WO2019128108A1 - 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法 - Google Patents

电机电枢的液体填充料浸渍后密封固化的工艺装备和方法 Download PDF

Info

Publication number
WO2019128108A1
WO2019128108A1 PCT/CN2018/089560 CN2018089560W WO2019128108A1 WO 2019128108 A1 WO2019128108 A1 WO 2019128108A1 CN 2018089560 W CN2018089560 W CN 2018089560W WO 2019128108 A1 WO2019128108 A1 WO 2019128108A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
airflow
process equipment
annular
flow
Prior art date
Application number
PCT/CN2018/089560
Other languages
English (en)
French (fr)
Inventor
马盛骏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2019128108A1 publication Critical patent/WO2019128108A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present disclosure relates to the field of motor technology, and in particular to a liquid filler immersion seal curing process and process equipment for a motor armature.
  • Wind energy is one of the cleanest, pollution-free renewable energy sources.
  • a wind turbine is a large-scale power generation device that converts wind energy into electrical energy.
  • the motor armature is the core component of the wind power generator.
  • the motor armature 100 includes a stator core 10 and a winding 20, and a winding slot 11 is disposed on the stator core 10, and the winding 20 is embedded.
  • a wedge 30 is mounted in the winding groove 11 and at the notch of the winding groove 11 to fix the winding 20 in the winding groove 11.
  • the stator winding is usually immersed, and the pores in the stator winding are filled with a filling material such as insulating varnish or insulating glue.
  • the currently used dip coating process is a secondary dipping process belonging to the thermal immersion process, for example, a vacuum pressure dipping process (referred to as a VPI process).
  • the insulating varnish penetrates into the gaps of the stator core better and more fully, minimizing the voids in the stator windings.
  • the insulating varnish flows out of the stator core as little as possible.
  • the insulating varnish can enter the winding slot 11, but During the painting and drying process, a large amount of insulating varnish flows out of the winding groove 11 in the radial direction and the axial direction under the action of gravity and centrifugal force.
  • FIG. 4 is a schematic view showing the motor armature in a rotational baking state according to the prior art insulation treatment process.
  • the motor armature 100 is placed axially horizontally, and when the motor armature 100 is rotated to the 6 o'clock position, the liquid filling material in the winding groove 11 is not only along the axial ends of the winding groove 11 It flows out outward and also drops down along the gap between the wedge 30 and the notch of the winding groove 11. At the 12 o'clock position, even if the liquid filling material in the winding groove 11 does not flow radially outward along the notch, it will flow outward along the outlets at both axial ends.
  • the purpose of the disclosure is to provide a liquid filler seal impregnation curing process equipment for a motor armature to prevent the liquid filler from dripping from the windings around the wedge to form a tight seal during the curing process, thereby prolonging the service life of the generator. .
  • Another object of the present disclosure is to provide a method of liquid-filled seal impregnation curing of a motor armature.
  • a liquid filler impregnation curing apparatus for a motor armature comprising: a gas flow supply device that generates a heated and boosted gas flow; an armature end choke device, Provided under the armature of the motor impregnated with the liquid filler, and including an annular piston capable of reciprocating up and down, a plurality of intake passages are formed in the annular piston, and the first airflow received from the airflow supply device passes through The intake passage blows upwardly the lower armature end of the motor armature.
  • a method for insulation impregnation curing of a motor armature comprising: causing a first air flow to impinge an armature end upward through an intake passage in the annular piston, thereby Forming a pressure accumulating space between the annular piston and the armature end portion, forming an air flow seal on the armature end portion, wherein the position of the annular piston is according to a pressure in the pressure accumulating space Adjustment.
  • an airflow impact is applied to the various tissue components of the armature end and the air interface region through the annular high-pressure airflow column, and a sealing protection system is constructed at the axial gap of the wedge and the core to overcome the gravity of the liquid filler.
  • the centrifugal force of the conventional rotary baking method prevents the liquid filler from dripping or even flowing out of the slit.
  • the high-speed airflow is applied to the radial gap opening on the winding by means of the variable-section passage, so that the conventional ferromagnetic boundary (laminated core) structure of the motor armature has the radial loss of the liquid filler after the primary immersion.
  • the dual function of axial loss is applied to the various tissue components of the armature end and the air interface region through the annular high-pressure airflow column, and a sealing protection system is constructed at the axial gap of the wedge and the core to overcome the gravity of the liquid filler.
  • the centrifugal force of the conventional rotary baking method prevents the liquid filler
  • the paint dropping process is reduced to avoid the radial loss and axial loss of the liquid filler along the ferromagnetic boundary during the conventional rotary baking curing process, thereby improving the filling rate of the liquid filler filling impregnation after the varnishing, and taking the lead
  • the gap that naturally drains the liquid filler is blocked, increasing the ability of the boundary to prevent intrusion of moisture and other media.
  • the oxygen, moisture and water in the air are not easily invaded into the insulation of the tank, which can delay the aging process of the insulation system. Reduce the risk of the motor being exposed to moisture and water, improve insulation reliability, and extend the life of the motor.
  • Figure 1 is a schematic view of a stator winding of a wind power generator
  • Figure 2 is a perspective view showing a partial structure of a stator winding of a wind power generator
  • Figure 3 is a partial cross-sectional view of a winding slot of a stator winding of a wind power generator
  • FIG. 4 is a schematic view of a placement state of a stator winding according to an embodiment of the present disclosure
  • FIG. 5 is a working state diagram of a process equipment for sealing impregnation curing according to an embodiment of the present disclosure
  • Figure 6 is an exploded view of the process equipment shown in Figure 5 for curing the end of the armature
  • Figure 7 is an exploded view of the flow of airflow within the armature end choke device of the process equipment shown in Figure 5;
  • Figure 8 is a partial structural schematic view of the process equipment shown in Figure 1;
  • Figure 9 is an armature body choke device of the process equipment shown in Figure 1;
  • FIG. 10 is a schematic illustration of a process airflow accelerator in accordance with an embodiment of the present disclosure.
  • Figure 11 is a schematic illustration of the accelerated jet passage of the airflow accelerator of Figure 10;
  • FIG. 12 is a schematic diagram of an airflow accelerator in accordance with another embodiment of the present disclosure.
  • Figure 13 is a schematic illustration of the accelerated jet passage of the airflow accelerator of Figure 12;
  • FIG. 14 is a working state diagram of a process equipment for sealing impregnation curing according to another embodiment of the present disclosure.
  • Figure 15 is a schematic view showing a partial structure of the process equipment shown in Figure 14;
  • Figure 16 is a view showing the operation state of the armature end choke device of the process equipment shown in Figure 14;
  • Figure 17 is a schematic view of the armature body choke device of the process equipment shown in Figure 14;
  • Figure 19 is another operational state diagram of the process equipment shown in Figure 18;
  • Figure 20 is a partial structural schematic view of the process equipment shown in Figure 18.
  • the motor armature 100 includes a core 10 and a winding 20, on which a winding slot 11 is disposed, a winding 20 is embedded in the winding slot 11, and a slot 30 is mounted in the slot of the winding slot 11 to fix the winding 20 to the winding Inside the slot 11.
  • the motor armature 100 can be divided into an armature body 23 and two armature ends 21 and 22, a liquid filler on the motor armature 100 (for example, an insulating varnish or a liquid insulating medium, etc., for convenience of description, hereinafter, When curing is performed using insulating varnish, the motor armature 100 can be placed vertically and supported vertically in the process equipment 200 for sealing immersion curing provided by the embodiments of the present disclosure, the armature end portion 21 is below, the armature The end 22 is above.
  • a liquid filler on the motor armature 100 for example, an insulating varnish or a liquid insulating medium, etc., for convenience of description, hereinafter.
  • FIG. 5 there is shown a working state diagram of a process equipment 200 in accordance with an embodiment of the present disclosure, for which the motor armature 100 is not shown.
  • the process equipment 200 can include an outer cylinder 210, an armature end choke device 220, an armature body choke device 240, and an airflow supply device 260.
  • the outer cylinder 210 is located at the outermost periphery, and its outer contour may be substantially cylindrical, and the motor armature 100 is placed vertically in the outer cylinder 210.
  • the outer cylinder 210 can be made of a high-strength material to ensure that its strength is high enough to withstand excessive pressure, and a heat insulating layer can be provided to prevent heat from leaking inside the cylinder, thereby forming substantially inside thereof. Sealed high temperature and high pressure environment.
  • the airflow supply device 260 is configured to generate a heated and boosted airflow to supply it into the outer cylinder 210 to perform a drying and solidifying operation on the immersed motor armature 100.
  • the airflow supply device 260 may also be externally A portion of the gas stream is recovered from the cylinder 210 for recycling.
  • the airflow supply device 260 may include a compressor 264 and a heater 263. The air taken in from the outside is filtered out of the impurities and sent to the compressor 264 for pressurization, and then the high-pressure air flows to the heater 263 to heat the high-pressure air. It is raised to a sufficient temperature for subsequent drying and curing operations.
  • the final high temperature and high pressure gas stream is delivered to the gas feed tube 261 via a series of lines, wherein the gas feed tube 261 can be located below the outer barrel 210 and deliver high temperature and high pressure gas streams into the outer barrel 210.
  • the air flow can be divided into two parts, and the first air flow 231 can be delivered to the armature end choke device 220 for drying the insulating paint on the solidified armature end 21 and preventing the insulating paint from the armature end.
  • the axial air gap on the portion 21 flows out, and the second air flow 232 can be sent to the armature main body choke device 240 for drying and curing the insulating paint on the armature main body 23 and preventing the insulating paint from being on the armature main body 23.
  • the airflow main pipe 261 can be connected to the respective pipes, and the airflow is transmitted to the armature end choke device 220 and the armature main body choke device 240, respectively.
  • the armature end choke device 220 will be specifically described below with reference to FIGS. 5 through 7.
  • the armature end choke device 220 includes an annular inlet passage 222 and a first return passage 224.
  • the annular inlet passage 222 is below the armature end 21 and is axially aligned with the armature end 21.
  • the first return passage 224 is radially outward of the annular intake passage 222 and is also annularly distributed and communicates with the annular intake passage 222 through the overflow port 223 at the upper portion.
  • the first air stream 231 is delivered into the annular inlet passage 222 at the airflow inlet 221 and flows upwardly along the annular inlet passage 222, as indicated by the arrows in FIG.
  • the velocity of the airflow flowing within the annular inlet passage 222 at various radial locations in the cross-section may be substantially uniform to impart a substantially uniform impact force to the armature end 21.
  • the first airflow 231 flows to the upper region of the annular intake passage 222 (this region may also be referred to as a pressure accumulating space) 228, it may impinge on the armature end portion 21, striking the windings and the core at the end, A high-pressure atmosphere is established in the area, and the airflow that flows through the subsequent flow can also be accumulated therein to form an annular accumulating airflow column, thereby maintaining the region as a high-pressure region, and applying an impact force to the armature end portion 21 or The pressure prevents the insulating varnish in the motor armature 100 and its winding slit from flowing downward from the upper direction in the groove in which the winding is located along the axial direction of the motor armature 100 to flow out from the armature end portion 21.
  • annular load bearing closure panel 226 is also provided, which may be located at a location between the armature end portion 21 and the armature body 23 for carrying and supporting the motor armature 100. And also sealing the airflow near the armature end 21 to prevent the first airflow 231 from leaking around the armature body 23 to merge with the second airflow 232, that is, in the outer cylinder 210, the first airflow 231 and the The two air streams 232 are spaced apart from each other.
  • the impact force of the airflow should be accurately controlled according to the gravity of the insulating varnish and the pressure difference at the axial gap opening, as long as the insulating varnish does not flow out and drop from the axial gap opening. Yes, the impact force is too large to cause the insulating varnish to be blown up on the surface of the motor armature 100.
  • the first airflow 231 after impacting the armature end 21 at the pressure accumulating space 228 is extruded through the overflow port 223 to the first return passage 224, and flows downward in the first return passage 224 to finally extrude the outer cylinder Body 210.
  • the cross section of the first return passage 224 can be relatively narrow, increasing the flow rate of the air flow to accelerate the return flow and avoid the congestion of the first air flow 231.
  • the gas stream recovered into the first return passage 224 is finally recovered to the adsorption tower 262 of the gas flow supply device 260 via the return line 225 for post-treatment to separate the combustible gas, and then the water vapor is passed through the gas-liquid separator 265.
  • the separated, then treated gas stream can be sent to a compressor 264 for pressurization for recycling, and the separated combustible gas can be additionally recycled.
  • a liquid check valve 227 may be disposed in the annular intake passage 222.
  • the liquid check valve 227 may be equivalent to a one-way valve, and only allows the first air flow 231 to open from the bottom to the top to open the liquid.
  • the check valve 227 is stopped while preventing the insulating paint dripping from the armature end portion 21 from falling therethrough.
  • the liquid check valve 227 can be assembled by means of a multi-arc installation in a 360 degree circumferential direction.
  • the liquid check valve 227 can take the form of a butterfly-like valve.
  • the armature body choke device 240 will be specifically described below with reference to FIGS. 5, 8, and 9.
  • the armature body choke device 240 can include an annular valve chamber 242, an annular airflow accelerator 243, and a second return passage 247.
  • the second airflow 232 received from the airflow mother pipe 261 via the intake airline 241 can be delivered to the annular air distribution chamber 242, which distributes the received airflow evenly, so that the airflow is uniform in the axial direction.
  • the distribution and flow rate are substantially the same, while allowing the gas flow to flow radially inward, as indicated by the arrows in FIG.
  • the airflow accelerator 243 may be disposed on the outlet side of the annular plenum 242, and the second airflow 232 flowing out of the annular plenum 242 flows radially to the airflow accelerator 243.
  • the airflow accelerator 243 on the one hand increases the flow rate of the air flow and on the other hand changes the flow direction of the air flow to switch from a radially inward flow to an oblique upward flow, that is, after the second air flow 232 flows through the air flow accelerator 243 It becomes an obliquely upward centripetal high velocity jet, as indicated by the arrow in the radial inner side of the airflow accelerator 243 in FIG.
  • the centripetal high-speed jet then impinges on the armature body 23, forming a high-pressure atmosphere around the core and the wedge of the armature body 23, preventing the insulating paint in the motor armature 100 and its winding slot from flowing out of the slot in which the winding is located and from the battery.
  • the surface of the electromechanical joint 100 flows downward, and also forms a gas pressure seal, an air cushion seal or a pressure seal on the insulating paint, and applies a uniform impact force or pressure to the entire armature main body 23 to block the armature main body 23 by the air current impact force. Insulating varnish.
  • the impact force may have a component in the vertical direction and a component in the horizontal direction, so that the paint on the armature main body 21 can be held from below to prevent it from dripping, and the component in the vertical direction can be continuously
  • the radial gap is blocked or locked to prevent the outflow of the insulating paint which has been filled with the radial slit, and defects such as voids appear after curing, ensuring the filling rate of the insulating paint and avoiding the radial loss of the insulating paint.
  • the second airflow 232 having a certain temperature can also dry the insulating varnish to cure the insulating varnish as soon as possible.
  • the centripetal high-speed jet should be precisely controlled based on the balance with the gravity field mechanics, as long as the insulating paint does not flow out and drop from the radial slit opening, and the impact force is avoided. Larger, the insulating varnish is blown up on the surface of the motor armature 100.
  • the second return passage 247 can be disposed at the armature body 23 in the lumen. Thereafter, the second gas stream 232 can flow down the second return channel 247 to flow out of the outer cylinder 210.
  • a third return passage 248 may be formed on a radially inner side of the annular intake passage 222, and the third return passage 248 is located below and in communication with the second return passage 247, so that the second air flow 232 may be Flows down the second return passage 247 and the third return passage 248, and flow through the return line 249 to the adsorption tower 262 for recycling.
  • FIGS. 10 through 13 there are shown schematic cross-sectional views of a gas flow accelerator 243 taken in the radial direction, in accordance with various embodiments of the present disclosure, wherein the schematic of the airflow accelerator 243 shown in FIG. 5 and FIG. 8 and FIG.
  • the illustration in 9 is shown in a different manner.
  • the illustrated airflow accelerator 243 can include a plurality of acceleration columns 291 that have a certain length in the vertical direction and are generally circularly distributed.
  • Each of the accelerating columns 291 is inclined radially outward from the bottom to the top in the axial direction, that is, substantially in a rearwardly inclined posture with respect to the center of the motor armature 100, thereby flowing the airflow flowing in the radial direction.
  • the direction changes to a diagonal upward.
  • the angle at which the acceleration column 291 is inclined rearward is equal to the inclination angle of the end surface of the outlet end of the high-speed jet of the airflow accelerator 243.
  • the end surface of the outlet end 294 of the airflow accelerator 243 is also in a rearwardly inclined posture, as shown in FIG. Shown.
  • An accelerating jet channel 292 is formed between adjacent two accelerating columns 291, and the high velocity jet flowing out of each accelerating jet channel 292 is generally vertical.
  • These accelerating jet passages 292 may be disposed in one-to-one correspondence with the wedges 30 on the armature body 23 in the circumferential direction, so that a high-speed jet formed by the accelerating jet passages 292 can impinge on each of the wedges 30 to utilize the airflow.
  • the impact force blocks the insulating varnish in the slot of the slot where the winding is located to prevent it from flowing out, thereby forming a gas pressure seal or a pressure seal.
  • the accelerated jet passage 292 is a variable cross-sectional passage or a scaled passage in which a throat 295 is formed, which is at the narrowest section of the zoom passage, flows through the throat 295 after the airflow flows in from the inlet end 293. It will turn into a high velocity jet and then flow out from the outlet end 294.
  • the angle at which each of the accelerating columns 291 is inclined with respect to the vertical direction may be substantially 5° to 10°, and further, according to the radial distance between the airflow accelerator 243 and the motor armature 100 and the insulating varnish Factors such as viscosity, airflow rate and temperature, the tilt angle can also be adjusted to other ranges, which can be less than 5° or greater than 10°.
  • the viscosity of the insulating paint is thick, the fluidity is poor, and the inclination angle can be set smaller, for example, 5° to 7°.
  • a relatively large inclination angle can be set, for example, 8° to 10°.
  • the tilt angle can be relatively small, and conversely, a larger tilt angle can be set.
  • the tilt angle of the acceleration column 291 can also be adjusted in real time. Since the viscosity of the insulating varnish changes with time during the drying and solidification of the motor armature 100, the tilt angle of the accelerating column 291 can be adjusted in real time based on the viscosity change of the insulating varnish, thereby changing the high-speed jet relative to The angle and impact force of the surface of the armature body 23. For example, when the viscosity of the insulating paint is thinned during the drying and curing, the inclination angle can be set to 10°. By adjusting the tilt angle of the accelerating column 291 in real time, the radial loss of the insulating varnish can be effectively prevented in any drying and solidifying stage.
  • the cross section of the acceleration column 291 may be substantially polygonal or may be drum shaped. As shown in Figures 12 and 13, the cross-section of the accelerating column 291 can be generally in the shape of a melon, and the accelerating columns 291 of these shapes can each form an effective accelerating jet channel to form a high velocity jet. In addition, the present disclosure is not limited thereto, and other shapes of the acceleration column 291 may be employed as long as a throat can be formed between the adjacent two acceleration columns 291.
  • the high-speed jet formed by each of the accelerating jet passages is strip-shaped in the vertical direction
  • an annular high-speed jet may be formed.
  • the airflow accelerator 243 may include a plurality of acceleration rings stacked one above the other in the axial direction, each of the acceleration rings may be inclined obliquely upward in the radial direction, and the acceleration jet channel may be formed between the adjacent two acceleration rings, and By designing the surfaces facing the adjacent two acceleration rings to be convex, a throat can also be formed in the accelerated jet passage to convert the airflow into a centripetal high velocity jet.
  • the accelerating jet passage between the adjacent two accelerating rings is also generally planar in a radial direction inclined obliquely upward with respect to the horizontal plane.
  • process equipment 200 may further include an external coordinated heat source 244 and an internal coordinated heat source 245, in accordance with an embodiment of the present disclosure.
  • the external cooperative heat source 244 may be annular, may be located outside the armature body 23 and specifically disposed at the outlet end of the airflow accelerator 243, thereby heating the armature body 23 from the outside to cooperate with the high-speed jet, that is, On the basis of the centripetal high-speed jet generated by the airflow accelerator 243, the motor armature 100 and the insulating varnish thereon are additionally heated, and the two cooperatively perform the drying and solidifying operation in cooperation.
  • An internal coordinated heat source 245 can be located within the interior cavity of the armature body 23 to heat the motor armature 100 from the inside.
  • the second airflow 232 may also be referred to as a mechanical field cooperative airflow
  • the two heat sources may also be referred to as electromagnetic wave cooperative heat sources
  • the synergy of the two accelerates the curing of the insulating paint, especially the wedge wedge.
  • the radial gap between the core and the core is in contact with the air interface and the insulating paint in direct contact with the surface at the other locations, which is beneficial to the infiltration of the insulating varnish and the insulating paint at these locations.
  • the fluidity Prior to the thickening of the insulating paint at other locations, the fluidity is lost, and finally solidified first, thereby blocking the radial gap of the insulating paint naturally lost, preventing other uncured insulating paint from flowing out through the radial slit, and then other parts
  • the varnish is then continuously cured, which further ensures that the varnish fills the impregnation fullness and also reduces the cure time by half.
  • the external coordinated heat source 244 and the internal coordinated heat source 245 may be electromagnetic eddy current generators or electromagnetic eddy current induction heaters.
  • the electromagnetic vortex generator has an electromagnetic induction coil, which can generate electromagnetic eddy current through interaction with the iron core of the winding, and cooperates with a high-temperature high-pressure high-speed jet to perform mandatory electric power on the contact surfaces of the insulating paint and the motor armature 100. Magnetic induction radiation heating.
  • the electromagnetic vortex generator is used for immersing and seeping the liquid filling material in the armature 100 and its winding gap, and the electromagnetic vortex generator is used to induce the liquid filling material to vibrate to fill the gap and eliminate the voids in the gap.
  • convective exothermic and radiative exotherm can be used to excite thermal or electromagnetic waves by which heating can be achieved with significant interference with the second gas stream 232.
  • induction heating the outer part of the core about 2mm thick can be heated first, the wetting of the insulating varnish on the core is increased, and the temperature of the insulating varnish is raised, and the smear of the insulating lacquer relative to the groove and the wedge on the core is improved.
  • Significantly reduce the wetting angle of the insulating varnish which helps to achieve complete sealing treatment of the winding, improve the reliability of the insulation system of the motor armature, and delay the aging process of the motor.
  • the external cooperative heat source 244 and the internal cooperative heat source 245 described above can heat the entire surface of the armature body 23.
  • the heating amplitude can be adjusted by adjusting the frequency of the electromagnetic wave generated by the electromagnetic vortex generator to appropriately perform heating. And curing operation.
  • the present disclosure is not limited to the above form, and in addition to the electromagnetic eddy current heating method, it is also possible to use far-infrared heat source heating to increase the temperature of the insulating varnish and reduce the wetting angle by radiating infrared rays toward the winding surface.
  • process equipment 200 may also include control system 280 in accordance with an embodiment of the present disclosure.
  • the control system 280 can integrally control the curing drying operation within the process equipment 200, control the airflow supply device 260 to provide the motor armature 100 with temperature and pressure in accordance with the desired airflow, and control the eddy current sensor to generate suitable electromagnetic waves for powering
  • the armature is heated to receive real-time signals from the various sensing devices that feed back the ongoing curing drying operation to perform monitoring and control.
  • control system 280 can receive various temperature and pressure signals or varnish imaging signals, etc., within detected outer barrel 210 to control compressor 264, heater 263, and eddy current inductor to cause first airflow portion 231
  • the second gas stream portion 232 is maintained at the desired temperature and pressure, or is adjusted in real time at different stages of solidification.
  • a method for insulation impregnation curing of a motor armature which is based on engineering thermodynamics and hydrodynamics principle to obtain a high-speed airflow to perform a pressure seal or a gas pressure seal on an interface leakage gap to prevent a gap The liquid leaks out.
  • the axial gap and the radial slit port on the armature end portion 21 and the armature main body 23 are respectively pressure-sealed by the first air current 231 and the second air flow 232, thereby blocking the slit opening.
  • the control system 280 of the process equipment can first analyze and calculate the outward cylinder required by the air supply device 260 based on the physical properties (such as viscosity) of the insulating paint used in the dipping paint and the paint flow process and the flow state of the insulating paint during initial curing.
  • the first airflow 231 substantially forms an annular high-speed airflow column corresponding to the armature end 21 or vertically aligned in the annular air inlet passage 222 and directly impacts the armature end portion 21 to act on the motor armature 100.
  • the slot wedge forms a tight air pressure seal with the gap between the core and the air to form a tight air pressure seal, so that the insulating paint is supported by the airflow from below to prevent it from dripping or flowing out of the axial gap opening, that is, preventing the insulating paint from flowing along the motor armature
  • the axial direction of 100 flows downward from the upper direction in the groove in which the winding is located to flow out from the armature end portion 21, preventing axial loss of the insulating varnish.
  • the second airflow 232 is converted into a centripetal high-speed jet after passing through the variable-section passage in the airflow accelerator 243, and such a high-speed jet can directly face the radial wedge, directly impacting the outer peripheral surface of the armature body 23, acting on the electric
  • the slot wedge on the pivot body 23 and the region where the slot gap of the core and the air meet form a tight air pressure seal, so that the insulating paint on the motor armature 100 is prevented from dropping by the air flow, and the insulating paint is prevented from flowing along the motor armature shaft. It flows out of the groove in which the winding is located and flows downward, and prevents the insulating varnish from flowing out of the radial slit port, thereby preventing radial loss of the insulating varnish.
  • the control system 280 can also control the cooperative heat source (the external cooperative heat source 244 and the internal cooperative heat source 245 as described above) to cooperatively heat the armature body 23 so that the core is externally
  • the surface portion and the insulating varnish between the wedge and the winding groove heat up before other positions, and the curing is first completed, thereby sealing the radial gap opening, preventing the varnish which is still uncured and still in a viscous state, and then flowing out. Avoid radial loss of insulating paint.
  • the first gas stream 231 and the second gas stream 232 are separated from each other without a phenomenon of confluence, so as to avoid the mixed paint varnish on the surface of the motor armature 100 due to the gas flow.
  • certain operations may also be performed correspondingly based on various operational states of the above-described process equipment 200, for example, adjusting the inclination of the airflow accelerator 243, adjusting the first airflow 231 and Various operations such as pressure and temperature of the second gas stream 232 are not limited to the specific operations described above.
  • a process glazing for sealing immersion curing of an insulating varnish for motor armature will be specifically described below with reference to FIGS. 14 to 17.
  • components of the process equipment 300 that are the same as or similar to the process equipment 200 are denoted by the same reference numerals.
  • FIG. 14 shows a working state diagram of the process equipment 300, which may include an outer cylinder 310, a gas flow supply 260, an armature end choke device 320, and an armature body choke device 340.
  • the outer cylinder 310 is located at the outermost periphery, and its outer contour may be substantially cylindrical, and the motor armature 100 is placed vertically in the outer cylinder 310.
  • the outer cylinder 310 can be made of a high-strength material to ensure that its strength is high enough to withstand excessive pressure, and a heat insulating layer can be provided to prevent heat in the cylinder from leaking out, thereby forming substantially inside thereof. Sealed high temperature and high pressure environment.
  • the airflow supply device 260 can be similar to the process equipment 200 described above with reference to Figures 5 through 13, and will not be described again.
  • the armature end choke device 320 is disposed within the outer cylinder 310 and below the motor armature 100 to be cured.
  • the armature end choke device 320 can include an annular piston 321 that can reciprocate up and down and can be held in a position that can be axially aligned or substantially aligned with the armature end 21.
  • a plurality of axially extending intake passages 322 may also be formed in the annular piston 321 or the intake passages 322 extend from the lower end surface 328 of the annular piston 321 to the upper end surface 324 to penetrate the annular piston 321.
  • the first airflow 231 received from the air supply device 260 may flow upward through the intake passage 322 to impinge on the armature end portion 21, thereby applying an airflow impact force to the armature end portion 21, thereby substantially facing the armature end portion 21
  • the insulating varnish on the armature end portion 21 is supported below to prevent the insulating varnish from flowing out or dropping from the axial slit opening on the armature end portion 21.
  • the annular piston 321 can be at a predetermined height, and a pressure accumulating space 228 can be formed between the upper end surface 324 of the annular piston 321 and the armature end portion 21, and the pressure accumulating space 228 continues
  • the first airflow 231 flows to form a high pressure environment, thereby achieving a pressure seal to block the axial gap opening.
  • the air pressure above the annular piston 321 is reduced until the airflow can wash the end of the armature, and no large pressure is required to maintain the required curing temperature, which is convenient for the compressor to save energy and reduce consumption.
  • the annular piston 321 can be moved up close to the end winding of the motor armature 100 to save energy and reduce consumption.
  • a first return passage 323 extending in the axial direction may be formed in the annular piston 321 , and the first air flow 231 in the accumulator space 228 may flow downward through the first return passage 323 .
  • Both the intake passage 322 and the first return passage 323 may have a circular cross section to minimize air resistance and pressure drop during flow.
  • the number of intake passages 322 may be greater than the first return passage 323 to maintain the pressure at the accumulator space 228.
  • the intake passage 322 can be disposed as densely as possible while ensuring the structural strength and pressure bearing capacity of the annular piston 321.
  • first return passage 323 may protrude upward with respect to the upper end surface 324 of the annular piston 321 by a predetermined length L, and the upper end of the protruding portion may be provided with a shutter 327 to prevent the insulating paint falling from the motor armature 100 from falling. Go to the first return channel 323.
  • the first air flow 231 may flow into the first return passage 323 through the side inlet of the vertical protruding portion, that is, a vent or a vertical side may be opened on a side of the vertical protruding portion Most areas can be open.
  • the armature end choke device 320 can further include an outer cylinder 326 and an inner cylinder 332 each having a cylindrical shape.
  • the annular piston 321 can reciprocate in an annular cavity between the outer cylinder 326 and the inner cylinder 332.
  • the outer cylinder 326 can also be used to form the lower half of the outer cylinder 310, the upper end surface 333 of the inner cylinder 332 can be used to support the motor armature 100, and in addition, by placing the motor armature 100 on the inner cylinder 332, It is also possible to isolate the space below the armature end 21 from the inner cavity of the motor armature 100 (specifically, the armature body 23) to prevent the first airflow 231 from converging with the second airflow 232.
  • the outer cylinder 326 and the inner cylinder 332 can have a high Structural strength and thickness to withstand high temperature and high pressure loads, and also protect against internal explosions.
  • the annular piston 321 may be specifically driven by a hydraulic cylinder 330 to which a pusher 329 may be coupled between the hydraulic cylinder 330 and the annular piston 321 to transmit the driving force of the hydraulic cylinder 330 to the annular piston 321 to drive the annular piston 321 to move up and down.
  • the annular piston 321 is held in a fixed position to form a pressure accumulating space 228.
  • pressure sensors and temperature sensors for sensing pressure and temperature within the accumulator space 228 may also be installed at the accumulator space 228, both of which may be indicated collectively by reference numeral 325 in the figures.
  • the sensor 325 can transmit the detection result as a signal to the control system 280 in real time so that the real-time status within the outer cylinder 310 can be monitored.
  • the control system 280 can command the hydraulic cylinder 330 to act to drive the annular piston 321 to move downward, thereby increasing the volume at the pressure accumulating space 228. Reduce the pressure and avoid accidents such as explosions.
  • the process equipment 300 can also include an electromagnetic vortex heater 331 disposed slightly below the armature end 21 but still within the pressure accumulation space 228.
  • the electromagnetic eddy current heater 331 can cooperatively heat the iron core and the winding at the end on the basis of the pressure sealing of the first air flow 231, so that the wedge at the armature end portion 21 and the core gap and the air are connected.
  • the insulating lacquer at the area and the axial gap is heated first, and is first thickened and solidified to complete the sealing of the axial gap, preventing the varnish which is still uncured and still in a viscous state, thereby avoiding the axial direction of the varnish. Loss.
  • the heating may be performed by generating electromagnetic waves toward the armature end portion 21, performing heating by radiating heat, and further heating the armature end portion 21 and the insulating paint thereon by generating electromagnetic eddy currents, thereby improving the insulating paint on the iron core.
  • the groove and wedge wedges are used to significantly reduce the wetting angle of the varnish and improve the adhesion of the solid-liquid interface, thus helping to completely seal the windings.
  • the rate of heating can be adjusted by adjusting the frequency of the electromagnetic waves to accommodate different curing stages.
  • the electromagnetic eddy current heater 331 can also excite the windings on the armature end portion 21 in the form of electromagnetic waves to vibrate under electromagnetic induction, and the windings in the winding slots on the iron core vibrate at a certain frequency to make the flow
  • the insulating varnish hanging on the windings naturally settles downward due to the vibration.
  • the electromagnetic eddy current heater 331 can function as a vibrating screen. Specifically, during the downward settling of the insulating varnish, the insulating varnish may eventually settle to the root of the contact area between the core and the winding, or the axial gap opening due to the air pressure sealing effect formed by the first gas stream 231 at the armature end portion 21.
  • the root or bottom so that the insulating paint can completely fill the root and the varnish infiltration, improve the fullness of the varnish at the root.
  • the insulating varnish at the root gap is first solidified, so that the axial gap opening can be more reliably blocked and the axial gap opening at the root is ensured.
  • Compact improve the sealing effect of the insulating paint here, block the door diameter of the outside wind, frost and rain invading the gap when the motor is in use, prevent the wind, frost and snow from being poured in, and delay the aging process of the motor.
  • the lost insulating varnish can be compensated by the method of secondary immersion and secondary curing, filling the blank portion on the bottom winding, and perfecting the insulation treatment of the winding at the end portion 21 of the armature.
  • the motor armature 100 can be axially inverted by 180 degrees and placed in the outer cylinder 310 such that the armature end portion 22 is below and the armature end portion 21 is above. In this way, the supplementary curing at the armature end portion 21 can be realized, and the armature end portion 22 can be vibrated again by the electromagnetic vortex heater 331 to realize the sedimentation of the insulating paint at the end portion and strengthen the insulation treatment of the root portion. .
  • the armature main body choke device 340 of the process equipment 300 may further include a flow direction turn-up and boosting device 341 in addition to the structure of the above-described armature main body choke device 240.
  • the same components and arrangements as the armature body choke device 240 will not be described herein.
  • the third return passage 248 in the armature main choke device 240 for guiding the downward flow of the second airflow 232 may be formed at the center of the inner cylinder 332 and the annular piston 321.
  • the flow direction adjustment boosting device 341 may be disposed at the bottom of the second return passage 247, and a portion of the second air flow 232 flowing downward through the second return passage 247 is turned up and tilted upward by the flow direction adjusting boosting device 341 To the inner side portion of the armature main body 23, an upward impact force is applied to the inner side portion of the armature main body 23, thereby preventing the liquid filling material from hanging on the inner surface of the armature main body 23, preventing the inner surface of the armature main body 23 from being sagged.
  • the insulating varnish flows downward, and then a portion of the second air stream that is subsequently flowed over flows down the annular region near the inner portion and eventually flows out of the outer cylinder 310 through the third return passage 248.
  • the flow direction modulating boosting device 341 can include a centrifugal impeller 342 and an annular turnaround 343 disposed on the periphery of the centrifugal impeller 342.
  • the annular meander 343 can have generally annular recesses that can be curved in an obliquely upwardly curved shape, i.e., generally curved from the middle to the outermost edge.
  • the outer diameter of the entire flow direction adjustment and boosting device 341 may be smaller than the inner diameter of the airflow return passage at the installation, so that an annular passage or an annular gap is formed between the outer circumference of the annular bypass portion 343 and the return passage (this is because the annular passage The size is relatively small).
  • a pressure accumulating zone is formed in the vicinity, and a pressure seal or a gas pressure seal is formed on the inner wall, so that the insulating paint flowing on the inner wall does not flow downward, and the insulation treatment of the inner wall of the motor armature 100 is remarkably improved.
  • the air stream that is struck upwards is then carried by the second airflow 232 that flows into the second return channel 247 via the confluence region 246 (the airflow is in a high-pressure, high-speed state), or flows downwards and turns downwards, and flows back through the ring.
  • the annular passage around portion 343 flows to third return passage 248.
  • the centrifugal impeller 342 can, on the one hand, enable a portion of the high-pressure airflow that traverses the armature end 22 and merges into the second return passage 247 to be deflected to impact the inner portion of the motor armature 100, thereby being on the inner side.
  • a pressure accumulating space is formed around the bottom to support the insulating paint hanging from the inner side to prevent the downward flow.
  • the airflow in the second return passage 247 can be improved to some extent. The flow rate allows the airflow to flow down more quickly, preventing the second airflow 232 from staying in the third return passage 248, preventing the pressure in the third return passage 248 from being too high and causing a potential explosion accident.
  • a slit surface imaging system 345 is further disposed in the outer cylinder 210, and the slit port can be imaged in real time during initial drying and solidification, and the imaging information is sent to the control system 280.
  • the control system 280 In order for the control system 280 to know the state of the insulating paint at the current slit, such as whether the insulating paint is dripping.
  • the control system 280 can determine parameters such as temperature and pressure of the airflow for drying and curing based on the state of the insulating varnish.
  • the present disclosure also provides a method for insulation impregnation and solidification of a motor armature, which is based on engineering thermodynamics and fluid mechanics principle to obtain a high-speed airflow to perform a pressure seal or a gas pressure seal on an interface leakage gap to prevent a gap in the gap. Liquid leaks.
  • the control system 280 of the process equipment 300 may first be based on the physical properties (e.g., viscosity) of the insulating varnish used in the varnishing process and the lacquering process and the varnish flow state at the time of initial curing (such a state may pass through the crevice port surface imaging system 345 described above).
  • the pressure and temperature of the airflow required to be supplied into the cylinder 310 by the airflow supply device 260 are calculated and controlled, and the supply of airflow to the armature end choke device 320 and the armature main body choke device 340 is controlled.
  • the first air flow 231 is impacted from the bottom to the top of the armature 100 of the motor armature 100 through the intake passage 322 (generally forming a strip of high-pressure air flow column) in the annular piston 321 to act on the armature end portion 21
  • the region of the slot of the armature 100 that intersects the core slot and the air forms a pressure accumulating space 228 near the armature end 21, thereby forming a tight air pressure seal or pressure seal on the armature end portion 21, preventing the motor armature 100 from being blocked.
  • the insulating varnish in the winding slit of the winding flows downward from the upper direction in the groove in which the winding is located along the axial direction of the motor armature 100 to flow out from the armature end portion 21, that is, the insulating paint is prevented from being used underneath by the airflow from below. Drops or flow out of the axial gap opening to prevent axial loss of the insulating varnish.
  • the control system 280 can monitor the temperature and pressure at the accumulator space 228 in real time by the sensor 325, and when the pressure at the accumulator space 228 is detected to be too high, a potential explosion of the combustible gas in the region is caused. In the event of an accident, the control system 280 can control the annular piston 321 to descend to a suitable position, thereby increasing the volume of the cavity between its upper end face and the armature end 21, reducing the pressure therein to avoid an explosion.
  • control system 280 can also control electromagnetic vortex heater 331 to vibrate the windings on armature end 21, thereby causing the insulating varnish on the windings to settle downward, as described above.
  • different vibration frequencies and amplitudes of the windings can be achieved by varying the frequency of the electromagnetic waves generated by the electromagnetic eddy current heater 331 to suit different stages.
  • the method may further include performing a drying and solidifying operation on the armature main body 23, and the same or similar portions of the drying and solidifying operation as those described above will not be specifically described.
  • the flow direction adjustment and boosting device 341 can also be controlled to make a part of the second airflow that flows back into the second return passage 247 turn up and obliquely upward. Impacting on the inner side portion of the armature main body 23 to form a gas pressure seal on the inner side portion of the armature main body, the partial air flow is then flowed downward by the second air flow 232 which is subsequently flowed, and is turned downward by the flow direction.
  • the annular gap between the pressing device 341 and the second return passage 247 flows downward as described above.
  • a process equipment 400 for seal impregnation for a motor armature according to another embodiment of the present disclosure will be specifically described below with reference to FIGS. 18 to 20.
  • components of the process equipment 400 that are identical or similar to the process equipment 200 and 300 are indicated by the same reference numerals.
  • a working state diagram of a process equipment 400 is illustrated, which may include an outer cylinder 410, an airflow supply 260, an armature end choke device 420, and an armature body choke device 440. .
  • the outer cylinder 410 is located at the outermost periphery, and its outer contour may be substantially cylindrical, and the motor armature 100 is placed vertically in the outer cylinder 410.
  • the outer cylinder 410 can be made of a high-strength material to ensure that its strength is high enough to withstand excessive pressure, and can also be provided with a heat insulating layer, which can prevent heat in the cylinder from leaking out, thereby forming substantially inside thereof. Sealed high temperature and high pressure environment.
  • the airflow supply device 260 can be similar to the process equipment 200 and 300 described above with reference to Figures 5 through 17, and will not be described again.
  • the armature end choke device 420 can be disposed within the outer cylinder 410 and below the motor armature 100, including an annular inlet passage 421 that can be formed in the inner barrel extension 444 (described below)
  • the outer circumference, the first air flow 231 having a certain temperature and pressure received from the air supply device 260 through the intake line 424 may flow upward through the annular intake passage 421 and impinge on the armature end portion 21 to hit the end portion
  • the windings and cores are formed such that a pressure accumulating space 228 is formed below the armature end 21, and a generally directed impact or pressure is applied to the armature end 21.
  • An annular seal portion 423 is provided between the armature end choke device 420 and the armature end portion 21 for sealing the outer circumference of the armature end portion 21 to prevent the first air current 231 from leaking from the portion.
  • the annular seal portion 423 may be made of a material having a certain flexibility. In the case where the process equipment 400 is in a disassembled state, the annular seal portion 423 may protrude upward from the armature end choke device 420 by a certain length, and the height of the outer surface at the top end thereof may be lower than the height of the inner surface. A portion of the annular seal portion 423 is wrapped around the outer circumferential surface of the armature end portion 21, and a portion of the lower surface of the armature end portion 21 is wrapped. At the time of sealing, the tight seal of the bottom of the motor armature 100 can be achieved by tightly wrapping or bolting the bottom of the armature end portion 21 by the annular seal portion 423.
  • a plurality of support portions 425 distributed in a ring shape may also be disposed in the annular intake passage 421, and the stator bracket of the motor armature 100 may be supported on the support portion 425.
  • the support portions 425 may be disposed with a certain gap therebetween to be spaced apart from each other, so that the arrangement of the support portion 425 does not greatly affect the upward flow of the first airflow 231 within the annular intake passage 421 to allow the first airflow 231. Covers the entire annular inlet passage.
  • the annular inner diameter of the support portion 425 may be larger than the outer diameter of the inner cylinder extension 444 and the inner diameter of the motor armature 100, and is substantially in the annular inlet passage 421 in the support portion 425 and the inner cylinder extension
  • the portion of the first airflow 231 between 444 can continue to flow upwardly through the annular port (which will be described in detail below) between the inner barrel extension 444 and the inner portion of the motor armature 100 (to be described below) Specifically described).
  • the partial airflow may be referred to as a partial exhaust airflow 2311.
  • the motor armature 100 may be supported by using a plurality of uprights, or a plurality of curved plates may be used to support the motor armature 100, or a cylinder may be used to support the motor armature 100, and in the cylinder A plurality of vents are formed in the vertical side walls.
  • the structure of the armature body choke device 440 outside the armature body 23 is substantially the same as the armature body choke devices 240 and 340, and will not be described herein.
  • the structure of the process equipment 400 different from the process equipment 200 and 300 is mainly described below.
  • the process equipment 400 may further include an inner cylinder 442 disposed in the inner cavity of the motor armature 100.
  • the upper and lower ends of the inner cylinder 442 are open and may be substantially equal to or slightly smaller than the inner cavity of the motor armature 100.
  • the height, and the inner cylinder 442 can be tapered from the bottom to the top in the axial direction, that is, its diameter gradually decreases from bottom to top.
  • An annular passage 446 may be formed between the inner cylinder 442 and the inner portion of the motor armature 100, and the cross-sectional dimension of the annular passage 446 is correspondingly gradually increased from bottom to top.
  • an inner cylinder extension 444 extends downward from the inner cylinder 442 in the axial direction, and an outer diameter of the inner cylinder extension 444 may be equal to an outer diameter of the bottom end of the inner cylinder 442 (ie, the maximum of the inner cylinder 442) The outer diameter) is smaller than the diameter of the inner cavity of the motor armature 100 such that an annular air port is formed between the inner cylinder 442 or the inner cylinder extension 444 and the motor armature 100 to allow the first airflow 231 A portion of the flow flows upward through the annular port to the annular passage 446.
  • the inner cylinder 442 and the inner cylinder extension 444 are internally formed as a return passage 445.
  • some radial gaps or vents are formed between the laminations of the motor armature 100 such that a small portion of the second airflow 232 that impacts the outer portion from the exterior of the armature body 23 passes through These radial vents flow into the annular passage 446.
  • the partial airflow may be referred to as a partial crossflow airflow 2322.
  • a part of the ejector airflow 2311 flows upward from the pressure accumulation space 228 to the annular passage 446 via the annular air port between the inner cylinder 442 and the inner cylinder extension 444 and the inner side of the motor armature 100.
  • the annular port since the annular port is relatively narrow, it can be roughly equivalent to the throat, so that part of the ejector airflow 2311 flowing into the annular passage 446 is accelerated to form a high-speed airflow, thereby igniting a part of the second airflow 232 through the radial direction.
  • the vent hole traverses into the annular passage 446, and entrains or carries a portion that traverses radially from the outside of the motor armature 100 and flows upward through the airflow 2322.
  • This portion of the airflow is insulated from the inner portion of the motor armature 100 and the upper portion thereof.
  • the lacquer exerts an upward impact force so that the insulating varnish hanging on the inner side does not flow downward.
  • the annular inlet of the inner cylinder 442 and the lower end portion of the inner surface of the motor armature 100 constitutes an aerator of the jet ejector, and a ring formed between the outer surface of the inner cylinder 442 and the inner surface of the motor armature 100
  • the cavity forms the mixing chamber of the jet ejector.
  • a curved curved arc 443 may be formed toward the inside at the upper end.
  • the second airflow 232 is congested in this area.
  • the bottom of the passage 445 may also be provided with a drafting device 450.
  • the suction of the air guiding device 450 enables the airflow to smoothly and quickly flow to the return passage 445 and descend rapidly, thereby accelerating drainage and enhancing heat transfer.
  • the airflow is prevented from being stuck or congested, and the effect of preventing the inner portion of the armature main body 23 from sag is prevented from being lowered.
  • the ventilation operation during the drying and solidification process can be accelerated, and the flammable gas in the airflow for curing can be prevented from staying too much to promote a potential explosion and the like.
  • the partial ejector gas flow 2311 may be spirally flowed upward by providing a spiral guide rib in the passage. .
  • An infrared radiant heater (not shown) may be disposed on the outer surface of the inner cylinder 442, and the infrared radiant heater may be shallowly buried on the inner cylinder 442 and emit a specific spectral section toward the inner side of the motor armature 100. Infrared rays inside, thereby forming an infrared radiant heat source.
  • the airflow used for curing after immersing the motor armature 100 is a multi-sub-stream, containing flammable components, diluents, volatile components, etc., so that by emitting infrared rays, this dense airflow can be traversed, and finally Arriving at the inner side of the motor armature 100, so that the temperature of the multi-tissue metal parts such as the core and the wedge is heated up and rapidly rises before other parts, improving the conformity of the insulating varnish and the metal surface, reducing the wetting angle of the insulating varnish, and fast Heat the varnish on the surface to allow the varnish to cure quickly.
  • the infrared radiant heater can also heat a portion of the airflow through the radial vents into the annular passage 446 through the airflow 2322 and a portion of the ejector airflow 2311 to increase the temperature of all of the airflow within the annular passage 446.
  • the arrangement of the infrared radiant heater on the inner cylinder 442 can be changed so that certain areas of the motor armature 100 can be heated to rapidly cure the insulating varnish of the area.
  • the arrangement of the infrared radiant heater in the intermediate position can be made denser. At different stages of curing, different heating rates can also be achieved by adjusting the heating power of the infrared radiant heater and varying the wavelength of the emitted infrared light.
  • the infrared radiant heater may not be activated during certain curing stages, and the infrared radiant heater may be activated for heating at other stages.
  • the process equipment 400 may further include a lower electromagnetic vortex generator 422 disposed below the motor armature 100.
  • the lower electromagnetic vortex generator 422 can be inverted T-shaped, or its axial cross-section is inverted T-shaped and can be integrated by a plurality of sub-electromagnetic eddy current generators.
  • the cross section is inverted T-shaped, the lower electromagnetic vortex generator 422 may have a bottle-like shape as a whole and has a circular cross section in a radial direction.
  • the lower electromagnetic vortex generator 422 generally includes a vertical portion and a horizontal portion, the vertical portion may extend into the inner side of the annularly distributed nose winding at the armature end portion 21, and the horizontal portion may be below the nose winding. In other words, the lower electromagnetic vortex generator 422 is generally within the pressure accumulation space 228.
  • the lower electromagnetic vortex generator 422 can heat the armature end 21 such that the stator core and stator slots at the ends heat up faster than other locations, improving the varnish infiltration at the ends, as prior to the present disclosure As described in the described embodiments.
  • the lower electromagnetic vortex generator 422 can also excite the winding vibration at the lower portion of the armature main body 23 by electromagnetic waves, so that the insulating varnish near the winding (including the combination of the motor armature 100 and its magnetic conductive member (for example, iron core))
  • the insulating varnish on the insulating varnish, the winding and the magnetic conductive component settles downward, and cooperates with the first airflow 231 to seal the air pressure of the armature end portion 21, and most of the insulating varnish does not drip from the motor armature 100. It falls, but settles to the root of the motor armature 100, for example, the root position at the axial slit.
  • the volatile gas in the slit is squeezed and the void between the insulating varnish in the slit is filled, so that the insulating paint is very full at the lower position of the motor armature 100 and is solidified after curing. Without voids and voids, thereby increasing the fullness and filling rate of the insulating varnish, especially at the root of the axial slit, after the final solidification, the root of the axial slit is sealed, continuous, uninterrupted of.
  • the curing of the insulating paint at the armature end portion 21 and the sealing effect on the axial gap opening can be significantly improved, and the door diameter of the wind, frost, rain and snow and external impurities entering the gap opening can be completely locked, and the aging process of the motor is delayed.
  • the process equipment 400 may further include an upper electromagnetic vortex generator 441 disposed above the motor armature 100.
  • the axial cross section of the upper electromagnetic vortex generator 441 can be T-shaped and can also be integrated by a plurality of sub-electromagnetic eddy current generators. Although the cross section is T-shaped, the upper electromagnetic vortex generator 441 may be in the form of a bottle as a whole, and has a circular cross section in a radial direction.
  • the upper electromagnetic vortex generator 441 also generally includes a vertical portion and a horizontal portion, the vertical portion extending into the inner side of the annular winding of the armature end 22, the horizontal portion being above the nose winding.
  • the upper electromagnetic vortex generator 441 is substantially in the confluence region 246 where the second airflow 232 flows back toward the return passage 445, or may be integrally disposed slightly above the confluence region 246 or the armature end portion 22. position.
  • the upper electromagnetic vortex generator 441 can heat the armature end 22 such that the core and winding slots at the ends heat up faster than other locations, improving the varnish infiltration at the armature end 22, as disclosed herein. As described in the previously described embodiments.
  • the upper electromagnetic vortex generator 441 can also excite the nose winding at the armature end 22 by electromagnetic waves to cause the insulating varnish hanging on the nose winding to settle downward and substantially settle to the armature end.
  • the root of the portion 22 for example, the root position or the uppermost position at the axial slit opening.
  • the volatile gas in the slit is extruded, and the void between the insulating varnish in the slit is filled, so that the insulating paint in the root portion of the axial slit and the portion under the slit is very full.
  • the fullness and filling rate of the insulating varnish at these regions are improved, and the root portion of the axial slit opening after the final curing is sealed, continuous, and uninterrupted. Therefore, the curing of the insulating paint at the end of the armature and the sealing effect on the axial gap opening can be significantly improved, and the door diameter of the wind, frost, rain and snow and external impurities entering the gap opening can be completely locked, and the aging process of the motor is delayed.
  • the final curing and wrapping effect of the insulating varnish on the nose windings at the upper and lower ends of the motor armature 100 may not be as expected, therefore,
  • the insulation treatment on the windings can be perfected by secondary dipping and curing.
  • the motor armature 100 can be turned upside down, that is, the armature end portion 21 is above, the armature end portion 22 is at the bottom, and the secondary curing is performed to compensate the insulation treatment on the winding. Complete insulation treatment of the motor armature 100.
  • a liquid check valve 426 may be disposed in the annular intake passage 421, which may be similar to the above-described liquid check valve 227 , will not repeat them here.
  • the present disclosure also provides a method for impregnating and curing an insulating varnish for a motor armature, which is based on engineering thermodynamics and hydrodynamics principles to obtain a high-speed airflow to perform a pressure seal or a pneumatic seal on an interface leakage gap to prevent The liquid in the gap leaks out.
  • the control system 280 of the process equipment 400 may first be based on the physical properties (eg, viscosity) of the insulating varnish used in the varnishing process and the lacquering process and the varnish flow state at the time of initial curing (such a state may be obtained by the above-described slit surface imaging system) It is obtained to analyze the pressure and temperature of the airflow supplied to the outer cylinder 410 required by the airflow supply device 260, and to control the supply of airflow to the armature end choke device 420 and the armature main choke device 440.
  • the physical properties eg, viscosity
  • the method of curing in this embodiment may further include heating the inner portion of the motor armature 100 with an infrared radiant heater disposed on the inner cylinder 442, specifically the outer cylinder that is monitored by the control system 280.
  • the curing state in 410 in real time, adjusts the heating power of the infrared radiant heater to achieve a targeted adjustment of the heating rate for different stages or different positions.
  • the upper electromagnetic eddy current generator 441 and the lower electromagnetic eddy current generator 422 may be separately controlled by the control system 280 to excite the winding vibrations near the upper and lower ends of the motor armature 100, so that the insulating varnish is above and below the axial gap opening.
  • the roots at both ends are set to plump, increasing the fullness and filling rate at these locations, and strengthening the insulation at the root of the axial gap.
  • the process equipment and method provided by the present disclosure can perform drying and curing after the motor armature primary dipping and secondary dipping.
  • the concept of the present disclosure may be applied to any device that requires insulation treatment in addition to the motor armature.
  • an airflow impact is applied to the various tissue components of the armature end and the air interface region through the annular high-pressure airflow column, and a sealing protection system is constructed at the axial gap of the wedge and the core to overcome the gravity and tradition of the insulating paint.
  • the centrifugal force of the rotary baking method prevents the insulating paint from dripping or even flowing out of the slit.
  • the high-speed airflow is applied to the radial gap opening on the armature of the motor by means of the variable-section passage, so that the traditional ferromagnetic boundary (laminated core) structure of the motor armature has the radial loss of the insulating paint after the primary dipping.
  • the dual function of axial loss is applied to the radial gap opening on the armature of the motor by means of the variable-section passage, so that the traditional ferromagnetic boundary (laminated core) structure of the motor armature has the radial loss of the insulating paint after the primary dipping.
  • the paint dropping process is reduced to avoid the radial loss and axial loss of the insulating paint along the ferromagnetic boundary during the conventional rotary baking curing process, thereby improving the filling rate of the insulating paint filling impregnation after the varnishing, and first blocking the first time.
  • the gaps in which the insulating paint naturally escapes increase the ability of the boundary to prevent intrusion of moisture and other media.
  • the oxygen, moisture and water in the air are not easily invaded into the insulation of the tank, which can delay the aging process of the insulation system. Reduce the risk of the motor being exposed to moisture and water, improve insulation reliability, and extend the life of the motor.
  • the insulation treatment process (such as the VPI process) provided by the present disclosure places the motor armature vertically in the outer cylinder during the operation of the armature end preventing the loss of the insulating paint (flowing from the inside), the positive pressure high temperature airflow and the columnar shape.
  • the poly-pressure chamber seals the airflow (fluid) to block the axial end of the motor armature and seals the air pressure through the centripetal jet and the gravity field mechanics to prevent fluid loss at the radial gap between the wedge and the core.
  • the present disclosure is based on a plurality of tissue components (cores) facing the motor armature in the cylindrical cavity of the rotor or stator of the motor (the convex or concave surface) constitutes a selective radiant heat source and an electromagnetic vortex generator combined with a high-speed gas in the liquid and solid
  • the tissue contact surface performs a forced exotherm (convex heat release, radiation exotherm) and excites heat energy (electromagnetic waves), thereby improving the wetting of the contact surface by the insulating varnish.
  • the object to which the embodiments of the present disclosure are directed may be a motor stator, a rotor, or other components that require insulation treatment, performing turbulent mechanical field coordination and solidification field coordination for a specific structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本公开公开了一种电机电枢的液体填充料浸渍后密封固化的工艺装备和方法,所述固化设备包括:气流供应装置;电枢端部扼流装置,设置在浸渍有液体填充料的电机电枢的下方,并包括能够上下往复运动的环形活塞,在所述环形活塞上开设有多个进气通道,从所述气流供应装置接收的第一气流通过所述进气通道而从下到上地冲击到所述绕组的处于下方的电枢端部,从而对所述电枢端部形成气流密封,防止所述液体填充料从轴向缝隙口中流出并下滴。

Description

电机电枢的液体填充料浸渍后密封固化的工艺装备和方法 技术领域
本公开涉及电机技术领域,具体地涉及用于电机电枢的液体填充料浸渍后密封固化工艺和工艺装备。
背景技术
风能是最清洁、无污染的可再生能源之一。风力发电机组是一种将风能转化为电能的大型发电装置。
电机电枢为风力发电机组的核心部件,以定子为例,如图1-3所示,电机电枢100包括定子铁心10和绕组20,在定子铁心10上设置有绕组槽11,绕组20嵌入在绕组槽11内,并在绕组槽11的槽口安装槽楔30来将绕组20固定在绕组槽11内。
由于风力发电机组设置在户外,经受风吹雨淋,水汽和湿气会进入发电机定子和转子内部,导致定子铁心以及绕组受到腐蚀而损坏。
为了提高定子绕组的防腐性能和绝缘性能,通常对定子绕组采用浸渍处理,用绝缘漆或绝缘胶等填充材料填充定子绕组中的孔隙。目前采用的浸漆处理工艺是属于热沉浸工艺的二次浸漆,例如,真空压力浸渍工艺(简称VPI工艺)。
在浸漆的过程,希望绝缘漆能够更好、更充分地渗透到定子铁心的各个缝隙中,尽量减少定子绕组中的孔隙。而在滴漆过程中,希望绝缘漆尽可能少地从定子铁心中流出。然而,由于在槽楔30与槽口之间存在径向缝隙口,在电枢端部位置存在轴向缝隙口,虽然在浸漆过程中,绝缘漆能够进入到绕组槽11内,但是,在滴漆和烘干过程中,大量的绝缘漆在重力以及离心力等力的作用下又会沿着径向和轴向从绕组槽11内流出。
图4示出了根据现有技术的绝缘处理工艺电机电枢处于旋转烘焙状态的示意图。在图4所示的示例中,电机电枢100轴向水平放置,当电机电枢100旋转到6点钟位置时,绕组槽11内的液体填充料不仅沿绕组槽11的轴向两端的出口向外流出,还会沿着槽楔30与绕组槽11的槽口之间的缝隙向下滴 落。在12点钟位置,即使绕组槽11内的液体填充料不会沿着槽口沿径向向外流出,也会沿着轴向两端的出口向外流出。
因此,在采用传统的绝缘处理工艺和工艺设备对电机电枢进行绝缘处理的过程中,无法有效阻止液体绝缘漆沿着径向方向从槽口(槽楔)处流出,以及沿着轴向方向从绕组槽的轴向两端向外流出,导致在电机电枢内绝缘漆填不满而存在大量空隙,尤其铁磁边界的表面上挂漆量小、漆层薄。在槽口部分,也难以在槽楔外周形成严格的密封圈,造成槽楔与槽口硅片之间形成缝隙,潮气和水自然会沿着脱粘缝隙进入槽内破坏绝缘,为风力发电机组的运行带来安全隐患。
发明内容
本公开的目的在于提供一种电机电枢的液体填充料密封浸渍固化的工艺装备,以避免在固化期间液体填充料从绕组上滴落在槽楔周围形成严密的封堵,延长发电机使用寿命。
本公开的另一目的在于提供一种电机电枢的液体填充料密封浸渍固化的方法。
为了实现上述目的,本公开提供了一种用于电机电枢的液体填充料浸渍固化的固化设备,包括:气流供应装置,产生被加热且升压后的气流;电枢端部扼流装置,设置在浸渍有液体填充料的电机电枢下方,并包括能够上下往复运动的环形活塞,在所述环形活塞上开设有多个进气通道,从所述气流供应装置接收的第一气流通过所述进气通道向上喷吹所述电机电枢的处于下方的电枢端部。
根据本公开的另一方面,还提供了一种用于电机电枢的绝缘浸渍固化的方法,所述方法包括:使第一气流通过环形活塞中的进气通道向上冲击电枢端部,从而在所述环形活塞与所述电枢端部之间形成蓄压空间,对所述电枢端部形成气流密封,其中,所述环形活塞)的位置根据所述蓄压空间内的压力大小而调整。
根据本公开,通过环形高压气流柱向电枢端部的多种组织部件与空气交接区域施加气流冲击,在槽楔和铁心的轴向缝隙口处构筑密封防护体系,克服液体填充料受重力和传统旋转烘焙方法的离心力作用,防止液体填充料下滴甚至从缝隙口中外流。借助变截面通道获得高速气流对绕组上的径向缝隙 口实施气流或压力密封,使得电机电枢传统的铁磁边界(叠片铁心)结构具有阻止一次浸漆之后的液体填充料径向流失、轴向流失的双重功能。在真空压力浸渍工艺之后降低滴漆过程,避免传统旋转烘焙固化过程中液体填充料沿铁磁边界的径向流失和轴向流失,得以提高浸漆后液体填充料填充浸渍的饱满率,并率先封锁住液体填充料自然流失的缝隙口,增加了边界阻止潮气和其他介质侵入的能力。使空气中的氧、潮气和水等不易侵入槽绝缘内部,可延缓绝缘体系老化过程。降低电机受潮气和水侵入存留其中的风险,提高绝缘可靠性,并延长电机的使用寿命。
附图说明
图1是风力发电机组的定子绕组的示意图;
图2是风力发电机组的定子绕组的局部结构立体图;
图3是风力发电机组的定子绕组的一个绕组槽的局部截面图;
图4是根据本公开的实施例的定子绕组的放置状态的示意图;
图5是根据本公开的实施例的密封浸渍固化用的工艺装备的作业状态图;
图6是图5所示的工艺装备进行电枢端部固化的分解视图;
图7是图5所示的工艺装备的电枢端部扼流装置内的气流流动的分解视图;
图8是图1所示的工艺装备的局部结构示意图;
图9是图1所示的工艺装备的电枢主体扼流装置;
图10是根据本公开的一个实施例的工艺装备的气流加速器的示意图;
图11是图10所示的气流加速器的加速射流通道的示意图;
图12是根据本公开的另一实施例的气流加速器的示意图;
图13是图12所示的气流加速器的加速射流通道的示意图;
图14是根据本公开的另一实施例的密封浸渍固化用的工艺装备的作业状态图;
图15是图14所示的工艺装备的局部结构的示意图;
图16是图14所示的工艺装备的电枢端部扼流装置的作业状态图;
图17是图14所示的工艺装备的电枢主体扼流装置的示意图;
图18是根据本公开的另一实施例的密封浸渍固化用的工艺装备的作业状态图;
图19是图18所示的工艺装备的另一作业状态图;
图20是图18所示的工艺装备的局部结构示意图。
附图标记说明:
100:电机电枢,10:铁心,11:绕组槽,20:绕组,21、22:电枢端部,23:电枢主体,30:槽楔,200、300、400:密封浸渍固化用的工艺装备,210、310:外筒体,220、320、420:电枢端部扼流装置,221:气流接入口,222:环形进气通道,223:溢流口,224:第一回流通道,225:回流管路,226:环形承载封闭板,227:液体逆止阀,228:蓄压空间;231:第一气流,232:第二气流,240、340、440:电枢主体扼流装置,241:进气管路,242:环形配气室,243:气流加速器,244:外部协同热源,245:内部协同热源,246:汇流区域,247:第二回流通道,248:第三回流通道,249:回流管路,260:气流供应装置,261:气流母管,262:吸附塔,263:加热器,264:压气机,265:气液分离器,280:控制系统,291:加速柱,292:加速射流通道,293:进口端,294:出口端,295:喉部;321:环形活塞;322:进气通道;323:第一回流通道;324:上端面;325:传感器;326:外缸体;327:遮挡件;328:下端面:329:推进器;330液压缸;331:电磁涡流加热器;332:内缸体;333:上端面;341:流动方向调转升压装置;342:离心式叶轮;343:环形迂回部;421:环形进气通道;422:下部电磁涡流发生器;423:环形密封部;424:进气管路;425:支撑部;426:液体逆止阀;441:上部电磁涡流发生器;442:内筒体;443:导流弧;444:内筒体延伸段;445:回流通道;446:环形通道。
具体实施方式
为了使本领域技术人员能够更好的理解本公开,下面结合附图对本公开的具体实施例进行详细描述。
参照图4,图4示出了根据本公开的实施例的在浸漆之后待固化的定子电机电枢100。该电机电枢100包括铁心10和绕组20,在铁心10上设置有绕组槽11,绕组20嵌入在绕组槽11内,并在绕组槽11的槽口安装槽楔30来将绕组20固定在绕组槽11内。
电机电枢100可分成电枢主体23和两个电枢端部21和22,在对电机电枢100上的液体填充料(例如,绝缘漆或者液体绝缘介质等,为了便于描述, 在下文中,使用绝缘漆代表)进行固化时,电机电枢100可轴向竖直地放置和支撑在本公开实施例所提供的密封浸渍固化用的工艺装备200中,电枢端部21处于下方,电枢端部22处于上方。
参照图5,图5示出了根据本公开的实施例的工艺装备200的作业状态图,为了便于示出工艺装备200,其内的电机电枢100未示出。
工艺装备200可包括外筒体210、电枢端部扼流装置220、电枢主体扼流装置240和气流供应装置260。
外筒体210位于最外围,其外轮廓可大体上呈圆柱状,电机电枢100轴向竖直地放置在外筒体210内。该外筒体210可由高强度材质制成,以确保其强度足够高而能够承受过高的压力,并且还可设置有绝热层,能够防止筒内的热量外泄,从而在其内部大体上形成密封的高温高压环境。
气流供应装置260用来产生加热和升压后的气流以将其供应到外筒体210内对浸漆后的电机电枢100执行烘干和固化操作,另外,气流供应装置260还可以从外筒体210中回收一部分气流再循环利用。气流供应装置260可包括压气机264和加热器263,从外界吸入的空气被过滤掉杂质之后送入到压气机264中进行增压,然后高压空气流向加热器263,以对高压空气进行加热使其升高至足够的温度,以便后续进行烘干固化操作。最终高温和高压气流经一系列管路被输送至气流母管261中,其中,气流母管261可位于外筒体210的下方并且将高温和高压气流输送到外筒体210中。
在输送时,气流可被分成两部分,第一气流231可被输送到电枢端部扼流装置220,用来烘干固化电枢端部21上的绝缘漆并防止绝缘漆从电枢端部21上的轴向缝隙口中流出,第二气流232可被输送到电枢主体扼流装置240,用来烘干固化电枢主体23上的绝缘漆并防止绝缘漆从电枢主体23上的径向缝隙口中流出。为此,在气流母管261上可各自连接管路,分别向电枢端部扼流装置220和电枢主体扼流装置240输送气流。
下面参照图5至图7对电枢端部扼流装置220进行具体描述。
电枢端部扼流装置220包括环形进气通道222和第一回流通道224。环形进气通道222处于电枢端部21下方并与电枢端部21在轴向上对齐。第一回流通道224处于环形进气通道222的径向外侧,也呈环形分布,并且在上部通过溢流口223与环形进气通道222连通。
第一气流231在气流接入口221处被输送到环形进气通道222中,并沿 着环形进气通道222向上流动,如图5中箭头所示。在环形进气通道222内流动的气流在横截面上的各个径向位置处的速率可大体上一致,以对电枢端部21施加大体上均匀的冲击力。
在第一气流231流向到环形进气通道222的上部区域(该区域还可称为蓄压空间)228处时,可冲击到电枢端部21上,撞击到端部处的绕组和铁心,并在该区域建立高压氛围,通过后续流过来的气流还可在此处蓄压而形成环状蓄压气流柱,从而保持该区域始终为高压区,对电枢端部21向上施加冲击力或压力,阻止电机电枢100及其绕组缝隙口内的绝缘漆沿着电机电枢100的轴向从绕组所在槽内的上方向向下流动而从电枢端部21流出。这相当于在电枢端部21的下方形成气压密封或压力密封,从而从下方举托住布满电枢端部21的绝缘漆,持续地封堵或锁住轴向缝隙口。结果,电枢端部21处的绝缘漆不仅不会向下滴落,并且位于电枢端部21处的轴向缝隙口内的绝缘漆也不会流出,使得绝缘漆充满缝隙口而不会在内部出现空穴等缺陷,提高绝缘漆在绕组槽内的填充率和饱满度,阻止绝缘漆的轴向流失。另一方面,具有一定温度的第一气流231还可烘干绝缘漆,使绝缘漆尽快固化。
在蓄压空间228处,还设置有环形承载封闭板226,该环形承载封闭板226可具体位于电枢端部21和电枢主体23之间的位置处,可用来承载和支撑电机电枢100,并且还可以封闭电枢端部21附近的气流,避免第一气流231泄露到电枢主体23周围而与第二气流232汇合,也就是说,在外筒体210内,第一气流231和第二气流232是相互分隔开的。
在气流冲击电枢端部21时,气流的冲击力应根据绝缘漆的重力和轴向缝隙口处的压差而精确地控制,只要使得绝缘漆不会从轴向缝隙口中外流和下滴即可,避免冲击力过大而导致绝缘漆被吹得在电机电枢100的表面上向上流动。
在蓄压空间228处冲击电枢端部21之后的第一气流231通过溢流口223而被挤出到第一回流通道224,并在第一回流通道224内向下流动,最终挤出外筒体210。第一回流通道224的横截面可相对较窄,提高气流的流速,以加速回流进程,避免第一气流231发生拥堵现象。
被回收到第一回流通道224中的气流最终经由回流管路225被回收到气流供应装置260的吸附塔262中,以便进行后处理,分离出可燃性气体,再通过气液分离器265将水汽分离,之后被处理过的气流可被输送到压气机264 中进行增压,实现循环利用,而被分离出的可燃性气体可另作回收处理。
请参阅图6,在环形进气通道222内还可以设置有液体逆止阀227,该液体逆止阀227可相当于单向阀门,仅允许第一气流231从下到上地冲击而打开液体逆止阀227,同时防止从电枢端部21上滴落的绝缘漆经其下落。在具体安装时,可以采用在360度周向上多弧段安装的方式来装配液体逆止阀227。液体逆止阀227可采用类于蝶阀的结构形式。
下面参照图5、图8和图9对电枢主体扼流装置240进行具体描述。
电枢主体扼流装置240可包括环形配气室242、环形的气流加速器243和第二回流通道247。从气流母管261经由进气管路241接收到的第二气流232可被输送到环形配气室242,环形配气室242将所接收到的气流均匀地分配出去,使得气流在轴向上均匀分布且流速大体相同,同时使得气流沿径向向内流动,如图5中的箭头所示。
气流加速器243可设置在环形配气室242的出口侧,从环形配气室242流出的第二气流232沿径向流向气流加速器243。气流加速器243一方面使气流的流速提高,另一方面改变气流的流动方向,使其从沿径向向内流动转换成斜向上流动,也就是说,第二气流232在流经气流加速器243之后变成了斜向上的向心高速射流,如图5中处于气流加速器243径向内侧的箭头所示。
向心高速射流随后冲击到电枢主体23上,在电枢主体23的铁心和槽楔周围形成高压氛围,阻止电机电枢100及其绕组缝隙口内的绝缘漆从绕组所在槽内外流以及从电机电枢100的表面向下流动,同样也对绝缘漆形成气压密封、气垫密封或压力密封,对整个电枢主体23施加均匀的冲击力或压力,以利用气流冲击力封堵电枢主体23上的绝缘漆。该冲击力可具有竖直方向上的分量和水平方向上的分量,从而既可从下方举托住电枢主体21上的挂漆防止其下滴,还可通过竖直方向上的分量持续地封堵或锁住径向缝隙口,防止已经充满径向缝隙口的绝缘漆外流而在固化后出现空穴等缺陷,确保绝缘漆的填充率,避免绝缘漆的径向流失。另一方面,具有一定温度的第二气流232还可烘干绝缘漆,使绝缘漆尽快固化。
在气流冲击电枢主体23上时,向心高速射流应基于与重力场力学平衡的方式来精确地控制,只要使得绝缘漆不会从径向缝隙口中外流和下滴即可,避免冲击力过大而导致绝缘漆被吹得在电机电枢100的表面上向上流动。
在高速射流冲击电枢主体23之后可在汇流区域246处穿越上方的电枢端部22而从四周360度地汇流到第二回流通道247,其中,第二回流通道247可设置在电枢主体23的内腔中。之后,第二气流232可沿第二回流通道247向下流动进而流出外筒体210。
在本公开的一个实施例中,在环形进气通道222的径向内侧可形成第三回流通道248,该第三回流通道248位于第二回流通道247下方并与其连通,从而第二气流232可沿着第二回流通道247和第三回流通道248向下流动,并经由回流管路249流向吸附塔262并进行回收循环利用。
参照图10至图13,示出了根据本公开的多个实施例的沿径向截取的气流加速器243的截面示意图,其中,在图5中示出的气流加速器243的示意与图8和图9中的示意采用了不同的方式来示出。所示出的气流加速器243可包括多个加速柱291,这些加速柱291在竖直方向上具有一定的长度,并且总体上呈圆形分布。每个加速柱291均在轴向上从下到上地沿径向向外倾斜,即,大体上相对于电机电枢100的中心呈后仰的姿态,从而将沿径向流过来的气流的方向转变成斜向上。加速柱291向后倾斜的角度等于气流加速器243的高速射流的出口端端面的倾斜角度,从整体上来看,气流加速器243的出口端294的端面也相应地呈后仰的姿态,如图5中所示。
在相邻的两个加速柱291之间形成加速射流通道292,从每个加速射流通道292中流出的高速射流总体上呈竖条状。这些加速射流通道292可在圆周方向上与电枢主体23上的槽楔30一一对应地设置,从而通过加速射流通道292形成的高速射流可正好冲击到每个槽楔30上,以利用气流冲击力封堵绕组所在槽缝隙的绝缘漆,防止其外流,从而构成气压密封或压力密封。加速射流通道292为变截面通道或缩放通道,在加速射流通道292中形成有喉部295,该喉部295处于缩放通道的最窄截面处,在气流从进口端293流入之后流经喉部295时会转变成高速射流,然后从出口端294流出。
在一个实施例中,每个加速柱291相对于竖直方向倾斜的角度可大体上为5°至10°,此外,根据气流加速器243与电机电枢100之间的径向距离和绝缘漆的粘稠度、气流速率和温度等因素,倾斜角度还可以被调节到其他范围,可小于5°,也可以大于10°。在绝缘漆黏度较稠时,其流动性差,倾斜角度可设置得小些,例如5°至7°,相反,在绝缘漆黏度较稀时,可设置相对大些的倾斜角度,例如8°至10°。在气流速度和温度较高时,倾斜角度可相 对小些,反之,可设置大些的倾斜角度。
另外,加速柱291的倾斜角度还可以是实时可调的。因为在对电机电枢100进行烘干固化期间,绝缘漆的黏度会随着时间而发生变化,因此可基于绝缘漆的黏度变化来实时地调节加速柱291的倾斜角度,从而改变高速射流相对于电枢主体23的表面的角度和冲击力。例如,在烘干固化中期绝缘漆黏度变稀时,可将倾斜角度设置成10°。通过实时调节加速柱291的倾斜角度,在任何烘干固化阶段中都可有效阻止绝缘漆的径向流失。
如图10和图11所示,加速柱291的横截面可大体上呈多边形,或者也可以呈鼓形。如图12和图13所示,加速柱291的横截面可大体上呈瓜子形,这些形状的加速柱291均可形成有效的加速射流通道而形成高速射流。另外,本公开并不限于此,还可以采用其他形状的加速柱291,只要相邻两个加速柱291之间能够形成喉部即可。
虽然在附图所示的示例中,通过每个加速射流通道形成的高速射流为沿竖直方向的条状,然而也可以形成环状的高速射流。例如,气流加速器243可包括沿轴向上下叠放的多个加速环,每个加速环可在径向上向内斜向上地倾斜,加速射流通道可形成在相邻两个加速环之间,并且通过将相邻两个加速环相面对的表面设计成外凸形状,可在加速射流通道中也形成喉部,从而将气流转变成向心高速射流。处于相邻两个加速环之间的加速射流通道在径向上总体上也呈相对于水平面斜向上倾斜的平面状。
再次参照图5,根据本公开的实施例,工艺装备200还可包括外部协同热源244和内部协同热源245。该外部协同热源244可呈环形,可位于电枢主体23的外侧并具体设置在气流加速器243的出口端,从而从外侧加热电枢主体23,以协同高速射流共同起作用,也即是说,在气流加速器243产生的向心高速射流的基础上,另外地对电机电枢100及其上的绝缘漆进行加热,两者相协作地共同执行烘干固化操作。内部协同热源245可位于电枢主体23的内部腔体内,以从内侧加热电机电枢100。
因此,整体上来说,第二气流232还可称为力学场协同气流,而两个热源还可称为电磁波协同热源,在两者的协同作用下,加速绝缘漆的固化,尤其是使槽楔与铁心之间的径向缝隙口与空气交接区域及与该区域处的表面直接接触的的绝缘漆先于其他位置热起来,从而有利于绝缘漆的浸润,并且使得这些位置处的绝绝缘漆先于其他位置处的绝缘漆稠化,失去流动性,最后 率先固化,从而封堵住绝缘漆自然流失的径向缝隙口,防止其他未固化的绝缘漆经由径向缝隙口流出,之后其他部分的绝缘漆再持续完成固化,这样可进一步确保绝缘漆填充浸渍的饱满率,并且还可以将固化处理时间缩短一半。
具体地说,外部协同热源244和内部协同热源245可以为电磁涡流发生器或者电磁涡流感应加热器。该电磁涡流发生器具有电磁感应线圈,可通过与绕组的铁心之间的相互作用产生电磁涡流,协同高温高压的高速射流在绝缘漆与电机电枢100的多种组织接触面进行强制性的电磁感应辐射加热。电磁涡流发生器用于液体填充料在电枢100及其绕组缝隙浸渍浸润、渗流,借助电磁涡流发生器诱导液体填充料振动填充缝隙、消除缝隙内的空穴。例如,可以采用对流放热和辐射放热的方式,激发热能或电磁波,通过这些加热方式,可以在对第二气流232产生明显干扰的情况下实现加热。通过感应加热,可以使铁心大约2mm厚的外表部分先热起来,提高其上的绝缘漆的浸润,并且使绝缘漆的温度升高,提高绝缘漆相对于铁心上的槽和槽楔的服帖度,显著减小绝缘漆的浸润角,从而有助于对绕组实现彻底的封闭化处理,提高电机电枢的绝缘体系的可靠性,延缓电机老化进程。
上述外部协同热源244和内部协同热源245可对电枢主体23的整个表面进行加热。另外,在烘干固化的不同时期或阶段,根据绝缘漆的黏度、气流流速和温度等各种因素,可通过调节电磁涡流发生器所产生的电磁波的频率来调节加热幅度而适配地执行加热和固化操作。
本公开并于限于以上形式,除了采用电磁涡流加热的方式以外,还可以采用远红外热源加热,通过朝向绕组表面放射红外线的方式来提高绝缘漆的温度并降低浸润角。
另外,根据本公开的实施例,工艺装备200还可包括控制系统280。该控制系统280可整体上控制工艺装备200内的固化烘干操作,控制气流供应装置260为电机电枢100提供温度和压力符合预期的气流,并且控制电涡流感应器产生适宜的电磁波来对电机电枢进行加热,还可以从各种感测器件接收反馈正在进行的固化烘干操作的实时信号,以执行监测和控制。
例如,控制系统280可接收所检测的外筒体210内的各种温度和压力信号或者绝缘漆成像信号等来控制压气机264、加热器263和电涡流感应器,以使第一气流部分231和第二气流部分232保持在预期的温度和压力,或者在不同的固化阶段进行实时调节。
根据本公开的实施例,还提供了一种用于电机电枢的绝缘浸渍固化的方法,该方法基于工程热力学和流体力学原理获得高速气流对界面泄露缝隙实施压力密封或气压密封,防止缝隙内的液体外泄。
对于电枢端部21和电枢主体23上的轴向缝隙口和径向缝隙口分别利用第一气流231和第二气流232执行压力密封,从而封堵缝隙口。
工艺装备的控制系统280可首先基于浸漆时使用的绝缘漆的物理属性(例如黏度)和滴漆工艺以及初始固化时的绝缘漆流动状态来分析计算出气流供应装置260所需要向外筒体210内供应的气流的压力和温度,并控制向电枢端部扼流装置220和电枢主体扼流装置240供应气流。
第一气流231在环形进气通道222内大致形成与电枢端部21相对应或在竖直方向上对齐的环形高速气流柱而直接冲击到电枢端部21上,作用于电机电枢100的槽楔与铁心缝隙口和空气交接的区域,形成严密的气压密封,从而从下方利用气流托住绝缘漆防止其下滴或者从轴向缝隙口中流出,即,阻止绝缘漆沿着电机电枢100的轴向从绕组所在槽内的上方向向下流动而从电枢端部21流出,阻止绝缘漆的轴向流失。
第二气流232在经过气流加速器243中的变截面通道之后转换成向心高速射流,并且这样的高速射流可正对径向槽楔,直接冲击到电枢主体23的外周表面上,作用于电枢主体23上的槽楔与铁心缝隙口和空气交接的区域,形成严密的气压密封,从而利用气流托住电机电枢100上的绝缘漆防止其下滴,阻止绝缘漆沿着电机电枢轴向从绕组所在槽内流出并向下流动,并阻止绝缘漆从径向缝隙口外流,从而阻止绝缘漆的径向流失。
在第二气流232作用于电枢主体23上时,控制系统280还可控制协同热源(如上所述的外部协同热源244和内部协同热源245)对电枢主体23进行协同加热,使得铁心的外表面部分和处于槽楔与绕组槽之间的绝缘漆先于其他位置热起来,而率先完成固化,从而对径向缝隙口完成封堵,防止内部未固化仍处于黏稠状态的绝缘漆流出,进而避免绝缘漆径向流失。
在上述固化期间,第一气流231和第二气流232相互被分隔开,而不会发生汇流的现象,以避免对电机电枢100的表面因气流而发生绝缘漆混流。
在本公开的实施例所提供的执行固化的方法中,还可以基于上述工艺装备200的各种操作状态而相应地执行某些操作,例如,调节气流加速器243的倾角,调节第一气流231和第二气流232的压力和温度等各种操作,而不 仅限于上面描述的具体操作。
下面参照图14至图17对根据本公开的另一实施例的用于电机电枢的绝缘漆浸渍固化的密封浸渍固化用的工艺装备300进行具体描述。其中,在下面的描述中,工艺装备300的与工艺装备200相同或相似的部件使用相同的标号指示。
根据图14,图14示出了工艺装备300的作业状态图,该工艺装备300可包括外筒体310、气流供应装置260、电枢端部扼流装置320和电枢主体扼流装置340。
外筒体310位于最外围,其外轮廓可大体上呈圆柱状,电机电枢100轴向竖直地放置在外筒体310内。该外筒体310可由高强度材质制成,以确保其强度足够高而能够承受过高的压力,并且还可设置有绝热层,能够防止筒内的热量外泄,从而在其内部大体上形成密封的高温高压环境。
气流供应装置260可与以上参照图5至图13描述的工艺装备200类似,在此不再赘述。
如图14所示,电枢端部扼流装置320设置在外筒体310内,并处于待固化的电机电枢100下方。电枢端部扼流装置320可包括能够上下往复运动并能够保持在某个位置的环形活塞321,该环形活塞321可在轴向上与电枢端部21相对应或者大体上对齐。在环形活塞321上还可开设有多个沿轴向延伸的进气通道322,或者说,进气通道322从环形活塞321的下端面328延伸到上端面324,从而穿透环形活塞321。从气源供应装置260接收的第一气流231可通过进气通道322向上流动而冲击到电枢端部21,从而对电枢端部21施加气流冲击力,从而大体上对电枢端部21形成气压密封或压力密封,阻止电机电枢100及其绕组缝隙口内的绝缘漆沿着电机电枢100的轴向从绕组所在槽内的上方向向下流动而从电枢端部21流出,从下方托住电枢端部21上的绝缘漆,防止绝缘漆从电枢端部21上的轴向缝隙口外流或下滴。
在进行烘干固化操作期间,环形活塞321可处于某个预定高度处,在环形活塞321的上端面324与电枢端部21之间可形成蓄压空间228,该蓄压空间228通过持续不断地流过来的第一气流231而形成高压环境,从而实现压力密封而封锁轴向缝隙口。在液体填充料失去流动性后环形活塞321上方的气压降低到气流能够冲刷电枢端部即可,不需要较大压力,维持需要的固化温度,便于压气机节能降耗。在固化过程后期,环形活塞321可以上移靠近 电机电枢100的端部绕组,可以节能降耗。
除了进气通道322之外,在环形活塞321上还可开设有沿轴向延伸的第一回流通道323,蓄压空间228内的第一气流231可通过第一回流通道323向下流动而流出外筒体310。
进气通道322和第一回流通道323的横截面均可以是圆形,从而尽可能地降低气阻和流动过程中的压降。进气通道322的数量可多于第一回流通道323,从而维持蓄压空间228处的压强。另外,进气通道322在确保环形活塞321的结构强度和承压能力的情况下,可尽可能稠密地设置。
另外,第一回流通道323可相对于环形活塞321的上端面324向上突出预定长度L,在突出部分的上顶端可设置有遮挡件327,以防止从电机电枢100上落下的绝缘漆滴落到第一回流通道323中。第一气流231可通过竖直突出部分的侧部入口而流入到第一回流通道323内,也就是说,在该竖直突出部分的侧部上可以开设有通气口或者该竖直侧部的大部分区域可以是敞开的。
该电枢端部扼流装置320还可包括均呈圆筒形的外缸体326和内缸体332,环形活塞321可在外缸体326和内缸体332之间的环形空腔内往复运动。该外缸体326还可用来形成外筒体310的下半部分,内缸体332的上端面333可用来支撑电机电枢100,另外,通过将电机电枢100放置在内缸体332上,还可以将电枢端部21下方的空间与电机电枢100(具体地为电枢主体23)的内腔相互封闭而隔离开,避免第一气流231与第二气流232汇流。
因为蓄压空间228处的压强非常高,呈高温高压的状态,并且固化用气流含有可燃性成分,在该区域存在爆炸的潜在危险,因此外缸体326和内缸体332可具有很高的结构强度和厚度,以承受高温高压负载,并且还能够在内部发生爆炸时起保护作用。
环形活塞321可具体地由液压缸330驱动,在液压缸330与环形活塞321之间可连接有推进器329,以将液压缸330的驱动力传递到环形活塞321,从而驱动环形活塞321上下运动或者将环形活塞321保持在固定的位置而形成蓄压空间228。另外,还可在蓄压空间228处安装用以感测蓄压空间228内的压力和温度的压力传感器和温度传感器,在图中两者可统一使用标号325指示。传感器325可将检测结果作为信号实时发送给控制系统280,从而可监测外筒体310内的实时状态。当传感器325检测到蓄压空间228处的压强 过高或者超过预定值时,控制系统280便可命令液压缸330动作,驱使环形活塞321向下运动,从而增大蓄压空间228处的容积,降低压强,避免发生爆炸等安全事故。
除此以外,工艺装备300还可包括设置在电枢端部21稍微下方但仍处于蓄压空间228内的电磁涡流加热器331。该电磁涡流加热器331一方面可以在第一气流231的压力密封的基础上对端部处的铁心和绕组进行协同加热,使得电枢端部21处的槽楔与铁心缝隙口和空气交接的区域以及轴向缝隙口处的绝缘漆先热起来,而率先稠化和固化,从而对轴向缝隙口完成封堵,防止内部未固化仍处于黏稠状态的绝缘漆流出,进而避免绝缘漆轴向流失。加热的方式可以是朝向电枢端部21产生电磁波,利用辐射放热的方式执行加热,通过产生电磁涡流来对电枢端部21及其上的绝缘漆进一步加热,提高绝缘漆相对于铁心上的槽和槽楔的服帖度,并显著减小绝缘漆的浸润角,改善固液界面贴服度,从而有助于对绕组实现彻底的封闭化处理。可通过调节电磁波的频率来调节加热的速率,以适应不同的固化阶段。
另一方面,电磁涡流加热器331还可以以电磁波的形式激发电枢端部21上的绕组在电磁感应作用下振动,通过处于铁心上的绕组槽中的绕组以一定的频率振动,可以使得流挂在绕组上的绝缘漆由于振动作用而自然地向下沉降。这样,电磁涡流加热器331可相当于振动筛的作用。具体地说,在绝缘漆向下沉降期间,由于第一气流231在电枢端部21处形成的气压密封作用,绝缘漆可最终沉降到铁心与绕组间接触区域的根部,或者轴向缝隙口的根部或底部,从而使得绝缘漆能够完全填充满根部和绝缘漆的浸润,提高绝缘漆在根部的丰满度。在第一气流231以及电磁涡流加热器331的协同加热作用下,处于根部缝隙口处的绝缘漆先固化完成,从而可更加可靠地封堵轴向缝隙口,并确保处于根部的轴向缝隙口密实,提高此处的绝缘漆封堵效果,封锁在电机使用时外界风霜雨雪侵入缝隙口的门径,防止风霜雨雪灌入,延缓电机老化进程。
在绕组振动的同时,一方面如上所述的绕组的绝缘漆会向下沉降,另一方面处于底部绕组上的绝缘漆也会因为振动而有一部分向下滴落从而在底部绕组上出现空白部分而不能实现全面的绝缘化,因此,可通过二次浸渍以及二次固化的方法补偿流失的绝缘漆,填补底部绕组上的空白部分,完善电枢端部21处的绕组的绝缘处处理。
具体地说,在二次浸渍之后进行二次固化时,可将电机电枢100轴向翻转180度放置在外筒体310内,使得电枢端部22处于下方而电枢端部21处于上方,这样,既可以实现电枢端部21处的补充固化,还可以再次通过电磁涡流加热器331使电枢端部22振动起来,实现该端部处的绝缘漆沉降,强化该根部的绝缘化处理。
工艺装备300的电枢主体扼流装置340除了包含上述电枢主体扼流装置240的结构以外,还可进一步包括流动方向调转升压装置341。对于与电枢主体扼流装置240相同的部件和设置,在此不再赘述。另外,需要说明的是,电枢主体扼流装置240中用来引导第二气流232向下流动的第三回流通道248可形成在内缸体332和环形活塞321的中央。
流动方向调转升压装置341可设置在第二回流通道247的底部,经由第二回流通道247向下流动的第二气流232的一部分通过流动方向调转升压装置341而向上调头并斜向上地冲击到电枢主体23的内侧部,从而对电枢主体23的内侧部施加向上的冲击力,从而阻止液体填充料在电枢主体23的内表面上流挂,防止电枢主体23的内表面上的绝缘漆向下流,然后被随后流过来的第二气流的一部分裹挟着沿着内侧部附近的环形区域向下流动,并最终通过第三回流通道248而流出外筒体310。
在一个实施例中,流动方向调转升压装置341可包括离心式叶轮342和设置在离心式叶轮342的外周的环形迂回部343。环形迂回部343可大体上具有环形的凹窝,横截面可呈斜向上弯曲的弧形,即,大体上从中间到最外边缘的弧形部倾斜向上。另外,整个流动方向调转升压装置341的外径可小于安装处的气流回流通道的内径,从而在环形迂回部343的外周与回流通道之间形成有环形通道或者环形缝隙(这是因为环形通道的尺寸相对较小)。
离心式叶轮342在旋转时,由上向下流动的高压高速的第二气流232的一部分会冲击到离心式叶轮342上,然后在离心式叶轮342的叶片的导流和离心力作用下,沿径向四散开,并流到环形迂回部343上,并且在倾斜向上的弧形部的引导下,气流最终斜向上地流出,然后冲击到电枢主体23的内侧部或内壁上,从而在内壁附近形成蓄压区,对内壁形成压力密封或气压密封,使得流挂在内壁上的绝缘漆不会向下流,显著改善电机电枢100的内壁的绝缘化处理。
被斜向上打出的气流会被随后经由汇流区域246而流入到第二回流通道 247中的第二气流232(该气流为高压高速状态)携带或裹挟着再次调头而向下流动,并经由环形迂回部343周围的环形通道流向第三回流通道248。
也就是说,离心式叶轮342一方面能够使穿越电枢端部22而汇流到第二回流通道247中的部分高压气流实现流向调转而冲击到电机电枢100的内侧部上,从而在内侧部周围建立蓄压空间,以从下方托住挂在内侧部的绝缘漆防止其下流,另一方面,在离心式叶轮342的旋转作用下,可以在一定程度上提高第二回流通道247内的气流的流速,使气流更快地向下流动,避免第二气流232滞留在第三回流通道248内,防止第三回流通道248内压强过高而引发潜在的爆炸事故。
另外,根据本公开的一个实施例,在外筒体210内还安装有缝隙口表面成像系统345,可在进行初期烘干固化时对缝隙口进行实时成像,并将成像信息发送给控制系统280,以便控制系统280获知当前缝隙口处的绝缘漆状态,比如绝缘漆是否下滴。控制系统280可基于绝缘漆的状态确定烘干固化用气流的温度和压强等参数。
针对上述工艺装备300,本公开还提供了一种电机电枢的绝缘浸渍固化的方法,该方法基于工程热力学和流体力学原理获得高速气流对界面泄露缝隙实施压力密封或气压密封,防止缝隙内的液体外泄。
工艺装备300的控制系统280可首先基于浸漆时使用的绝缘漆的物理属性(例如黏度)和滴漆工艺以及初始固化时的绝缘漆流动状态(这样的状态可通过上述缝隙口表面成像系统345来获得)来分析计算出气流供应装置260所需要向筒体310内供应的气流的压力和温度,并控制向电枢端部扼流装置320和电枢主体扼流装置340供应气流。
第一气流231通过环形活塞321中的进气通道322(大体上形成条状高压气流柱)沿着电机电枢100的轴向从下到上地冲击到电枢端部21上,作用于电机电枢100的槽楔与铁心缝隙口和空气交接的区域,在电枢端部21附近形成蓄压空间228,从而对电枢端部21形成严密的气压密封或压力密封,阻止电机电枢100及其绕组缝隙口内的绝缘漆沿着电机电枢100的轴向从绕组所在槽内的上方向向下流动而从电枢端部21流出,即,从下方利用气流托住绝缘漆防止其下滴或者从轴向缝隙口中流出,阻止绝缘漆的轴向流失。
在上述固化期间,控制系统280可通过传感器325实时地监测蓄压空间228处的温度和压强,当检测到蓄压空间228处的压强过高而导致该区域内 的可燃性气体存在潜在的爆炸事故时,控制系统280可控制环形活塞321下行至合适的位置,从而增大其上端面与电枢端部21之间的空腔的容积,降低其内的压强,避免发生爆炸。
另外,控制系统280还可以控制电磁涡流加热器331,以使电枢端部21上的绕组振动,从而使绕组上的绝缘漆向下沉降,如上所述。在不同的烘干固化阶段期间,可通过改变电磁涡流加热器331所产生的电磁波的频率来实现绕组不同的振动频率和幅度,以适合各个不同的阶段。
同样,该方法还可以包括对电枢主体23进行烘干固化操作,该烘干固化操作与上述操作相同或相似的部分将不再具体描述。
在本实施例中,在对电枢主体23进行烘干固化操作时,还可以控制流动方向调转升压装置341,使回流到第二回流通道247中的第二气流的一部分调头而斜向上地冲击到电枢主体23的内侧部从而对电枢主体的内侧部形成气压密封,这部分气流然后被随后流过来的第二气流232裹挟着再次调转方向而向下流动,并通过流动方向调转升压装置341与第二回流通道247之间的环形缝隙而向下流动,如上所述。
下面参照图18至图20对根据本公开的另一实施例的用于电机电枢的密封浸渍固化用的工艺装备400进行具体描述。其中,在下面的描述中,工艺装备400的与工艺装备200和300相同或相似的部件使用相同的标号指示。
根据图18和图19,示出了工艺装备400的作业状态图,该工艺装备400可包括外筒体410、气流供应装置260、电枢端部扼流装置420和电枢主体扼流装置440。
外筒体410位于最外围,其外轮廓可大体上呈圆柱状,电机电枢100轴向竖直地放置在外筒体410内。该外筒体410可由高强度材质制成,以确保其强度足够高而能够承受过高的压力,并且还可设置有绝热层,能够防止筒内的热量外泄,从而在其内部大体上形成密封的高温高压环境。
气流供应装置260可与以上参照图5至图17描述的工艺装备200和300类似,在此不再赘述。
电枢端部扼流装置420可设置在外筒体410内并处于电机电枢100下方,包括环形进气通道421,该环形进气通道421可形成在内筒体延伸段444(下面将具体描述)外周,通过进气管路424从气流供应装置260接收的具有一定温度和压强的第一气流231可通过环形进气通道421向上流动,并冲击到 电枢端部21上,撞击到该端部处的绕组和铁心,从而在电枢端部21下方形成蓄压空间228,对电枢端部21施加大体上朝向的冲击力或压力。这相当于对电枢端部21形成气压密封或压力密封,阻止电机电枢100及其绕组缝隙口内的绝缘漆沿着电机电枢100的轴向从绕组所在槽内的上方向向下流动而从电枢端部21流出,从下方举托住流挂在电枢端部21上的绝缘漆,持续地封堵或锁住轴向缝隙口。
在电枢端部扼流装置420与电枢端部21之间还设置有环形密封部423,用于密封电枢端部21的外周,防止第一气流231从该部位泄露。环形密封部423可以有具有一定柔性的材料制成。在工艺装备400处于分解状态的情况下,环形密封部423可大体上从电枢端部扼流装置420向上突出一定的长度,并在其顶端处外表面的高度可低于内表面的高度,使得环形密封部423的一部分包裹电枢端部21的外圆周表面,一部分包裹电枢端部21的下表面。在密封时,可通过环形密封部423紧密包裹住或栓紧电枢端部21的底部而实现电机电枢100底部的严密密封。
在环形进气通道421中还可设置有呈环形分布的多个支撑部425,电机电枢100的定子支架可被支撑在支撑部425上。这些支撑部425彼此之间可设置有一定的间隙而彼此分隔开,从而支撑部425的设置不会大幅影响第一气流231在环形进气通道421内的向上流动,以允许第一气流231布满整个环形进气通道。另外,支撑部425所排成的环形的内径可大于内筒体延伸段444的外径和电机电枢100的内径,在环形进气通道421内大体上处于支撑部425与内筒体延伸段444之间的那部分第一气流231可通过内筒体延伸段444与电机电枢100的内侧部之间的环形气口(将在下面具体描述)而继续向上流动到环形通道446(将在下面具体描述)中。在下文中,为了便于描述,可将该部分气流称为部分引射气流2311。
例如,可通过使用多个立柱来支撑电机电枢100,或者还可以使用多个弧形板来支撑电机电枢100,或者还可以使用圆筒来支撑电机电枢100,并且在该圆筒的竖直侧壁开设多个通气口。
电枢主体扼流装置440的处于电枢主体23外部的结构大体上与电枢主体扼流装置240和340大体上相同,在此不再赘述。
下面主要描述工艺装备400与工艺装备200和300不同的结构。
工艺装备400还可包括设置在电机电枢100内腔中的内筒体442,内筒 体442的上下两端是敞开的,其长度可大体上等于或者略小于电机电枢100的内腔的高度,并且内筒体442可沿着轴向从下到上地渐缩,也就是说,其直径从下到上地逐渐减小。在内筒体442与电机电枢100的内侧部之间可形成有环形通道446,那么该环形通道446的横截面尺寸也相应地从下到上地逐渐增大。
另外,从内筒体442沿轴向朝下延伸有内筒体延伸段444,内筒体延伸段444的外径可等于内筒体442的底端的外径(即,内筒体442的最大的外径),但是却小于电机电枢100的内腔的直径,从而在内筒体442或者内筒体延伸段444与电机电枢100之间形成有环形气口,以允许第一气流231中的一部分通过该环形气口向上流动到环形通道446。内筒体442和内筒体延伸段444的内部被形成为回流通道445。
在本公开的实施例中,电机电枢100的叠片之间形成有一些径向间隙或通风孔,从而从电枢主体23外部冲击外侧部的第二气流232中的一小部分会穿过这些径向通风孔而流到环形通道446中。在下文中,为了便于描述,可将该部分气流称为部分穿越气流2322。
同时,如上所述,部分引射气流2311会从蓄压空间228处经由内筒体442和内筒体延伸段444与电机电枢100的内侧部之间的环形气口而向上流动到环形通道446中,由于该环形气口相对较为狭窄,因而可大致相当于喉部,使得流动到环形通道446中的部分引射气流2311加速而形成高速气流,从而引射第二气流232中的一部分通过径向通风孔穿越流入到环形通道446中,并裹挟或携带着从电机电枢100外部径向穿越过来的部分穿越气流2322一起向上流动,这部分气流对电机电枢100的内侧部及其上的绝缘漆施加向上的冲击力,使得流挂于内侧部上的绝缘漆不会向下流动。这里,内筒体442与电机电枢100的内表面下端部的环形入口便构成射流引射器的射气器,内筒体442的外表面与电机电枢100的内表面之间构成的环形腔体即构成射流引射器的混合腔。
在两部分气流流动到内筒体442的上端时,流向发生改变而流动到回流通道445中,并向下流动。为了减小在内筒体442上端处的气阻,在上端处可朝向内部形成有弧形弯曲的导流弧443。
另外,为了防止这两部分气流在内筒体442以及从外侧冲击电枢主体23的外侧部并穿越最上方的绕组流动到回流通道445上端处的第二气流232在 此区域发生拥堵,在回流通道445的底部还可设置有引风设备450,通过引风设备450的抽吸作用,使得气流能够顺畅且快速地流动到回流通道445并快速地下行,起加速引流并强化换热的作用,避免气流滞留或拥堵,避免降低阻止电枢主体23内侧部流挂的效果。同时通过使气流快速流动,还可加快烘干固化过程中的换气操作,避免固化用气流内的可燃性气体滞留太多而促发潜在的爆炸等安全事故。
另外,部分引射气流2311除了在轴向竖直地沿着环形通道446向上流动以外,还可以通过在通道内设置螺旋形的引导肋片的方式使得部分引射气流2311以螺旋地方式向上流动。
在内筒体442的外表面上可设置有红外辐射加热器(未示出),这些红外辐射加热器可浅埋在内筒体442上,并朝向电机电枢100的内侧部发射特定波谱段内的红外线,从而形成红外辐射热源。在对电机电枢100浸漆之后进行固化时所使用的气流为多元子气流,含有可燃性成分、稀释剂、挥发性成分等,因此,通过发射红外线可穿越这种密度较大的气流,最终到达电机电枢100的内侧部,使得铁心和槽楔等多组织金属部位温度先于其他部位热起来并快速升高,提高绝缘漆与金属表面的服帖度,降低绝缘漆的浸润角,并且快速加热表面上的绝缘漆,使绝缘漆快速固化。另外,红外辐射加热器还可以加热通过径向通风孔流入到环形通道446中的部分穿越气流2322以及部分引射气流2311,使处于环形通道446内的所有气流的温度升高。
还可以改变红外辐射加热器在内筒体442上的排布,从而可对电机电枢100上的某些特定区域进行加热以使该区域的绝缘漆快速固化。另外,在轴向上,可以使处于中间位置的红外辐射加热器的布置更密一些。在固化的不同阶段,还可通过调节红外辐射加热器的加热功率,改变所发射的红外线的波长来实现不同的加热速率。或者,还可以在某些固化阶段,不启动红外辐射加热器,而在另外一些阶段,启动红外辐射加热器进行加热。或者,还可以在同一个固化阶段期间,仅启用某些红外辐射加热器。
根据本公开的实施例,工艺装备400还可包括设置在电机电枢100下方的下部电磁涡流发生器422。从侧视方向观看,该下部电磁涡流发生器422可呈倒T形,或者说其轴向的横截面呈倒T形,可以由多个子电磁涡流发生器集成。虽然横截面呈倒T形,但是下部电磁涡流发生器422可整体呈瓶塞状,其径向横截面为圆形。下部电磁涡流发生器422总体上包括竖直部分和 水平部分,竖直部分可伸入到电枢端部21处的呈环形分布的鼻状绕组内侧,水平部分可处于该鼻状绕组的下方,换句话说,该下部电磁涡流发生器422大致处于蓄压空间228内。
一方面,下部电磁涡流发生器422可对电枢端部21进行加热,使得该端部处的定子铁心和定子槽较其他位置快速热起来,改善端部处的绝缘漆浸润,如本公开之前描述的实施例所述的那样。
另一方面,下部电磁涡流发生器422还可以通过电磁波激发处于电枢主体23下部的绕组振动,使得绕组附近的绝缘漆(包括电机电枢100及其导磁部件(例如,铁心)的组合体上的绝缘漆、绕组与导磁部件之间的绝缘漆)向下沉降,同时协同第一气流231对电枢端部21的气压密封作用,大部分绝缘漆不会从电机电枢100上滴落,而是沉降到电机电枢100的根部,例如,轴向缝隙口处的根部位置。随着绝缘漆的沉降,挤出缝隙口内的挥发性气体,并填充缝隙口内的绝缘漆之间的空穴,使得在电机电枢100下部位置处绝缘漆沉降地非常丰满且保证固化后是密实的,而不存在空穴和空隙,从而提高了绝缘漆的充满度和填充率,尤其是轴向缝隙口根部处,最终固化之后轴向缝隙口的根部处是密封的、连续的、不间断的。因此,可以显著提高电枢端部21处的绝缘漆固化以及对轴向缝隙口的封堵效果,完全锁死风霜雨雪和外界杂质进入缝隙口的门径,延缓电机的老化进程。
根据本公开的实施例,工艺装备400还可包括设置在电机电枢100上方的上部电磁涡流发生器441。该上部电磁涡流发生器441的轴向的横截面可呈T形,同样可以由多个子电磁涡流发生器集成。虽然横截面呈T形,但是上部电磁涡流发生器441可整体呈瓶塞状,其径向横截面为圆形。上部电磁涡流发生器441总体上也包括竖直部分和水平部分,竖直部分可伸入到电枢端部22处呈环形分布的鼻状绕组内侧,水平部分可处于该鼻状绕组的上方。换句话说,该上部电磁涡流发生器441大致处于第二气流232朝向回流通道445回流的汇流区域246内,或者也可以整体设置在相对于汇流区域246或电枢端部22略靠上些的位置。
一方面,上部电磁涡流发生器441可对电枢端部22进行加热,使得端部处的铁心和绕组槽较其他位置快速热起来,改善电枢端部22处的绝缘漆浸润,如本公开之前描述的实施例所述的那样。
另一方面,上部电磁涡流发生器441也可以通过电磁波激发处于电枢端 部22处的鼻状绕组振动,使得流挂于鼻状绕组上的绝缘漆向下沉降,并大体沉降到电枢端部22的根部,例如,轴向缝隙口处的根部位置或者最上端位置。随着绝缘漆的沉降,挤出缝隙口内的挥发性气体,并填充缝隙口内的绝缘漆之间的空穴,使得轴向缝隙口根部及其下方的部分区域内的绝缘漆沉降地非常丰满,从而提高了这些区域处绝缘漆的充满度和填充率,最终固化之后轴向缝隙口的根部处是密封的、连续的、不间断的。因此,可以显著提高电枢端部处的绝缘漆固化,以及对轴向缝隙口的封堵效果,完全锁死风霜雨雪和外界杂质进入缝隙口的门径,延缓电机的老化进程。
在上部电磁涡流发生器441和下部电磁涡流发生器422激发的振动作用下,电机电枢100的上下两端处的鼻状绕组上的绝缘漆最终的固化和包裹效果可能不符合预期,因此,可通过二次浸漆和固化来完善绕组上的绝缘处理。在二次浸漆之后,可将电机电枢100上下倒置,即,将电枢端部21处于上方,电枢端部22处于下方,通过二次固化,可补偿绕组上的绝缘化处理,实现对电机电枢100的全面绝缘化处理。
另外,为了防止从电机电枢100上的绝缘漆通过环形进气通道421向下滴落,在环形进气通道421中可设置有液体逆止阀426,其可与上述液体逆止阀227类似,在此不再赘述。
针对上述工艺装备400,本公开还提供了一种用于电机电枢的绝缘漆浸渍固化的方法,该方法基于工程热力学和流体力学原理获得高速气流对界面泄露缝隙实施压力密封或气压密封,防止缝隙内的液体外泄。
工艺装备400的控制系统280可首先基于浸漆时使用的绝缘漆的物理属性(例如黏度)和滴漆工艺以及初始固化时的绝缘漆流动状态(这样的状态可通过上述缝隙口表面成像系统来获得)来分析计算出气流供应装置260所需要向外筒体410内供应的气流的压力和温度,并控制向电枢端部扼流装置420和电枢主体扼流装置440供应气流。
除了与参照本公开之前的实施例所描述的固化方法执行的相似操作(例如,利用第一气流231和第二气流232分别对电枢端部21和电枢主体23形成气压密封,在此不再赘述)以外,本实施例中的固化的方法还可包括利用设置在内筒体442上的红外辐射加热器来加热电机电枢100的内侧部,具体可通过控制系统280监测的外筒体410内的固化状态,来实时地调节红外辐射加热器的加热功率,实现针对不同阶段或不同位置而有针对性地调节加热 速率的效果。
另外,还可以通过控制系统280来分别控制上部电磁涡流发生器441和下部电磁涡流发生器422,以激发电机电枢100的上下两端附近的绕组振动,使得绝缘漆在轴向缝隙口的上下两端处的根部沉降得丰满,提高这些位置处的充满度和填充率,强化轴向缝隙口根部处的绝缘化处理。
本公开所提供的工艺装备和方法可在电机电枢一次浸漆和二次浸漆之后执行烘干和固化。另外,除了电机电枢之外,本公开的构思还可适用于其他需要进行绝缘处理的任何装置。
根据本公开,通过环形高压气流柱向电枢端部的多种组织部件与空气交接区域施加气流冲击,在槽楔和铁心的轴向缝隙口处构筑密封防护体系,克服绝缘漆受重力和传统旋转烘焙方法的离心力作用,防止绝缘漆下滴甚至从缝隙口中外流。借助变截面通道获得高速气流对电机电枢上的径向缝隙口实施气流或压力密封,使得电机电枢传统的铁磁边界(叠片铁心)结构具有阻止一次浸漆之后的绝缘漆径向流失、轴向流失的双重功能。在真空压力浸渍工艺之后降低滴漆过程,避免传统旋转烘焙固化过程中绝缘漆沿铁磁边界的径向流失和轴向流失,得以提高浸漆后绝缘漆填充浸渍的饱满率,并率先封锁住绝缘漆自然流失的缝隙口,增加了边界阻止潮气和其他介质侵入的能力。使空气中的氧、潮气和水等不易侵入槽绝缘内部,可延缓绝缘体系老化过程。降低电机受潮气和水侵入存留其中的风险,提高绝缘可靠性,并延长电机的使用寿命。
另外,本公开所提供的绝缘处理工艺(如VPI工艺)在电枢端部阻止绝缘漆流失(从内部流出)的操作期间,将电机电枢竖直放置在外筒体内,正压高温气流和柱状聚压腔体密封气流(流体)封堵电机电枢轴向端部,并通过向心射流与重力场力学平衡气压密封来阻止槽楔与铁心径向缝隙口处液体流失。
本公开籍于电机转子或定子表面(凸面或凹面)柱状内腔中面向电机电枢的多种组织部件(铁心)构成选择性辐射热源兼具电磁涡流发生器联合协同高速气体在液体与固体多种组织接触面执行强制放热(对流放热、辐射放热)、激发热能(电磁波),从而能够改善绝缘漆对接触表面的浸润。
本公开的实施例针对的对象可以是电机定子、转子或者是其他需要绝缘化处理的零部件,针对特定结构实施扼流力学场协同、固化场协同。
上面对本公开的具体实施方式进行了详细描述,虽然已表示和描述了一些实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改和完善,这些修改和完善也应在本公开的保护范围内。

Claims (17)

  1. 一种用于电机电枢的液体填充料浸渍后密封固化的工艺装备,其特征在于,包括:
    气流供应装置(260),产生被加热且升压后的气流;
    电枢端部扼流装置(320),设置在浸渍有液体填充料的电机电枢(100)下方,并包括能够上下往复运动的环形活塞(321),在所述环形活塞(321)上开设有多个进气通道(322),从所述气流供应装置(260)接收的第一气流(231)通过所述进气通道(322)向上喷吹所述电机电枢(100)的处于下方的电枢端部(21)。
  2. 根据权利要求1所述的工艺装备,其特征在于,所述电枢端部扼流装置(320)还包括均呈圆筒状的外缸体(326)和内缸体(332),所述环形活塞(321)在所述外缸体(326)和所述内缸体(332)之间能够往复运动,所述电机电枢(100)被支撑在所述内缸体(332)上。
  3. 根据权利要求2所述的工艺装备,其特征在于,通过所述第一气流(231)在所述环形活塞(321)的上端面(324)与所述电枢端部(21)之间的空间内形成蓄压空间(228),在所述蓄压空间(228)内的压强高于预定值时,所述环形活塞(321)向下运动。
  4. 根据权利要求1所述的工艺装备,其特征在于,所述进气通道(322)沿所述环形活塞(321)的周向分布,并且与所述电枢端部(21)轴向对齐。
  5. 根据权利要求3所述的工艺装备,其特征在于,在所述环形活塞(321)上还开设有多个第一回流通道(323),所述蓄压空间(228)中的一部分第一气流(231)经所述第一回流通道(323)向下流动并流出所述第一回流通道(323);
    所述进气通道(322)的数量和气体流量分别大于所述第一回流通道(323)的数量和气体流量。
  6. 根据权利要求1所述的工艺装备,其特征在于,所述工艺装备还包括设置所述电枢端部(21)下方的电磁涡流加热器(331),以加热所述电枢端部(21),并且所述电磁涡流加热器(331)还能够使所述电枢端部(21)处的线圈振动,以使液体填充料沉降到所述轴向缝隙口根部。
  7. 根据权利要求1所述的工艺装备,其特征在于,所述工艺装备还包括 液压缸,用以驱动所述环形活塞(321)能够上下往复运动以及保持所述环形活塞(321)的位置。
  8. 根据权利要求1至7中任一项所述的工艺装备,其特征在于,所述工艺装备还包括:
    电枢主体扼流装置(340),设置在所述电机电枢(100)的电枢主体(23)周围,所述电枢主体扼流装置(340)从所述气流供应装置(260)接收第二气流(232),并使第二气流(232)斜向上地喷吹所述电枢主体(23)的外侧部。
  9. 根据权利要求8所述的工艺装备,其特征在于,所述电枢主体扼流装置(340)包括:
    环形配气室(242),从所述气流供应装置(260)接收的第二气流(232)在所述环形配气室(242)内变成在轴向上均匀分布且沿径向向内流动的气流;
    环形的气流加速器(243),设置在所述环形配气室(242)的径向内侧,并将从所述环形配气室(242)流出的气流转变成斜向上的高速射流而喷吹所述电枢主体(23)的外侧部,以利用气流冲击力封堵所述电枢主体(23)上的液体填充料;
    第二回流通道(247),设置在所述电机电枢(100)的内腔中,喷吹所述电枢主体(23)之后的气流从所述电机电枢(100)上方汇流到所述第二回流通道(247),并沿着所述第二回流通道(247)向下流动而流出所述第二回流通道(247)。
  10. 根据权利要求9所述的工艺装备,其特征在于,在所述环形活塞(321)的中央形成有与所述第二回流通道(247)连通的第三回流通道(248),第二气流(232)经由所述第二回流通道(247)和所述第三回流通道(248)而流出。
  11. 根据权利要求9所述的工艺装备,其特征在于,所述气流加速器(243)包括呈圆形分布的多个加速柱(291),所述加速柱(291)均在轴向上从下到上地沿径向向外倾斜,并在相邻两个加速柱(291)之间形成具有喉部(295)的加速射流通道(292)。
  12. 根据权利要求9所述的工艺装备,其特征在于,所述工艺装备还包括:
    外部协同热源(244),位于所述电枢主体(23)外侧并安装在所述气流 加速器(243)的出口端(293),以加热所述电枢主体(23)的外侧部,以使处于所述电枢主体(23)的径向缝隙口处的液体填充料以及与所述电枢主体(23)径向外表面直接接触的液体填充料先于其他位置的液体填充料固化;
    内部协同热源(245),安装在所述电枢主体(23)内侧,以加热所述电枢主体(23)的内侧部。
  13. 根据权利要求9所述的工艺装备,其特征在于,在所述第二回流通道(247)的底部安装有流动方向调转升压装置(341),以使经由所述第二回流通道(247)向下流动的第二气流(232)的一部分调头而斜向上地冲击到所述电枢主体(23)的内侧部从而阻止液体填充料在所述电枢主体(23)的内表面上流挂,然后被随后流过来的第二气流(232)裹挟着通过所述流动方向调转升压装置(341)与第二回流通道(247)之间的环形缝隙而向下流动。
  14. 根据权利要求13所述的工艺装备,其特征在于,所述流动方向调转升压装置(341)包括离心式叶轮(342)和固定在所述离心式叶轮(342)的外周的环形迂回部(343),所述环形迂回部(343)的横截面呈斜向上弯曲的弧形,所述第二气流(232)通过所述离心式叶轮(342)而沿径向向外地流动到所述环形迂回部(343),然后通过所述环形迂回部(343)而斜向上地流动。
  15. 一种利用权利要求1中的工艺装备使电机电枢的液体填充料浸渍后密封固化的方法,其特征在于,所述方法包括:
    使第一气流(231)通过环形活塞(321)中的进气通道(322)向上冲击所述电枢端部(21),从而在所述环形活塞(321)与所述电枢端部(21)之间形成蓄压空间(228),对所述电枢端部(21)形成气流密封,其中,所述环形活塞(321)的位置根据所述蓄压空间(228)内的压力大小而调整。
  16. 根据权利要求15所述的方法,其特征在于,所述工艺装备还包括设置所述电枢端部(21)下方的电磁涡流加热器(331)以及设置在所述电枢主体(23)周围的电枢主体扼流装置(340),所述电枢主体扼流装置(340)从所述气流供应装置(260)接收第二气流(232),所述方法还包括:
    通过所述电磁涡流加热器(331)使所述电枢端部(21)上的线圈振动,从而使所述线圈上的液体填充料向下沉降,并沉降到所述电枢端部(21)上的轴向缝隙口根部;
    通过所述电枢主体扼流装置(340)使第二气流(232)斜向上地冲击到 电枢主体(23)的外侧部。
  17. 根据权利要求16所述的方法,其特征在于,所述电枢主体扼流装置(340)包括设置在所述电机电枢(100)的内腔中的第二回流通道(247)以及设置在所述第二回流通道(247)的底部的流动方向调转升压装置(341),所述方法还包括:通过所述流动方向调转升压装置(341)使经由第二回流通道(247)向下流动的第二气流(232)的一部分调头而斜向上地冲击到所述电枢主体(23)的内表面,从而阻止液体填充料在所述电枢主体(23)的内表面上流挂,然后所述一部分气流被流过来的第二气流(232)裹挟着通过所述流动方向调转升压装置(341)与第二回流通道(247)之间的环形缝隙而向下流动。
PCT/CN2018/089560 2017-12-29 2018-06-01 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法 WO2019128108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711482779.5 2017-12-29
CN201711482779.5A CN109995205B (zh) 2017-12-29 2017-12-29 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法

Publications (1)

Publication Number Publication Date
WO2019128108A1 true WO2019128108A1 (zh) 2019-07-04

Family

ID=67062977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089560 WO2019128108A1 (zh) 2017-12-29 2018-06-01 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法

Country Status (2)

Country Link
CN (1) CN109995205B (zh)
WO (1) WO2019128108A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929397A1 (en) 2020-06-24 2021-12-29 Proline S.r.l. Spring assembly with load retaining means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333787A (ja) * 2002-05-16 2003-11-21 Royal Electric Co Ltd 軸流ファン
CN104810997A (zh) * 2015-04-15 2015-07-29 新疆金风科技股份有限公司 永磁直驱风力发电机系统及其密封协同干燥控制方法
CN106469964A (zh) * 2016-10-31 2017-03-01 北京金风科创风电设备有限公司 永磁电机磁极防护覆层成型工艺及工艺设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU458927A1 (ru) * 1972-02-04 1975-01-30 Предприятие П/Я А-7676 Способ запечки обмоток электрических машин
JPS5553159A (en) * 1978-10-06 1980-04-18 Toshiba Corp Method of insulating stator of rotary electric machine
JP2005318692A (ja) * 2004-04-27 2005-11-10 Toyota Motor Corp ワニス処理装置およびワニス処理方法
JP2007166712A (ja) * 2005-12-09 2007-06-28 Toyota Motor Corp ワニス処理方法およびワニス処理装置
JP4900279B2 (ja) * 2008-02-22 2012-03-21 トヨタ自動車株式会社 ワニス処理方法
CN101908801A (zh) * 2010-09-01 2010-12-08 无锡市喷特环保工程有限公司 电机定子绕组浸漆系统吹风系统
CN104810942B (zh) * 2015-04-15 2017-03-01 新疆金风科技股份有限公司 永磁直驱风力发电机、系统及其定子
CN105515306A (zh) * 2015-11-09 2016-04-20 宁波海得工业控制系统有限公司 电机的封装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333787A (ja) * 2002-05-16 2003-11-21 Royal Electric Co Ltd 軸流ファン
CN104810997A (zh) * 2015-04-15 2015-07-29 新疆金风科技股份有限公司 永磁直驱风力发电机系统及其密封协同干燥控制方法
CN106469964A (zh) * 2016-10-31 2017-03-01 北京金风科创风电设备有限公司 永磁电机磁极防护覆层成型工艺及工艺设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929397A1 (en) 2020-06-24 2021-12-29 Proline S.r.l. Spring assembly with load retaining means

Also Published As

Publication number Publication date
CN109995205B (zh) 2020-02-28
CN109995205A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US11254071B2 (en) Flexible molding process and system for magnetic pole protective layer
CN110635622B (zh) 风力发电机组、电磁装置及铁心的换热装置
WO2019128108A1 (zh) 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法
CN106283675B (zh) 在玻璃纤维织物表面涂覆硅橡胶树脂的制作方法
WO2019128107A1 (zh) 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法
WO2019128106A1 (zh) 电机电枢的液体填充料浸渍后密封固化的工艺装备和方法
JP2013510267A (ja) 複合境界層タービン
CN105262280B (zh) 一种内循环油冷却电机
CN108011481B (zh) 用于磁极防护覆层固化成型的工艺设备和方法
US20120306205A1 (en) Novel systems for increasing efficiency and power output of in-conduit hydroelectric power system and turbine
WO2019128043A1 (zh) 电枢的液体绝缘旋转烘焙固化装置和方法
CN108092474B (zh) 电枢液体绝缘旋转烘焙固化用的蓄压装置
AU2017346069B2 (en) Electricity transfer carrier and processing technology therefor, and enclosure structure
CN103089760A (zh) 介质阻挡放电等离子体涡流发生器
CN109995203A (zh) 用于电机电枢的液体填充料浸渍后密封固化的工艺装备
CN205248986U (zh) 一种新型内循环油冷却电机
WO2019148799A1 (zh) 利用填充液体填充电枢的工艺装备和方法
CN211598911U (zh) 空气透平以及发电装置
KR101615599B1 (ko) 토네이도를 이용한 복합 발전장치
CN209226018U (zh) 旋转密封输料装置
CN219607501U (zh) 粉末涂料用冷却装置
CN111022245A (zh) 空气透平以及发电装置
CN109018379A (zh) 喷气式外转子电动直升机
CN101629545A (zh) 用于冷却风力涡轮机桨毂的设备和方法
CN219902976U (zh) 一种碳纤维增强聚氨酯基复合材料热固化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18893999

Country of ref document: EP

Kind code of ref document: A1