WO2019129008A1 - 一种弧形多焦点固定阳极栅控射线源 - Google Patents

一种弧形多焦点固定阳极栅控射线源 Download PDF

Info

Publication number
WO2019129008A1
WO2019129008A1 PCT/CN2018/123607 CN2018123607W WO2019129008A1 WO 2019129008 A1 WO2019129008 A1 WO 2019129008A1 CN 2018123607 W CN2018123607 W CN 2018123607W WO 2019129008 A1 WO2019129008 A1 WO 2019129008A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed anode
ray
fixed
curved
ray source
Prior art date
Application number
PCT/CN2018/123607
Other languages
English (en)
French (fr)
Inventor
邢金辉
崔志立
高建
曹红光
Original Assignee
北京纳米维景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米维景科技有限公司 filed Critical 北京纳米维景科技有限公司
Priority to EP18895942.3A priority Critical patent/EP3734636A4/en
Priority to JP2020535226A priority patent/JP7320284B2/ja
Priority to KR1020207021518A priority patent/KR102470923B1/ko
Publication of WO2019129008A1 publication Critical patent/WO2019129008A1/zh
Priority to US16/910,069 priority patent/US11456144B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/045Electrodes for controlling the current of the cathode ray, e.g. control grids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements

Definitions

  • the present invention relates to an X-ray source, and more particularly to an arcuate multifocal fixed anode grid-controlled ray source.
  • Static CT is a novel CT (Computed Tomography) technical solution. Its overall structure uses a full circle of detectors and a full-circle ray source to achieve the timing of each ray source focus on the circumference. The same purpose of circular scanning as spiral CT. This static CT theoretically does not require rotating parts, and thus does not require bearings and slip rings. The structure is simple, the theoretical circumferential scanning speed is fast, and the data transmission speed is fast.
  • the current mainstream ideas of the full-circle ray source are as follows: 1. Using a reflective pay-off line, the fixed anode of the whole ring is matched with a plurality of cathodes uniformly distributed around the circumference to form a circular multi-focal annular ray source. . The whole ring anode of this structure is difficult to manufacture because of its large diameter; 2. The transmission type is used, the radiation source structure is modularized, and there are multiple focal points in one module, and multiple radiation source modules are arranged in the circumferential direction. Implement the entire ring structure. This structure has a low ray intensity and is not well suited for practical testing.
  • the technical problem to be solved by the present invention is to provide an arc-shaped multifocal fixed anode grid-controlled ray source.
  • a curved multifocal fixed anode grid-controlled ray source comprising a curved ray source housing, a ray tube holder, a plurality of fixed anode reflection ray tubes and a plurality of grid-controlled switches; a plurality of the fixed anode reflection ray tubes are fixed on the curved ray source housing by the ray tube holder, and a plurality of the fixed anode reflection ray tubes are distributed on the same distribution circle; a plurality of the grids The control switch is connected to the plurality of fixed anode reflection ray tubes.
  • an angle ⁇ 360 ° / N between the outer edge of the left side plate of the curved ray source housing and the outer edge of the right side plate, N is a positive integer.
  • the ray tube holder is an arc-shaped bracket, and the ray tube holder is fixed on the inner arc wall plate of the curved ray source housing, and the plurality of fixed anode reflection ray tubes are fixed at the On the ray tube holder, the focal points of the plurality of fixed anode reflection ray tubes are uniformly distributed on the same distribution circle.
  • the ray tube holder is uniformly provided with a plurality of through holes, and the anode ends of the plurality of fixed anode reflection ray tubes respectively protrude from the through holes of the ray tube holder, and
  • the fixed anode reflection ray tubes are respectively fixed to the ray tube holder by flanges.
  • the inner arc wall plate and the outer arc wall plate of the curved ray source housing are respectively arranged concentrically with the distribution circle where the focus of the plurality of fixed anode reflection ray tubes is located;
  • the extension lines of the left side plate and the right side plate of the curved ray source housing pass through the center of the distribution circle where the focus of the fixed anode radiation ray tube is located.
  • the focal points of the plurality of fixed anode reflection ray tubes are evenly distributed within the angular range ⁇ with respect to the same distribution circle, 360° ⁇ ⁇ >0°, and ⁇ is less than or equal to ⁇ .
  • an angle between two adjacent fixed anode ray tubes is ⁇ /n
  • the angle between the leftmost and rightmost fixed anode ray tube and the outer edge of the adjacent side plate is ⁇ /2n.
  • the angle between two adjacent fixed anode reflection ray tubes is ⁇ /n.
  • each of the fixed anode reflection ray tubes is provided with an independent one of the grid control switches; the grid control switch is fixed to the tube body of the fixed anode reflection ray tube through a bracket, and An output of the gate-controlled switch is connected to the gate of the fixed anode reflection ray tube by a wire.
  • an X-ray source comprising a plurality of the above-mentioned curved multi-focus fixed anode grid-controlled ray sources, wherein a plurality of the arc-shaped multi-focus fixed anode grid-controlled ray sources are assembled
  • the focal circumferences of all the fixed anode reflection ray tubes in the plurality of arc-shaped multi-focus fixed anode grid-controlled ray sources are distributed on the same distribution circle.
  • the curved multi-focus fixed anode grid-controlled ray source comprises a fixed anode reflection ray tube, a grid control switch, a ray tube holder and a curved ray source housing, wherein the anode end of the fixed anode reflection ray tube is reflective
  • the fixed anode target generates an X-ray beam
  • the plurality of fixed anode reflection ray tubes are fixed on the curved ray source casing through the ray tube bracket, and the plurality of fixed anode reflection ray tubes are evenly distributed within a certain angle range with respect to a distribution circle of a certain size. .
  • the plurality of curved ray source housings may be assembled into a single ring structure such that the focal points of all of the fixed anode ray tubes of the plurality of curved multifocal fixed anode grid-controlled ray sources are distributed over the same distribution circle.
  • a plurality of gate-controlled switches and a plurality of fixed anode reflection ray tubes are correspondingly connected, and the grid-controlled switch can control the on-off of the fixed anode reflection ray tube circuit, thereby realizing the alignment control.
  • the above-mentioned curved multifocal fixed anode grid-controlled ray source has a simple structure, a low cost, and can generate radiation of sufficient intensity while distributing a sufficient number of focal points in the circumferential direction.
  • FIG. 1 is a schematic view showing the overall structure of a curved multifocal fixed anode grid-controlled ray source provided by the present invention
  • Figure 2 is a schematic view showing the connection of the fixed anode reflection ray tube and the ray tube holder of Figure 1;
  • Figure 3A is a front elevational view showing the connection structure of the fixed anode reflection ray tube and the grid switch;
  • Figure 3B is a side view showing the connection structure of the fixed anode reflection ray tube and the grid switch;
  • FIG. 4 is a schematic diagram of a complete ring structure composed of a plurality of curved multifocal fixed anode grid-controlled ray sources.
  • the curved multi-focus fixed anode grid-controlled ray source provided by the invention comprises a curved ray source housing 1 , a ray tube holder 2 , a plurality of fixed anode reflection ray tubes 3 and a plurality of grid control switches 4 . .
  • a plurality of fixed anode reflection ray tubes 3 are fixed on the curved ray source housing 1 through the ray tube holder 2, and the focal points of the plurality of fixed anode reflection ray tubes 3 are distributed on the same distribution circle, preferably, a plurality of fixed anodes
  • the focus of the reflection ray tube 3 is evenly distributed within a certain angular range ⁇ (360° ⁇ ⁇ > 0°) with respect to the same distribution circle; a plurality of gate control switches 4 and a plurality of fixed anode reflection ray tubes 3 are correspondingly connected for pairing The on and off of the plurality of fixed anode reflection ray tubes 3 are controlled.
  • Fig. 1 The specific structure of the curved multifocal fixed anode grid-controlled ray source will be described below by taking the orientation shown in Fig. 1 as an example.
  • the curved ray source housing 1 is a closed casing composed of an inner arc wall panel, an outer arc wall panel, a left side panel, a right side panel, a front side panel, and a rear side panel.
  • the tube holder 2, the plurality of fixed anode reflection ray tubes 3, and the plurality of grid control switches 4 are disposed inside the curved ray source housing 1.
  • the angle ⁇ between the outer edge of the left side plate of the curved ray source housing 1 and the outer edge of the right side plate may be arbitrarily selected within a range of 0° to 360°, ⁇ is preferably 360°/N, and N is a positive integer, for example ⁇ is equal to 45°, 60°, 90°, 180°, and the like.
  • the ray tube holder 2 is an arc-shaped bracket, and the ray tube holder 2 is fixed to the inner arc wall plate of the curved ray source housing 1 by a connecting member such as a bolt, and a plurality of fixed anode reflection ray tubes 3 are fixed. On the tube holder 2.
  • a plurality of through holes are uniformly formed in the ray tube holder 2, and the anode ends of the plurality of fixed anode reflection ray tubes 3 respectively protrude from the through holes of the ray tube holder 2, and the plurality of fixed anode reflection ray tubes 3 respectively pass the method
  • the orchid is fixed to the tube holder 2.
  • the focus of the plurality of fixed anode reflection ray tubes 3 can be adjusted to the same circle by finely adjusting the fixed position and angle of the fixed anode reflection ray tube 3 on the ray tube holder 2.
  • a circle passing through a plurality of focal points of the fixed anode reflection ray tube 3 is referred to as a distribution circle of a plurality of fixed anode reflection ray tubes 3.
