body 3 includes a therapeutic laser light source 4 for generating therapeutic laser light, a detection laser light source 5 for generating detection laser light, a guiding laser light source 6 for generating guiding laser light, and a treatment probe. 2. A light detection unit 7 for detecting return light from the living tissue X collected by 2; a blood flow detection unit 8 for detecting the presence or absence of blood flow based on the return light detected by the light detection unit 7; The laser light source 4 for treatment, the laser light source 5 for detection, and the light source control part (energy injection prohibition part) 9 which controls the laser light source 6 for guidance based on the operation in the probe 2 and the detection result by the blood flow detection part 8 ing.
 治療用レーザ光源4は、400~600nmから選ばれる、例えば、500nm、あるいは、1350~2000nmから選ばれる、例えば、2000nmの波長を有する治療用レーザ光を発生するようになっている。
 検知用レーザ光源5は、650~1300nmから選ばれる波長を有する検知用レーザ光を発生するようになっている。
 ガイド用レーザ光源6は、治療用レーザ光および検知用レーザ光とは異なる波長で、かつ、肉眼で視認し易い可視光域に波長を有するガイド用レーザ光を発生するようになっている。
The therapeutic laser light source 4 is adapted to generate therapeutic laser light having a wavelength of, for example, 2000 nm, which is selected from 400 to 600 nm, for example, 500 nm, or 1350 to 2000 nm.
The detection laser light source 5 is configured to generate a detection laser beam having a wavelength selected from 650 to 1300 nm.
The guide laser light source 6 is configured to generate guide laser light having a wavelength different from that of the treatment laser light and the detection laser light and in a visible light range that is easily visible to the naked eye.
 治療用レーザ光源4において発生した治療用レーザ光、検知用レーザ光源5において発生した検知用レーザ光およびガイド用レーザ光源6において発生したガイド用レーザ光は、それぞれ光源4,5,6に接続する光ファイバ(エネルギ射出部、ガイド用レーザ光照射部、検知用レーザ光照射部)10,11を介して外部に出力される。各光ファイバ10,11は、光カプラ12によって結合されて処置用プローブ2に導かれるようになっている。 The treatment laser light generated in the treatment laser light source 4, the detection laser light generated in the detection laser light source 5, and the guide laser light generated in the guide laser light source 6 are connected to the light sources 4, 5 and 6, respectively. The light is output to the outside via an optical fiber (energy emitting unit, laser light irradiation unit for guiding, laser light irradiation unit for detection) 10 and 11. The optical fibers 10 and 11 are coupled by an optical coupler 12 and guided to the treatment probe 2.
 光検出部7は、処置用プローブ2の先端に前方に向けて入射端を配置した受光用光ファイバ18により導光されてきた生体組織Xからの戻り光を検出するフォトディテクタである。
 血流検知部8は、光検出部7により検出された戻り光に基づいて、公知のレーザドップラ法による判定アルゴリズムを経て、血流値を測定するようになっている。血流検知部8は、血流値が予め設定された所定の閾値以上である場合に、検知情報を出力するようになっている。ここで、検知情報には血管(図4参照)Yの有無の情報や血管Yの太さを示す情報が含まれていてもよいし、動脈か静脈かの識別情報が含まれていてもよい。
 光源制御部9については後述する。
The light detection unit 7 is a photodetector that detects return light from the living tissue X guided by the light receiving optical fiber 18 having the incident end disposed forward on the tip of the treatment probe 2.
The blood flow detection unit 8 is configured to measure a blood flow value on the basis of the return light detected by the light detection unit 7 through a known judgment algorithm by the laser Doppler method. The blood flow detection unit 8 is configured to output detection information when the blood flow value is equal to or more than a predetermined threshold. Here, the detection information may include information on the presence or absence of the blood vessel (see FIG. 4) Y and information indicating the thickness of the blood vessel Y, or may include identification information as to whether it is an artery or a vein. .
The light source control unit 9 will be described later.
 処置用プローブ2は、筒状の筐体13の先端に配置された対物レンズ14を備えるとともに、該対物レンズ14に対して間隔をあけた位置に上記各光ファイバ10,11の射出端10a,11aを配置している。例えば、治療用レーザ光源4において発生した治療用レーザ光およびガイド用レーザ光源6において発生したガイド用レーザ光は、同一の第1光ファイバ10によって導光されるようになっている。また、検知用レーザ光源5において発生した検知用レーザ光は第1光ファイバ10とは異なる第2光ファイバ11によって導光されるようになっている。 The treatment probe 2 is provided with an objective lens 14 disposed at the tip of a cylindrical casing 13, and the emitting ends 10a of the optical fibers 10, 11 at positions spaced from the objective lens 14 11a is placed. For example, the therapeutic laser light generated in the therapeutic laser light source 4 and the guiding laser light generated in the guiding laser light source 6 are guided by the same first optical fiber 10. Further, the detection laser light generated in the detection laser light source 5 is guided by the second optical fiber 11 different from the first optical fiber 10.
