WO2019128770A1 - 一种设置有全包磁体的转子 - Google Patents

一种设置有全包磁体的转子 Download PDF

Info

Publication number
WO2019128770A1
WO2019128770A1 PCT/CN2018/121711 CN2018121711W WO2019128770A1 WO 2019128770 A1 WO2019128770 A1 WO 2019128770A1 CN 2018121711 W CN2018121711 W CN 2018121711W WO 2019128770 A1 WO2019128770 A1 WO 2019128770A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor according
rotor
cover layer
rotating member
Prior art date
Application number
PCT/CN2018/121711
Other languages
English (en)
French (fr)
Inventor
任兴顺
吴志坚
代华进
Original Assignee
成都银河磁体股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都银河磁体股份有限公司 filed Critical 成都银河磁体股份有限公司
Publication of WO2019128770A1 publication Critical patent/WO2019128770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the invention belongs to the technical field of magnet applications, and in particular relates to a rotor provided with an all-inclusive magnet.
  • the working environment of the motor rotor is special, and it needs to have high corrosion resistance, high temperature resistance and low temperature resistance. Moreover, due to the need of noise control, the dynamic balance of the rotor is also high. Requirements.
  • the magnet has high requirements for corrosion resistance, so it is generally required to use a magnet with high corrosion resistance or a magnet anti-corrosion process; at the same time, the above assembly method has other disadvantages, for example, a complicated manufacturing process.
  • the efficiency is low, the product has a high defect rate, and the dynamic balance of the rotor is not well controlled.
  • the object of the present invention is to provide a better dynamic balance performance in the field of pump technology, in which the rotor structure has high requirements on the corrosion resistance of the magnet, the manufacturing process is complicated, and the dynamic balance is not well controlled.
  • the manufacturing process is simple, and the rotor structure required for the corrosion resistance of the magnet can be reduced.
  • the present invention provides the following technical solutions:
  • a rotor provided with an all-inclusive magnet includes a rotary member and a magnet disposed on the rotary member, and the rotary member is further provided with a bearing or a bearing sleeve matched with the rotary member, and the rotary member is injection molded In a manner, and in the injection molding of the rotary part, a mating connection with the magnet and with the bearing or bearing sleeve is achieved.
  • the magnet has a magnetic working surface, and the magnetic working surface is provided with a covering layer to isolate the magnetic working surface from the outside air and the liquid.
  • the magnetic working surface of the present application is a magnet structure for providing a surface of a magnetic portion. In use, the magnetic working surface cooperates with an external structure to realize magnetic output of the magnet.
  • the cover layer is made of a material having a low magnetic permeability, and the material having a low magnetic permeability is a material having a relative magnetic permeability of less than or equal to 100.
  • the cover layer is made of a material that is not easily magnetically permeable, which can reduce or even avoid the influence of the cover layer on the magnetic strength of the magnet, and thus can provide stronger magnetic strength than the conventional rotor structure, and The requirement for the thickness of the cover layer is also reduced, which in turn simplifies the manufacturing process. Further, due to the reduction or elimination of the adverse effect of the cover layer on the magnetic strength, for the magnetic component that achieves the same magnetic strength requirement, the application of the present application is adopted. The structure can use a magnet with a lower magnetic strength grade, and thus, the manufacturing cost of the magnetic package is greatly reduced.
  • the material having a low magnetic permeability is a metal material.
  • the cover layer is made of a stainless steel material.
  • the above-mentioned metal materials and stainless steel materials have more excellent strength and/or rigidity than plastic materials, and thus, a thinner cover layer can be formed, further reducing the influence on the magnetism of the magnet.
  • the material having low magnetic permeability is a carbon fiber material, a fiber reinforced composite material or a particle reinforced composite material.
  • the coating layer is made of metal material or stainless steel material, carbon fiber material, fiber reinforced composite material or particle reinforced composite material, it has reliable mechanical properties and good machinability, and is reliable when processed to 0.1-0.5mm.
  • the strength, as well as a good sealing effect, so, as mentioned above, the thickness of the cover layer is set at 0.1-0.5mm, on the one hand, it can ensure a good sealing effect, on the other hand, it has a lighter weight and can be reduced.
