WO2019129338A1 - Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide - Google Patents

Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide Download PDF

Info

Publication number
WO2019129338A1
WO2019129338A1 PCT/DZ2018/050001 DZ2018050001W WO2019129338A1 WO 2019129338 A1 WO2019129338 A1 WO 2019129338A1 DZ 2018050001 W DZ2018050001 W DZ 2018050001W WO 2019129338 A1 WO2019129338 A1 WO 2019129338A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
liquid
gas
preheating
Prior art date
Application number
PCT/DZ2018/050001
Other languages
English (en)
Inventor
Ahmed LAOUIR
Original Assignee
Laouir Ahmed
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laouir Ahmed filed Critical Laouir Ahmed
Priority to PCT/DZ2018/050001 priority Critical patent/WO2019129338A1/fr
Publication of WO2019129338A1 publication Critical patent/WO2019129338A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0344Air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/0362Heat exchange with the fluid by cooling by expansion in a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to industrial techniques for rendering gaseous a fluid initially in the liquid state at low temperature, also called cryogenic fluid.
  • Spraying ie re-gasification, is carried out taking advantage of the temperature difference that exists between the fluid and the natural environment or another heat source of industrial origin. Mechanical energy and electricity can be produced during the process.
  • the cold contained in the cryogenic liquid is thus enhanced by this type of system.
  • Gases such as natural gas, air, nitrogen, oxygen, hydrogen and helium are often liquefied to facilitate their transport, storage or to make certain treatments possible.
  • the final use of these products in the majority of cases, requires to return them to the gaseous state.
  • the advent of renewable energies has posed the problem of storing the surplus of energy that can be produced.
  • Cryogenic storage has been proposed as one of the possible methods.
  • the success of the cryogenic energy storage technique depends on the availability of methods to efficiently restore the stored energy in the form of cold.
  • This patent describes methods of vaporization, ie re-gasification, applicable to all fluids encountered in cryogenics. These methods are based on open thermodynamic cycles with high efficiency. 3. State of the prior art
  • Direct expansion is adaptable without difficulty to all cryogenic fluids. It consists of three successive phases: pumping the liquid at a certain pressure, heating the fluid under pressure to raise its temperature, expansion of the fluid in a turbine or several turbines with intermediate heating. Direct expansion is a single-pass process without recirculation of the fluid.
  • the disadvantage of direct relaxation is the poor performance because it does not exploit all the cold available. It is known that in order to remedy this defect, citing energy storage applications in the form of liquid air, other systems have been associated with the direct expansion so as to be able to value the unused fraction of cold. Direct expansion was also supplied with heat at a higher temperature than that available in the natural environment in order to hope to increase yields.
  • the cryogenic storage of energy consists in associating two opposite processes: liquefaction and re-gasification.
  • the proposed solutions require two separate investments, one for the liquefaction machine and the other for the re-gasification machine; both devices are materially separated. As a result, the investment can prove to be heavy and compromise the feasibility of the technique.
  • WO 2008 / 127326A1 WO2007 / 011921A2
  • the object of the invention is to increase the energy efficiency of the re-gasification carried out in an open-type driving thermodynamic machine. This goal is concretized by the design of machines operating according to cycles which derive from the reversible theoretical cycles releasing the maximum of mechanical energy. Yields are much higher than those of direct expansion and open Rankine-type cycles known in the state of the art. The use of a heat source at a higher temperature than that available in the natural environment is no longer necessary to obtain attractive returns. These methods are not specific to a specific fluid but are adaptable to all known cryogenic fluids. The method can be applied for example to liquefied natural gas, hydrogen and liquid air with slight adaptations.
  • the second object of the invention is to provide a method of vaporization giving rise to a machine that can be inverted to operate in a liquefier. This may be possible through the use of pump, compressors and expansion machines designed and constructed to be invertible machine-receiving machines.
  • the third object of the invention is to allow to take into account technical and economic constraints to opt if necessary for simple configurations less expensive but still effective enough to justify investment. These qualities will help foster wider uptake of re-gasification technology and extend it to medium and small scale projects.
  • FIGS. L, Fig. 2. and FIG. 3. The representations on the temperature-entropy thermodynamic diagram are given by FIG. la., FIG. 2a. and 3a.
  • the flowchart shown in FIG. 2b shows the different possibilities for treating the condensate that the variants VT1 and VT2 can produce with a non-pure cryogenic fluid.
  • FIG. 4., Fig. 5., FIG. 6., FIG. 7. are discussed in the section "Embodiment of the invention" Figure 1: Re-gasification machine with supercritical regeneration (variant VS)
  • FIG. 2a Representation on the Temperature-Entropy diagram of variant VT1.
  • FIG. 2b Flowchart for managing condensed heavy fractions.
  • Figure 3a Representation on the Temperature-Entropy diagram of the VT2 variant.
  • FIG. 5 Re-gasification machine VT1 adapted to LNG.
  • thermodynamic cycles that we call pro-reversible because they are substantially superimposed on reversible cycles.
  • the corresponding practical losses are only the consequence of imperfections inherent in real transformations.
  • the processes that are the subject of this patent have the common point of operating according to cycles which remain outside the saturation line of the fluid (see Fig. 1a, Fig. 2a, Fig. 3a). The saturation line is not crossed by any of the elementary transformations making up the cycles.
  • thermo-entropic imbalances responsible for performance degradation must be minimized.
  • FIG. L, Fig. 2. and FIG. 3. in generic forms.
  • Fig. 1 is represented the variant with supercritical regeneration, by abbreviation variant VS.
  • Fig. 2. is represented the variant using a gas stream to operate a type 1 transcritical regeneration, abbreviated VT1.
  • Fig. 3. is represented the variant using a stream of gas to operate a transcritical regeneration according to type 2., abbreviation VT2.
  • the parts drawn in broken lines are components that can be added or deleted, one or more times, to adapt the process to the type of fluid, the sources of external heat, as well as to take into account the techno-economic constraints.
  • each of the variants VS, VT1 and VT2 has two main phases in terms of heat transfer: the first phase, which we call preheating, consists of raising the temperature of the cryogenic liquid from its inlet temperature to a maximum of temperature relatively close to that of the external heat source.