  • the inner and outer end faces of the curved ray source housing 1 are all curved surfaces, and the inner arc wall plate and the outer arc wall plate are respectively arranged concentrically with the distribution circle of the plurality of fixed anode reflection ray tubes 3, and of course, can also be arranged approximately concentrically. Among them, the concentric setting is optimal.
  • the left and right end faces of the curved ray source housing 1 are at an angle ⁇ , and the extension lines of the left side plate and the right side plate are preferably centered by the center of the distribution circle of the plurality of fixed anode emission ray tubes 3.
  • the focal points of the plurality of fixed anode reflection ray tubes 3 are evenly distributed within a certain angular range ⁇ with respect to the distribution circle, the angle range ⁇ being less than or equal to the outer edge of the left side plate and the outer edge of the right side plate of the curved ray source housing 1.
  • the angle ⁇ between.
  • ⁇ and ⁇ are approximately equal, preferably, in the same
  • the angle between the adjacent two fixed anode reflection ray tubes 3 is ⁇ /n
  • the leftmost and rightmost fixed anode reflected rays The angle between the tube 3 and the outer edge of the adjacent side panel is ⁇ /2n.
  • is smaller than ⁇ , and between the adjacent two fixed anode reflection ray tubes 3
  • the angle between ⁇ /n, the leftmost and rightmost fixed anode ray tube 3 and the outer edge of the adjacent side plate may be greater than ⁇ /2n or less than ⁇ /2n.
  • the anode end of the fixed anode reflection ray tube 3 used in the present invention generates a X-ray beam using a reflective fixed anode target. Both ends of the fixed anode reflection ray tube 3 are an anode end and a cathode end, respectively, and a gate is disposed at a position close to the cathode in the fixed anode reflection ray tube 3. As shown in FIGS. 3A and 3B, each of the fixed anode reflection ray tubes 3 is provided with a separate grid switch 4.
  • the grid switch 4 is fixed to the tube body of the fixed anode reflection ray tube 3 through the bracket, and the output end of the grid switch 4 is connected to the gate of the fixed anode reflection ray tube 3 through a wire, thereby fixing the anode reflection ray tube 3
  • the on-off control is performed to realize the control of the payout, and the X-ray beam 5 emitted after being reflected by the anode end is as shown in Figs. 3A and 3B.
  • the on and off of the adjacent plurality of fixed anode reflection ray tubes 3 can also be controlled by the same gate switch 4.
  • the control mode in which the fixed anode reflection ray tube 3 and the gate control switch 4 shown in the drawings are in one-to-one correspondence is superior.
  • N arc-shaped multi-focus fixed anode grid-controlled ray sources can be assembled into a "full ring structure" by connecting the left side plate and the right side plate of the N arc-shaped ray source casings 1 to each other.
  • the focal points of the plurality of fixed anode reflection ray tubes 3 can be circumferentially distributed on the same distribution circle and distributed as uniformly as possible.
  • the grid switch 4 in the entire ring structure the fixed anode reflection ray tube 3 sequentially emits an X-ray beam, thereby enabling sequential discharge scanning in the 360° direction.
  • the X-ray beam 5 emitted from each of the fixed anode reflection ray tubes 3 is irradiated toward the center of the entire ring.
  • the entire ring structure composed of N arc-shaped multifocal fixed anode grid-controlled ray sources The focus of all the fixed anode reflection ray tubes 3 in the N curved ray source housings 1 are distributed on the same distribution circle, and the focus of the plurality of fixed anode reflection ray tubes 3 in each of the curved ray source housings 1 Uniform.
  • the curved multi-focus fixed anode grid-controlled ray source comprises a fixed anode reflection ray tube, a grid control switch, a ray tube holder and a curved ray source housing, wherein the fixed anode reflection ray tube can The X-ray beam is emitted, and a plurality of fixed anode reflection ray tubes are fixed on the curved ray source casing through the ray tube bracket, and the plurality of fixed anode reflection ray tubes are evenly distributed within a certain angular range with respect to a distribution circle of a certain size.
  • the plurality of curved ray source housings may be assembled into a single ring structure such that the focal points of all of the fixed anode ray tubes of the plurality of curved multifocal fixed anode grid-controlled ray sources are distributed over the same distribution circle.
  • a plurality of gate-controlled switches and a plurality of fixed anode reflection ray tubes are correspondingly connected, and the grid-controlled switch can control the on-off of the fixed anode reflection ray tube circuit, thereby realizing the alignment control.
  • the above-mentioned curved multifocal fixed anode grid-controlled ray source has a simple structure, a low cost, and can generate radiation of sufficient intensity while distributing a sufficient number of focal points in the circumferential direction.
  • the source of radiation can be applied to a static CT system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明提供了一种弧形多焦点固定阳极栅控射线源,包括弧形射线源外壳、射线管支架、多个固定阳极反射射线管和多个栅控开关;其中,多个固定阳极反射射线管通过射线管支架固定在弧形射线源外壳上,多个所述固定阳极反射射线管的焦点分布在同一分布圆上;多个栅控开关和多个固定阳极反射射线管对应连接。通过将上述多个弧形多焦点固定阳极栅控射线源拼成一个整环结构,可以其中的所有固定阳极反射射线管的焦点分布在同一分布圆上。上述弧形多焦点固定阳极栅控射线源的结构简单、成本较低、能产生足够强度的射线,同时在圆周方向上分布有足够数量的焦点。

Description

一种弧形多焦点固定阳极栅控射线源 技术领域
本发明涉及一种X射线源,尤其涉及一种弧形多焦点固定阳极栅控射线源。
背景技术
静态CT是一种新颖的CT(Computed Tomography,电子计算机断层扫描)技术方案,其整体结构是采用一整圈探测器和一整圈射线源,通过圆周上各射线源焦点时序放线,从而达到和螺旋CT一样的圆周扫描的目的。这种静态CT理论上不需要转动部件,也就不需要轴承和滑环,结构简单、理论圆周扫描速度快、数据传输速度快。
目前在静态CT领域,其整圈射线源目前的主流思路有如下两种:1.采用反射式放线,整环的固定阳极配合圆周均布的多个阴极,组成圆周多焦点的环形射线源。这种结构的整环阳极因为直径很大,制作困难;2.采用透射式放线,射线源结构模组化,一个模组里同样有多个焦点,圆周方向布有多个射线源模组实现整环结构。这种结构的射线强度偏低,不太适合用于实际检测。
因此,还需要对X射线源进行改进,使其能够产生足够强度的射线,并能够在圆周方向上分布足够数量的焦点。
发明内容
本发明所要解决的技术问题在于提供一种弧形多焦点固定阳极栅控射线源。
为了实现上述发明目的,本发明采用下述技术方案:
根据本发明实施例的第一方面,提供一种弧形多焦点固定阳极栅控射线源,包括弧形射线源外壳、射线管支架、多个固定阳极反射射线管和多个栅控开关;其中,多个所述固定阳极反射射线管通过所述射线管支架固定在所述弧形射线源外壳上,多个所述固定阳极反射射线管的焦点分布在同一分布圆上;多个所述栅控开关和多个所述固定阳极反射射线管对应连接。
其中较优地,所述弧形射线源外壳的左侧板的外边缘和右侧板的 外边缘之间的夹角θ=360°/N,N是正整数。
其中较优地,所述射线管支架是一个弧形的支架,所述射线管支架固定在所述弧形射线源外壳的内弧壁板上,多个所述固定阳极反射射线管固定在所述射线管支架上,多个所述固定阳极反射射线管的焦点均布在同一分布圆上。
其中较优地,所述射线管支架上均匀开设有多个通孔,多个所述固定阳极反射射线管的阳极端分别从所述射线管支架的通孔中伸出,并且,多个所述固定阳极反射射线管分别通过法兰固定在所述射线管支架上。
其中较优地,所述弧形射线源外壳的内弧壁板和外弧壁板分别同多个所述固定阳极反射射线管的焦点所在的分布圆同心设置;
所述弧形射线源外壳的左侧板和右侧板的延长线均通过多个所述固定阳极发射射线管的焦点所在的分布圆的圆心。
其中较优地,多个所述固定阳极反射射线管的焦点相对于同一分布圆在角度范围α内均布,360°≥α>0°,α小于或等于θ。
其中较优地,当α=θ时,在同一所述弧形射线源外壳内设置的n个所述固定阳极反射射线管中,相邻两个所述固定阳极反射射线管之间的角度为θ/n,最左侧和最右侧的所述固定阳极反射射线管和相邻侧板的外边缘之间的角度为θ/2n。
其中较优地,当α<θ时,相邻两个所述固定阳极反射射线管之间的角度为α/n。
其中较优地,每个所述固定阳极反射射线管均配设有独立的所述栅控开关;所述栅控开关通过支架与所述固定阳极反射射线管的管体固定,并且,所述栅控开关的输出端通过导线连接至所述固定阳极反射射线管的栅极。
根据本发明实施例的第二方面,提供一种X射线源,包括多个上述弧形多焦点固定阳极栅控射线源,其中,多个所述弧形多焦点固定阳极栅控射线源拼成整环结构,多个所述弧形多焦点固定阳极栅控射线源内的所有固定阳极反射射线管的焦点圆周分布在同一个分布圆上。
本发明所提供的弧形多焦点固定阳极栅控射线源,包括固定阳极 反射射线管、栅控开关、射线管支架和弧形射线源外壳,其中,固定阳极反射射线管的阳极端采用反射式固定阳极靶生成X射线束,多个固定阳极反射射线管通过射线管支架固定在弧形射线源外壳上,多个固定阳极反射射线管相对于某一尺寸的分布圆在一定角度范围内均布。多个弧形射线源外壳可以拼成一个整环结构,从而使多个弧形多焦点固定阳极栅控射线源中的所有固定阳极反射射线管的焦点分布在同一分布圆上。在该弧形多焦点固定阳极栅控射线源中,多个栅控开关和多个固定阳极反射射线管对应相连,栅控开关能够控制固定阳极反射射线管电路的通断,从而实现对放线的控制。上述弧形多焦点固定阳极栅控射线源的结构简单、成本较低、能产生足够强度的射线,同时在圆周方向上分布有足够数量的焦点。
附图说明
图1是本发明所提供的弧形多焦点固定阳极栅控射线源的整体结构示意图;
图2是图1中固定阳极反射射线管和射线管支架的连接示意图;
图3A是固定阳极反射射线管和栅控开关的连接结构的正视图;
图3B是固定阳极反射射线管和栅控开关的连接结构的侧视图;
图4是多个弧形多焦点固定阳极栅控射线源组成的整环结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容作进一步的说明。
如图1所示,本发明所提供的弧形多焦点固定阳极栅控射线源,包括弧形射线源外壳1、射线管支架2、多个固定阳极反射射线管3和多个栅控开关4。其中,多个固定阳极反射射线管3通过射线管支架2固定在弧形射线源外壳1上,多个固定阳极反射射线管3的焦点分布在同一分布圆上,较优地,多个固定阳极反射射线管3的焦点相对于同一分布圆在一定角度范围α(360°≥α>0°)内均布;多个栅控开关4和多个固定阳极反射射线管3对应连接,用于对多个固定阳极反射射线管3的通断进行控制。
下面以图1中所示的方位为例,对弧形多焦点固定阳极栅控射线 源的具体结构进行描述。
具体来说,如图1所示,弧形射线源外壳1是一个由内弧壁板、外弧壁板、左侧板、右侧板、前侧板和后侧板所组成的封闭式外壳,射线管支架2、多个固定阳极反射射线管3和多个栅控开关4均设置在弧形射线源外壳1内部。弧形射线源外壳1的左侧板的外边缘和右侧板的外边缘之间的夹角θ可以在0°~360°范围内任意选择,θ优选360°/N,N是正整数,例如θ等于45°、60°、90°、180°等。当θ=360°/N且N>1时,通过将N个弧形射线源外壳1绕圆周拼接,可将N个弧形多焦点固定阳极栅控射线源组成一个整环结构,从而使多个固定阳极反射射线管3的焦点能够分布在同一个分布圆上。可以理解,当θ=360°/N且N=1时,整个弧形射线源外壳将是一个圆环结构,左侧板和右侧板在理论上不存在。
如图2所示,射线管支架2是一个弧形的支架,射线管支架2通过螺栓等连接件固定在弧形射线源外壳1的内弧壁板上,多个固定阳极反射射线管3固定在射线管支架2上。
射线管支架2上均匀开设有多个通孔,多个固定阳极反射射线管3的阳极端分别从射线管支架2的通孔中伸出,并且,多个固定阳极反射射线管3分别通过法兰固定在射线管支架2上。在实际结构中,通过对固定阳极反射射线管3在射线管支架2上的固定位置和角度进行微调,可以将多个固定阳极反射射线管3的焦点调节至同一圆上。下文中,将经过多个固定阳极反射射线管3的焦点的圆称为多个固定阳极反射射线管3的分布圆。
弧形射线源外壳1的内外两个端面均是弧面,且内弧壁板和外弧壁板分别同多个固定阳极反射射线管3的分布圆同心设置,当然,也可近似同心设置,其中以同心设置为最优。弧形射线源外壳1的左右端面成θ夹角,且左侧板和右侧板的延长线均通过多个固定阳极发射射线管3的分布圆的圆心为最优。
多个固定阳极反射射线管3的焦点相对于该分布圆在一定角度范围α内均布,该角度范围α小于或等于弧形射线源外壳1的左侧板外边缘和右侧板外边缘之间的角度θ。实际结构中,当左侧板和右侧板壁厚较小且一个弧形射线源外壳1内设置的固定阳极反射射线管3的 数量较少时,α和θ近似相等,较优地,在同一弧形射线源外壳1内设置的n个固定阳极反射射线管3中,相邻两个固定阳极反射射线管3之间的角度为θ/n,最左侧和最右侧的固定阳极反射射线管3和相邻侧板的外边缘之间的角度为θ/2n。当左侧板和右侧板壁厚较大或一个弧形射线源外壳1内设置的固定阳极反射射线管3的数量较多时,α小于θ,相邻两个固定阳极反射射线管3之间的角度为α/n,最左侧和最右侧的固定阳极反射射线管3和相邻侧板的外边缘之间的角度可以大于α/2n,也可以小于α/2n。
在本发明中所使用的固定阳极反射射线管3的阳极端采用反射式固定阳极靶生成X射线束。固定阳极反射射线管3的两端分别为阳极端和阴极端,在固定阳极反射射线管3内靠近阴极的位置设置有栅极。如图3A和图3B所示,每个固定阳极反射射线管3均配设有独立的栅控开关4。栅控开关4通过支架与固定阳极反射射线管3的管体固定,并且,栅控开关4的输出端通过导线连接至固定阳极反射射线管3的栅极,从而对固定阳极反射射线管3的通断进行控制,实现对放线的控制,经阳极端反射后发出的X射线束5如图3A和3B所示。当然,也可使相邻多个固定阳极反射射线管3的通断由同一栅控开关4控制。不过,在上述多种控制方式中,仍以附图所示的固定阳极反射射线管3和栅控开关4一一对应的控制方式为优。
如图4所示,通过将N个弧形射线源外壳1的左侧板和右侧板首尾相接,可以将N个弧形多焦点固定阳极栅控射线源拼成一个“整环结构”,从而使多个固定阳极反射射线管3的焦点能够圆周分布在同一个分布圆上,并尽可能均布。通过对整环结构中的栅控开关4进行控制,固定阳极反射射线管3依次发射X射线束,从而能够实现360°方向上的顺序放线扫描。在该整环结构中,每个固定阳极反射射线管3所发出的X射线束5均向整环的中心照射。
当在同一弧形射线源外壳1内设置的相邻两个固定阳极反射射线管3之间的角度为θ/n,最左侧和最右侧的固定阳极反射射线管3和相邻侧板的外边缘之间的角度为θ/2n时,通过将N个弧形多焦点固定阳极栅控射线源组成一个整环结构,可以使N个弧形多焦点固定阳极栅控射线源内的所有固定阳极反射射线管3的焦点在分布圆上均 布。当在同一弧形射线源外壳1内设置的相邻两个固定阳极反射射线管3之间的角度取其他值时,在N个弧形多焦点固定阳极栅控射线源所组成的整环结构中,N个弧形射线源外壳1内的所有固定阳极反射射线管3的焦点分布在同一分布圆上,并且,每个弧形射线源外壳1内的多个固定阳极反射射线管3的焦点均布。
综上所述,本发明所提供的弧形多焦点固定阳极栅控射线源,包括固定阳极反射射线管、栅控开关、射线管支架和弧形射线源外壳,其中,固定阳极反射射线管能发射X射线束,多个固定阳极反射射线管通过射线管支架固定在弧形射线源外壳上,多个固定阳极反射射线管相对于某一尺寸的分布圆在一定角度范围内均布。多个弧形射线源外壳可以拼成一个整环结构,从而使多个弧形多焦点固定阳极栅控射线源中的所有固定阳极反射射线管的焦点分布在同一分布圆上。在该弧形多焦点固定阳极栅控射线源中,多个栅控开关和多个固定阳极反射射线管对应相连,栅控开关能够控制固定阳极反射射线管电路的通断,从而实现对放线的控制。上述弧形多焦点固定阳极栅控射线源的结构简单、成本较低、能产生足够强度的射线,同时在圆周方向上分布有足够数量的焦点。该射线源可以应用于静态CT系统。
以上对本发明所提供的弧形多焦点固定阳极栅控射线源进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (10)

  1. 一种弧形多焦点固定阳极栅控射线源,其特征在于包括弧形射线源外壳、射线管支架、多个固定阳极反射射线管和多个栅控开关;其中,多个所述固定阳极反射射线管通过所述射线管支架固定在所述弧形射线源外壳上,多个所述固定阳极反射射线管的焦点分布在同一分布圆上;多个所述栅控开关和多个所述固定阳极反射射线管对应连接。
  2. 如权利要求1所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    所述射线管支架是一个弧形的支架,所述射线管支架固定在所述弧形射线源外壳的内弧壁板上,多个所述固定阳极反射射线管固定在所述射线管支架上,多个所述固定阳极反射射线管的焦点均布在同一分布圆上。
  3. 如权利要求1所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    所述射线管支架上均匀开设有多个通孔,多个所述固定阳极反射射线管的阳极端分别从所述射线管支架的通孔中伸出,并且,多个所述固定阳极反射射线管分别通过法兰固定在所述射线管支架上。
  4. 如权利要求1所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    所述弧形射线源外壳的内弧壁板和外弧壁板分别同多个所述固定阳极反射射线管的焦点所在的分布圆同心设置;
    所述弧形射线源外壳的左侧板和右侧板的延长线均通过多个所述固定阳极发射射线管的焦点所在的分布圆的圆心。
  5. 如权利要求1所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    所述弧形射线源外壳的左侧板的外边缘和右侧板的外边缘之间的夹角θ=360°/N,N是正整数。
  6. 如权利要求5所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    多个所述固定阳极反射射线管的焦点相对于同一分布圆在角度范围α内均布,360°≥α>0°,α小于或等于θ。
  7. 如权利要求6所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    当α=θ时,在同一所述弧形射线源外壳内设置的n个所述固定阳极反射射线管中,相邻两个所述固定阳极反射射线管之间的角度为θ/n,最左侧和最右侧的所述固定阳极反射射线管和相邻侧板的外边缘之间的角度为θ/2n。
  8. 如权利要求6所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    当α<θ时,相邻两个所述固定阳极反射射线管之间的角度为α/n。
  9. 如权利要求1所述的弧形多焦点固定阳极栅控射线源,其特征在于:
    每个所述固定阳极反射射线管均配设有独立的所述栅控开关;所述栅控开关通过支架与所述固定阳极反射射线管的管体固定,并且,所述栅控开关的输出端通过导线连接至所述固定阳极反射射线管的栅极。
  10. 一种X射线源,其特征在于包括多个如权利要求1~9任意一项所述的弧形多焦点固定阳极栅控射线源,其中,多个所述弧形多焦点固定阳极栅控射线源拼成整环结构,多个所述弧形多焦点固定阳极栅控射线源内的所有固定阳极反射射线管的焦点圆周分布在同一个分布圆上。
PCT/CN2018/123607 2017-12-25 2018-12-25 一种弧形多焦点固定阳极栅控射线源 WO2019129008A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18895942.3A EP3734636A4 (en) 2017-12-25 2018-12-25 GATE-CONTROLLED ARC-SHAPED RADIATION SOURCE WITH MULTIPLE FOCAL POINTS AND FIXED ANODE
JP2020535226A JP7320284B2 (ja) 2017-12-25 2018-12-25 弧形多焦点固定陽極ゲート制御放射線源およびx放射線源
KR1020207021518A KR102470923B1 (ko) 2017-12-25 2018-12-25 호형 다초점 고정 양극 그리드 제어 방사선원
US16/910,069 US11456144B2 (en) 2017-12-25 2020-06-24 Arc-shaped multi-focal point fixed anode gate controlled ray source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711418215.5A CN108122723B (zh) 2017-12-25 2017-12-25 一种弧形多焦点固定阳极栅控射线源
CN201711418215.5 2017-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/910,069 Continuation US11456144B2 (en) 2017-12-25 2020-06-24 Arc-shaped multi-focal point fixed anode gate controlled ray source