 第1光ファイバ10は、図2に示されるように、第2光ファイバ11よりも対物レンズ14に近接した位置に射出端10aを配置している。その結果、第1光ファイバ10の射出端10aから射出された治療用レーザ光およびガイド用レーザ光は、対物レンズ14によって所定の焦点距離において集光されて処置用プローブ2の先端に対して所定間隔をあけた位置に対向する生体組織Xの表面に極めて小さい光スポットAで集光させられ結像するようになっている。
 一方、第2光ファイバ11の射出端11aから射出された検知用レーザ光は、対物レンズ14によって集光されて、治療用レーザ光の光スポットAの位置を取り囲む、より広い照射範囲Bの生体組織Xに照射されるようになっている。
In the first optical fiber 10, as shown in FIG. 2, the emission end 10a is disposed at a position closer to the objective lens 14 than the second optical fiber 11. As a result, the treatment laser light and the guide laser light emitted from the emission end 10 a of the first optical fiber 10 are collected by the objective lens 14 at a predetermined focal length and are predetermined with respect to the tip of the treatment probe 2 A very small light spot A is focused and imaged on the surface of the living tissue X opposite to the spaced position.
On the other hand, the detection laser beam emitted from the emission end 11a of the second optical fiber 11 is collected by the objective lens 14 and a living body in a wider irradiation range B surrounding the position of the light spot A of the treatment laser beam. The tissue X is irradiated.
 さらに具体的には、治療用レーザ光の生体組織X表面における光スポット(入射範囲)Aは、処置すべき生体組織Xや外科手術の種類によって異なるが、直径0.1~0.5mmの円形に設定されている。
 一方、検知用レーザ光の生体組織X表面における照射範囲Bは、治療用レーザ光の光スポットAの中心を中心として、直径3.5mm以上の大きさの円形に設定されている。
More specifically, the light spot (incidence range) A on the surface of the living tissue X of the treatment laser light varies depending on the type of living tissue X to be treated and the type of surgery, but a circle with a diameter of 0.1 to 0.5 mm It is set to.
On the other hand, the irradiation range B on the surface of the living tissue X of the detection laser beam is set to a circle having a diameter of 3.5 mm or more, centering on the center of the light spot A of the treatment laser beam.
 処置用プローブ2には、術者により保持されるグリップ15が備えられ、例えば、グリップ15を把持したときに術者の親指が配置されることとなる位置近傍にガイド用レーザ光をオンオフする第1スイッチ16と、治療用レーザ光および検知用レーザ光をオンオフする第2スイッチ17とが備えられている。 The treatment probe 2 is provided with a grip 15 held by the operator, for example, for turning on and off the guide laser beam near a position where the operator's thumb will be placed when the grip 15 is held. A first switch 16 and a second switch 17 for turning on and off the treatment laser beam and the detection laser beam are provided.
 光源制御部9は、処置用プローブ2に備えられた第1スイッチ16がオンに切り替えられると、ガイド用レーザ光源6を作動させてガイド用レーザ光を射出させるようになっている。 When the first switch 16 provided in the treatment probe 2 is switched on, the light source control unit 9 operates the guide laser light source 6 to emit a guide laser beam.
 また、光源制御部9は、処置用プローブ2に備えられた第2スイッチ17がオンに切り替えられると、検知用レーザ光源5を作動させて検知用レーザ光を射出させると共に、血流検知部8からの検知情報の有無に応じて治療用レーザ光源4の作動を制御することで治療用レーザ光を射出するようになっている。 Further, when the second switch 17 provided in the treatment probe 2 is switched on, the light source control unit 9 operates the detection laser light source 5 to emit detection laser light, and the blood flow detection unit 8. The laser light for treatment is emitted by controlling the operation of the laser light source 4 for treatment according to the presence or absence of the detection information from.
 ここで、光源制御部9は、第2スイッチ17がオンに切り替えられると、検知用レーザ光のみを射出させ、血流検知部8から検知情報が出力された場合に、第2スイッチ17がオン状態であっても、治療用レーザ光源4の作動を停止し続けることで、治療用レーザ光が処置用プローブ2の先端から射出されるのを禁止するようになっている。また、光源制御部9は、検知用レーザ光が射出された状態で血流検知部8から検知情報が出力されなかった場合に、治療用レーザ光を射出するようになっている。 Here, when the second switch 17 is switched on, the light source control unit 9 causes only the detection laser beam to be emitted, and when the detection information is output from the blood flow detection unit 8, the second switch 17 is turned on. Even in the state, by continuing to stop the operation of the therapeutic laser light source 4, the therapeutic laser light is prohibited from being emitted from the tip of the therapeutic probe 2. Further, the light source control unit 9 emits the treatment laser beam when the detection information is not output from the blood flow detection unit 8 in the state where the detection laser beam is emitted.
 このように構成された本実施形態に係る外科処置装置1を用いて生体組織Xに対し外科処置を行うには、術者が処置用プローブ2のグリップ15を把持して、外科処置を行う生体組織Xの表面に処置用プローブ2の先端を対向させた状態で、グリップ15に設けられた第1スイッチ16をオン状態に切り替える。これにより、光源制御部9がガイド用レーザ光源6を作動させて、処置用プローブ2の先端からガイド用レーザ光を射出させる。これにより、ガイド用レーザ光の光スポットが生体組織Xの表面に形成される。 In order to perform the surgical treatment on the living tissue X using the surgical treatment apparatus 1 according to the present embodiment configured as described above, the operator holds the grip 15 of the treatment probe 2 and performs the surgical treatment. With the tip of the treatment probe 2 facing the surface of the tissue X, the first switch 16 provided on the grip 15 is switched on. Thereby, the light source control unit 9 operates the guide laser light source 6 to emit the guide laser light from the tip of the treatment probe 2. Thereby, a light spot of the guide laser light is formed on the surface of the living tissue X.