  • the second phase starts from point 3 and consists of absorbing heat energy from the external heat source using heat exchangers E.
  • the preheating phase is particularly critical for performance; the designs described in this patent allow preheating by minimizing thermo-entropic imbalances.
  • the fluid 1 is pressurized with the aid of the pump P at a pressure much higher than the critical pressure of the fluid.
  • This pressure is as high as possible given the technical and economic considerations.
  • the advantage of a high pressure in point 2, for the majority of cryogenic fluids, is as follows: the reduction of the amount of heat required for preheating, a better subsequent use of the potential offered by the heat source and finally avoids the phenomenon boiling.
  • the preheating is carried out using a fluid flow 4 at lower pressure, captured at the outlet of one of the expansion machines T (which may be a turbine or volumetric type).
  • the value of the flow rate 4 is controlled and optimized using a control valve V, without causing significant loss of pressure.
  • the flow 4 serves to carry out the preheating by regeneration, the latter consists of an internal heat exchange between on the one hand the high-pressure supercient fluid (preheated from point 2 to point 3) and the preheating fluid circulating against -current from point 4 to point 5, on the other hand.
  • the regeneration loop is delimited by points 2, 3, 4 and 5.
  • the pressure of the fluid 4 captured at the outlet of one of the expansion machines T must not be less than the critical pressure of the fluid in question. It must be well above the critical pressure in order to moderate the inflection, ie the distortion, of the cooling curve of the flow 4 in the vicinity of the critical temperature. Typically the pressure at point 4 must be greater than 1.2 times the critical pressure. The value of the flow 4 must be strong enough to favor a good operating regime of the Er-exchanger-regenerators. Typically the flow rate 4, set with the aid of the valve V, must be greater than or equal to 0.5 times the flow rate of the liquid admitted at point 1.
  • the fluid 5 is re-compressed to be mixed with the super-high-pressure liquid.
  • the temperature at point 6 is significantly higher than the temperature at point 2.
  • Fluid 6 is mixed at a point where the temperatures of the two fluids are as close as possible.
  • For this fluid 2 is preheated to point 7 where this condition is satisfied.
  • This arrangement also makes it possible to obtain at point 5 a cooler and less dilated fluid, which contributes to reducing the consumption of the compressor.
  • the variant VS can become even more efficient by operating re-compressions in parallel between the preheating fluid 4-5 and the pressurized fluid 2-3. These re-compressions are beneficial for reducing thermodynamic losses in Er regenerators by better balancing of heated and heated flow rates.
  • the flow rates of the fluids re-compressed by the compressors C are adjusted and optimized using control valves with a minimum of pressure loss. These flow rates are mixed with the pressurized fluid during preheating at points where the temperatures are close.
  • VT1 Lig.2, Lig.2a
  • VT2 Lig.3, Lig.3a
  • solutions similar to those presented for variant VS are adopted.
  • the difference lies in the use of a low pressure gas as a preheating fluid (on line 4-5).
  • the gas offers the advantages of not distorting its cooling curve and the compression of it allows to raise quickly its temperature.
  • the fluid 1 is pressurized with the pump P at a pressure greater than the critical pressure without necessarily being as high as in the VS process.
  • the pressure at point 2 must be greater than 1.2 times the critical pressure of the fluid. This condition is sufficient to avoid boiling during preheating 2-3 and to sufficiently attenuate the inflection in the vicinity of the critical point.
  • Flow 4 is adjusted and optimized using the V-valve with minimal pressure loss.
  • the pressure at point 4 is between 1.1 and 11 bar.
  • the gas 4 serves to preheat the pressurized fluid 2 in the regenerators Er.
  • the pressure level of the gas 4 must be chosen low enough that once cooled down in point 5, the condensation does not occur, if not in a very small way. With this condition, regeneration can occur without risk blocking heat exchanges.
  • the cold gas 5, at the end of regeneration, is re-compressed using a compressor C.
  • This compression allows to increase its temperature.
  • the flow 6, discharged by the compressor, is reintroduced into the circuit at a point where the pressure and temperature conditions are closest.
  • the flow rate 6 may be in a state where it can be introduced between two expansion machines T, this corresponds to the variant VT1. If the compression gives rise to a relatively cold fluid, the flow 6 is mixed with the high pressure supercritical fluid at a point where the two temperatures are close. In the latter case it is the variant VT2.
  • Variant VT2 can be adapted and improved, if this is justified for the fluid in question, by including a second or a third re-compression, arranged in parallel with the first as was implemented with variant VS.
  • the last possible re-compression is that which raises the gas temperature to a level close to that of the external heat source.
  • This compressed gas is introduced between the expansion machines T as shown in broken lines in FIG. 3., or at the limit, at point 3.
  • the condensed heavy fractions are collected in point 7.
  • the condensate can be extracted from the process or reintroduced (re-circulated) in the process to exploit the cold it contains.
  • the advantages of the variants VT1 and VT2 on the variant VS mention may be made of: operation at moderate pressures, the possibility of depleting the natural gas by extracting part of the ethane and propane, a possibility to purify other gases such as hydrogen.
  • the pressurized fluid absorbs heat from the external heat source using the exchangers E.
  • the exchange of heat is alternated, in the form of warmings, with detents at the level of elements T.
  • sources of heat there are those that can be found in the natural environment: sea water, air, solar radiation, or under forms various industrial discharges: exhaust gases from gas turbines, waste incineration fumes or even from the heat produced by actual combustion of a fuel.
  • the heat input can be in the form of internal combustion. Raising the operating temperature, thanks to warmer heat sources, allows to reach higher yields but thus to reduce the number of reheatings and relaxation machines necessary.
  • the re-gasified fluid can be produced, as required, at one or more pressures coinciding with the outlet pressures of the expansion machines T.
  • the pump P, the compressors C and the expansion machines T can be turbo or volumetric types (piston, vane, screw etc.). It is theoretically possible, by reversing the direction of rotation of these components. , to reverse their roles so that they become respectively a hydraulic turbine, expansion machines and compressors. This inversion also gives rise to the reversal of the flow flow direction.
