WO2019128031A1 - 偏航轴承组件及风力发电机组 - Google Patents

偏航轴承组件及风力发电机组 Download PDF

Info

Publication number
WO2019128031A1
WO2019128031A1 PCT/CN2018/086020 CN2018086020W WO2019128031A1 WO 2019128031 A1 WO2019128031 A1 WO 2019128031A1 CN 2018086020 W CN2018086020 W CN 2018086020W WO 2019128031 A1 WO2019128031 A1 WO 2019128031A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
seat body
yaw
bearing assembly
end portion
Prior art date
Application number
PCT/CN2018/086020
Other languages
English (en)
French (fr)
Inventor
邓志党
翟永
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2019128031A1 publication Critical patent/WO2019128031A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/604Control system actuates through hydraulic actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/605Control system actuates through pneumatic actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of wind power technology, in particular to a yaw bearing assembly and a wind power generator set.
  • Wind power is a clean and renewable energy source, which is receiving more and more attention from all over the world. Since the wind direction of the wind farm is constantly changing, in order to utilize the wind energy efficiently, the impeller of the wind turbine needs to be yawed to align with the wind direction during operation. Therefore, a yaw system is provided in the wind turbine, which is an important part of the wind turbine to achieve the wind direction, and can also carry all the gravity loads and wind loads of the wind turbine head. Specifically, the yaw system can cooperate with the control system of the wind turbine to yaw the impeller of the wind turbine so as to always be in a windward state. In this way, wind energy can be fully utilized to improve the power generation efficiency of the wind turbine.
  • the yaw bearing of the yaw system needs to bear all the gravitational loads and wind loads of the wind turbine's nose (including the nacelle and the impeller, etc.) and make the nose of the wind turbine. Rotate around the center of the tower. All current wind turbines use a single-bearing yaw system. As the wind turbine develops toward high power, the load on the yaw bearing continues to increase, which requires the diameter of the yaw bearing to continue to increase. Accordingly, the width of the nacelle also increases. The cabin width of a terrestrial wind turbine is subject to land transport conditions and the transport width limit cannot exceed 4.5 m. As the power of the unit increases, the existing single-bearing yaw revolution scheme will not be able to meet the needs of the yaw system of the wind turbine.
  • the invention provides a yaw bearing assembly and a wind power generator set.
  • the yaw bearing assembly can be used for a yaw system of a wind power generator set, and can reduce the wind power generator set on the basis of satisfying the yaw requirement of the wind power generator set. Cabin width, reduced cost and easy to transport.
  • a yaw bearing assembly is for a wind power generator set, the yaw bearing assembly includes: a base, including a first seat body and a second seat body that are sleeved and coaxially disposed with each other; Connected to the first seat body and the second seat body, the swing joint member includes a first bearing and a second bearing spaced apart in the axial direction of the first seat body and the second seat body, the first seat body and the second seat body The first bearing and the second bearing are rotatably connected.
  • a yaw bearing assembly when applied to a wind turbine, one of the first seat and the second seat can be coupled to the tower and the other can be coupled to the nacelle; Under the action, the first seat body and the second seat body rotate relative to each other, so that the nacelle rotates relative to the tower. Since the yaw bearing assembly according to the embodiment of the present invention includes the first bearing and the second bearing, the radial width is smaller than that of the single bearing structure, so that the wind power can be reduced while satisfying the yaw requirement of the wind turbine.
  • the cabin width of the generator set which in turn reduces the cost of the wind turbine and is easy to transport.
  • a wind power generator set includes: a tower; a nacelle, which is stacked on the tower in the axial direction of the tower, the nacelle includes a nacelle cover; a generator connected to the nacelle; an impeller connected to the generator; The yaw bearing assembly, one of the first seat and the second seat is connected to the tower, and the other is connected to the nacelle; the yaw drive component is coupled to the yaw bearing assembly to drive the first seat and the first The two seats rotate relative to each other.
  • the yaw bearing assembly includes the first bearing and the second bearing, the radial width is smaller with respect to the single bearing structure, so that the wind power generation group according to the embodiment of the present invention is satisfied.
  • the cabin width can be reduced, thereby reducing the cost of the wind turbine and facilitating transportation.
  • FIG. 1 is a perspective view of a yaw bearing assembly in accordance with an embodiment of the present invention
  • Figure 2 is a cross-sectional structural view of the yaw bearing assembly shown in Figure 1;
  • Figure 3 is a perspective view of the first seat shown in Figure 1;
  • Figure 4 is a perspective view of the second seat shown in Figure 1;
  • Figure 5 is a perspective view of a yaw bearing assembly in accordance with another embodiment of the present invention.
  • Figure 6 is a cross-sectional structural view of the yaw bearing assembly shown in Figure 5;
  • FIG. 7 is a cross-sectional structural view of a wind power generator set according to an embodiment of the present invention.
  • Figure 8 is a partial structural schematic view of the wind power generator set shown in Figure 7;
  • FIG. 9 is a cross-sectional structural view of a wind power generator set according to another embodiment of the present invention.
  • Fig. 10 is a partial structural schematic view of the wind power generator set shown in Fig. 9.
  • orientation words appearing in the following description are all directions shown in the drawings, and are not intended to limit the specific structure of the yaw bearing assembly and the wind turbine of the present invention.
  • installation and “connection” are to be understood broadly, and may be, for example, a fixed connection or a detachable connection, or Connected in one piece; they can be connected directly or indirectly.
  • connection the specific meaning of the above terms in the present invention can be understood as the case may be.
  • FIGS. 1 through 10 For a better understanding of the present invention, a yaw bearing assembly and a wind power generator set according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 through 10.
  • Figure 1 shows an isometric view of a yaw bearing assembly 1 in accordance with an embodiment of the present invention.
  • 2 is a cross-sectional structural view showing the yaw bearing assembly 1 shown in FIG. 1.
  • a yaw bearing assembly 1 is used in a wind turbine.
  • the yaw bearing assembly 1 includes a base 10 and a swivel joint;
  • the base 10 includes a first seat body 11 and a second seat body 12 that are sleeved and coaxially disposed with each other;
  • the rotary joint includes a first bearing 21 and a second bearing 22 spaced apart in the axial direction of the first base 11 and the second base 12;
  • the body 11 and the second seat body 12 are rotatably connected by a first bearing 21 and a second bearing 22.
  • the yaw bearing assembly 1 can be used for a yaw system of a wind power generator, and can reduce the width of the nacelle 3 of the wind power generator and reduce wind power generation on the basis of satisfying the yaw requirement of the wind power generator set.
  • the cost of the unit is easy to transport.
  • the first seat body 11 and the second seat body 12 are both hollow columnar structures, which facilitate installation with the swivel joints, and are convenient for processing and transportation, and can save materials and reduce costs.
  • the first base body 11 and the second base body 12 are both hollow circular columnar structures, and the first base body 11 is located inside the second base body 12, that is, the second base body 12 is sleeved in the first On the seat body 11.
  • FIG. 3 shows an isometric view of the first seat body 11 shown in FIG. 1.
  • the first seat body 11 includes a first body portion 111 that extends in its own axial direction.
  • the first base body 11 further includes a first end portion 112 and a second end portion 113 which are respectively connected to the axially upper ends of the first body portion 111.
  • the first end portion 112 and the second end portion 113 are annular protrusion structures extending in the radial direction of the first base body 11.
  • the first end portion 112 and the second end portion 113 together with the first body portion 111 form a first seat.
  • the first end portion 112 and the second end portion 113 may be integrally formed with the first body portion 111, or may be connected to the first body portion 111 by welding or by a fastener or the like.
  • a weight reducing hole 114 is provided in the first seat body 11.
  • the weight reducing hole 114 is preferably disposed on the first body portion 111 of the first seat body 11.
  • the number of the lightening holes 114 may be set according to specific requirements, and may be one or two or more. When there are two or more lightening holes 114, the two or more lightening holes 114 are uniformly disposed in the circumferential direction of the first body portion 111.
  • FIG. 4 shows an isometric view of the second base 12 shown in FIG. 1.
  • the second seat body 12 includes a second body portion 121 that extends in its own axial direction.
  • the second base body 12 further includes a third end portion 122 and a fourth end portion 123 that are respectively coupled to the axially upper ends of the second body portion 121.
  • the third end portion 122 and the fourth end portion 123 are annular convex structures extending in the radial direction of the second base body 12.
  • the third end portion 122 and the fourth end portion 123 together with the second body portion 121 form a second seat body 12.