 そして、術者が処置用プローブ2を移動させて、ガイド用レーザ光の光スポットを生体組織Xの表面において移動させ治療を行いたい部位に一致させる。この状態で、術者が、第2スイッチ17をオン状態に切り替える。 Then, the operator moves the treatment probe 2 to move the light spot of the guide laser light on the surface of the living tissue X so as to coincide with the portion to be treated. In this state, the operator switches the second switch 17 to the on state.
 これにより、光源制御部9が検知用レーザ光源5を作動させて、処置用プローブ2の先端から検知用レーザ光を射出させる。そして、これにより、ガイド用レーザ光の光スポットが形成されていた位置の周囲を取り囲む照射範囲Bで検知用レーザ光が生体組織Xに照射される。ここで、ガイド用レーザ光の光スポットは、上述したように所定の焦点距離で結像しているので、検知用レーザ光は設定された照射範囲Bで生体組織Xに照射される。 As a result, the light source control unit 9 operates the detection laser light source 5 to emit the detection laser light from the tip of the treatment probe 2. And thereby, the living body tissue X is irradiated with the detection laser light in the irradiation range B surrounding the position where the light spot of the guide laser light is formed. Here, since the light spot of the guide laser light is imaged at a predetermined focal length as described above, the detection laser light is irradiated onto the living tissue X in the set irradiation range B.
 ここで、検知用レーザ光は、650~1300nmから選ばれる波長を有しており、この波長は、治療用レーザ光よりも生体組織Xに対する吸光係数が小さいので、生体組織Xの深部まで進達させることができる。すなわち、治療用レーザ光が生体組織Xの表面に限定的に照射されるのに対し、検知用レーザ光は、治療用レーザ光の影響範囲Cを全方位にわたって外側に広げた広い範囲に進達させられる。 Here, the detection laser light has a wavelength selected from 650 to 1300 nm, and this wavelength has a smaller light absorption coefficient with respect to the living tissue X than the therapeutic laser light, and thus reaches the deep part of the living tissue X be able to. That is, while the treatment laser beam is limitedly irradiated to the surface of the living tissue X, the detection laser beam is extended to a wide range in which the influence range C of the treatment laser beam is expanded outward in all directions. Be
 検知用レーザ光が生体組織Xに照射されると、検知用レーザ光が生体組織X内に入射されて散乱し、その一部が戻り光となって処置用プローブ2の先端に配置されている受光用光ファイバ18の入射端に入射する。入射した戻り光は受光用光ファイバ18を介して光検出部7まで導光され、光検出部7により検出される。 When the detection laser beam is irradiated to the living tissue X, the detection laser beam is incident on the living tissue X and scattered, and a part thereof is returned light and disposed at the tip of the treatment probe 2 The light is incident on the incident end of the light receiving optical fiber 18. The incident return light is guided to the light detection unit 7 through the light receiving optical fiber 18 and detected by the light detection unit 7.
 光検出部7により検出された戻り光の強度情報は血流検知部8に送られて、血流検知部8において、レーザドップラ法による判定アルゴリズムを経て、血流値が測定される。血流検知部8は、血流値が予め設定された所定の閾値以上である場合に、検知情報を出力する。検知用レーザ光の射出から検知情報の検知までは瞬時に行われる。 The intensity information of the return light detected by the light detection unit 7 is sent to the blood flow detection unit 8, and the blood flow detection unit 8 measures a blood flow value through a determination algorithm by the laser Doppler method. The blood flow detection unit 8 outputs detection information when the blood flow value is equal to or more than a predetermined threshold. The emission of detection laser light to the detection of detection information is performed instantaneously.
 そして、測定された血流量が閾値よりも低かった場合には、血流検知部8から何も出力がされず、これにより、光源制御部9は、治療用レーザ光源4を作動させて、治療用レーザ光を処置用プローブ2の先端から生体組織Xに向かって射出させる。このとき、図3に示されるように、治療用レーザ光の光スポットAが生体組織Xの表面に形成され、その周囲を取り囲む照射範囲Bで検知用レーザ光が生体組織Xに照射される。これに対し、測定された血流量が閾値以上であることを示す検知情報が血流検知部8から出力されると、光源制御部9は、治療用レーザ光源4の作動を停止し、治療用レーザ光が処置用プローブ2の先端から生体組織Xに向かって射出されることを禁止する。 When the measured blood flow rate is lower than the threshold, the blood flow detection unit 8 does not output anything, and the light source control unit 9 operates the therapeutic laser light source 4 to perform treatment. Laser light is emitted from the tip of the treatment probe 2 toward the living tissue X. At this time, as shown in FIG. 3, the light spot A of the therapeutic laser light is formed on the surface of the living tissue X, and the detecting laser light is applied to the living tissue X in an irradiation range B surrounding the periphery thereof. On the other hand, when detection information indicating that the measured blood flow rate is equal to or greater than the threshold is output from the blood flow detection unit 8, the light source control unit 9 stops the operation of the therapeutic laser light source 4 and Laser light is prohibited from being emitted from the tip of the treatment probe 2 toward the living tissue X.