  • the VS, VT1 and VT2 cycles thus reversed then become liquefaction processes.
  • the exchangers E then serve to reject the heat of compression.
  • this requires components designed and constructed to be truly invertible.
  • FIG. L Fig. 2.
  • FIG. 3. To show in which ways the invention shown in FIG. L, Fig. 2. and FIG. 3. can be adapted, consider LNG, hydrogen and air as examples of liquids to be re-gasified.
  • LNG, hydrogen and air as examples of liquids to be re-gasified.
  • the examples and choices made are only illustrations, they can not limit the scope of the invention as defined in the claims.
  • Fig. 4 represents a re-gasification machine with simple re-compression, with four detents and three intermediate heats. Unless otherwise indicated, the heat source is assumed to be 18 ° C. The temperature drop is 3 ° C during exchanges.
  • the fluid at 5 and 6 is at a pressure greater than or equal to 1.2 the critical pressure.
  • it is a pressure gas of between 1.1 and 11 bar.
  • LNG in VS version In point 1, LNG is admitted at -162 ° C, the gas is produced at a high pressure of 70 bar at 13 (suitable for pipeline transport) and at a medium pressure of 25 bar at 12 (intended for industrial use).
  • the pressure is 180 bar, preheating by regeneration is achieved using the flow 4 equal to 1.7 times the flow of LNG admitted, or 63% of the flow 9.
  • the flow 4 is taken from the flow 10.
  • the pressure 4 coincides with the pressure of 70 bar or 1.52 times the critical pressure.
  • the flow 5 is pumped and re-mixed at flow 7, the temperature at point 5 is quite low ie -142 ° C. This contributes to reducing the specific volume of the fluid and the consumption of the compressor C.
  • the mechanical energy is developed following the detents in turbines T.
  • the pressure at the points 9, 10, 11 are respectively 130, 100, 70 bars.
  • this process produces a net mechanical energy of 110 to 140 kJ per kg of natural gas produced at 70 bar, and 190 to 240 kJ per kg of gas produced at 25 bar.
  • the process can be extended to low pressures by adding a fifth turbine T to produce gas at 5 bar, this allows to reach and exceed 300 kJ / kg.
  • Hydrogen VS version The liquid hydrogen is admitted at point 1 at -253 ° C and produced at 12 in the gaseous state at 70 bar to be transported by pipeline, for example.
  • the pressure at 2 is 250 bars.
  • the preheating flow rate 4 is equal to 1.1 times the admitted flow rate of hydrogen, ie 52% of the flow rate 11.
  • the pressure at 4 is equal to that at point 11, 70 bar, ie 5.5 times the critical pressure. Lowering the temperature at point 5 to -215 ° C helps to significantly reduce compressor consumption.
  • the temperature at 7 is -178 ° C.
  • the pressures at points 8, 9 and 10 are respectively 180, 130, 100 bar. Depending on the efficiency of the pumps and turbines, the net mechanical energy produced is between 1700 and 2000 kJ per kg of hydrogen produced at 70 bar.
  • Hydrogen VT2 version The liquid hydrogen is pumped in 2 to 60 bar or 4.6 times the critical pressure.
  • the preheating gas at point 4, taken at point 11, is at 5 bar with a flow rate equal to 1.3 times the admitted flow rate at 1.
  • Air version VT2 The liquid air at point 1 at -195 ° C is produced in the gaseous state at point 14 under a pressure of 14 bar. Air at this pressure can be used to drive a gas turbine after reacting with a fuel in a combustion chamber. The liquid is pumped in at 2 to 70 bar, about 1.8 times the critical pressure.
  • the preheating gas at point 4, taken at point 11, is at 3 bar with a flow rate equal to 1.6 times the admitted flow rate at 1.
  • the gas, compressed at 6 to 70 bar, is at about -14 ° C, it is mixed with the high pressure fluid at point 7.
  • the pressures of relaxation are 30, 14, 7 and 3 bars.
  • the process can produce between 130 to 210 kJ / kg if the heat source is at 18 ° C, between 200 to 280 kJ / kg if the air is heated by heat lost at 70 ° C, between 300 and 410 kJ / kg if the heat lost is 130 ° C.
  • Fig. 5 represents a re-gasification machine version VT1 for LNG.
  • LNG is pumped at 2 to 80 bar, which corresponds to 1.74 critical pressure.
  • Preheating by regeneration is carried out using the gaseous flow rate 4 at 2.5 bar and -20 ° C of a value equal to 1.8 times the LNG flow rate admitted at 1.
  • the pressures at points 8, 9, 10 and 11 are respectively 40, 20, 12 and 5 bar.
  • the condensate produced at point 7 is pumped again using a pump P and mixed directly with the LNG flow rate at 2, a sufficient solution when the flow rate is low. With higher flow rates, it is preferable to preheat the condensate in parallel with the LNG flow rate in a three-flow Er-regenerative exchanger.
  • the cold gas 5 is re-compressed using the compressor C at a pressure of 20 bar and mixed with the flow rate 9.
  • the compressor and the turbines and neglecting the flow rate 7, the process allows the development of a net mechanical energy of 270 to 340 kJ per kg of natural gas produced at 5 bar.
  • the performance of the process is relatively sensitive to the efficiency of the compressor, the choice of a high efficiency compressor is recommended especially when the heat source is at a temperature below 20 ° C.
  • Fig. 6 shows a double re-compression re-gasification machine to further improve the performance of the single re-compression machine of FIG. 4.
  • the main parameters are those mentioned above for the examples of hydrogen.
  • the flow at point 4 at 70 bar is 1.48 times the flow admitted in 1.
  • the flow 8 is equal to 0.85 times the flow admitted in 1, it is at a temperature about -183 ° C.
  • the fluid 7 is compressed at 8 to 250 bar and at -130 ° C.
  • the flow rate in the turbines is equal to 3.0 times the admitted flow rate in 1.
  • the exchanger-regenerator Er in broken lines may be removed possibly because the amount of heat that is exchanged there is relatively low.
  • the process develops a net mechanical energy of 2000 to 2400 kJ, which is an additional gain of 300 to 400 kJ / kg compared to the VS process with simple re-compression.
  • Hydrogen in version VT2 double re-compression:
  • the flow 4 is equal to 2.3 the admitted flow rate in 1, and the flow 7 equal to 1.03 times.
  • the temperature at 7 is about -172 ° C.
  • At the outlet 8 of the compressor the pressure is 60 bar and the temperature of about -50 ° C.
  • the second re-compression allows the process to develop additional work, compared to the single re-compression variant, from 380 to 480 kJ / kg, a total work of 4180 to 4880 kJ / kg.
  • the total flow rate passing through the turbines is equal to 3.24 times the admitted flow rate in 1.
  • Fig. 7 is a configuration of the variant VS with three re-compression arranged in the regeneration loop.
  • Hydrogen in VS version with triple re-compression Basically it's the example of FIG. 6 VS hydrogen to which a third re-compression is added.
  • the flow rate at point 4 at 70 bar is equal to 2.68 times the admitted flow rate in 1.
  • the flow rates at points 10 and 8 are respectively equal to 1.20 and 0.85 times the admitted flow rate at 1.
  • the regenerator Er in line discontinuous may be deleted. This configuration can bring the performance level to between 2400 and 3100 kJ / kg.