  • the third end portion 122 and the fourth end portion 123 may be integrally formed with the second main body portion 121, or may be connected to the second main body portion 121 by welding or by a fastener or the like.
  • first body 11 and the second body 12 are sleeved with each other, the first end portion 112 is corresponding to and spaced apart from the third end portion 122, and the second end portion 113 is corresponding to the fourth end portion 123 and spaced apart .
  • first bearing 21 and the second bearing 22 may be of the same type or different types of bearings.
  • the first bearing 21 and the second bearing 22 may be any one of a radial ball bearing, a cylindrical roller bearing, a tapered roller bearing, a sliding bearing, and the like.
  • the first bearing 21 is sleeved on the outer circumference of the first seat body 11 and connected to the first end portion 112 of the first seat body 11 and the third end portion 122 of the second seat body 12, and the second bearing 22 is sleeved at the first end
  • the outer circumference of the seat body 11 is connected to the second end portion 113 of the first seat body 11 and the fourth end portion 123 of the second seat body 12.
  • the first bearing 21, the second bearing 22 and the first seat body 11 and the second seat body 12 can be used to make the yaw bearing assembly 1 more uniformly applied when applied to the wind power generator set.
  • the outer rings of the first bearing 21 and the second bearing 22 are respectively connected with the first seat body 11, the first bearing 21 and the second bearing 22
  • the inner rings are respectively connected to the second base 12.
  • the first bearing 21 is sandwiched between the first end portion 112 and the third end portion 122
  • the second bearing 22 is sandwiched between the second end portion 113 and the fourth end portion 123.
  • the outer ring of the first bearing 21 and the outer ring of the second bearing 22 are respectively connected to the first end portion 112 and the second end portion 113 of the first seat body 11, the inner ring of the first bearing 21 and the second bearing The inner rings of 22 are respectively connected to the third end portion 122 and the fourth end portion 123 of the second base body 12.
  • the above connection can be achieved by soldering.
  • the first bearing 21, the second bearing 22 and the corresponding end portions are preferably connected by a connecting member such as a bolt.
  • the first body 11 and the second base body 12 adopt the above structure, and can not only meet the connection requirements with the inner ring and the outer ring of the first bearing 21 and the second bearing 22, but also facilitate the first bearing 21 and the second bearing 22.
  • the repair and replacement improves the service life of the yaw bearing assembly 1.
  • the first base body 11 and the second base body 12 are rotatably connected, and when applied to the wind power generator set, it needs to be driven by the yaw drive component such that they rotate relative to each other to satisfy the wind power generator set. Pitching demand.
  • the outer ring of the first bearing 21 and the outer ring of the second bearing 22 are provided with meshing teeth, and the first bearing 21 and the second bearing 22 can be driven with the yaw The components are meshed and transmitted such that the first base body 11 and the second base body 12 are relatively rotated. As shown in FIGS.
  • a mounting portion 30 is provided on the second base 12 for mounting the yaw drive member of the wind turbine.
  • the mounting portion 30 can have a different structure as long as it can satisfy the mounting of the yaw driving member.
  • the second seat body 12 is provided with a mounting portion 30 corresponding to the first bearing 21 and corresponding to the second bearing 22, and each mounting portion 30 includes a diameter along the second seat body 12.
  • the flange structure which extends and has a certain thickness in the axial direction of the second seat body 12, the flange structure preferably has a fan-shaped annular shape.
  • the flange structure of each mounting portion 30 includes two layers, a first flange 31 and a second flange 32, respectively, and the first flange 31 and the second flange 32 are parallel and spaced apart from each other.
  • Each of the mounting portions 30 is provided with a connecting hole 33 penetrating the first flange 31 and the second flange 32 in the thickness direction thereof, and the two flange structures of the mounting portion 30 may be connected by the stiffening ribs 34.
  • the number of the connection holes 33 in each of the mounting portions 30 is not particularly limited and may be set according to the number of yaw drive members.
  • the number of the attachment holes 30 corresponding to the first bearing 21 and the attachment hole 30 corresponding to the second bearing 22 may be the same or different.
  • a connection 40 is provided on the second base 12 for connecting the generator or impeller of the wind turbine.
  • the connecting portion 40 may have a different structure as long as it can satisfy the connection to the generator or the impeller.
  • the connecting portion 40 is preferably located between the first bearing 21 and the second bearing 22 such that the gravity load of the nacelle and the impeller and the bending moment generated by the wind load at the yaw center when the yaw bearing assembly 1 is coupled to the generator or the impeller
  • the radial load is converted into the first bearing 21 and the second bearing 22 such that the first bearing 21 is only subjected to radial loads without being subjected to bending moments.
  • the radial dimensions of the first bearing 21 and the second bearing 22 can be further reduced, making land transportation of the oversized megawatt unit nacelle possible.
  • the connecting portion 40 is preferably of a flange structure to facilitate processing and to ensure connection strength to the generator or the impeller.
  • the axis of the connecting portion 40 that is, the axis of the flange intersects the axes of the first seat body 11 and the second seat body 12 to facilitate connection with the generator or the impeller, and at the same time enables the forces of the first bearing 21 and the second bearing 22 More balanced.
  • the flange is preferably located on the second body portion 121 of the second base 12 and is integrally formed with the second body portion 121 to ensure the overall strength of the yaw bearing assembly 1 and thereby ensure that the generator or the impeller is connected.
  • the base 10 has a tapered structure as a whole.
  • the first seat body 11 and the second seat body 12 are both tapered and have a matching shape, and the radial dimension of the first bearing 21 is larger than the radial dimension of the second bearing 22 .
  • the radial dimension of the first bearing 21 and the second bearing 22 can be minimized and the overall cost of the yaw bearing assembly 1 can be reduced, in addition to satisfying the yaw requirements of the wind turbine.
  • the base 10 adopts a tapered structure to further improve the stability of the yaw bearing assembly 1 as a whole, so that it can ensure the stability of the yaw action of the wind power generator when used in a wind power generator set.
  • the rotary joint further includes a third bearing (not shown), and the third bearing is coupled to the first base 11 and the second base 12 and located between the first bearing 21 and the second bearing 22
  • the yaw slewing bearing is not limited to only including the first bearing 21 and the second bearing 22, and the corresponding third bearing can reduce the bearing capacity of each bearing of the rotary joint.
  • the number of the third bearing can be based on the bearing.
  • the setting is required to be one or two or more.
  • FIG. 5 shows an isometric view of a yaw bearing assembly 1 in accordance with another embodiment of the present invention.
  • Fig. 6 is a cross-sectional structural view showing the yaw bearing assembly 1 shown in Fig. 5.
  • the embodiment shown in Figures 5 and 6 is substantially identical to the embodiment of the embodiment shown in Figure 1, except that the second end 113 of the first body 11 is along the axis of the first block 11.
  • the yaw bearing assembly 1 when applied to a wind turbine, preferably employs a yaw drive member in the form of a telescopic cylinder.
  • the mounting portion 30 in the embodiment shown in Figs. 5 and 6 is different from the embodiment of the embodiment shown in Fig. 1.
  • the mounting portion 30 includes a bump structure 31a connected to the second base body 12 and a disk-like structure 32a connected to the first base body 11.
  • the bump structure 31a and the second base body 12 may be detachably connected by a fastener such as a bolt, or may be fixedly connected to the second base body 12 by welding or the like.
  • the disc-shaped structure 32a and the first base body 11 may be detachably connected by a fastener such as a bolt, or may be fixedly connected to the first base body 11 by welding or the like.
  • first end portion 112 and the second end portion 113 of the first base body 11 may also be annular convex structures extending along the axial direction of the first base body 11 while the second base body 12 is
  • the third end portion 122 and the fourth end portion 123 may each have an annular structure extending along the axial direction of the second base body 12.
  • the inner rings of the first bearing 21 and the second bearing 22 are respectively connected to the first end portion 112 and the second end portion 113 of the first seat body 11; correspondingly, the outer ring of the first bearing 21 and the second bearing
  • the outer rings of 22 are connected to the third end portion 122 and the fourth end portion 123 of the second base body 12, respectively.
  • the mounting portions 30 of the yaw bearing assembly 1 of the above embodiments are all located on the second base body 12 or on the first base body 11 and the second base body 12.
  • the A yaw drive member such as a drive motor, in which the body 11 and the second block 12 are relatively rotated may be located in the first base 11. Therefore, in some embodiments, the mounting portion 30 can be disposed only on the second base body 12.
  • the generator and the impeller can be directly connected to the nacelle. It is not connected to the connecting portion 40 to ensure the yaw demand of the wind turbine.
  • the yaw bearing assembly 1 When the yaw bearing assembly 1 according to an embodiment of the present invention is applied to a wind turbine, one of the first seat body 11 and the second seat body 12 can be coupled to the tower and the other can be coupled to the nacelle. Under the driving action of the yaw driving component, the first seat body 11 and the second seat body 12 are relatively rotated, so that the nacelle rotates relative to the tower. Since the yaw bearing assembly 1 includes the first bearing 21 and the second bearing 22, and may also include a third bearing, the yaw bearing assembly 1 has a smaller radial width than the single bearing structure, and satisfies the yaw of the wind turbine. Under the premise of the requirement, the cabin width of the wind turbine can be reduced, thereby reducing the cost of the wind turbine and facilitating transportation.
  • Fig. 7 is a cross-sectional structural view showing a wind power generator set according to an embodiment of the present invention
  • Fig. 8 is a partial structural view showing the wind power generator set shown in Fig. 7.
  • a wind power generator includes a tower 2, a nacelle 3, a generator 302, an impeller 4, a yaw bearing assembly 1 of the above embodiments, and a yaw drive member 5, wherein: the nacelle 3 is in the tower 2 The axial direction is stacked with the tower 2; the nacelle 3 includes a nacelle cover 301; the generator 302 is coupled to the nacelle 3; and the impeller 4 is coupled to the generator 302.
  • One of the first seat body 11 and the second seat body 12 of the yaw bearing assembly 1 is connected to the tower 2, and the other is connected to the nacelle 3.
  • the yaw drive member 5 is coupled to the yaw bearing assembly 1 to drive the first base 11 and the second base 12 to rotate relative to each other.
  • the yaw bearing assembly 1 preferably employs the yaw bearing assembly 1 shown in FIG. 1, the first seat body 11 of the yaw bearing assembly 1 is coupled to the tower 2, and the second seat body 12 is The cabin 3 is connected.
  • the first body 11 and the tower 2 may be welded or connected by fasteners such as bolts, and the transition piece 6 may be connected between the nacelle cover 301 of the nacelle 3 and the second seat 12.
  • the transition piece 6 may be directly connected to the second base 12 or may be indirectly connected by the mounting portion 5.
  • the transition piece 6 may be a plate-like structure or may be of other forms.
  • the nacelle cover 301 is coupled to the second base body 12 by using the transition piece 6.
  • the yaw drive unit 5 employs a drive motor.
  • the output end of the drive motor can be connected to the speed reducer, and the speed reducer and the drive motor can be of a unitary structure.
  • the yaw bearing assembly 1 includes the mounting portion 30, the yaw drive member 5 is preferably mounted on the mounting portion 30.
  • the first bearing 21 and the second bearing 22 are each provided with a yaw driving member 5, and the output end of the yaw driving member 5 is a transmission wheel.
  • the output end of the yaw drive component 5 is in driving engagement with the corresponding first bearing 21 and second bearing 22 via a drive belt, a drive chain, or a drive wheel.
  • the yaw drive member 5 is preferably connected to the first bearing 21 or the second bearing 22 by means of a transmission wheel, such as a gear meshing transmission.
  • the wind power generator set according to the embodiment of the present invention includes the yaw bearing assembly 1 of each of the above embodiments, so that when the nacelle 3 and the impeller 4 need to be yawed, the yaw driving member 5 drives the second seat body 12 relative to the first seat body 11 is rotated, the second seat body 12 is coupled to the nacelle cover of the nacelle 3, and the second block body 12 is rotated with the engine compartment 3 and the impeller 4 to achieve yaw. Since the yaw bearing assembly 1 adopts a double bearing structure or even a multi-bearing structure, the wind power generator according to the embodiment of the present invention can not only better satisfy the yaw with respect to the conventional wind turbine generator that uses the single bearing structure for pitching.
  • the dual-bearing or multi-bearing assembly is less expensive than a single-bearing assembly with a larger radial dimension, while reducing the width of the nacelle 3 and thereby reducing the need for a larger radial size yaw bearing
  • the cost of the wind turbine is easy to transport.
  • the yaw bearing assembly 1 according to the embodiment of the present invention has a modular structure, can be pre-assembled and then installed to the wind power generator set, and is connected with the nacelle 3, the tower 2 and the like, and does not increase relative to the conventional wind turbine generator set. Assembly process for easy installation.
  • the yaw bearing assembly 1 according to an embodiment of the present invention when used in a wind turbine, does not require changes to the structure of other components of the wind turbine, such as the tower 2, and the tower 2 can be employed along it.
  • the cylindrical structure of the same axial section can satisfy the requirements, and therefore does not affect the structural strength of other members such as the tower 2 .
  • the yaw bearing assembly 1 when the yaw bearing assembly 1 is connected with the tower 2, it can be directly connected with the flange structure at the top of the tower 2, without additional structure such as a support plate or a support frame, and the use of the above requirements is reduced.
  • the material in turn reduces costs.
  • the yaw bearing assembly 1 is preferably disposed within the nacelle cover 301.
  • the operation is simple and the installation and maintenance of the yaw bearing assembly 1 are more convenient.
  • the yaw bearing assembly 1 includes the connecting portion 40, the generator 302 or the impeller 4 is coupled to the connecting portion 40.
  • the wind turbine may be a direct drive wind turbine, and the generator 302 may be located outside of the nacelle cover 301. Therefore, in the present embodiment, the generator 302 is connected to the connecting portion 40.
  • the impeller 4 is connected to the connecting portion 40.
  • the connecting portion 40 is preferably located between the first bearing 21 and the second bearing 22, which causes the gravity load and the wind load of the nacelle 3 and the impeller 4 to be biased.
  • the bending moment generated by the center of the center is converted into the radial load of the first bearing 21 and the second bearing 22, and the first bearing 21 is only subjected to the radial load without receiving the bending moment, in the same head form and the same weight,
  • the wind turbine according to the embodiment of the present invention can satisfy the requirements of land transportation even if it is an oversized megawatt unit.
  • the super-mega watt unit can be a unit larger than 5 MW, and the unit level cannot be land-based by a single-bearing scheme.
  • FIG. 9 is a cross-sectional structural view showing a wind power generator set according to another embodiment of the present invention.
  • Fig. 10 is a partial structural view showing the wind power generator shown in Fig. 9.
  • the embodiment of the embodiment shown in Figures 9 and 10 is substantially identical to the embodiment shown in Figure 7, except that the yaw bearing assembly 1 of the embodiment shown in Figures 9 and 10 is shown in Figure 5.
  • the yaw bearing assembly 1 while the yaw drive member 5 of the embodiment shown in FIGS.
  • each telescopic cylinder includes two or more telescopic cylinders, the two or more telescopic cylinders being spaced apart from each other, each telescopic cylinder including a cylinder 501 and The cylinder rod 502, one of the cylinder block 501 and the cylinder rod 502 is rotatably coupled to the first base body 11, and the other is rotatably coupled to the second base body 12 to drive the first base body 11 and the second seat body 12 relative rotation.
  • the number of the telescopic cylinders of the present embodiment is two, and the cylinders 501 of the two telescopic cylinders are hinged to the first base body 11 , and specifically can be hinged to the first base body 11 by the disc-shaped structure 32 a of the mounting portion 30 .
  • the cylinder rod 502 of the two telescopic cylinders is hinged to the second base body 12, and can be hinged by the bump structure 31a of the mounting portion 30.
  • the axes of the two telescopic cylinders are preferably parallel to each other.
  • the telescopic cylinder in this embodiment may be a pneumatic cylinder, a hydraulic cylinder, or an electric cylinder.
  • the number of the telescopic cylinders is not limited to two, and may be three or more, and may be specifically set according to the driving requirements of the yaw bearing assembly 1.
  • the telescopic cylinders can be evenly disposed around the axes of the first and second bases 11 and 12 to better meet the driving requirements.
  • the first seat body 11 of the yaw bearing assembly 1 of the wind power generator set of the above embodiments is connected to the tower 2, and the second seat body 12 is connected to the nacelle 3.
  • the second seat body 12 can also be connected to the tower 2, and the first seat body 11 can be connected to the nacelle 3.
  • the transition piece 6 can be used to connect the top of the nacelle 3 with the first The seat body 11 is connected and the position of the yaw drive member 5 is changed correspondingly as long as it can satisfy the yaw requirement of the wind power generation group.
  • the yaw bearing assembly 1 can be used for a yaw system of a wind power generator set, and can reduce the width of the nacelle 3 of the wind power generator set and reduce the cost while satisfying the yaw requirement of the wind power generator set. Easy to transport and easy to promote.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种偏航轴承组件(1)及风力发电机组。偏航轴承组件(1)包括:基座(10),包括相互套接且同轴设置的第一座体(11)及第二座体(12);回转连接件,连接于第一座体(11)及第二座体(12),回转连接件包括在第一座体(11)及第二座体(12)的轴向上间隔设置的第一轴承(21)及第二轴承(22),第一座体(11)与第二座体(12)通过第一轴承(21)及第二轴承(22)可转动连接。该偏航轴承组件(1)能够用于风力发电机组的偏航系统,在满足风力发电机组的偏航要求的基础上,能够减小风力发电机组的机舱宽度,降低成本且便于运输。