 図4の状態では、太い血管Yの血管壁Y1と検知用レーザ光の照射範囲Bとが重なっているが、閾値以上の大きな血流値は測定されておらず、治療用レーザ光の照射は禁止されない。一方、処置用プローブ2を移動させることにより、図5に示されるように、検知用レーザ光の照射範囲Bに血管Y内部の領域Y2が重なると血流値が測定され、血流値が閾値以上となった場合には、治療用レーザ光の照射が禁止される。 In the state of FIG. 4, the blood vessel wall Y1 of the thick blood vessel Y and the irradiation range B of the detection laser light overlap, but a large blood flow value larger than the threshold is not measured, and the irradiation of the therapeutic laser light Not prohibited. On the other hand, when the region Y2 inside the blood vessel Y overlaps the irradiation range B of the detection laser light as shown in FIG. 5 by moving the treatment probe 2, the blood flow value is measured, and the blood flow value is a threshold When it becomes above, irradiation of the therapeutic laser beam is prohibited.
 この場合において、本実施形態に係る外科処置装置1によれば、検知用レーザ光の照射範囲Bが、3.5mm以上の直径の円形に形成されているので、治療用レーザ光の入射範囲Aが直径0.5mm程度である場合の治療用レーザ光の影響範囲Cが直径2.5mmの円形であっても、所定寸法(1.0mm)だけ照射範囲Bの方が大きい。 In this case, according to the surgical treatment apparatus 1 according to the present embodiment, the irradiation range B of the detection laser beam is formed in a circular shape having a diameter of 3.5 mm or more. Even if the influence range C of the therapeutic laser light when the diameter is about 0.5 mm is a circle having a diameter of 2.5 mm, the irradiation range B is larger by a predetermined dimension (1.0 mm).
 その結果、その影響範囲Cの外側には、0.5mm以上の幅の検知用レーザ光の照射範囲Bが存在する。切断された場合に重大な出血が懸念されるような太い血管の血管壁は0.5mm程度の厚さを有しているので、厚さ0.5mm程度の血管壁Y1が治療用レーザ光の影響範囲Cに重なる前に、血流を検出して治療用レーザ光の照射を禁止することができる。 As a result, the irradiation range B of the detection laser beam having a width of 0.5 mm or more exists outside the influence range C. Because the thick blood vessel wall has a thickness of about 0.5 mm, which may cause serious bleeding if it is cut, the blood vessel wall Y1 with a thickness of about 0.5 mm Before overlapping with the influence range C, the blood flow can be detected to prohibit the irradiation of the therapeutic laser light.
 ここで治療用レーザ光の影響範囲Cとは、治療用レーザ光が直接照射される範囲ではないが、その周囲において、治療用レーザ光の照射による熱影響あるいは組織の変性等が発生し得る範囲を示す。ここで、治療用エネルギの入射範囲Aまたは影響範囲Cが上述した大きさよりも小さい場合であっても、これら入射範囲Aまたは影響範囲Cよりも照射範囲Bを所定寸法だけ大きく設定することで、血管壁Y1を外科処置するのを防止することができる。 Here, the influence range C of the therapeutic laser light is not a range to which the therapeutic laser light is directly irradiated, but a range in which thermal effects or tissue degeneration or the like may occur due to the irradiation of the therapeutic laser light. Indicates Here, even if the incident range A or the affected range C of the therapeutic energy is smaller than the above-described size, the irradiation range B is set larger than the incident range A or the affected range C by a predetermined dimension, It is possible to prevent surgical treatment of the blood vessel wall Y1.
 すなわち、本実施形態に係る外科処置装置1によれば、検知用レーザ光の照射により閾値以上の血流値が測定された時点で、血流の周囲に位置する血管壁Y1が治療用レーザ光の影響範囲Cに重ならないようにして、血管壁Y1に対して意図せず外科処置の影響が及ぶことを防止することができるという利点がある。 That is, according to the surgical treatment apparatus 1 according to the present embodiment, the blood vessel wall Y1 located around the blood flow is a therapeutic laser light when the blood flow value above the threshold value is measured by the irradiation of the detection laser light. There is an advantage that it is possible to prevent unintentional influence of the surgical treatment on the blood vessel wall Y1 by not overlapping the influence range C of.
 例えば、検知用レーザ光の照射により閾値以上の血流値が測定された時点で、治療用レーザ光の照射を禁止する制御により、図6に示されるように、血流が存在する領域Y2としての血流路だけではなく、血管壁Y1に相当する領域についても治療用レーザ光の照射による影響を受けずに保護される。そして、それ以外のハッチングを付した領域については、術者が移動させる処置用プローブ2の動きに沿って外科処置が行われる。 For example, as shown in FIG. 6, as a region Y2 where blood flow exists as shown in FIG. 6, by the control to prohibit the irradiation of the treatment laser light when the blood flow value above the threshold is measured by the irradiation of the detection laser light. Not only the blood flow channel but also the region corresponding to the blood vessel wall Y1 is protected without being affected by the irradiation of the therapeutic laser light. Then, for the other hatched areas, the surgical treatment is performed along the movement of the treatment probe 2 moved by the operator.