Abstract

L'invention se rapporte à une méthode destinée à exploiter le froid contenu dans les gaz liquéfiés. Le liquide est vaporisé tout en permettant de produire de l'énergie mécanique. La méthode est adaptable à tous les gaz liquéfiés rencontrés en cryogénie. L'invention permet de valoriser au maximum le potentiel énergétique que constitue la différence de température entre la source de chaleur externe et le liquide cryogénique. La conception combine des choix d'architecture relatives au système, comme le recours à la re-compression, avec des 0 paramètres opératoires clés comme le travail hors de la ligne de saturation, la recirculation de fluide à des débits et entre des niveaux de pressions adéquats. Le système de vaporisation décrit offre également l'avantage d'être prédisposé à l'inversion pour fonctionner en machine de liquéfaction.

Description

1. Titre de l’invention
Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide 2. Domaine technique auquel se rapporte l’invention
L’invention se rapporte aux techniques industrielles destinées à rendre gazeux un fluide initialement à l’état liquide à basse température, appelé aussi fluide cryogénique. La vaporisation, c’est à dire la re-gazéification, est effectuée en tirant profit de la différence de température qui existe entre le fluide et le milieu naturel ou bien une autre source de chaleur d’origine industrielle. De l’énergie mécanique et de l’électricité peuvent ainsi être produites au cours du processus. Le froid contenu dans le liquide cryogénique se trouve ainsi valorisé grâce à ce type de système. Les gaz comme le gaz naturel, l’air, l’azote, l’oxygène, l’hydrogène et l’hélium sont souvent liquéfiés pour faciliter leur transport, leur stockage ou bien pour rendre possibles certains traitements. L’utilisation finale de ces produits, dans la majorité des cas, nécessite de les faire revenir à l’état gazeux. L’avènement des énergies renouvelables a posé la problématique du stockage du surplus d’énergie qui peut-être produite. Le stockage cryogénique a été proposé comme une des méthodes possibles. La réussite de la technique de stockage cryogénique de l’énergie dépend de la disponibilité de méthodes permettant de restituer efficacement l’énergie stockée sous forme de froid. Ce brevet décrit des méthodes de vaporisation, c’est à dire de re-gazéification, applicables à tous les fluides rencontrés en cryogénie. Ces méthodes sont basées sur des cycles thermodynamiques ouverts à efficacité élevée. 3. Etat de la technique antérieure
Les efforts déployés depuis des décennies pour mettre au point des systèmes plus efficaces, notamment dans le domaine du gaz naturel liquéfié (GNL), ont donné lieu à une grande diversité de conceptions. Seulement un nombre restreint reste envisageable pour des réalisations pratiques. La recherche d’une meilleure efficacité conduit souvent à des systèmes complexes fortement spécifiques à un type de fluide, cela sans nécessairement atteindre dans les faits des performances meilleures. Les fluides comme l’hydrogène, l’air et l’azote notamment, peuvent servir à stocker l’énergie en excès produite à partir de sources renouvelables ou bien au niveau des installations classiques en heures creuses.
On sait qu’il existe une méthode simple appelée « détente directe » appliquée commercialement aux niveaux des terminaux de GNL. La détente directe est adaptable sans difficultés à tous les fluides cryogéniques. Elle consiste en trois phases successives : pompage du liquide à une certaine pression, chauffage du fluide sous pression pour élever sa température, détente du fluide dans une turbine ou plusieurs turbines avec réchauffes intermédiaires. La détente directe est un procédé à passage unique sans re-circulation en boucle du fluide. L’inconvénient de la détente directe tient à la médiocrité des performances faute d’exploiter la totalité du froid disponible. On sait que pour remédier à ce défaut, citant les applications de stockage d’énergie sous forme d’air liquide, on a associé à la détente directe d’autres systèmes pour ainsi pouvoir valoriser la fraction de froid non-utilisée. On a aussi alimenté la détente directe en chaleur à température plus élevée que de celle disponible dans l’environnement naturel pour ainsi espérer relever les rendements.
Des tentatives ont été entreprises pour remédier aux insuffisances de la détente directe. On sait, sur l’exemple du GNL, qu’il existe des procédés fonctionnant en boucle ouverte suivant le cycle thermodynamique de Rankine et de ses variantes. Ces cycles ouverts utilisent le fluide objet de la re-gazéification en même temps comme fluide thermodynamique. Ces cycles mettent en œuvre des processus similaires à ceux rencontrés dans les centrales thermiques à vapeur comme le soutirage, la régénération, la resurchauffe, rébullition et la condensation. La manière dont ces processus sont associés et G apparition inévitable des transitions de phases, c’est à dire l’ébullition et la condensation, conduisent à des déséquilibres thermo-entropiques importants. Ces défauts font que les cycles ouverts de type Rankine ne peuvent atteindre des efficacités élevées.
Le stockage cryogénique de l’énergie consiste à associer deux processus opposés : la liquéfaction et la re-gazéification. Les solutions proposées nécessitent deux investissements distincts l’un pour la machine de liquéfaction et l’autre pour la machine de re-gazéification; les deux équipements sont matériellement séparés. De ce fait l’investissement peut s’avérer lourd et compromettre la faisabilité de la technique. Brevets US: 3992891 7574856B2 7900451B2 7493763B2 0236699A1 3987632 3451342 2499772 Brevets int. : WO 2008/127326A1 W02007/011921A2 WO2012/102849 Al WO 2007/096656
4. But de l’invention L’invention a pour but d’augmenter l’efficacité énergétique de la re-gazéification conduite dans une machine thermodynamique motrice de type ouvert. Ce but est concrétisé par la conception de machines fonctionnant suivant des cycles qui dérivent des cycles théoriques réversibles libérant le maximum d’énergie mécanique. Les rendements sont bien plus élevés que ceux de la détente directe et des cycles de type Rankine ouverts connus dans l’état de l’art. Le recours à une source de chaleur à température plus élevée que de celle disponible dans l’environnement naturel n’est plus une nécessité pour obtenir des rendement intéressants. Ces procédés ne sont pas spécifiques à un fluide précis mais sont adaptables à tous les fluides cryogéniques connus. La méthode peut être appliquée par exemple au gaz naturel liquéfié, à l’hydrogène et l’air liquides moyennant des adaptations légères.
Le deuxième but de l’invention est de présenter une méthode de vaporisation donnant lieu à une machine qui peut être inversée pour fonctionner en liquéfacteur. Cela peut être possible par l’utilisation de pompe, compresseurs et machines de détente conçus et construits pour être inversibles machines motrices-machines réceptrices.
Le troisième but de l’invention est de permettre de prendre en compte des contraintes technico-économiques pour opter si nécessaire pour des configurations simples moins coûteuses mais qui restent suffisamment efficaces pour justifier les investissements. Ces qualités contribueront à favoriser une plus large adoption de la technologie de re- gazéification et de l’étendre aux projets de taille moyenne et réduite.
5. Enoncé des figures
Le principe général de l’invention en trois variantes principales VS, VT1 et VT2 est représenté sur les Fig. L, Fig. 2. et Fig. 3. Les représentations sur le diagramme thermodynamique Température-Entropie sont données par Fig. la., Fig. 2a. et Fig. 3a. L’organigramme représenté sur Fig. 2b montre les différentes possibilités pour traiter le condensât que peuvent produire les variantes VT1 et VT2 avec un fluide cryogénique non- pur. Afin de montrer comment l’invention peut être exécutée et adaptée, diffrents cas illustrés par Fig. 4., Fig. 5., Fig. 6., Fig. 7. sont examinés dans le paragraphe”Mode de réalisation de l’invention” Figure 1 : Machine de re-gazéification à régénération supercritique (Variante VS)
Dessin générique.
Figure la : Représentation sur le diagramme Température-Entropie de la variante VS.
Figure 2 : Machine de re-gazéification à régénération transcritique de type 1 (Variante VT1)
Dessin générique.
Figure 2a : Représentation sur le diagramme Température-Entropie de la variante VT1.
Figure 2b : Organigramme de gestion des fractions lourdes condensées.
Figure 3 : Machine de re-gazéification à régénération transcritique de type 2 (Variante VT2)
Dessin générique.
Figure 3a : Représentation sur le diagramme Température-Entropie de la variante VT2.
Figure 4 : Machine de re-gazéification à re-compression simple (en VS ou en VT2)
Figure 5 : Machine de re-gazéification VT1 adaptée au GNL.
Figure 6 : Machine de re-gazéification à re-compression double (en VS ou en VT2)
Figure 7 : Machine de re-gazéification à re-compression triple (en VS)
6. Présentation de l’essence (la substance) de l’invention
Dans ce brevet, le principe de cycle Rankine ouvert et ses variantes est abandonné. Nous définissons des cycles thermodynamiques que nous appelons pro-réversibles car ils sont sensiblement superposables aux cycles réversibles. Les pertes pratiques correspondantes ne sont que la conséquence des imperfections inhérentes aux transformations réelles. Les procédés objet de ce brevet ont pour point commun de fonctionner suivant des cycles qui restent en dehors de la ligne de saturation du fluide (voir Fig. la., Fig. 2a., Fig. 3a ). La ligne de saturation n’est franchie par aucune des transformations élémentaires composant les cycles.
Afin de concevoir un procédé efficace, les déséquilibres thermo-entropiques responsables des dégradations des performances doivent être réduits au minimum. Les trois variantes du procédé sont données par Fig. L, Fig. 2. et Fig. 3. sous formes génériques. Sur Fig. 1 est représentée la variante à régénération supercritique, par abréviation variante VS. Sur Fig. 2. est représentée la variante utilisant un courant de gaz pour opérer une régénération transcritique de type 1, par abréviation VT1. Sur Fig. 3. est représentée la variante utilisant un courant de gaz pour opérer une régénération transcritique selon le type 2., par abréviation VT2. Les parties dessinées en traits discontinus sont des composants qui peuvent être ajoutés ou supprimés, une ou plusieurs fois, pour adapter le procédé au type de fluide, aux sources de chaleurs externes, ainsi que pour tenir compte des contraintes technico-économiques.
Chacune des variantes VS, VT1 et VT2 comporte deux phases principales du point de vue du transfert de chaleur : la première phase, que nous appelons le préchauffage, consiste à faire remonter la température du liquide cryogénique de sa température d’admission jusqu’à une température relativement proche de celle de la source de chaleur externe. Le liquide admis en
1 est pressurisé au point 2 à l’aide de la pompe P. Le préchauffage est réalisé entre les points
2 et 3 à l’aide des échangeurs de chaleur-régénérateurs Er. La deuxième phase commence à partir du point 3 et consiste à absorber de l’énergie calorifique à partir de la source de chaleur externe à l’aide des échangeurs de chaleur E. La phase de préchauffage est particulièrement critique pour les performances; les conceptions décrites dans ce brevet permettent de réaliser le préchauffage en réduisant au minimum les déséquilibres thermo-entropiques.
Dans la variante VS (Fig. L, Fig. la.) le fluide 1 est pressurisé à l’aide de la pompe P à une pression très supérieure à la pression critique du fluide. Cette pression est la plus élevée possible qu’autorisent les considérations techniques et économiques. L’avantage d’une pression élevée au point 2, pour la majorité des fluides cryogéniques, tient aux points suivants : la réduction de la quantité de chaleur nécessaire au préchauffage, une meilleure utilisation ultérieure du potentiel qu’offre la source de chaleur et enfin permet d’éviter le phénomène d’ébullition. Le préchauffage est réalisé à l’aide d’un débit de fluide 4 à plus basse pression, capté à la sortie d’une des machines de détentes T (qui peut être une turbine ou de type volumétrique). La valeur du débit 4 est contrôlée et optimisée à l’aide d’une vanne de réglage V, cela sans provoquer de perte de pression importante. Le débit 4 sert à réaliser le préchauffage par régénération, cette dernière consiste en un échange de chaleur interne entre d’une part le fluide à haute pression superctique, (préchauffé du point 2 au point 3) et le fluide de préchauffage, circulant à contre-courant du point 4 au point 5, d’autre part. La boucle de régénération est délimitée par les points 2, 3, 4 et 5.
Pour réduire les déséquilibres thermo-entropiques au cours de la régénération, le phénomène de condensation et corrélativement l’apparition d’un palier isotherme doit être évitée lors du refroidissement sur la ligne 4-5. Pour cela la pression du fluide 4, capté à la sortie d’une des machines de détente T, ne doit pas être inférieure à la pression critique du fluide considéré. Elle doit être nettement supérieure à la pression critique afin de modérer l’inflexion, c’est à dire la distorsion, de la courbe de refroidissement du débit 4 au voisinage de la température critique. Typiquement la pression au point 4 doit être supérieure à 1,2 fois la pression critique. La valeur du débit 4 doit être suffisamment forte pour favoriser un bon régime de fonctionnement des échangeurs -régénérateurs Er. Typiquement le débit 4, réglé à l’aide de la vanne V, doit être supérieur ou égal à 0,5 fois le débit du liquide admis au point 1.
Le fluide 5 est re-comprimé pour être mélangé au liquide à haute pression superctique. En général la température au point 6 est nettement supérieure à la température au point 2. Le fluide 6 est mélangé en un point où les températures des deux fluides sont les plus proches possible. Pour cela le fluide 2 est préchauffé jusqu’au point 7 où cette condition est satisfaite. Cette disposition permet également d’obtenir au point 5 un fluide plus froid et moins dilaté ce qui contribue à réduire la consommation du compresseur. La variante VS peut devenir encore plus efficace en opérants des re-compressions en parallèle entre le fluide de préchauffage 4-5 et le fluide pressurisé 2-3. Ces re-compressions sont bénéfiques pour réduire les pertes thermodynamiques dans les régénérateurs Er par un meilleur équilibrage des débits chauffants et chauffés. Les débits des fluides re-comprimés par les compresseurs C sont réglés et optimisés à l’aide de vannes de réglage avec un minimum de perte de pression. Ces débits sont mélangés au fluide pressurisé en cours de préchauffage en des points où les températures sont voisines.