Description

偏航轴承组件及风力发电机组 技术领域
本发明涉及风电技术领域,特别是涉及一种偏航轴承组件及风力发电机组。
背景技术
风力发电是一种清洁的可再生能源,越来越受到世界各国的重视。由于风场的风向在不断变化,为了高效地利用风能,风力发电机组的叶轮在运转时需要不断偏航以对准风向。因此,在风力发电机组中设置有偏航系统,该偏航系统是风力发电机组实现扑捉风向的重要组成部分,同时还能够承载风力发电机组的机头的所有重力载荷和风载。具体地,偏航系统能够与风力发电机组的控制系统相互配合,使风力发电机组的叶轮偏航从而始终处于迎风状态。这样,能够充分利用风能,提高风力发电机组的发电效率。
在传统的风力发电机组的偏航运动中,其偏航系统的偏航轴承需要承受风力发电机组的机头(包括机舱及叶轮等)的所有重力载荷和风载,并使风力发电机组的机头绕塔筒的中心旋转。目前的所有风力发电机组使用的都是单轴承偏航系统,随着风力发电机组往大功率方向发展,偏航轴承所承受的载荷持续增加,这就要求偏航轴承的直径持续增加。相应地,机舱的宽度也随之增加。陆地风力发电机组的机舱宽度受制于陆地运输条件,运输宽度极限不能超过4.5m。随着机组功率的增加,现有的单轴承偏航回转方案将无法满足风力发电机组的偏航系统的使用需求。
因此,亟需一种新的偏航轴承组件及风力发电机组。
发明内容
本发明提供了一种偏航轴承组件及风力发电机组,该偏航轴承组件能 够用于风力发电机组的偏航系统,在满足风力发电机组的偏航要求的基础上,能够减小风力发电机组的机舱宽度,降低成本且便于运输。
根据本发明实施例的偏航轴承组件,用于风力发电机组,该偏航轴承组件包括:基座,包括相互套接且同轴设置的第一座体及第二座体;回转连接件,连接于第一座体及第二座体,回转连接件包括在第一座体及第二座体的轴向上间隔设置的第一轴承及第二轴承,第一座体与第二座体通过第一轴承及第二轴承可转动连接。
根据本发明实施例的偏航轴承组件在应用至风力发电机组时,第一座体及第二座体中的一者能够与塔筒连接,另一者能够与机舱连接;在偏航驱动部件的作用下,第一座体及第二座体相对转动,从而使得机舱相对塔筒转动。由于根据本发明实施例的偏航轴承组件包括第一轴承及第二轴承,相对单轴承结构,其径向宽度更小,因此在满足风力发电机组的偏航要求的前提下,能够减小风力发电机组的机舱宽度,进而降低风力发电机组的成本且便于运输。
根据本发明实施例的风力发电机组,包括:塔筒;机舱,在塔筒的轴向上与塔筒层叠设置,机舱包括机舱罩;发电机,连接于机舱;叶轮,连接于发电机;上述偏航轴承组件,第一座体及第二座体中的一者与塔筒连接,另一者与机舱连接;偏航驱动部件,与偏航轴承组件连接,以驱动第一座体及第二座体相对转动。
在本发明实施例的风力发电机组中,由于偏航轴承组件包括第一轴承及第二轴承,相对单轴承结构,其径向宽度更小,所以在满足根据本发明实施例的风力发电组的偏航要求的前提下,能够减机舱宽度,进而降低风力发电机组的成本且便于运输。
附图说明
下面将参考附图来描述本发明示例性实施例的特征、优点和技术效果。
图1是根据本发明实施例的偏航轴承组件的轴测图;
图2是图1所示的偏航轴承组件的剖视结构示意图;
图3是图1所示的第一座体的轴测图;
图4是图1所示的第二座体的轴测图;
图5是根据本发明另一实施例的偏航轴承组件的轴测图;
图6是图5所示的偏航轴承组件的剖视结构示意图;
图7是根据本发明实施例的风力发电机组的剖视结构示意图;
图8是图7所示的风力发电机组的局部结构示意图;
图9是根据本发明另一实施例的风力发电机组的剖视结构示意图;
图10是图9所示的风力发电机组的局部结构示意图。
1-偏航轴承组件;
10-基座;
11-第一座体;111-第一主体部;112-第一端部;113-第二端部;114-减重孔;
12-第二座体;121-第二主体部;122-第三端部;123-第四端部;
21-第一轴承;22-第二轴承;
30-安装部;
31-第一凸缘;32-第二凸缘;33-连接孔;34-加劲肋;
31a-凸块结构;32a-盘状结构;
40-连接部;
2-塔筒;
3-机舱;301-机舱罩;302-发电机;
4-叶轮;
5-偏航驱动部件;501-缸体;502-缸杆;
6-过渡件。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的 详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。在附图和下面的描述中,至少部分公知结构和技术没有被示出,以避免对本发明造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中描述的特征、结构、或特性可以任何合适的方式结合在一个或多个实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本发明的偏航轴承组件及风力发电机组的具体结构进行限定。在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
为了更好地理解本发明,下面结合图1至图10对根据本发明实施例的偏航轴承组件及风力发电机组进行详细描述。
图1示出了根据本发明实施例的偏航轴承组件1的轴测图。图2示出了图1所示的偏航轴承组件1的剖视结构示意图。
根据本发明实施例的偏航轴承组件1用于风力发电机组。如图1和图2所示,偏航轴承组件1包括基座10及回转连接件;基座10包括相互套接且同轴设置的第一座体11及第二座体12;回转连接件连接于第一座体11及第二座体12;回转连接件包括在第一座体11及第二座体12的轴向上间隔设置的第一轴承21及第二轴承22;第一座体11与第二座体12通过第一轴承21及第二轴承22可转动连接。
根据本发明实施例的偏航轴承组件1能够用于风力发电机组的偏航系统,在满足风力发电机组的偏航要求的基础上,能够减小风力发电机组的机舱3的宽度,降低风力发电机组的成本且便于运输。
优选地,第一座体11及第二座体12均为空心柱状结构,便于与回转连接件之间的安装,且便于加工及运输,同时能够节约用料,降低成本。在本实施例中,第一座体11及第二座体12均为空心圆形柱状结构,第一座体11位于第二座体12的内部,即第二座体12套设在第一座体11上。
图3示出了图1所示的第一座体11的轴测图。如图3所示,第一座体11包括在其自身的轴向上延伸的第一主体部111。为了便于第一轴承21及第二轴承22的安装,第一座体11还包括分别连接于第一主体部111轴向上两端的第一端部112及第二端部113。第一端部112及第二端部113为在第一座体11的径向上延伸的环形凸起结构,第一端部112及第二端部113与第一主体部111共同形成第一座体11。第一端部112及第二端部113可以与第一主体部111为一体成型结构,也可以采用焊接或通过紧固件等方式与第一主体部111连接。
为了进一步减轻偏航轴承组件1的整体重量,在第一座体11上设置有减重孔114。减重孔114优选设置于第一座体11的第一主体部111上。减重孔114的数量可以根据具体要求设定,可以为一个,也可以为两个以上。当存在两个以上减重孔114时,该两个以上减重孔114在第一主体部111的周向上均匀设置。
图4示出了图1所示的第二座体12的轴测图。如图4所示,第二座体12包括在其自身的轴向上延伸的第二主体部121。同样地,为了便于第一轴承21及第二轴承22的安装,第二座体12还包括分别连接于第二主体部121轴向上两端的第三端部122及第四端部123。第三端部122及第四端部123为在第二座体12的径向上延伸的环形凸起结构。第三端部122及第四端部123与第二主体部121共同形成第二座体12。第三端部122及第四端部123可以与第二主体部121为一体成型结构,也可以采用焊接或通过紧固件等方式与第二主体部121连接。当第一座体11及第二座体12相互套接时,第一端部112与第三端部122相对应且间隔设置,第二端部113与第四端部123相对应且间隔设置。
在本实施例中,第一轴承21及第二轴承22可以采用同样类型的轴承也可以采用不同类型的轴承。第一轴承21及第二轴承22可以为向心球轴承、圆柱滚子轴承、圆锥滚子轴承、滑动轴承等类型的轴承中的任一种。
第一轴承21套设在第一座体11的外周并连接于第一座体11的第一端部112及第二座体12的第三端部122,第二轴承22套设在第一座体11的外周并连接于第一座体11的第二端部113及第二座体12的第四端部 123。第一轴承21、第二轴承22与第一座体11、第二座体12采用上述配合方式可以使偏航轴承组件1在应用至风力发电机组时受力更加均匀。
同时,考虑偏航轴承组件1在应用至风力发电组时的驱动需要,第一轴承21及第二轴承22的外圈分别与第一座体11连接,第一轴承21及第二轴承22的内圈分别与第二座体12连接。在本实施例中,第一轴承21夹持于第一端部112与第三端部122之间,第二轴承22夹持于第二端部113与第四端部123之间。
具体地,第一轴承21的外圈与第二轴承22的外圈分别连接于第一座体11的第一端部112及第二端部113,第一轴承21的内圈及第二轴承22的内圈分别连接于第二座体12的第三端部122及第四端部123。这里,可以通过焊接的方式实现上述连接。当然,为了便于拆装及更换,第一轴承21、第二轴承22与相应的端部之间优选通过螺栓等连接件连接。
第一座体11及第二座体12采用上述结构,不仅能够满足与第一轴承21及第二轴承22的内圈与外圈的连接需要,同时能够便于第一轴承21、第二轴承22的维修及更换,提高了偏航轴承组件1的使用寿命。
作为一种可选的实施方式,第一座体11及第二座体12可转动连接,在应用至风力发电机组时需要由偏航驱动部件驱动使得它们二者相对转动来满足风力发电机组的变桨需求。作为一种可选的实施方式,在本实施例中,第一轴承21的外圈及第二轴承22的外圈设置有啮合轮齿,第一轴承21及第二轴承22能够与偏航驱动部件啮合传动,使得第一座体11及第二座体12相对转动。如图1和图4所示,为了便于偏航驱动部件的安装,在第二座体12上设置有安装部30,用于安装风力发电机组的偏航驱动部件。安装部30可以采用不同的结构,只要能够满足偏航驱动部件的安装均可。
在本实施例中,第二座体12上与第一轴承21对应处及与第二轴承22对应处均设置有安装部30,每个安装部30均包括沿着第二座体12的径向延伸且在第二座体12的轴向上具有一定厚度的凸缘结构,该凸缘结构优选呈扇形环状。每个安装部30的凸缘结构均包括两层,分别为第一凸缘31及第二凸缘32,第一凸缘31及第二凸缘32相互平行且间隔设置。各安 装部30上在其厚度方向均设置有贯穿第一凸缘31及第二凸缘32的连接孔33,安装部30的两个凸缘结构可以通过加劲肋34连接。各安装部30上的连接孔33的数量不做具体限定,可以根据偏航驱动部件的数量设定。与第一轴承21对应的安装部30及与第二轴承22对应的安装部30的连接孔33的数量可以相同也可以不同。
作为一种可选的实施方式,在第二座体12上设置有连接部40,用于连接风力发电机组的发电机或者叶轮。连接部40可以采用不同的结构,只要能够满足对发电机或者叶轮的连接均可。连接部40优选地位于第一轴承21与第二轴承22之间,以使得偏航轴承组件1在与发电机或者叶轮连接时,机舱及叶轮的重力载荷和风载在偏航中心产生的弯矩转化为第一轴承21和第二轴承22的径向载荷,使得第一轴承21只承受径向载荷而不承受弯矩。在同样的机头形式、相同重量的情况下,能够进一步减小第一轴承21及第二轴承22的径向尺寸,使得超大兆瓦机组机舱的陆地运输成为可能。
在本实施例中,连接部40优选采用法兰结构,以便于加工且能够保证对发电机或者叶轮的连接强度。连接部40的轴线即法兰的轴线与第一座体11及第二座体12的轴线相交,以便于与发电机或叶轮连接,同时能够使得第一轴承21及第二轴承22的受力更加均衡。法兰优选地位于第二座体12的第二主体部121上并与第二主体部121为一体式结构,以保证偏航轴承组件1的整体强度,进而保证在连接发电机或叶轮时偏航轴承组件1的稳定性能。
作为一种可选的实施方式,基座10整体呈锥状结构。具体地,第一座体11及第二座体12均为锥筒状结构且形状相匹配,第一轴承21的径向尺寸大于第二轴承22的径向尺寸。这样,在满足风力发电机组的偏航要求的基础上,能够最大程度地减小第一轴承21及第二轴承22的径向尺寸,降低偏航轴承组件1的整体成本。同时,基座10采用锥状结构能够进一步提高偏航轴承组件1整体的稳定性,使其在用于风力发电机组时能够保证风力发电机组的偏航动作的平稳性。
作为一种优选的实施方式,回转连接件进一步包括第三轴承(图未 示),第三轴承连接于第一座体11及第二座体12且位于第一轴承21与第二轴承22之间,即偏航回转轴承不限于只包括第一轴承21、第二轴承22两个轴承,相应设置的第三轴承能够降低回转连接件每个轴承的承载力,第三轴承的数量可以根据承载要求设定,可以为一个也可以为两个以上。
可以理解的是,第一端部112、第二端部113不限于为沿着第一座体11径向延伸的环形凸起结构。图5示出了根据本发明另一实施例的偏航轴承组件1的轴测图。图6示出了图5所示的偏航轴承组件1的剖视结构示意图。图5和图6所示的实施例与图1所示的实施例的实施方式基本相同,不同之处在于,第一座体11的第二端部113为沿着第一座体11的轴向延伸的环形凸起结构。此时,第二轴承22的内圈与第一座体11的第二端部113连接,且第二轴承22的外圈与第二座体12的第四端部123连接。根据本发明另一实施例的偏航轴承组件1在应用至风力发电机组时,所应用的偏航驱动部件优选采用伸缩缸的形式。
为了便于伸缩缸的安装,图5和图6所示的实施例中的安装部30与图1所示的实施例的实施方式不同。在图5和图6所示的实施例中,安装部30包括连接于第二座体12的凸块结构31a以及连接于第一座体11上的盘状结构32a。凸块结构31a与第二座体12可以通过螺栓等紧固件可拆卸连接,也可以采用焊接等形式与第二座体12固定连接。盘状结构32a与第一座体11可以通过螺栓等紧固件可拆卸连接,也可以采用焊接等形式与第一座体11固定连接。
当然,图5所示的实施例只是一种优选的方式。在一些实施例中,第一座体11的第一端部112及第二端部113还可以均为沿着第一座体11的轴向延伸的环形凸起结构,同时第二座体12的第三端部122及第四端部123也可以均为沿着第二座体12的轴向延伸的环状结构。此时,第一轴承21及第二轴承22的内圈分别与第一座体11的第一端部112及第二端部113连接;相应地,第一轴承21的外圈及第二轴承22的外圈分别与第二座体12的第三端部122及第四端部123连接。只要满足第一轴承21及第二轴承22与第一座体11及第二座体12的连接要求,在应用至风力发电机组时便于驱动均可。
可以理解的是,上述各实施例的偏航轴承组件1的安装部30均位于第二座体12或者同时位于第一座体11及第二座体12上。在一些可选的实施例中,当偏航轴承组件1应用至风力发电机组,第一座体11与机舱连接,第二座体12与塔筒2连接时,用于驱动基座10的第一座体11及第二座体12相对转动的偏航驱动部件,如驱动电机可以位于第一座体11内。因此,在一些实施例中,安装部30可以只设置于第二座体12上,当位于第二座体12内的第一座体11转动时,发电机及叶轮可以与机舱直接连接,可以不与连接部40连接,以保证风力发电机组的偏航需求。
根据本发明实施例的偏航轴承组件1在应用至风力发电机组时,第一座体11及第二座体12中的一者能够与塔筒连接,另一者能够与机舱连接。在偏航驱动部件的驱动作用下,第一座体11及第二座体12相对转动,使得机舱相对塔筒转动。由于偏航轴承组件1包括第一轴承21及第二轴承22,并且还可能包括第三轴承,相对单轴承结构,偏航轴承组件1的径向宽度更小,在满足风力发电机组的偏航要求前提下,能够减小风力发电机组的机舱宽度,进而降低风力发电机组的成本且便于运输。
图7示出了根据本发明实施例的风力发电机组的剖视结构示意图,图8示出了图7所示的风力发电机组的局部结构示意图。
根据本发明实施例的风力发电机组包括塔筒2、机舱3、发电机302、叶轮4、上述各实施例的偏航轴承组件1、及偏航驱动部件5,其中:机舱3在塔筒2的轴向上与塔筒2层叠设置;机舱3包括机舱罩301;发电机302连接于机舱3;叶轮4连接于发电机302。偏航轴承组件1的第一座体11及第二座体12中的一者与塔筒2连接,另一者与机舱3连接。偏航驱动部件5与偏航轴承组件1连接,以驱动第一座体11及第二座体12相对转动。
具体地,在本实施例中,偏航轴承组件1优选采用图1所示的偏航轴承组件1,偏航轴承组件1的第一座体11与塔筒2连接,第二座体12与机舱3连接。第一座体11与塔筒2之间可以采用焊接或者通过螺栓等紧固件连接,机舱3的机舱罩301与第二座体12之间可以采用过渡件6过渡连接。过渡件6可以与第二座体12直接连接,也可以通过安装部5间接连 接。过渡件6可以为板状结构,也可以为其他形式的结构。通过使用过渡件6,将机舱罩301与第二座体12连接。
偏航驱动部件5采用驱动电机。为了便于调节第一座体11及第二座体12的相对转动的速度,驱动电机的输出端可以连接减速器,该减速器与驱动电机可以为一体式结构。当偏航轴承组件1包括安装部30时,偏航驱动部件5优选安装于安装部30上。在本实施例中,第一轴承21及第二轴承22的相应处均设置有偏航驱动部件5,偏航驱动部件5的输出端为传动轮。偏航驱动部件5的输出端通过传动带、传动链、或者传动轮与相应的第一轴承21及第二轴承22传动配合。这里,偏航驱动部件5优选采用传动轮,如齿轮啮合传动配合的方式与第一轴承21或第二轴承22连接。
根据本发明实施例的风力发电机组包括上述各实施例的偏航轴承组件1,因此在其机舱3及叶轮4需要偏航时,偏航驱动部件5驱动第二座体12相对第一座体11转动,第二座体12与机舱3的机舱罩连接,第二座体12在转动的过程中带动机舱3及叶轮4转动从而实现偏航。由于偏航轴承组件1采用双轴承结构甚至为多轴承结构,因此根据本发明实施例的风力发电机组相对于传统的采用单轴承结构进行变桨的风力发电机组,不仅能够更好地满足偏航要求,而且双轴承或多轴承组件与具有更大径向尺寸的单轴承组件相比成本更低,同时因不需要更大径向尺寸的偏航轴承,有效了减小机舱3的宽度进而降低了风力发电机组的成本且便于运输。
根据本发明实施例的偏航轴承组件1为模块化结构,可以预先装配好后再安装至风力发电机组,并与机舱3、塔筒2等部件连接,相对于传统的风力发电机组不会增加装配工序,便于安装。另外,根据本发明实施例的偏航轴承组件1在用于风力发电机组时,不需要对风力发电机组的其他构件,例如,塔筒2,的结构进行改变,塔筒2可以采用沿着其自身的轴向为等截面的筒状结构即可满足要求,因此不会影响塔筒2等其他构件的结构强度。同时,偏航轴承组件1在与塔筒2连接时,可以直接与塔筒2顶部的法兰结构连接,无需额外设置支撑盘或者支撑框架等结构,在满足上述要求的基础上,减少了使用材料进而降低了成本。
作为一种可选的实施方式,偏航轴承组件1优选设置于机舱罩301内。通过上述设置,操作简单且更便于偏航轴承组件1的安装及维护。更为优选地,当偏航轴承组件1包括连接部40时,发电机302或叶轮4与连接部40连接。在本实施例中,风力发电机组可以为直驱式风力发电机组,并且发电机302可以位于机舱罩301的外侧。因此,在本实施例中,发电机302与连接部40连接。当然,当风力发电机组为其他类型时,如双馈式风力发电机组时,优选叶轮4与连接部40连接。
如上所述,当将发电机302或叶轮4与连接部40连接时,连接部40优选位于第一轴承21与第二轴承22之间,这使得机舱3及叶轮4的重力载荷和风载在偏航中心产生的弯矩转化为第一轴承21、第二轴承22的径向载荷,第一轴承21只承受径向载荷而不承受弯矩,在同样的机头形式、相同重量的情况下,根据本发明实施例的风力发电机即使为超大兆瓦机组,其机舱3也能够满足陆地运输的要求。这里,超大兆瓦机组可以为大于5MW的机组,该机组等级采用单轴承方案是无法实现陆地运输的。
图9示出了根据本发明另一实施例的风力发电机组的剖视结构示意图。图10示出了图9所示的风力发电机组的局部结构示意图。图9和图10所示的实施例的实施方式与图7所示的实施方式基本相同,不同之处在于,图9和图10所示的实施例的偏航轴承组件1采用图5所示的偏航轴承组件1,同时图9和图10所示的实施例的偏航驱动部件5包括两个以上伸缩缸,该两个以上伸缩缸相互间隔设置,每个伸缩缸包括缸体501及缸杆502,缸体501及缸杆502中的一者与第一座体11可转动连接,另一者与第二座体12可转动连接,以驱动第一座体11及第二座体12相对转动。
优选地,本实施例的伸缩缸数量为两个,这两个伸缩缸的缸体501与第一座体11铰接,具体可以通过安装部30的盘状结构32a与第一座体11铰接,两个伸缩缸的缸杆502与第二座体12铰接,具体可以通过安装部30的凸块结构31a铰接。两个伸缩缸的轴线优选相互平行,通过驱动伸缩缸伸缩,同样能够实现第一座体11及第二座体12相对转动,进而实现风力发电机组的偏航要求。本实施例中的伸缩缸可以为气压缸、液压缸、或者电动缸。
可以理解的是,伸缩缸的数量不限于两个,可以为三个甚至更多个,具体可以根据偏航轴承组件1的驱动要求设定。当存在多个伸缩缸时,可以环绕第一座体11及第二座体12的轴线均匀设置这些伸缩缸,以更好地满足驱动要求。
可以理解的是,上述各实施例的风力发电机组的偏航轴承组件1的第一座体11均与塔筒2连接,第二座体12均与机舱3连接,此为优选的实施方式,但不限于上述形式。在一些可选的实施例中,也可以将第二座体12与塔筒2连接,而将第一座体11与机舱3连接,此时可以采用过渡件6将机舱3的顶部与第一座体11连接,并相应改变偏航驱动部件5的位置,只要能够满足风力发电组的偏航要求均可。
根据本发明实施例的偏航轴承组件1能够用于风力发电机组的偏航系统,在满足风力发电机组的偏航要求的基础上,能够减小风力发电机组的机舱3的宽度,降低成本且便于运输,易于推广使用。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种偏航轴承组件(1),用于风力发电机组,其特征在于,所述偏航轴承组件(1)包括:
    基座(10),包括相互套接且同轴设置的第一座体(11)及第二座体(12);以及
    回转连接件,连接于所述第一座体(11)及所述第二座体(12),所述回转连接件包括在所述第一座体(11)及所述第二座体(12)的轴向上间隔设置的第一轴承(21)及第二轴承(22),所述第一座体(11)与所述第二座体(12)通过所述第一轴承(21)及所述第二轴承(22)可转动连接。
  2. 根据权利要求1所述的偏航轴承组件(1),其特征在于,所述第一座体(11)及所述第二座体(12)均为空心柱状结构。
  3. 根据权利要求2所述的偏航轴承组件(1),其特征在于,所述第一座体(11)在其自身的轴向上包括相对的第一端部(112)及第二端部(113),所述第二座体(12)在其自身的轴向上包括相对的第三端部(122)及第四端部(123),所述第一轴承(21)连接于所述第一端部(112)及所述第三端部(122),所述第二轴承(22)连接于所述第二端部(113)与所述第四端部(123)。
  4. 根据权利要求3所述的偏航轴承组件(1),其特征在于,所述第一端部(112)和/或所述第二端部(113)为沿所述第一座体(11)的轴向或径向延伸的环形凸起结构;所述第三端部(122)和/或所述第四端部(123)为沿所述第二座体(12)的轴向或径向延伸的环形凸起结构。
  5. 根据权利要求1至4中任意一项所述的偏航轴承组件(1),其特征在于,所述第一座体(11)和/或所述第二座体(12)上设置有安装部(30),用于安装所述风力发电机组的偏航驱动部件(5)。
  6. 根据权利要求1至4中任意一项所述的偏航轴承组件(1),其特征在于,所述第一座体(11)或所述第二座体(12)上设置有连接部 (40),所述连接部(40)位于所述第一轴承(21)与所述第二轴承(22)之间,用于连接所述风力发电机组的发电机(302)或叶轮(4)。
  7. 根据权利要求6所述的偏航轴承组件(1),其特征在于,所述连接部(40)为法兰,且所述连接部(40)的轴线与所述第一座体(11)及所述第二座体(12)的轴线相交。
  8. 根据权利要求1至4中任意一项所述的偏航轴承组件(1),其特征在于,所述基座(10)整体为锥形柱状结构,所述第一轴承(21)的径向尺寸大于所述第二轴承(22)的径向尺寸。
  9. 根据权利要求1至4中任意一项所述的偏航轴承组件(1),其特征在于,所述回转连接件进一步包括第三轴承,所述第三轴承连接于所述第一座体(11)及所述第二座体(12)且位于所述第一轴承(21)与所述第二轴承(22)之间。
  10. 一种风力发电机组,其特征在于,包括:
    塔筒(2);
    机舱(3),在所述塔筒(2)的轴向上与所述塔筒(2)层叠设置,所述机舱(3)包括机舱罩(301);
    发电机(302),连接于所述机舱(3);
    叶轮(4),连接于所述发电机(302);
    如权利要求1至9中任意一项所述的偏航轴承组件(1),所述第一座体(11)及所述第二座体(12)中的一者与所述塔筒(2)连接,另一者与所述机舱(3)连接;以及
    偏航驱动部件(5),与所述偏航轴承组件(1)连接,能够驱动所述第一座体(11)及所述第二座体(12)相对转动。
  11. 根据权利要求10所述的风力发电机组,其特征在于,所述偏航轴承组件(1)设置于所述机舱罩(301)内;当所述偏航轴承组件(1)包括所述连接部(40)时,所述发电机(302)或所述叶轮(4)与所述连接部(40)连接。
  12. 根据权利要求10或11所述的风力发电机组,其特征在于,所述 偏航驱动部件(5)包括驱动电机,所述驱动电机与所述第一轴承(21)和/或所述第二轴承(22)传动配合,以驱动所述第一座体(11)及所述第二座体(12)相对转动。
  13. 根据权利要求10或11所述的风力发电机组,其特征在于,所述偏航驱动部件(5)包括两个以上伸缩缸,所述两个以上伸缩缸相互间隔设置,每个伸缩缸包括缸体(501)及缸杆(502),所述缸体(501)及所述缸杆(502)中的一者与所述第一座体(11)可转动连接,另一者与所述第二座体(12)可转动连接,以驱动所述第一座体(11)及所述第二座体(12)相对转动。
PCT/CN2018/086020 2017-12-30 2018-05-08 偏航轴承组件及风力发电机组 WO2019128031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711490939.0A CN108150367B (zh) 2017-12-30 2017-12-30 偏航轴承组件及风力发电机组
CN201711490939.0 2017-12-30