 ここで、治療用レーザ光の影響範囲Cの外側の全方位に亘って検知用レーザ光の照射による血流の検知が行われるので、術者が処置用プローブ2をどの方向に移動させたとしても、血管Yが治療用レーザ光の影響範囲Cに対して重なる前に治療用レーザ光の照射による影響を受けないようにすることができる。すなわち、血管Yどうしが交差していたり分岐を有していたりしても、異なる方向に走行する複数の血管Yのいずれについても、治療用レーザ光の照射による影響を受けないようにすることができるという利点がある。 Here, since the detection of blood flow is performed by the irradiation of the detection laser light over all directions outside the influence range C of the treatment laser light, it is assumed that the operator moves the treatment probe 2 in any direction. Also, the blood vessel Y can be prevented from being affected by the irradiation of the therapeutic laser light before overlapping with the influence range C of the therapeutic laser light. That is, even if the blood vessels Y cross each other or have branches, none of the plurality of blood vessels Y traveling in different directions is affected by the irradiation of the therapeutic laser light. It has the advantage of being able to
 したがって、術者が血管Yの有無の判定結果をその都度確認したり検知情報に応じて操作ボタンを操作して頻繁に外科処置を中断したりするような煩わしい作業を行う必要がなく、報知された判定結果に対応しないなどの人為的なミスを防止することができる。 Therefore, there is no need for the operator to check the determination result of the presence or absence of the blood vessel Y each time, or to perform troublesome operations such as frequently interrupting the surgical operation by operating the operation button according to the detection information. It is possible to prevent human error such as not corresponding to the judgment result.
 なお、本実施形態に係る外科処置装置1においては、検知用レーザ光の照射範囲Bを直径3.5mm以上の円形を含む形状、例えば、楕円や多角形のような他の形状を含むことができる。これら照射範囲の形状や寸法に代えて、検出したい血管Yの太さや種類に応じて、適宜変更することにしてもよい。例えば、検知用レーザ光の照射範囲Bを、検知したい血管が2本以上含まれない設定(例えば直径4.0mm未満の円形)にすることで、意図しない外科処置を防止しながら、外科処置の効率も向上させることができる。 In the surgical treatment apparatus 1 according to the present embodiment, the irradiation range B of the detection laser light may include a shape including a circle having a diameter of 3.5 mm or more, for example, another shape such as an ellipse or a polygon. it can. It may change suitably according to the thickness and the kind of blood vessel Y which want to detect instead of the shape and size of these irradiation ranges. For example, by setting the irradiation range B of the detection laser beam to a setting that does not include two or more blood vessels to be detected (for example, a circle having a diameter of less than 4.0 mm) Efficiency can also be improved.
 また、処置用プローブ2に2つのスイッチ16,17を設け、第1スイッチ16のオンによりガイド用レーザ光を照射させ、第2スイッチ17のオンにより検知用レーザ光および治療用レーザ光を照射させることとしたが、これに代えて、第1スイッチ16により治療用レーザ光、第2スイッチ17によりガイド用レーザ光および検知用レーザ光をそれぞれ照射させることにしてもよい。 Further, two switches 16 and 17 are provided on the treatment probe 2 and the first switch 16 is turned on to emit a guide laser beam, and the second switch 17 is turned on to emit a detection laser beam and a treatment laser beam. However, instead of this, the treatment laser light may be emitted by the first switch 16, and the guide laser light and the detection laser light may be emitted by the second switch 17.
 また、処置用プローブ2に第3スイッチ(図示略)を設け、第2スイッチ17のオンにより検知用レーザ光を照射させると共に、第3スイッチにより治療用レーザ光を照射させることにしてもよい。この場合、光源制御部9は、たとえ第3スイッチがオンに切り替えられたとしても、それだけでは治療用レーザ光を射出せず、血流検知部8からの検知情報の有無に応じて治療用レーザ光源4の作動を制御するようになっている。 In addition, a third switch (not shown) may be provided on the treatment probe 2 and irradiation of detection laser light may be performed by turning on the second switch 17, and treatment laser light may be irradiated by the third switch. In this case, even if the third switch is turned on, the light source control unit 9 does not emit the treatment laser light by itself, and the treatment laser according to the presence or absence of the detection information from the blood flow detection unit 8 The operation of the light source 4 is controlled.
 また、処置用プローブ2の筐体13内において、対物レンズ14と各光ファイバ10,11の射出端10a,11aとの距離を異ならせることにより、治療用レーザ光と検知用レーザ光との照射範囲A,Bを異ならせることとした。これに代えて、図7および図8に示されるように、処置用プローブ2の先端に、治療用レーザ光およびガイド用レーザ光を導光する第1光ファイバ10と、その周囲に周方向に間隔をあけて複数(例えば、5個)の検知用レーザ光を導光する第2光ファイバ11を配置してもよい。 Further, by making the distances between the objective lens 14 and the emitting ends 10a and 11a of the optical fibers 10 and 11 different in the housing 13 of the treatment probe 2, the irradiation of the treatment laser light and the detection laser light is performed. It was decided to make the ranges A and B different. Instead of this, as shown in FIGS. 7 and 8, the first optical fiber 10 for guiding the treatment laser light and the guide laser light to the tip of the treatment probe 2 and the circumferential direction around it The second optical fiber 11 may be disposed to guide a plurality of (for example, five) detection laser beams at intervals.