Les solutions apportées dans ce brevet pour rendre plus efficace la régénération selon la variante VS sont en résumé : la prévention de l’ébullition du fluide pompé sur la ligne 2-3, la prévention de la condensation dans le fluide chauffant sur la ligne 4-5, l’atténuation de l’inflexion de la courbe de refroidissement du courant chauffant 4-5 pour prévenir l’apparition d’un pincement thermique et le blocage des transfert thermiques dans les régénérateurs Er, et enfin le recours à une ou plusieurs re-compression dans la boucle de régénération. Les pressions de fonctionnement relativement élevées avec la variante VS offrent l’avantage de réduire la taille des régénérateurs Er et d’améliorer les transferts de chaleur.
Dans les variantes VT1 (Lig. 2., Lig. 2a.) et VT2 (Lig. 3., Lig. 3a.), on adopte des solutions similaires à celles présentées pour la variante VS. La différence réside en l’utilisation d’un gaz à basse pression comme fluide de préchauffage (sur la ligne 4-5). Le gaz offre les avantages de ne pas présenter de distorsion de sa courbe de refroidissement et la re- compression de celui-ci permet d’élever rapidement sa température. Le fluide 1 est pressurisé à l’aide de la pompe P à une pression supérieure à la pression critique sans être nécessairement aussi élevée que dans le procédé VS. Typiquement, la pression au point 2 doit être supérieure à 1,2 fois la pression critique du fluide. Cette condition suffit pour éviter l’ébullition au cours du préchauffage 2-3 et pour atténuer suffisamment l’inflexion au voisinage du point critique. Le débit 4 est réglé et optimisé à l’aide de la vanne de réglage V avec un minimum de perte de pression. Typiquement la pression au point 4 est comprise entre 1,1 et 11 bars. Le gaz 4 sert à préchauffer le fluide pressurisé 2 dans les régénérateurs Er. Le niveau de pression du gaz 4 doit être choisi suffisamment bas pour que une fois refroidi au point 5, la condensation ne se manifeste pas, sinon de façon infime. Avec cette condition, la régénération peut s’opérer sans risque blocage des échanges de chaleur.
Le gaz froid 5, en fin de régénération, est re-comprimé à l’aide d’un compresseur C. Cette re compression permet d’augmenter sa température. Le débit 6, refoulé par le compresseur, est réintroduit dans le circuit en un point où les conditions de pression et de température sont les plus proches. Selon la nature du fluide traité et les conditions opératoires, le débit 6 peut être à un état où il peut être introduit entre deux machines de détente T, cela correspond à la variante VT1. Si la compression donne lieu à un fluide relativement froid, le débit 6 est mélangé au fluide supercritique haute pression en un point où les deux températures sont voisines. Dans ce dernier cas il s’agit de la variante VT2. La variante VT2 peut être adaptée et améliorée, si cela se justifie pour le fluide considéré, en incluant une deuxième ou une troisième re-compression, arrangées en parallèle à la première comme cela a été mis en œuvre avec la variante VS. La dernière re-compression possible est celle qui élève la température du gas à niveau assez proche de celui de la source de chaleur externe. Ce gaz comprimé est introduit entre les machines de détente T comme montré en trait discontinu sur Fig. 3., ou à la limite, au niveau du point 3.
Dans le cas du GNL par exemple, la présence d’hydrocarbures plus lourds que le méthane, comme l’éthane et le propane, peut conduire à leur condensation au cours du refroidissement 4-5. Les fractions lourdes condensées sont recueillies au point 7. Comme le montre Fig. 2b., le condensât peut être extrait du procédé ou bien réintroduit (re-circulé) dans le procédé pour exploiter le froid qu’il contient. Parmi les avantages des variantes VT1 et VT2 sur la variante VS, on peut citer : un fonctionnement à des pressions modérées, la possibilité d’appauvrir en fraction lourdes le gaz naturel par extraction d’une partie de l’éthane et du propane, possibilité de purifier d’autres gaz comme l’hydrogène.
Une fois le préchauffage effectué, avec les trois variantes VS, VT1 et VT2, et à partir du point 3, le fluide pressurisé absorbe de la chaleur à partir de la source de chaleur externe à l’aide des échangeurs E. L’échange de chaleur est alterné, sous formes de réchauffes, avec des détentes au niveau des éléments T. Comme sources de chaleur, il y a celles que l’on peut trouver dans le milieu naturel : eau de mer, air, rayonnement solaire, ou bien sous forme des rejets industriels divers : gaz d’échappement de turbines à gaz, fumées d’incinération de déchet ou bien encore par de la chaleur produite par combustion proprement dite d’un combustible. Dans le cas de l’air, l’apport de chaleur peut se faire sous forme de combustion interne. Elever la température de fonctionnement, grâce à des sources de chaleur plus chaudes, permet d’atteindre des rendements plus élevés mais ainsi de réduire le nombre de réchauffes et de machines de détente nécessaires. Le fluide re-gazéifié peut être produit, selon le besoin, à une ou plusieurs pressions coïncidant avec les pressions de sortie des machines de détente T. La pompe P, les compresseurs C et les machines de détente T peuvent être de types turbo ou de types volumétriques (à piston, à palettes, à vis etc..)· Il est théoriquement possible, en inversant le sens de rotation de ces composants, d’inverser leurs rôles pour qu’ils deviennent respectivement une turbine hydraulique, des machines de détente et des compresseurs. Cette inversion donne également lieu à l’inversion du sens de circulation des débits. Les cycles VS, VT1 et VT2 ainsi inversés deviennent alors des procédés de liquéfactions. Les échangeurs E servent alors à rejeter la chaleur de compression. Techniquement cela nécessite des composants conçus et construits pour être réellement inversibles. Le concept de pompe inversible en turbine a déjà fait l’objet d’études avec des modèles commercialisables (pump as turbine, PAT). La demande future peut donner lieu au développement de compresseurs et machines de détentes également inversibles. Cela rendra possible l’utilisation des mêmes éléments constitutifs des machines de re-gazéification VS, VT1 et VT2, pour en faire en même temps des machines de liquéfaction sans investissements majeurs supplémentaires. 7. Modes de réalisation de l’invention
Pour montrer de quelles façons l’invention représentée sur Fig. L, Fig. 2. et Fig. 3. peut être adaptée, on considère le GNL, l’hydrogène et l’air comme exemples de liquides à re gazéifier. Les exemples et les choix effectués ne sont que des illustrations, ils ne sauraient limiter la portée de l’invention telle que définie dans les revendications.