  • the self-weight of the packet magnetic component can also further reduce the influence on the magnetism of the magnet.
  • the edge of the cover layer is in a sealing fit with the rotating member.
  • the magnet is enclosed within a sealed cavity formed between the cover layer and the rotating member.
  • the cover layer is made of the same material as the rotary member.
  • cover layer and the rotating member are integrally injection molded.
  • a through hole is coaxially disposed in the rotating member, and the bearing or the bearing sleeve is disposed in the through hole.
  • the magnet is a hollow cylindrical structure and is sleeved outside the rotating member.
  • the cover layer is sleeved outside the magnet.
  • the covering layer corresponding to the end of the magnet is provided with a step, and the rotating member covers the step.
  • the rotor further includes an actuator member that is a power output member or a magnetic output member of the rotor, such as an impeller, a gear, or other member for rotor motion output.
  • an actuator member that is a power output member or a magnetic output member of the rotor, such as an impeller, a gear, or other member for rotor motion output.
  • the executing component and the rotating component are integrally injection molded structures.
  • the execution component and the rotating component are connected by injection molding, bonding, ultrasonic welding or adding other connecting members.
  • the rotor of the present application is obtained by injection molding, and the joint connection with the magnet and the bearing or the bearing sleeve is realized by injection molding, thereby greatly simplifying the manufacturing process of the rotary member, and It is obtained by injection molding, the mold structure and the injection molding process are convenient and uniform, so it can also ensure the consistency of the product. Moreover, due to the reduction of the magnet assembly and the reduction of the assembly of the bearing or the bearing sleeve, the assembly may be avoided. There is a deviation, and therefore, with the structure of the present embodiment, the dynamic balance performance of the rotor can be greatly improved.
  • FIG. 1 is a schematic structural view of a cross section of a rotor of the present application.
  • Figure 2 is a cross-sectional view of an embodiment of the rotor of the present application.
  • a rotor provided with an all-inclusive magnet comprising a rotary member 1 and a magnet 2 disposed on the rotary member 1, the rotary member 1 further provided with a bearing or a bearing sleeve 3 matched with the rotary member 1
  • the rotary member 1 is obtained by injection molding, and during the injection molding of the rotary member 1, a mating connection with the magnet 2 and the bearing or the bearing sleeve 3 is achieved.
  • the rotor of the embodiment is obtained by injection molding, and the joint connection with the magnet 2 and the bearing or the bearing sleeve 3 is achieved by injection molding, thereby greatly simplifying the manufacture of the rotary member 1.
  • the mold structure and the injection molding process are convenient and uniform, so that the consistency of the product can be well ensured, and further, since the assembly of the magnet 2 is reduced and the assembly of the bearing or the bearing sleeve 3 is reduced, The deviation that may exist during assembly is avoided, so that the dynamic balance performance of the rotor can be greatly improved by the structure of the embodiment.
  • the magnet 2 has a magnetic working surface, and the magnetic working surface is provided with a covering layer 4 to isolate the magnetic working surface from the outside air.
  • the magnetic working surface of the present application is a structure for providing a magnetic portion of the magnet 2, and in use, the magnetic working surface cooperates with the external structure to realize the magnetic output of the magnet 2.
  • the magnetic working surface is insulated from the outside air and the liquid, thereby reducing the erosion and corrosion of the magnetic working surface by the external environment, improving the life of the magnet 2, thereby improving the life and reliability of the rotor.
  • the cover layer 4 is made of a plastic material.
  • the cover layer 4 is made of plastic, on the one hand, it has good economy.
  • the plastic has good plasticity and light weight, and can be well adhered to the magnetic working surface, and at the same time of inducing air insulation. The stability of the position between the magnet 2 and the cover layer 4 can be maintained.
  • the cover layer 4 is made of a material that is less magnetically permeable, and the material that is less magnetically permeable is a material having a relative magnetic permeability of less than or equal to 100.