 この場合には、対物レンズ14に代えて設けられた各光ファイバ10,11の射出端10a,11aに配置する光学系20,21を異ならせることにより、図7に示されるように、治療用レーザ光およびガイド用レーザ光については、生体組織Xの表面に集光させて小さい光スポットAを形成させ、検知用レーザ光については拡散させて、治療用レーザ光の光スポットAを取り囲む、より広い範囲(照射範囲)Dに照射させるようにすればよい。
 5つの第2光ファイバ11から射出された検知用レーザ光は、図9に示されるように、相互に重なる5つの円形の照射範囲Dに照射されるが、これらを合成した照射範囲には、上述したように直径3.5mmの円形の照射範囲Bが含まれるように構成されていることが好ましい。
In this case, as shown in FIG. 7, by using different optical systems 20 and 21 disposed at the exit ends 10a and 11a of the optical fibers 10 and 11 provided instead of the objective lens 14, as shown in FIG. The laser light and the guide laser light are condensed on the surface of the living tissue X to form a small light spot A, and the detection laser light is diffused to surround the light spot A of the therapeutic laser light. Irradiation may be performed over a wide range (irradiation range) D.
The detection laser beams emitted from the five second optical fibers 11 are irradiated to five circular irradiation areas D overlapping each other as shown in FIG. As described above, it is preferable to be configured to include a circular irradiation range B having a diameter of 3.5 mm.
 また、図10に示されるように、処置用プローブ2の筐体13内において、対物レンズ14に対する各光ファイバ10,11の射出端10a,11aの距離を略同等とし、治療用レーザ光を導光する第1光ファイバ10の先端にはGRINレンズ22を配置して細径の光束が射出されるようにしてもよい。また、検知用レーザ光を導光する第2光ファイバ11の先端には、検知用レーザ光の中心位置を治療用レーザ光の中心位置に近づけるようにプリズム等の光学素子23が配置されていてもよい。これによっても、図2の構成を採用した場合と同様の照射範囲Bを達成することができる。 Further, as shown in FIG. 10, in the housing 13 of the treatment probe 2, the distances of the emission ends 10a and 11a of the optical fibers 10 and 11 with respect to the objective lens 14 are made substantially equal to guide the treatment laser light. A GRIN lens 22 may be disposed at the end of the light emitting first optical fiber 10 so that a small diameter light beam is emitted. In addition, at the tip of the second optical fiber 11 for guiding the detection laser light, an optical element 23 such as a prism is disposed so that the center position of the detection laser light approaches the center position of the treatment laser light. It is also good. Also in this case, the same irradiation range B as in the case of adopting the configuration of FIG. 2 can be achieved.
 また、図11に示されるように、治療用レーザ光を導光する第1光ファイバ10と、検知用レーザ光を導光する第2光ファイバ11とを極力近接して配置することにより、検知用レーザ光の中心位置を治療用レーザ光の中心位置に近づけるようにしてもよい。
 また、処置用プローブ2の筐体13内に2つの光ファイバ10,11を内蔵する場合について説明したが、両者を別体として着脱可能としてもよい。
Further, as shown in FIG. 11, the detection is performed by arranging the first optical fiber 10 for guiding the treatment laser light and the second optical fiber 11 for guiding the detection laser light as close as possible. The central position of the laser light may be brought close to the central position of the therapeutic laser light.
Further, although the case where the two optical fibers 10 and 11 are built in the housing 13 of the treatment probe 2 has been described, the two may be separately attachable and detachable.
 また、ガイド用レーザ光を導光する光ファイバを、治療用レーザ光を導光する光ファイバ10と共用することでガイド用レーザ光照射部と治療用レーザ光照射部であるエネルギ射出部とを共通化したが、検知用レーザ光を導光する光ファイバ11と共用することで検知用レーザ光照射部と共通化してもよいし、さらに別のファイバを用いてもよい。いずれにしても、ガイド用レーザ光照射部は、上述したように所定の焦点距離を有する可視光であって、少なくとも検知用レーザ光照射部に対して、レーザ光の照射方向における相対的位置が予め決まっていることが好ましい。 Further, by sharing the optical fiber for guiding the guiding laser light with the optical fiber 10 for guiding the therapeutic laser light, the guiding laser light irradiation part and the energy emitting part which is the therapeutic laser light irradiation part Although commonly used, by sharing with the optical fiber 11 for guiding the detection laser light, it may be common with the detection laser light irradiation unit, or another fiber may be used. In any case, as described above, the guide laser light irradiation unit is visible light having a predetermined focal length, and at least the relative position in the irradiation direction of the laser light with respect to the detection laser light irradiation unit is It is preferable to be determined in advance.
 また、本実施形態においては、検知用レーザ光の照射範囲Bとして、血流が検知されたときに、治療用レーザ光の照射による影響範囲Cが血管壁Y1に重ならないように大きさを設定したが、これに代えて、影響範囲Cが小さいあるいは、無い場合には、治療用レーザ光の影響範囲Cに血管壁Y1が重ならないように大きさを設定してもよい。 Further, in the present embodiment, as the irradiation range B of the detection laser light, the size is set so that the influence range C by the irradiation of the therapeutic laser light does not overlap the blood vessel wall Y1 when the blood flow is detected. However, instead of this, when the influence range C is small or not, the size may be set so that the blood vessel wall Y1 does not overlap with the influence range C of the therapeutic laser light.