Publications (1)

Publication Number Publication Date
WO2019129008A1 true WO2019129008A1 (zh) 2019-07-04

Family

ID=62231708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123607 WO2019129008A1 (zh) 2017-12-25 2018-12-25 一种弧形多焦点固定阳极栅控射线源

Country Status (6)

Country Link
US (1) US11456144B2 (zh)
EP (1) EP3734636A4 (zh)
JP (1) JP7320284B2 (zh)
KR (1) KR102470923B1 (zh)
CN (1) CN108122723B (zh)
WO (1) WO2019129008A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108122723B (zh) * 2017-12-25 2020-04-03 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源
CN108811287B (zh) * 2018-06-28 2024-03-29 北京纳米维景科技有限公司 一种面阵多焦点栅控射线源及其ct设备
WO2020087825A1 (zh) * 2018-10-31 2020-05-07 北京纳米维景科技有限公司 一种多级能量型静态安检ct系统及成像方法
CN109343135B (zh) * 2018-10-31 2020-10-09 北京纳米维景科技有限公司 一种多级能量型静态安检ct系统及成像方法
US11771387B2 (en) * 2020-01-29 2023-10-03 Aixscan Inc. Fast 3D radiography using multiple pulsed X-ray sources in motion
CN113345782B (zh) * 2021-05-28 2022-07-01 武汉联影医疗科技有限公司 X射线管的阴极发射装置、x射线管、高压线缆和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462630A (zh) * 2013-09-13 2013-12-25 深圳先进技术研究院 Ct系统及ct扫描方法
CN105997127A (zh) * 2016-06-21 2016-10-12 深圳先进技术研究院 一种静态乳腺双能ct成像系统及成像方法
CN106491152A (zh) * 2016-10-18 2017-03-15 深圳先进技术研究院 一种基于光子探测器的静态ct成像系统
CN108122723A (zh) * 2017-12-25 2018-06-05 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源
CN207611739U (zh) * 2017-12-25 2018-07-13 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878394A (en) * 1973-07-09 1975-04-15 John P Golden Portable X-ray device
JPS5438787A (en) * 1977-09-02 1979-03-23 Toshiba Corp X-ray source apparatus
FR2425836A1 (fr) * 1978-05-16 1979-12-14 Radiologie Cie Gle Appareil tomographique a gaine unique porteuse de tubes a rayons x et de detecteurs
JP3510394B2 (ja) * 1995-09-04 2004-03-29 三菱重工業株式会社 分割型高速x線ctスキャナシステム
US7233644B1 (en) * 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes
US7354197B2 (en) * 2005-06-01 2008-04-08 Endicott Interconnect Technologies, Inc. Imaging inspection apparatus with improved cooling
JP2007267980A (ja) 2006-03-31 2007-10-18 National Univ Corp Shizuoka Univ 回転機構のない連続処理型x線ct装置
DE102007012362A1 (de) 2007-03-14 2008-09-18 Siemens Ag Röntgengerät
JP5478873B2 (ja) 2008-11-14 2014-04-23 浜松ホトニクス株式会社 X線源
US8447011B2 (en) * 2010-08-24 2013-05-21 Fujifilm Corporation Radiographic image capturing system and radiographic image capturing method
EP2642924B1 (en) * 2010-11-27 2020-02-26 ICRCO, Inc Computed tomography and tomosynthesis system
KR101773960B1 (ko) * 2011-06-30 2017-09-12 한국전자통신연구원 단층합성영상 시스템
KR101247453B1 (ko) * 2011-08-18 2013-03-25 경희대학교 산학협력단 냉각 및 차폐 기능이 있는 엑스레이 소스
RU2655916C2 (ru) * 2013-09-18 2018-05-30 Циньхуа Юниверсити Устройство рентгеновского излучения и кт-оборудование, содержащее его
CN104470178A (zh) 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
WO2018153382A1 (zh) * 2017-02-27 2018-08-30 北京纳米维景科技有限公司 适应大视野要求的静态实时ct成像系统及其成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462630A (zh) * 2013-09-13 2013-12-25 深圳先进技术研究院 Ct系统及ct扫描方法
CN105997127A (zh) * 2016-06-21 2016-10-12 深圳先进技术研究院 一种静态乳腺双能ct成像系统及成像方法
CN106491152A (zh) * 2016-10-18 2017-03-15 深圳先进技术研究院 一种基于光子探测器的静态ct成像系统
CN108122723A (zh) * 2017-12-25 2018-06-05 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源
CN207611739U (zh) * 2017-12-25 2018-07-13 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734636A4 *

Also Published As

Publication number Publication date
JP2021532527A (ja) 2021-11-25
JP7320284B2 (ja) 2023-08-03
KR20200102477A (ko) 2020-08-31
EP3734636A1 (en) 2020-11-04
US20200321183A1 (en) 2020-10-08
EP3734636A4 (en) 2021-10-27
CN108122723B (zh) 2020-04-03
KR102470923B1 (ko) 2022-11-25
US11456144B2 (en) 2022-09-27
CN108122723A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2019129008A1 (zh) 一种弧形多焦点固定阳极栅控射线源
US11201030B2 (en) Distributed X-ray light source and control method therefor, and CT equipment
US4606061A (en) Light controlled x-ray scanner
CN103462630B (zh) Ct系统及ct扫描方法
GB1526041A (en) Sources of x-radiation
de Martino et al. Multiwavelength observations of the transitional millisecond pulsar binary XSS J12270− 4859
CN102697518A (zh) 静态能量分辨ct扫描仪及其扫描方法
CN202077262U (zh) 无损检测用驻波电子直线加速器装置
US4219733A (en) X-Ray diagnostic apparatus producing transverse layer images
WO2017054669A1 (zh) 双能射线扫描系统、扫描方法以及检查系统
GB1214083A (en) X-ray tubes
US9111655B2 (en) Radiation generating apparatus and radiation imaging system
CN108366483A (zh) 加速管以及具有该加速管的医用直线加速器
US9101039B2 (en) Radiation generating apparatus and radiation imaging system
CN207611739U (zh) 一种弧形多焦点固定阳极栅控射线源
WO1981002221A1 (en) Reversible periodical magneto-focusing system
US2360036A (en) Industrial radiographic apparatus
CN110911258B (zh) 一种分布式多焦点脉冲x射线光管及ct设备
US2459516A (en) High-pressure mercury vapor lamp
CN106037772A (zh) 一种探测器系统及ct扫描仪
CN1104737C (zh) 阴极移位式x光管
CN203083953U (zh) Ct设备
CN218651838U (zh) 双射源成像系统
CN218943369U (zh) 一种静态ct机准直器及静态ct机
JP2007048583A (ja) X線発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021518

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018895942

Country of ref document: EP

Effective date: 20200727