Publications (1)

Publication Number Publication Date
WO2019128031A1 true WO2019128031A1 (zh) 2019-07-04

Family

ID=62460245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086020 WO2019128031A1 (zh) 2017-12-30 2018-05-08 偏航轴承组件及风力发电机组

Country Status (2)

Country Link
CN (1) CN108150367B (zh)
WO (1) WO2019128031A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291521A1 (en) * 2001-09-06 2003-03-12 Turbowinds N.V./S.A. Wind turbine nacelle with moving crane
CN101725632A (zh) * 2008-10-10 2010-06-09 通用电气公司 具有用于极端载荷的备选载荷路径的轴承
CN102119273A (zh) * 2008-03-26 2011-07-06 Ddis公司 风轮机吊舱用的轴承装置
CN102312795A (zh) * 2010-06-29 2012-01-11 通用电气公司 偏航轴承系统
US20120134841A1 (en) * 2011-12-09 2012-05-31 General Electric Company Yaw bearing assembly and tower for wind turbine
CN102713268A (zh) * 2009-10-29 2012-10-03 默文图公司 风力发电站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985846A1 (en) * 2007-04-27 2008-10-29 Greenergy India Private Limited Wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291521A1 (en) * 2001-09-06 2003-03-12 Turbowinds N.V./S.A. Wind turbine nacelle with moving crane
CN102119273A (zh) * 2008-03-26 2011-07-06 Ddis公司 风轮机吊舱用的轴承装置
CN101725632A (zh) * 2008-10-10 2010-06-09 通用电气公司 具有用于极端载荷的备选载荷路径的轴承
CN102713268A (zh) * 2009-10-29 2012-10-03 默文图公司 风力发电站
CN102312795A (zh) * 2010-06-29 2012-01-11 通用电气公司 偏航轴承系统
US20120134841A1 (en) * 2011-12-09 2012-05-31 General Electric Company Yaw bearing assembly and tower for wind turbine

Also Published As

Publication number Publication date
CN108150367A (zh) 2018-06-12
CN108150367B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
US5213470A (en) Wind turbine
US7935020B2 (en) Integrated medium-speed geared drive train
CN101711309B (zh) 涡轮转子和发电设备
US8222762B2 (en) Direct-drive generator/motor for a windmill/hydropower Plant/Vessel where the generator/morot is configured as a hollow profile and a method to assemble such a windmill/hydropower plant
EP2474735B1 (en) Mounting arrangement for pitch gear
WO2009126696A1 (en) Wind-driven generation of power
US9028361B2 (en) Modular gear unit for a wind turbine
WO2021233197A1 (zh) 风车
US20120098270A1 (en) External Rotor Generator of Vertical Axis Wind Turbine
KR102060281B1 (ko) 하이브리드 방식의 소형 풍력발전기
US20180283362A1 (en) Pitch Bearing for a Wind Turbine
WO2019128031A1 (zh) 偏航轴承组件及风力发电机组
WO2024119658A1 (zh) 一种用于兆瓦级的风力发电机组
WO2010097486A1 (es) Reductor de sinfín-corona por piezas modulares para seguidores solares
CN212202342U (zh) 立式风车总成
CN214616868U (zh) 风轮装置及风力发电机组
CN108798996A (zh) 偏航系统及风力发电机组
CN212642952U (zh) 随动调节风车
CN101713374B (zh) 捕捉风力的叶片系统
CN113153623A (zh) 风轮装置及风力发电机组
US9938959B2 (en) Hub and bearing system and a turbine comprising the hub and bearing system
CN207715302U (zh) 一种聚风发电用环型托台系统
CN111425343A (zh) 立式风车总成
CN101943114B (zh) 一种多层风力发电风帆
EP3788260A1 (en) Pitch bearing for a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896681

Country of ref document: EP

Kind code of ref document: A1