  • the cover layer 4 is made of a material that is not easily magnetically permeable, which can reduce or even avoid the influence of the cover layer 4 on the magnetic strength of the magnet 2, thus providing a stronger magnetic strength than the conventional rotor structure. Moreover, the requirement for the thickness of the cover layer 4 is also reduced, which in turn simplifies the manufacturing process, and further, due to the reduction or elimination of the adverse effect of the cover layer 4 on the magnetic strength, for a magnetic component that achieves the same magnetic strength requirement With the structure of the present application, the magnet 2 of a lower magnetic strength grade can be used, and the manufacturing cost of the magnetic package is also greatly reduced.
  • the material having a low magnetic permeability is a metal material.
  • the cover layer 4 is made of a stainless steel material.
  • the metal material and the stainless steel material have more excellent strength and/or rigidity than the plastic material, and thus, a thinner cover layer 4 can be formed, further reducing the influence on the magnetism of the magnet 2.
  • the non-magnetically permeable material is a carbon fiber material, a fiber reinforced composite material or a particle reinforced composite material.
  • the cover layer 4 When the cover layer 4 is made of a metal material or a stainless steel material, a carbon fiber material, a fiber reinforced composite material or a particle reinforced composite material, it has a good mechanical property and a good mechanical processing property, and is still processed when it is processed to 0.1-0.5 mm. Reliable strength and good sealing effect, so, as mentioned above, the thickness of the cover layer is set to 0.1-0.5mm, on the one hand, it can ensure a good sealing effect, on the other hand, it has a light weight and can The self-weight of the magnetic package is reduced, and the influence on the magnetism of the magnet can be further reduced.
  • the edge of the cover layer 4 and the rotating member 1 are in a sealing fit. This is ensured that the magnet 2 is reliably closed.
  • the magnet 2 is enclosed in a sealed cavity formed between the cover layer 4 and the rotating member 1. In such a manner that the entire magnet 2 is enclosed, the entire magnet 2 is isolated from the outside air and the liquid, thus further improving the service life and reliability of the magnet 2.
  • the cover layer 4 is made of the same material as the rotary member 1.
  • cover layer 4 and the rotating member 1 are integrally injection molded.
  • the entire magnet 2 is wrapped in the rotary member 1, which further simplifies the manufacturing process of the rotor and further improves the dynamic balance performance of the rotor.
  • a through hole 6 (shown in FIG. 2) is coaxially disposed in the rotating member 1, and the bearing or bearing sleeve 3 is disposed in the through hole.
  • the bearing or bearing sleeve 3 functions to support and position the rotor under working conditions and reduce friction between the rotor and the shaft, and enhance wear resistance.
  • it is also provided in the through hole, which also helps Injection molding of the rotary member 1.
  • the magnet 2 is a hollow cylindrical structure that is sleeved outside the rotating member 1.
  • a part of the rotary member 1 is located between the magnet 2 and the bearing or the bearing sleeve 3, further facilitating the injection molding of the rotary member 1, and also facilitating the rotary member 1 and the bearing or the bearing sleeve 3, and The connection between the magnets 2.
  • the cover layer 4 is sleeved outside the magnet 2.
  • the covering layer 4 corresponding to the end of the magnet 2 is provided with a step 7 (shown in FIG. 2), and the rotating member 1 covers the step.
  • the reliability and sealing of the connection between the rotary member 1 and the cover layer 4 are improved by providing a step.
  • the rotor further includes an actuating member 5 which is a power output member or a magnetic output member of the rotor, such as an impeller, a gear or the like for a rotor.
  • the component of the action output is a power output member or a magnetic output member of the rotor, such as an impeller, a gear or the like for a rotor.
  • the actuator member 5 and the rotary member 1 are integrally injection molded.
  • the execution member 5 and the rotary member are integrally formed into an injection molding structure.
  • the manufacturing process is further simplified, the production efficiency and the yield rate of the product are improved, and the dynamic balance performance of the rotor can be greatly improved.
  • the actuator member 5 and the rotary member 1 are connected by injection molding, bonding, ultrasonic welding or by adding other connecting members. In this way, the selection can be made according to actual process requirements or product requirements, which further facilitates the use of the rotor of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种设置有全包磁体的转子,包括回转件(1)和设置在所述回转件(1)上的磁体(2),所述回转件(1)上还设置有与回转件(1)相配合的轴承或者轴承套(3),所述回转件(1)采用注塑的方式得到,并且,在所述回转件(1)注塑过程中,实现与所述磁体(2),以及与所述轴承或者轴承套(3)的配合连接。大幅简化了回转件(1)的制造工序,并且,由于是采用注塑方式得到,模具结构以及注塑工艺方便统一,所以还能够良好保证产品的一致性,而且,由于减少了磁体(2)装配、以及减少了轴承或者轴承套(3)的装配,进而之间回避了装配时可能存在的偏差,还能够大幅的提高转子的动平衡性能。