 また、本実施形態においては、エネルギ射出部として、治療用レーザ光を照射する場合について例示したが、これに代えて、電極を構成するプローブを備え、電気エネルギによって外科処置を行う電気メスを採用してもよい。
 この場合に、電気メスは、プローブを生体組織Xに接触させる必要があるので、検知用レーザ光がプローブによって遮られることを防止するために、図5から図7に示されるように、プローブの周囲の複数方向から検知用レーザ光を照射することが好ましい。
Moreover, in this embodiment, although illustrated about the case where the treatment laser beam is irradiated as an energy injection | emission part, it replaces with this, the probe which comprises an electrode is provided and the electric scalpel which performs a surgical procedure by electric energy is employ | adopted. You may
In this case, since the electric knife needs to bring the probe into contact with the living tissue X, as shown in FIGS. 5 to 7, in order to prevent the detection laser light from being blocked by the probe. It is preferable to irradiate detection laser light from a plurality of surrounding directions.
 1 外科処置装置
 7 光検出部
 8 血流検知部
 9 光源制御部(エネルギ射出禁止部)
 10 第1光ファイバ(エネルギ射出部、ガイド用レーザ光照射部)
 11 第2光ファイバ(検知用レーザ光照射部)
 A 光スポット(入射範囲)
 B,D 照射範囲
 C 影響範囲
 X 生体組織
DESCRIPTION OF SYMBOLS 1 Surgical treatment apparatus 7 Light detection part 8 Blood flow detection part 9 Light source control part (energy injection prohibition part)
10 1st optical fiber (energy emitting part, laser light irradiation part for guide)
11 2nd optical fiber (laser light irradiator for detection)
A light spot (incident range)
B, D Radiation range C Influence range X Body tissue

Claims (11)

  1.  治療用エネルギを射出するエネルギ射出部と、
     検知用レーザ光を照射する検知用レーザ光照射部と、
     該検知用レーザ光照射部により前記検知用レーザ光が生体組織に照射されることにより、前記生体組織内から戻る戻り光を検出する光検出部と、
     該光検出部により検出された前記戻り光を用いて、前記生体組織内の前記検知用レーザ光の照射範囲における血流を検知する血流検知部とを備え、
     前記検知用レーザ光の前記照射範囲が、前記エネルギ射出部から射出された前記治療用エネルギの入射範囲よりも大きく設定されている外科処置装置。
    An energy emitting unit for emitting therapeutic energy;
    A detection laser light irradiator for irradiating a detection laser light;
    A light detection unit that detects return light returning from the inside of the living tissue by irradiating the living tissue with the detecting laser light by the detection laser light irradiation unit;
    A blood flow detection unit for detecting a blood flow in an irradiation range of the detection laser light in the living tissue using the return light detected by the light detection unit;
    The surgical treatment apparatus, wherein the irradiation range of the detection laser beam is set larger than an incident range of the therapeutic energy emitted from the energy emitting unit.
  2.  前記検知用レーザ光の前記照射範囲が、前記エネルギ射出部から射出された前記治療用エネルギの影響範囲よりも所定寸法だけ大きく設定されている請求項1に記載の外科処置装置。 The surgical treatment apparatus according to claim 1, wherein the irradiation range of the detection laser light is set larger by a predetermined size than an influence range of the therapeutic energy emitted from the energy emitting unit.
  3.  前記検知用レーザ光の前記照射範囲が、前記治療用エネルギの前記入射範囲の外側に全方位にわたって所定寸法だけ大きく設定されている請求項1または請求項2に記載の外科処置装置。 The surgical treatment apparatus according to claim 1 or 2, wherein the irradiation range of the detection laser light is set larger by a predetermined dimension in all directions outside the incident range of the therapeutic energy.
  4.  前記検知用レーザ光の前記照射範囲が、前記治療用エネルギの前記影響範囲の外側に全方位にわたって所定寸法だけ大きく設定されている請求項2に記載の外科処置装置。 The surgical treatment apparatus according to claim 2, wherein the irradiation range of the detection laser light is set larger by a predetermined dimension in all directions outside the influence range of the therapeutic energy.
  5.  前記所定寸法が1mm以上である請求項3または請求項4に記載の外科処置装置。 The surgical treatment apparatus according to claim 3, wherein the predetermined dimension is 1 mm or more.
  6.  前記血流検知部により血流が検知されたときに前記エネルギ射出部による前記治療用エネルギの射出を禁止するエネルギ射出禁止部を備える請求項1から請求項5のいずれかに記載の外科処置装置。 The surgical treatment apparatus according to any one of claims 1 to 5, further comprising an energy injection prohibition unit which prohibits the ejection of the therapeutic energy by the energy ejection unit when the blood flow detection unit detects the blood flow. .