Fig. 4 représente une machine de re-gazéification à re-compression simple, avec quatre détentes et trois réchauffes intermédiaires. Sauf indication contraire, la source de chaleur est supposée à 18 °C. La chute de température est de 3 °C lors des échanges. En version VS, le fluide en 5 et 6 est à une pression supérieure ou égale à 1,2 la pression critique. En version VT2 c’est un gaz de pression comprise entre 1,1 et 11 bars. GNL en version VS : Au point 1, le GNL est admis à -162 °C, le gaz est produit à une haute pression de 70 bar en 13 (convenable pour le transport par gazoduc) et à une moyenne pression de 25 bars en 12 (destiné à un usage industriel). En 2 la pression est de 180 bar, le préchauffage par régénération est réalisé à l’aide du débit 4 égale à 1,7 fois le débit de GNL admis, soit 63% du débit 9. Le débit 4 est prélevé du débit 10. La pression 4 coïncide avec la pression de 70 bar soit 1,52 fois la pression critique. Le débit 5 est pompé et re-mélangé au débit 7, la température au point 5 est assez basse à savoir -142 °C. Cela contribue à réduire le volume spécifique du fluide et la consommation du compresseur C. L’énergie mécanique est développée suite aux détentes dans des turbines T. Au point 8, la pression aux points 9, 10, 11 sont respectivement 130, 100, 70 bars. En fonction des rendements des pompes et des turbines, ce procédé permet de produire une énergie mécanique nette de 110 à 140 kJ par kg de gaz naturel produit à 70 bar, et 190 à 240 kJ par kg de gaz produit à 25 bar. Le procédé peut être étendu au basses pressions en ajoutant une cinquième turbine T pour produire du gaz à 5 bars, cela permet d’atteindre et dépasser 300 kJ/kg. Hydrogène en version VS : L’hydrogène liquide est admis au point 1 à -253 °C et produit en 12 à l’état gazeux à 70 bars pour être transporté par gazoduc par exemple. La pression en 2 est de 250 bars. Le débit de préchauffage 4 est égal à 1,1 fois le débit d’hydrogène admis soit 52% du débit 11. La pression en 4 est égale à celle au point 11, 70 bars, c’est à dire 5,5 fois la pression critique. L’abaissement de la température au point 5 à -215 °C contribue à faire diminuer fortement la consommation du compresseur. La température en 7 est de -178 °C. Les pressions aux points 8,9 et 10 sont respectivement 180, 130, 100 bars. En fonction des rendements des pompes et des turbines, l’énergie mécanique nette produite se situe entre 1700 et 2000 kJ par kg d’hydrogène produit à 70 bar. Hydrogène en version VT2 : L’hydrogène liquide est pompé en 2 à 60 bars soit 4,6 fois la pression critique. Le gaz de préchauffage au point 4, prélevé au niveau du point 11, est à 5 bars avec un débit égal à 1,3 fois le débit admis en 1. En 5 la température est d’environ -240 °C, le gaz comprimé à 60 bars en 6 atteint -178 °C. A cette température, le gaz est mélangé au fluide haute pression subissant le préchauffage. Les pressions de fins de détentes sont 45, 25, 12 et 5 bars. Ce procédé peut produire une énergie mécanique nette de 3800 à 4400 kJ par kg d’hydrogène produit sous 5 bars au point 12. Air en version VT2 : L’air liquide au point 1 à -195 °C est produit à l’état gazeux au point 14 sous une pression de 14 bar. L’air à cette pression peut servir à actionner une turbine à gaz après avoir réagit avec un combustible dans une chambre de combustion. Le liquide est pompé en en 2 à 70 bar soit environ 1,8 fois la pression critique. Le gaz de préchauffage au point 4, prélevé au niveau du point 11, est à 3 bars avec un débit égal à 1,6 fois le débit admis en 1. En 5 la température est d’environ -187 °C. Le gaz, comprimé en 6 à 70 bars, est à environ -14 °C, il est mélangé au fluide haute pression au point 7. Les pressions de fins de détentes sont 30, 14, 7 et 3 bars. Le procédé peut produire entre 130 à 210 kJ/kg si la source de chaleur est à 18 °C, entre 200 à 280 kJ/kg si l’air est chauffé par de la chaleur perdue à 70 °C, entre 300 et 410 kJ/kg si la chaleur perdue est à 130 °C.
Fig. 5 représente une machine de re-gazéification version VT1 pour le GNL. Le GNL est pompé en 2 à 80 bars, ce qui correspond à 1,74 la pression critique. Le préchauffage par régénération est réalisé à l’aide du débit gazeux 4 à 2,5 bars et -20 °C d’une valeur égale à 1,8 fois le débit du GNL admis en 1. Les pressions aux points 8, 9, 10 et 11 sont respectivement 40, 20, 12 et 5 bars. Suivant la solution la plus simple, le condensât produit au point 7 est re-pompé à l’aide d’une pompe P et mélangé directement au débit de GNL en 2, solution suffisante lorsque le débit 7 est faible. Avec des débits en 7 plus élevés, il est préférable de faire préchauffer le condensât en parallèle avec le débit de GNL dans un échangeur-régénérateur Er à trois débits. Le gaz froid 5 est re-comprimé à l’aide du compresseur C à une pression de 20 bars et mélangé au débit 9. En fonction des rendements de la pompe, du compresseur et des turbines, et en négligeant le débit 7, le procédé permet de développer une énergie mécanique nette de 270 à 340 kJ par kg de gaz naturel produit à 5 bars. Les performances du procédé sont relativement sensibles au rendement du compresseur, le choix d’un compresseur à rendement élevé est recommandé surtout lorsque la source de chaleur est à une température inférieure à 20 °C.
Fig. 6 représente une machine de re-gazéification à re-compression double pour améliorer encore les performances de la machine à re-compression simple de Fig. 4. Les paramètres principaux sont ceux mentionnés précédemment pour les exemples de l’hydrogène. Hydrogène en version VS à re-compression double : Le débit au point 4 sous 70 bars est égal à 1.48 fois le débit admis en 1. Le débit 8 est égal à 0,85 fois le débit admis en 1, il est à une température d’environ -183 °C. Le fluide 7 est comprimé en 8 à 250 bar est à -130 °C. Le débit dans les turbines est égal à 3,0 fois le débit admis en 1. L’échangeur-régénérateur Er en trait discontinu peut être supprimé éventuellement car la quantité de chaleur qui y est échangée est relativement faible. Le procédé développe une énergie mécanique nette de 2000 à 2400 kJ soit un gain supplémentaire de 300 à 400 kJ/kg comparativement au procédé VS à re-compression simple. Hydrogène en version VT2 à re-compression double : Le débit 4 est égale à 2,3 le débit admis en 1, et le débit 7 égale à 1,03 fois. La température en 7 est d’environ -172 °C. A la sortie 8 du compresseur la pression est de 60 bars et la température d’environ -50 °C. La deuxième re-compression permet au procédé de développer un travail supplémentaire, comparativement à la variante à re-compression simple, de 380 à 480 kJ/kg, soit un travail total de 4180 à 4880 kJ/kg. Le débit total traversant les turbines est égal à 3,24 fois le débit admis en 1.
Fig. 7 est une configuration de la variante VS avec trois re-compression disposée dans le boucle de régénération. Hydrogène en version VS à re-compression triple : A la base c’est l’exemple de Fig. 6 VS hydrogène auquel une troisième re-compression est ajoutée. Le débit au point 4 sous 70 bars est égal 2,68 fois le débit admis en 1. Les débits aux points 10 et 8 sont respectivement égaux à 1,20 et 0,85 fois le débit admis en 1. Le régénérateur Er en trait discontinu peut-être supprimé. Cette configuration permet de porter les performances à niveau qui se situe entre 2400 et 3100 kJ/kg.

Claims

8. Les revendications
1. Procédé de re-gazéification d’un gaz liquéfié, sous forme d’un circuit en boucle continue dans laquelle circule le fluide. La boucle comporte une ouverture par laquelle le liquide est admis et au minimum une sortie pour le gaz produit. Dans la boucle, un échange de chaleur interne, dit régénération, est réalisé entre un courant de fluide à haute pression et un deuxième courant de fluide à plus basse pression.
Le procédé est caractérisé en ce que le fluide évolue dans la boucle sans subir d’ébullition et sans subir de condensation. Aucun des processus élémentaires constitutifs du procédé ne franchit la ligne de saturation du fluide. Ce principe est représenté sur Fig la., Fig 2a. et Fig 3a. Une condensation marginale peut avoir lieu lorsque le fluide est non-pur c’est à dire lorsqu’il est à l’état de mélange.
2. Procédé selon la revendication 1 dans lequel le liquide admis puis pressurisé à haute pression supercritique subit un préchauffage par échange de chaleur interne c’est à dire par régénération. Ce préchauffage sert à élever la température du liquide admis jusqu’à atteindre une température proche de celle de la source de chaleur externe.
Le procédé est caractérisé en ce que le fluide basse pression servant à réaliser le préchauffage est à une pression supercritique comme montré sur Fig. la. La pression de ce fluide est supérieure ou égale à 1,2 fois la pression critique du fluide traité. La valeur de son débit est supérieure ou égale à 0,5 fois le débit du liquide admis dans le procédé et re-gazéifié.
3. Procédé selon la revendication 1 dans lequel le liquide admis puis pressurisé à haute pression supercritique subit un préchauffage par échange de chaleur interne c’est à dire par régénération. Ce préchauffage sert à élever la température du liquide admis jusqu’à atteindre une température proche de celle de la source de chaleur externe.
Le procédé est caractérisé en ce que le fluide basse pression servant à réaliser le préchauffage est à une pression sous-critique sous forme d’un gaz, comme représenté sur Fig 2a. et Fig 3a. La pression absolue du gaz est comprise entre 1,1 et 11 bars. La valeur de son débit est supérieure ou égale à 0,5 fois le débit du liquide admis dans le procédé et re-gazéifié.
4. Procédé selon les revendications 1, 2 caractérisé en ce que le fluide supercritique basse pression servant à réaliser le préchauffage est re-comprimé une fois refroidi. Le fluide re comprimé est mélangé au fluide haute pression en un point où les températures des deux fluides sont voisines. A cette fin, le mélange est effectué après un certain échange de chaleur selon la disposition repérée par les points 2, 5, 6 et 7 de Fig. 1.
5. Procédé selon les revendications 1, 3 caractérisé en ce que le gaz basse pression servant à réaliser le préchauffage, une fois refroidi, est re-comprimé. Le gaz re-comprimé est re introduit dans le circuit du procédé en un point où les conditions de pression et de température sont les plus proches. Cela peut être entre deux machines de détente (cas de Fig. 2a.) ou bien sur la ligne de préchauffage du fluide supercritique haute pression (cas de Fig. 3a.).
6. Procédé selon les revendications 1, 3, et 5 caractérisé en ce que les composés lourds contenus dans le fluide cryogénique à l’état de mélange sont condensés au fur et à mesure du refroidissement du gaz basse pression. Le liquide obtenu est extrait du procédé ou bien re circulé dans celui-ci de manière à utiliser sa froideur comme schématisé sur Fig. 2b.
7. Procédé selon les revendications 1, 2, 3, 4 et 5 caractérisé en ce qu’il comporte des re compressions additionnelles, jusqu’à un nombre de 4. Ces re-compressions sont arrangées en parallèle dans la boucle de régénération pour transférer des quantités de fluide basse pression, vers la ligne de préchauffage du fluide supercritique haute pression. Cette possibilité est représentée sur Fig la. et Fig 3a.
8. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 utilisé pour la re-gazéification du gaz naturel liquéfié.
9. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 utilisé pour la re-gazéification de l’hydrogène liquide, avec ou sans incorporation dans le procédé d’une conversion para-ortho.
10. Procédé selon les revendications 1, 2, 3, 4, 5, 6, et 7 utilisé pour la re-gazéification de l’air, l’azote, l’oxygène, l’argon ou l’hélium liquides.
11. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce qu’il est conçu pour être polyvalent, permettant de re-gazéifier plusieurs types de fluides cryogéniques.
12. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce qu’il utilise une pompe, des compresseurs et des machines de détente de types inversibles. Le procédé peut de cette façon fonctionner en machine de liquéfaction par inversion du sens de rotation de la pompe, des compresseurs et des machines de détente. Le sens de circulation des débits s’en trouve inversé, le gaz est admis et le liquide produit.
13. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce que la pompe, les compresseurs, les machines de détente (de types inversibles ou non) ainsi que les échangeurs- regénérateurs sont totalement ou partiellement partagés avec une machine de liquéfaction.
14. Procédé selon les revendications 1, 2, 3, 4, 5, 6, 7 et 12 comportant les dispositions nécessaires pour la gestion de la vapeur à basse pression et basse température pouvant accompagner le liquide produit, cela lorsque la machine de re-gazéification est inversée en machine de liquéfaction.
15. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce qu’il soit alimenté en chaleur d’origine solaire, géothermique ou en chaleur rejetée par tout autre système industriel.
16. Procédé selon les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce qu’il soit combiné ou intégré à d’autres systèmes énergétiques, cela afin d’élever les rendements ou améliorer l’exploitation des ressources et des équipements.
PCT/DZ2018/050001 2018-02-14 2018-02-14 Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide WO2019129338A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DZ2018/050001 WO2019129338A1 (fr) 2018-02-14 2018-02-14 Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DZ2018/050001 WO2019129338A1 (fr) 2018-02-14 2018-02-14 Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide

Publications (1)

Publication Number Publication Date
WO2019129338A1 true WO2019129338A1 (fr) 2019-07-04

Family

ID=67066677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2018/050001 WO2019129338A1 (fr) 2018-02-14 2018-02-14 Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide

Country Status (1)

Country Link
WO (1) WO2019129338A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287182B2 (en) * 2017-11-27 2022-03-29 Siemens Energy Global GmbH & Co. KG Method for power generation during the regasification of a fluid by supercritical expansion
CN115507298A (zh) * 2022-10-09 2022-12-23 北京中科富海低温科技有限公司 氢气排放装置及氢气排放系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237403A (en) * 1963-03-19 1966-03-01 Douglas Aircraft Co Inc Supercritical cycle heat engine
JPS5776205U (fr) * 1980-10-29 1982-05-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237403A (en) * 1963-03-19 1966-03-01 Douglas Aircraft Co Inc Supercritical cycle heat engine
JPS5776205U (fr) * 1980-10-29 1982-05-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287182B2 (en) * 2017-11-27 2022-03-29 Siemens Energy Global GmbH & Co. KG Method for power generation during the regasification of a fluid by supercritical expansion
CN115507298A (zh) * 2022-10-09 2022-12-23 北京中科富海低温科技有限公司 氢气排放装置及氢气排放系统

Similar Documents

Publication Publication Date Title
RU2562683C2 (ru) Регазификация сжиженного природного газа по циклу брайтона
US8869531B2 (en) Heat engines with cascade cycles
KR102196751B1 (ko) 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템
FR3053771B1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
FR2471567A1 (fr) Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
EP2724099B1 (fr) Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant
WO2008022406A1 (fr) Système de moteur thermique
WO2003004951A1 (fr) Procede de liquefaction et de deazotation de gaz naturel, installation de mise en oeuvre
WO2019129338A1 (fr) Systèmes de vaporisation des gaz liquéfiés à re-compression de fluide
EP3510257B1 (fr) Système mécanique de production d'énergie mécanique à partir d'azote liquide, et procédé correspondant
WO2015062782A1 (fr) Procede d'une conversion d'une energie thermique en energie mecanique au moyen d'un cycle de rankine equipe d'une pompe a chaleur
FR3099205A1 (fr) Procédé de production d’énergie électrique utilisant plusieurs cycles de Rankine combinés
FR3053770A1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant un cycle refrigerant semi-ouvert au gaz naturel et deux cycles refrigerant fermes au gaz refrigerant
JP2021509940A (ja) Lng再気化
US20220389841A1 (en) Charge, Storage, and Discharge Energy System Using Liquid Air and sCO2
FR2993925A1 (fr) Dispositif permettant de stocker et de restituer de l'energie electrique a grande echelle
FR2775518A1 (fr) Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
EP3390938B1 (fr) Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre
EP2417411A2 (fr) Procede et systeme frigorifique pour la recuperation de la froideur du methane par des fluides frigorigenes
EP3438422A1 (fr) Dispositif de régulation de la charge fluidique en circulation dans un système basé sur un cycle de rankine
FR3045726A1 (fr) Dispositifs et procede d'extraction et de valorisation de l'energie de detente d'un gaz sous pression non chauffe
FR2858830A1 (fr) Procede pour augmenter la capacite et l'efficacite d'installations gazieres du type comprenant une turbine a gaz
Trela et al. A study of transcritical carbon dioxide cycles with heat regeneration
FR3068771A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz
FR3029611A1 (fr) Systeme de liquefaction de gaz a machine a absorption et pompe a chaleur stirling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894958

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18894958

Country of ref document: EP

Kind code of ref document: A1