Description

一种设置有全包磁体的转子 技术领域
本发明属于磁体应用技术领域,具体涉及一种设置有全包磁体的转子。
背景技术
在目前的泵类技术领域中,电机转子的工作环境比较特殊,需要有较高的耐腐蚀能力、耐高温能力和耐低温能力,而且,由于噪音控制需要,还对转子的动平衡具有较高的要求。
目前的电机结构中,通常是先制造出回转件,然后在装置上设置轴承或者轴套,再将一个或多个磁体布置在回转件上,最后再与执行部件相连接。
采用上述的组装方式,首先是对磁体耐腐蚀性能要求高,所以通常需要使用耐腐蚀能力高磁体或者设置磁体防腐蚀工序;同时,上述的组装方式,还具有其他缺点,例如:制造工序复杂、效率较低、产品具有较高的不良率,以及转子的动平衡不好控制。
所以,目前需要设计一种具有较好动平衡性能,并且制造工序简单,还能降低磁体耐腐蚀性能要求的转子结构。
发明内容
本发明的目的在于:针对目前在泵类技术领域中,转子结构存在对磁体耐腐蚀性能要求高,以及制造工序复杂,动平衡不好控制的不足,提供一种具有较好动平衡性能,并且制造工序简单,还能降低磁体耐腐蚀性能要求的转子结构。
为了实现上述发明目的,本发明提供了以下技术方案:
一种设置有全包磁体的转子,包括回转件和设置在所述回转件上的磁体,所述回转件上还设置有与回转件相配合的轴承或者轴承套,所述回转件采用注塑的方式得到,并且,在所述回转件注塑过程中,实现与所述磁体,以及与所述轴承或者轴承套的配合连接。
优选的,所述磁体上具有磁性工作面,所述磁性工作面上设置有覆盖层,使所述磁性工作面与外部空气以及液体相隔绝。
本申请的磁性工作面为磁体结构上,用于提供磁性的部分的表面,在使用时,磁性工作面与外部结构配合,实现磁体的磁性输出。
优选的,所述覆盖层采用磁导率低的材料制得,所述磁导率低的材料为相对磁导率小于或者等于100的材料。
在本申请中,覆盖层采用不易导磁的材料制得,能够减小甚至避免覆盖层对磁体磁性 强度的影响,如此,较传统的转子结构而言,能够提供更强的磁性强度,而且,还降低了对覆盖层厚度的要求,进而也简化了制造工序,进一步的,由于覆盖层对磁性强度不利影响的降低或者消除,对于达到相同磁性强度要求的包磁组件而言,采用本申请的结构,可以采用较低磁性强度等级的磁体,如此,还大幅的降低了包磁组件的制造成本。
优选的,所述磁导率低的材料为金属材料。
优选的,所述覆盖层采用不锈钢材料制得。
上述的,金属材料和不锈钢材料,具有较塑料材料而言更为优异的强度和/或刚度,如此,可以形成更薄的覆盖层,进一步的减小对磁体磁性的影响。
优选的,所述磁导率低的材料为碳纤维材料、纤维增强复合材料或者颗粒增强复合材料。
当覆盖层采用金属材料或者不锈钢材料,炭纤维材料、纤维增强复合材料或者颗粒增强复合材料时,由于具有良好的力学性能和良好的机械加工性能,在加工至0.1-0.5mm时,依然具有可靠的强度,以及具有良好的密封效果,所以,如上述的,将覆盖层厚度设置在0.1-0.5mm,一方面是可以保证具有良好的密封效果,另一方面还具有较轻的重量,能够减小包磁组件的自重,而且,也能够进一步的减小对磁体磁性的影响。
优选的,所述覆盖层的边缘与所述回转件之间为密封配合。
作为一种优选方案,所述磁体被封闭于所述覆盖层与所述回转件之间形成的密封腔体内。
作为一种优选方案,所述覆盖层采用与所述回转件相同的材料制得。
进一步优选的,所述覆盖层与所述回转件为一体注塑成型结构。
优选的,所述回转件内同轴设置有通孔,所述轴承或者轴承套设置在所述通孔内。
优选的,所述磁体为空心筒状结构,套设在所述回转件外。
优选的,所述覆盖层套设于所述磁体外。
优选的,磁体端部对应的所述覆盖层上设置有台阶,所述回转件将所述台阶包覆在内。
优选的,所述转子还包括有执行部件,所述执行部件为所述转子的动力输出构件或者磁性输出构件,例如为叶轮、齿轮或者其他用于转子动作输出的构件。
优选的,所述执行部件与所述回转件为一体注塑成型结构。
优选的,所述执行部件与所述回转件之间采用注塑、粘接、超声波焊接或者增设其他连接件的方式进行连接。
与现有技术相比,本发明的有益效果:
本申请的转子,由于回转件是采用注塑的方式制得,并且,是通过注塑的方式实现与磁体及与轴承或者轴承套的配合连接,如此,大幅简化了回转件的制造工序,并且,由于是采用注塑方式得到,模具结构以及注塑工艺方便统一,所以还能够良好保证产品的一致性,而且,由于减少了磁体装配、以及减少了轴承或者轴承套的装配,进而之间回避了装配时可能存在的偏差,所以,采用本实施例的结构,还能够大幅的提高转子的动平衡性能。
附图说明:
图1为本申请转子剖视的结构示意图;
图2本申请转子实施例的剖视图;
图中标示:1-回转件,2-磁体,3-轴承或轴承套,4-覆盖层,5-执行部件,6-通孔,7-台阶。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述,但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1,如图1所示:
一种设置有全包磁体的转子,包括回转件1和设置在所述回转件1上的磁体2,所述回转件1上还设置有与回转件1相配合的轴承或者轴承套3,所述回转件1采用注塑的方式得到,在所述回转件1注塑过程中,实现与所述磁体2,以及与所述轴承或者轴承套3的配合连接。本实施例的转子,由于回转件1是采用注塑的方式制得,并且,是通过注塑的方式实现与磁体2及与轴承或者轴承套3的配合连接,如此,大幅简化了回转件1的制造工序,并且,由于是采用注塑方式得到,模具结构以及注塑工艺方便统一,所以还能够良好保证产品的一致性,而且,由于减少了磁体2装配、以及减少了轴承或者轴承套3的装配,进而之间回避了装配时可能存在的偏差,所以,采用本实施例的结构,还能够大幅的提高转子的动平衡性能。
在上述结构基础上,作为优选的方案,所述磁体2上具有磁性工作面,所述磁性工作面上设置有覆盖层4,使所述磁性工作面与外部空气相隔绝。
本申请的磁性工作面为磁体2结构上,用于提供磁性的部分的表面,在使用时,磁性工作面与外部结构配合,实现磁体2的磁性输出。通过覆盖层4的覆盖,使磁性工作面与外部空气以及液体隔绝,如此,减少外界环境对磁性工作面的侵蚀和腐蚀,提高磁体2的寿命,进而提高转子的寿命和使用的可靠性。
在上述结构基础上,作为优选的方案,所述覆盖层4为塑料材料制得。覆盖层4采用塑料,一方面是具有良好的经济性,另一方面,塑料具有良好的塑性和较轻的重量,能够良好的与磁性工作面相贴合,在启到隔绝空气作用的同时,还能够保持磁体2与覆盖层4之间位置的稳定性。
作为另一种的优选方式,所述覆盖层4采用不易导磁的材料制得,所述不易导磁的材料为相对磁导率小于或者等于100的材料。
在本申请中,覆盖层4采用不易导磁的材料制得,能够减小甚至避免覆盖层4对磁体2磁性强度的影响,如此,较传统的转子结构而言,能够提供更强的磁性强度,而且,还降低了对覆盖层4厚度的要求,进而也简化了制造工序,进一步的,由于覆盖层4对磁性强度不利影响的降低或者消除,对于达到相同磁性强度要求的包磁组件而言,采用本申请的结构,可以采用较低磁性强度等级的磁体2,如此,还大幅的降低了包磁组件的制造成本。
优选的,所述磁导率低的材料为金属材料。
优选的,所述覆盖层4采用不锈钢材料制得。
上述的,金属材料和不锈钢材料,具有较塑料材料而言更为优异的强度和/或刚度,如此,可以形成更薄的覆盖层4,进一步的减小对磁体2磁性的影响。
优选的,所述不易导磁的材料为碳纤维材料、纤维增强复合材料或者颗粒增强复合材料。
当覆盖层4采用金属材料或者不锈钢材料,炭纤维材料、纤维增强复合材料或者颗粒增强复合材料时,由于具有良好的力学性能和良好的机械加工性能,在加工至0.1-0.5mm时,依然具有可靠的强度,以及具有良好的密封效果,所以,如上述的,将覆盖层厚度设置在0.1-0.5mm,一方面是可以保证具有良好的密封效果,另一方面还具有较轻的重量,能够减小包磁组件的自重,而且,也能够进一步的减小对磁体磁性的影响。
在上述结构基础上,作为优选的方案,所述覆盖层4的边缘与所述回转件1之间为密封配合。如此设置,确保磁体2被可靠的封闭。
在上述结构基础上,作为优选的方案,所述磁体2被封闭于所述覆盖层4与所述回转件1之间形成的密封腔体内。采用这样的方式,使整个磁体2都被封闭在内,整个磁体2与外部空气以及液体隔绝,如此,进一步的提高磁体2的使用寿命和可靠性。
在上述结构基础上,作为优选的方案,所述覆盖层4采用与所述回转件1相同的材料制得。
进一步优选的,所述覆盖层4与所述回转件1为一体注塑成型结构。
如上述的设置,在进行回转件1注塑时,即将整个磁体2包覆在回转件1内,进一步的简化了转子的制造工序,也进一步的提高了转子的动平衡性能。
在上述结构基础上,作为优选的方案,所述回转件1内同轴设置有通孔6(如图2所示),所述轴承或者轴承套3设置在所述通孔内。轴承或者轴承套3其作用是在于在工况下对转子进行支撑、定位以及减小转子和轴间的摩擦,并且增强耐磨性能,本方案中,将其设置在通孔内,也有助于回转件1的注塑。
在上述结构基础上,作为优选的方案,所述磁体2为空心筒状结构,套设在所述回转件1外。
如上述的设置,也就是说,回转件1上的其中部分位于磁体2与轴承或者轴承套3之间,进一步方便回转件1的注塑,也方便回转件1与轴承或者轴承套3,以及与磁体2之间的连接。
在上述结构基础上,作为优选的方案,所述覆盖层4套设于所述磁体2外。
优选的,磁体2端部对应的所述覆盖层4上设置有台阶7(如图2所示),所述回转件1将所述台阶包覆在内。通过设置台阶,提高回转件1与覆盖层4之间连接的可靠性和密封性。
在上述结构的基础上,作为优选的方案,所述转子还包括有执行部件5,所述执行部件5为所述转子的动力输出构件或者磁性输出构件,例如为叶轮、齿轮或者其他用于转子动作输出的构件。
作为优选的,所述执行部件5与所述回转件1为一体注塑成型结构。执行部件5与回转件为一体注塑成型结构,如此,一方面是进一步的简化了制造工序,提高产品的生产效率和良品率,而且还能够极大的提高转子的动平衡性能。
作为另一种实施方式,所述执行部件5与所述回转件1之间采用注塑、粘接、超声波焊接或者增设其他连接件的方式进行连接。采用这样的方式,可以根据实际工艺要求或者产品要求进行选择,进一步的方便了本申请转子的使用。
以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但本发明不局限于上述具体实施方式,因此任何对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。

Claims (17)

  1. 一种设置有全包磁体的转子,其特征在于:包括回转件和设置在所述回转件上的磁体,所述回转件上还设置有与回转件相配合的轴承或者轴承套,所述回转件采用注塑的方式得到,并且,在所述回转件注塑过程中,实现与所述磁体,以及与所述轴承或者轴承套的配合连接。
  2. 根据权利要求1所述的转子,其特征在于:所述磁体上具有磁性工作面,所述磁性工作面上设置有覆盖层,使所述磁性工作面与外部空气以及液体相隔绝。
  3. 根据权利要求2所述的转子,其特征在于:所述覆盖层采用磁导率低的材料制得,所述磁导率低的材料为相对磁导率小于或者等于100的材料。
  4. 根据权利要求3所述的转子,其特征在于:所述磁导率低的材料为金属材料。
  5. 根据权利要求2所述的转子,其特征在于:所述覆盖层采用不锈钢材料制得。
  6. 根据权利要求3所述的转子,其特征在于:所述磁导率低的材料为碳纤维材料、纤维增强复合材料或者颗粒增强复合材料。
  7. 根据权利要求3所述的转子,其特征在于:所述覆盖层的边缘与所述回转件之间为密封配合。
  8. 根据权利要求3所述的转子,其特征在于:所述磁体被封闭于所述覆盖层与所述回转件之间形成的密封腔体内。
  9. 根据权利要求7所述的转子,其特征在于:所述覆盖层采用与所述回转件相同的材料制得。
  10. 根据权利要求9所述的转子,其特征在于:所述覆盖层与所述回转件为一体注塑成型结构。
  11. 根据权利要求7所述的转子,其特征在于:所述回转件内同轴设置有通孔,所述轴承或者轴承套设置在所述通孔内。
  12. 根据权利要求11所述的转子,其特征在于:所述磁体为空心筒状结构,套设在所述回转件外。
  13. 根据权利要求12所述的转子,其特征在于:所述覆盖层套设于所述磁体外。
  14. 根据权利要求13所述的转子,其特征在于:所述磁体端部对应的所述覆盖层上设置有台阶,所述回转件将所述台阶包覆在内。
  15. 根据权利要求1任意一项所述的转子,其特征在于:所述转子还包括有执行部件,所述执行部件为所述转子的动力输出构件或者磁性输出构件。
  16. 根据权利要求15所述的转子,其特征在于:所述执行部件与所述回转件为一体注塑成 型结构。
  17. 根据权利要求15所述的转子,其特征在于:所述执行部件与所述回转件之间采用注塑、粘接、超声波焊接或者增设其他连接件的方式进行连接。
PCT/CN2018/121711 2017-12-29 2018-12-18 一种设置有全包磁体的转子 WO2019128770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721903977.X 2017-12-29
CN201721903977.XU CN207819573U (zh) 2017-12-29 2017-12-29 一种设置有全包磁体的转子

Publications (1)

Publication Number Publication Date
WO2019128770A1 true WO2019128770A1 (zh) 2019-07-04

Family

ID=63328794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121711 WO2019128770A1 (zh) 2017-12-29 2018-12-18 一种设置有全包磁体的转子

Country Status (2)

Country Link
CN (1) CN207819573U (zh)
WO (1) WO2019128770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207819573U (zh) * 2017-12-29 2018-09-04 成都银河磁体股份有限公司 一种设置有全包磁体的转子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656229A (zh) * 2014-11-11 2016-06-08 杭州三花研究院有限公司 电子泵及其电子泵的制造方法
CN106208610A (zh) * 2016-09-23 2016-12-07 常州市诚利电子有限公司 一体式注塑转子及应用于自动化控制的步进电机
CN206054323U (zh) * 2016-08-31 2017-03-29 长沙多浦乐泵业科技有限公司 一种具有简单高效转子的微型泵
CN206077174U (zh) * 2016-05-26 2017-04-05 珠海格力节能环保制冷技术研究中心有限公司 一种永磁转子及电机
CN207611656U (zh) * 2017-12-29 2018-07-13 成都银河磁体股份有限公司 一种包磁组件及柱状包磁组件
CN207819573U (zh) * 2017-12-29 2018-09-04 成都银河磁体股份有限公司 一种设置有全包磁体的转子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656229A (zh) * 2014-11-11 2016-06-08 杭州三花研究院有限公司 电子泵及其电子泵的制造方法
CN206077174U (zh) * 2016-05-26 2017-04-05 珠海格力节能环保制冷技术研究中心有限公司 一种永磁转子及电机
CN206054323U (zh) * 2016-08-31 2017-03-29 长沙多浦乐泵业科技有限公司 一种具有简单高效转子的微型泵
CN106208610A (zh) * 2016-09-23 2016-12-07 常州市诚利电子有限公司 一体式注塑转子及应用于自动化控制的步进电机
CN207611656U (zh) * 2017-12-29 2018-07-13 成都银河磁体股份有限公司 一种包磁组件及柱状包磁组件
CN207819573U (zh) * 2017-12-29 2018-09-04 成都银河磁体股份有限公司 一种设置有全包磁体的转子

Also Published As

Publication number Publication date
CN207819573U (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
US10830246B2 (en) Electronic pump
JP2012533717A (ja) 電動弁
JP2010261436A (ja) 永久磁石を備えたキャンドポンプ
WO2019128770A1 (zh) 一种设置有全包磁体的转子
CN105556160B (zh) 用于机动车的功能构件、用于制造功能构件的方法以及包括功能构件的机动车
US6672818B1 (en) Magnetically driven pump
JP2016111783A (ja) 直動アクチュエータ
US8729768B2 (en) Rotor made of magnetic material
CN211174623U (zh) 耐腐蚀塑料磁力泵
CN107093938A (zh) 磁悬浮电机及家用空调
WO2023088475A1 (zh) 电子水泵的转子组件及电子水泵
WO2022042366A1 (zh) 一种微型一体化永磁转子
CN214900399U (zh) 一种结构稳定性强的一体式磁性转子
CN208173330U (zh) 一种多磁体组件
US10630159B2 (en) Magnetic coupling rotor
WO2020043049A1 (zh) 一种同步永磁电机转子的复合型永磁体
CN105656221A (zh) 一种改进型电机定子及电动泵泵体总成
CN209104937U (zh) 一种步进马达
CN207884420U (zh) 一种适用于全海深的同轴性磁驱动的双轴伸水下电机
CN209800287U (zh) 一种泵
CN104753266A (zh) 一种电机转子的组装工艺
CN210087673U (zh) 衬氟磁力泵用叶轮
CN208608848U (zh) 一种齿轮转子
CN209419352U (zh) 一种小型化直流马达
CN112510872B (zh) 转子铁芯组件、转子组件和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897233

Country of ref document: EP

Kind code of ref document: A1