  7.  前記エネルギ射出禁止部は、前記血流検知部により検知された血流が所定の閾値以上である場合に前記エネルギ射出部による前記治療用エネルギの射出を禁止する請求項6に記載の外科処置装置。 The surgical treatment apparatus according to claim 6, wherein the energy injection prohibition unit prohibits the energy injection unit from emitting the therapeutic energy when the blood flow detected by the blood flow detection unit is equal to or higher than a predetermined threshold. .
  8.  前記エネルギ射出部が、治療用レーザ光を射出する請求項1から請求項7のいずれかに記載の外科処置装置。 The surgical treatment apparatus according to any one of claims 1 to 7, wherein the energy emitting unit emits a therapeutic laser beam.
  9.  前記検知用レーザ光が、前記治療用レーザ光よりも前記生体組織に対する吸光係数が小さい波長を有する請求項8に記載の外科処置装置。 The surgical treatment apparatus according to claim 8, wherein the detection laser light has a wavelength smaller in absorption coefficient with respect to the living tissue than the treatment laser light.
  10.  前記検知用レーザ光の前記生体組織表面における前記照射範囲が、前記治療用レーザ光の前記生体組織表面における前記照射範囲を中心とする直径3.5mm以上の円を含む形状を有する請求項8または請求項9に記載の外科処置装置。 The irradiation range on the living tissue surface of the detection laser beam has a shape including a circle having a diameter of 3.5 mm or more centering on the irradiation range on the living tissue surface of the treatment laser beam. The surgical treatment apparatus according to claim 9.
  11.  所定の焦点距離を有するガイド用レーザ光を照射するガイド用レーザ光照射部を備え、
     該ガイド用レーザ光照射部は、前記検知用レーザ光照射部に対して、前記ガイド用レーザ光の照射方向における相対的位置が予め決まっている請求項3から請求項5、および請求項10のいずれかに記載の外科処置装置。
     
    A guiding laser light irradiation unit for irradiating a guiding laser light having a predetermined focal length;
    11. The guide laser beam irradiation unit according to claim 3, wherein a relative position in the irradiation direction of the guide laser beam is determined in advance with respect to the detection laser beam irradiation unit. The surgical treatment apparatus according to any one.
PCT/JP2017/046871 2017-12-27 2017-12-27 Surgical treatment device WO2019130465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046871 WO2019130465A1 (en) 2017-12-27 2017-12-27 Surgical treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046871 WO2019130465A1 (en) 2017-12-27 2017-12-27 Surgical treatment device

Publications (1)

Publication Number Publication Date
WO2019130465A1 true WO2019130465A1 (en) 2019-07-04

Family

ID=67066723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046871 WO2019130465A1 (en) 2017-12-27 2017-12-27 Surgical treatment device

Country Status (1)

Country Link
WO (1) WO2019130465A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238853A (en) * 1988-03-22 1989-09-25 Matsushita Electric Ind Co Ltd Laser device for medical use
WO1991010473A1 (en) * 1990-01-12 1991-07-25 Israel Barken Computer controlled laser firing employing doppler flowmetry
JP2015516182A (en) * 2012-03-06 2015-06-11 ブライトシード・エルエルシーBriteseed,Llc Surgical instrument with integrated sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238853A (en) * 1988-03-22 1989-09-25 Matsushita Electric Ind Co Ltd Laser device for medical use
WO1991010473A1 (en) * 1990-01-12 1991-07-25 Israel Barken Computer controlled laser firing employing doppler flowmetry
JP2015516182A (en) * 2012-03-06 2015-06-11 ブライトシード・エルエルシーBriteseed,Llc Surgical instrument with integrated sensor

Similar Documents

Publication Publication Date Title
KR101235160B1 (en) System and method for laser lipolysis
JP6849805B2 (en) Methods and equipment for selective treatment of living tissue
JP5153618B2 (en) Hair growth control device and hair growth control method
US9017316B2 (en) Distance estimation between a fiber end and a tissue using numerical aperture modulation
US20230363819A1 (en) Apparatus and methods for resecting and/or ablating an undesired tissue
US20080154248A1 (en) Apparatus and method for medically treating a tattoo
KR20160106104A (en) Dual wavelength laser treatment device
JP2008036153A (en) Light irradiation apparatus
EP3013213B1 (en) Measurement device for skin properties and non-invasive treatment device
JP2013027684A (en) Portable laser hair removal apparatus of multi purpose use
ES2368336T3 (en) HANDLING OF HAIR GROWTH.
KR101437540B1 (en) Multi-function laser irradiating apparatus
JP2016539665A (en) Skin treatment device for multiphoton based skin treatment
US10463431B2 (en) Device for tissue removal
CN116407270A (en) Optical fiber with optical fiber fracture monitoring function and laser treatment system
US20170311877A1 (en) Blood-vessel recognition device and surgical treatment device
US10456198B2 (en) Guided wave ablation and sensing
WO2019130465A1 (en) Surgical treatment device
US20240016543A1 (en) Systems and methods for controlling laser treatments
US10518103B2 (en) Skin treatment device for locally treating skin
JP2006271828A (en) Medical treatment device and its usage
RU2632803C1 (en) Biotissue dissecting method with laser radiation and device for its implementation
WO2021132271A1 (en) Phototherapy apparatus
JP2020522745A (en) Positioning device for positioning a photoconductive fiber at a calibration port
US10667862B2 (en) Laser-based surgical systems and related methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP