WO2019127972A1 - 超声波探测器及探测设备 - Google Patents

超声波探测器及探测设备 Download PDF

Info

Publication number
WO2019127972A1
WO2019127972A1 PCT/CN2018/082266 CN2018082266W WO2019127972A1 WO 2019127972 A1 WO2019127972 A1 WO 2019127972A1 CN 2018082266 W CN2018082266 W CN 2018082266W WO 2019127972 A1 WO2019127972 A1 WO 2019127972A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
hole
inner cavity
cavity
ultrasonic probe
Prior art date
Application number
PCT/CN2018/082266
Other languages
English (en)
French (fr)
Inventor
顾一新
Original Assignee
东莞正扬电子机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711434072.7A external-priority patent/CN109959429B/zh
Application filed by 东莞正扬电子机械有限公司 filed Critical 东莞正扬电子机械有限公司
Priority to JP2020554340A priority Critical patent/JP6976673B2/ja
Priority to EP18897593.2A priority patent/EP3734239B1/en
Priority to US16/769,022 priority patent/US11359954B2/en
Priority to KR1020207019064A priority patent/KR102425650B1/ko
Publication of WO2019127972A1 publication Critical patent/WO2019127972A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves

Definitions

  • the present disclosure relates to the field of fluid detection technology, for example, to an ultrasonic liquid level detector and a detection device using the ultrasonic liquid level detector.
  • Ultrasonic detectors are widely used due to their high precision, small size and reliable signal processing.
  • the detection area of the ultrasonic sensor on the market is detected by direct bare or mesh protection.
  • the ultrasonic detection area When exposed, the ultrasonic detection area is directly affected by the filling of the solution and the vibration of the solution caused by the shock and the foreign matter caused by the vibration of the solution during the operation of the vehicle.
  • the measured value is not accurate.
  • the mesh When the mesh is used, the protection effect of the mesh is too large, and the small mesh will cause the bubble of the sound source to be completely discharged, which affects the detection of the solution by the ultrasonic wave.
  • the present disclosure provides an ultrasonic detector that can solve the technical problem that the ultrasonic probe existing in the related art is susceptible to interference by air bubbles and foreign matter.
  • the present disclosure provides a detecting device that can solve the technical problem that the ultrasonic detecting device existing in the related art is susceptible to interference by air bubbles and foreign matter.
  • a cover body including at least two cavities sequentially connected from the inside to the outside, a plurality of fluid inlets, and a plurality of fluid outlets; wherein the fluid inlet, the fluid outlet and the cavities are in flow communication to form a fluid passage,
  • the fluid passage is configured to direct fluid flow along at least one bend path, the detection zone being located within the innermost cavity.
  • the cover body includes an inner cavity and an outer cavity, a fluid inlet of the outer cavity is smaller than a fluid inlet of the inner cavity, and a fluid in the outer cavity is in the inner cavity The fluid inlets meet.
  • the cover body includes an inner cavity and a outer cavity, the fluid inlet of the inner cavity is smaller than the fluid inlet of the outer cavity, and the fluid in the outer cavity flows into the inner side through the split flow Cavity.
  • the cover body includes an inner cavity and an outer cavity, the fluid inlet of the inner cavity and the fluid inlet of the outer cavity are misaligned, the fluid outlet of the inner cavity and the The fluid outlets of the outer chamber are misaligned.
  • the fluid inlet and the fluid outlet of the inner cavity are misaligned, the fluid inlet and the fluid outlet of the outer cavity being misaligned.
  • the fluid outlet of the inner cavity is smaller than the fluid inlet of the inner cavity, and the fluid within the inner cavity is shunted at the fluid outlet of the inner cavity.
  • the fluid outlet of the inner cavity is larger than the fluid inlet of the inner cavity, and the fluid within the inner cavity meets at the fluid outlet of the inner cavity.
  • the cover body includes an inner casing and an outer casing sleeved outside the inner casing, an inner cavity of the inner casing forms the inner cavity, and the inner casing and the outer casing form a joint Said outer cavity.
  • the first side of the inner cavity is provided with a first hole formed on the inner casing and a second hole formed on the outer casing; a second side of the inner cavity is disposed There is a third hole formed in the inner casing and a fourth hole formed in the outer casing.
  • the first hole and the third hole are both at least two, and the second hole and the fourth hole are both one.
  • a fifth hole is formed in a side of the second hole in the outer casing, the fifth hole forms a convection with the second hole, and the fifth hole and the first hole Misplaced arrangement.
  • An embodiment provides a detecting apparatus comprising the ultrasonic probe of any of the above.
  • the detecting device further comprises: a control box, a liquid level detecting tube, a fluid tube and a flange; wherein the fluid tube is arranged to realize the transportation of the fluid;
  • the liquid level detecting tube is arranged to detect the liquid level of the fluid in the tank;
  • the flange is arranged to seal the fluid in the tank
  • the control box is configured to provide an electrical connection between the level detection tube and the ultrasonic probe and an external electronic device.
  • the detecting device further includes: a heater circuit
  • the heater circuit is configured to heat the fluid to prevent the fluid from solidifying.
  • the ultrasonic detector proposed by the present disclosure effectively prevents air bubbles and foreign matter in the fluid from entering the detection area, weakens the interference of other sound sources on signal detection, and improves the stability of the ultrasonic detector.
  • Figure 1 is a cross-sectional view of the ultrasonic probe provided in the first embodiment
  • Figure 2 is a cross-sectional view showing the structure of the ultrasonic probe provided in the first embodiment
  • Embodiment 3 is a schematic structural view of an ultrasonic probe provided in Embodiment 1;
  • Figure 4 is a cross-sectional view of the ultrasonic probe provided in the second embodiment
  • Figure 5 is a cross-sectional view of the ultrasonic probe provided in the third embodiment
  • FIG. 6 is a schematic structural diagram of a detecting device provided in Embodiment 4.
  • FIG. 7 is a schematic structural diagram of a detecting device provided in Embodiment 4 in use.
  • inner casing 121, first hole; 122, third hole; 123, ultrasonic reflection surface; 124, ultrasonic emission receiving surface;
  • Shell 131, second hole; 132, fourth hole; 133, fifth hole.
  • the embodiment provides an ultrasonic detector 1 including a detection area 11 and a cover.
  • the ultrasonic probe 1 can be used for detecting various fluids, such as gasoline, diesel, hydraulic fluid, and transmission fluid. And urea solution, etc., can also be combined with other components.
  • the detecting element for detecting the fluid characteristics of the detecting zone 11 may be located in the detecting zone 11 or may be spaced apart from the detecting zone 11 by a partition.
  • the cover body includes at least two cavities sequentially connected from the inside to the outside, a plurality of fluid inlets and a plurality of fluid outlets, and the fluid inlet, the fluid outlet and the cavities are in flow communication to form a fluid passage, and the fluid passage guides the fluid along the at least one bend
  • the folding path flows and the detection zone is located in the innermost cavity.
  • the flow path of the fluid is bent, which can prevent air bubbles and foreign matter in the fluid from entering the detection zone 11, which reduces the interference of other sound sources on signal detection and improves the stability of the ultrasonic probe 1.
  • the cover body includes an inner cavity and an outer cavity, a fluid inlet of the outer cavity, a fluid inlet of the inner cavity, a fluid outlet of the inner cavity, and a fluid outlet of the outer cavity form a bent fluid passage, the flow of the fluid
  • the path is narrow and tortuous, and the bubbles in the fluid flow upward along the outer cavity due to the lighter mass, reducing the amount of gas flowing into the inner cavity.
  • the cover body may also include an inner cavity, an outer cavity and a third cavity which are sequentially connected from the inside to the outside, and the fluid flow principle is the same, and details are not described herein again.
  • the number of fluid inlets and fluid outlets may be plural.
  • the fluid inlet of the outer chamber is smaller than the fluid inlet of the inner chamber, and the fluid within the outer chamber meets at the fluid inlet of the inner chamber such that the flow path of the fluid is bent. That is, the external fluid is split into the outer cavity through the fluid inlet on the outer cavity and merges at the fluid inlet of the inner cavity.
  • the fluid inlet in this embodiment may be for fluid inflow
  • the fluid outlet may be for fluid outflow
  • the fluid inlet may also be used for fluid outflow when the position of the shell is placed differently
  • the fluid outlet may also be used for fluid inflow, ie fluid Both the inlet and the fluid outlet are for fluid flow.
  • the cover may be symmetrically disposed along the axis, that is, when the fluid merges into the inner cavity at the fluid inlet of the inner cavity, and then merges from the other side of the inner cavity. It flows out and then flows out from the outer cavity.
  • the cover may also be symmetrical about the axis, and when the fluid merges into the inner cavity at the fluid inlet of the inner cavity, it flows out from the other side of the inner cavity.
  • the fluid outlet of the inner cavity is smaller than the fluid inlet of the inner cavity, and the fluid in the inner cavity is diverted at the fluid outlet of the inner cavity, so that the flow path of the fluid is bent, the fluid fluctuation is reduced, and the gas is facilitated. discharge.
  • the fluid When the fluid flows out of the inner cavity, it may flow out from the outer cavity after being diverted, or may flow out from the outer cavity.
  • the cover body includes an inner casing 12 and an outer casing 13 sleeved outside the inner casing 12.
  • the inner casing 12 forms an inner cavity
  • the inner casing 12 and the outer casing 13 form an outer cavity.
  • the fluid flows in from the fluid inlet of the outer cavity, a portion of the fluid flows through the inner cavity and then flows out from the fluid outlet of the outer cavity, the detecting element in the inner cavity detects the characteristic of the fluid; the other part does not flow through the inner cavity.
  • the flow path of the fluid is narrow and tortuous, and the bubble in the fluid is flowed by the fluid inlet of the outer cavity, and flows upward along the outer cavity, directly flowing from the fluid of the outer cavity.
  • the outlet flows out; the amount of gas flowing into the inner cavity is reduced, and the interference of other sound sources on signal detection is weakened.
  • One side of the inner cavity is provided with a first hole 121 formed in the inner casing 12 and a second hole 131 formed in the outer casing 13.
  • the other side of the inner cavity is provided with a third hole formed in the inner casing 12.
  • 122 and a fourth hole 132 formed in the outer casing 13 wherein the number of the first hole 121, the second hole 131, the third hole 122 and the fourth hole 132 may be one or more.
  • the inner casing 12 and the outer casing 13 are both cylindrical tubular bodies.
  • the first hole 121 is formed on the surface of the inner casing 12, and the third hole 122 is opened on the surface of the first hole 121 along the radial direction of the pipe body.
  • the first end surface of the inner casing 12 is an ultrasonic reflection surface 123, and the second end surface disposed opposite to the first end surface is an ultrasonic wave transmitting and receiving surface 124.
  • the end face of the inner casing 12 may be circular or elliptical.
  • the inner casing 12 and the outer casing 13 may also be a rectangular parallelepiped or a sphere as long as the curved path when the fluid flows is satisfied.
  • the second hole 131 When the axis of the cover is horizontally placed, the second hole 131 is located at the lower side of the cover, the position of the second hole 131 is lower than the position of the first hole 121, and the position of the fourth hole 132 is higher than the position of the third hole 122.
  • the fluid can flow along the first path: the fluid flows from the second hole 131 into the outer cavity, and a part of the fluid flows into the inner cavity through the first hole 121, and then flows out through the third hole 122,
  • the fourth hole 132 flows out of the outer cavity, and the detecting element in the inner cavity detects the characteristic of the fluid; the other part of the fluid flows from the second hole 131 into the outer cavity and then flows out through the fourth hole 132.
  • the bubble in the fluid flows upward along the outer cavity due to the lighter mass, and flows directly from the fourth hole 132.
  • the flow direction of the fluid may also be along the second path, wherein the fluid has a fluid direction opposite to the first path, and the gas remains upward due to the lighter mass.
  • the ultrasonic detector 1 can also be used to detect the fluid concentration, that is, the ultrasonic probe 1 is directly immersed in the interior of the fluid.
  • the flow direction of the fluid can be a combination of the first path and the second path, as shown in FIG. The arrow shows.
  • a fifth hole 133 is formed in a side of the second hole 131 on the outer casing 13.
  • the fifth hole 133 forms a convection with the second hole 131, and the fifth hole 133 is misaligned with the first hole 121.
  • the fifth hole 133 and the second hole 131 are located at the same position along the axial direction of the pipe body.
  • the fifth hole 133 and the second hole 131 form a convection, and the fluid or the air bubble can flow out from the fifth hole 133, which can speed up the replacement of the solution, quickly dissipate the bubbles and foreign matter from the bottom of the detector, and realize the rapid detection of the newly added solution.
  • the quality of the solution improves the rate of solution displacement within the detector.
  • the position of the fifth hole 133 is higher than the position of the first hole 121, and the ultrasonic reflection surface 123 and the super-wave emission receiving surface can be avoided.
  • the bubble When the bubble is placed, it directly adheres to the ultrasonic reflection surface 123 and the super-wave emission receiving surface affects the signal processing of the ultrasonic wave.
  • the first hole 121 has one.
  • the two fourth holes 132 are disposed at the top intermediate portion of the outer casing 13 and the two third holes 122 include the sixth hole 1221 and The seventh hole 1222, the sixth hole 1221 and the seventh hole 1222 are located in the same horizontal plane as the top of the inner casing 12, the sixth hole 1221 is disposed near the first end of the inner casing 12, and the seventh hole 1222 is adjacent to the inner casing 12
  • the two ends are arranged to prevent the bubbles in the filling solution and the intrusion of foreign matter, improve the stability of the ultrasonic detector 1, and reduce the interference of other sound sources on the signal detection.
  • the two third holes 122 are respectively located above the ultrasonic reflecting surface 123 and the ultrasonic wave transmitting receiving surface 124, and can quickly dissolve the bubbles generated by the ultrasonic reflecting surface 123 and the ultrasonic wave transmitting receiving surface 124, thereby reducing the influence on the ultrasonic signal processing.
  • the second hole 131 When the axis of the cover is horizontally placed, the second hole 131 is located at the lower side of the cover body, the first hole 121 is disposed at the bottom intermediate portion of the inner casing 12, and the four second holes 131 are located in the same horizontal plane and surround the first hole 121. Evenly distributed, the four fifth holes 133 are located in the same horizontal plane and are evenly distributed around the first hole 121. The position of the fifth hole 133 is higher than the position of the first hole 121, and the position of the second hole 131 is lower than that of the first hole 121.
  • the position that is, the position of the second hole 131 is lower than the ultrasonic signal processing position, that is, the position of the ultrasonic reflecting surface 123 and the ultrasonic wave transmitting receiving surface 124, and the solution for rapidly discharging the ultrasonic signal processing position at the low liquid level is realized.
  • the material of the cover body may be plastic or metal.
  • FIG. 4 shows a second embodiment, in which the same or corresponding components as in the first embodiment are given the same reference numerals as in the first embodiment.
  • the fluid inlet of the inner cavity is smaller than the fluid inlet of the outer cavity, and the fluid in the outer cavity flows into the inner cavity by splitting. That is, the external fluid merges into the outer cavity through the fluid inlet on the outer cavity and is shunted at the fluid inlet of the inner cavity.
  • the fluid inlet and fluid outlet are interchangeable.
  • the cover may be symmetrically disposed along the axis, that is, when the fluid is diverted into the inner cavity at the fluid inlet on the first side of the inner cavity, and then split from the inner cavity. The second side flows out and then flows out from the outer cavity.
  • the cover body may also be disposed symmetrically not along the axis, and when the fluid is branched into the inner cavity at the fluid inlet on the first side of the inner cavity, it merges out from the second side of the inner cavity. That is, the fluid outlet of the inner cavity is larger than the fluid inlet of the inner cavity, and the fluid inside the inner cavity meets at the fluid outlet of the inner cavity, so that the flow path of the fluid is bent, the fluid fluctuation is reduced, and the gas is discharged.
  • the fluid When the fluid flows out of the inner cavity, it may flow out from the outer cavity after being diverted, or may flow out from the outer cavity.
  • first holes 121 and the third hole 122 there are at least two of the first hole 121 and the third hole 122, and one of the second hole 131 and the fourth hole 132.
  • the first holes 121 are arranged on the inner casing 12 in a direction away from the ultrasonic wave transmitting and receiving surface 124.
  • the second holes 131 are opened on the outer casing 13 near the ultrasonic reflecting surface 123.
  • the third holes 122 are reflected on the inner casing 12 away from the ultrasonic waves.
  • the faces 123 are spaced apart from each other, and the fourth holes 132 are opened on the outer casing 13 near the ultrasonic wave transmitting and receiving surface 124.
  • the aperture of the first hole 121 is smaller than the aperture of the second hole 131, and the aperture of the third hole 122 is smaller than the aperture of the fourth hole 132, so that when the fluid flows from the outer cavity into the inner cavity and the fluid flows out of the inner cavity, both are realized.
  • the splitting reduces the fluid fluctuation by the splitting, realizes the liquid flow stability in the ultrasonic region, and also realizes the stable detection of the ultrasonic signal.
  • Fig. 5 shows a third embodiment, in which the same or corresponding components as in the first embodiment are given the same reference numerals as in the first embodiment.
  • the third embodiment only the differences between the third embodiment and the first embodiment will be described. The difference is that the fluid inlets of the inner cavity and the fluid inlets of the outer cavity are misaligned, and the fluid outlet of the inner cavity and the fluid outlet of the outer cavity are misaligned. Increases the path of fluid flow to bend, prolongs buffer time and facilitates bubble discharge.
  • the fluid when the fluid can merge into the inner cavity, it can also be split into the inner cavity; when the fluid enters the inner cavity, it can be flowed out after splitting, or it can be merged and then flow out.
  • the fluid when the fluid flows out of the inner cavity, it may flow out from the outer cavity after being diverted, or may flow out from the outer cavity.
  • the first hole 121 and the second hole 131 are arranged in a dislocation manner, and the third hole 122 and the fourth hole 132 are arranged in a dislocation manner.
  • the fluid inlet and fluid outlet of each cavity are misaligned, i.e., the fluid inlet and fluid outlet of the inner cavity are misaligned, and the fluid inlet and fluid outlet of the outer cavity are misaligned.
  • the first hole 121 and the third hole 122 are arranged in a dislocation manner, and the second hole 131 and the fourth hole 132 are arranged in a dislocation manner.
  • the first hole 121 is opened on the inner casing 12 near the ultrasonic wave transmitting and receiving surface 124
  • the second hole 131 is opened on the outer casing 13 near the ultrasonic reflecting surface 123, so that the distance between the first hole 121 and the second hole 131 is as large as possible.
  • the third hole 122 is opened on the inner casing 12 near the ultrasonic reflecting surface 123
  • the fourth hole 132 is opened on the outer casing 13 near the ultrasonic wave transmitting receiving surface 124.
  • the liquid flow direction is designed to achieve a non-orientational fluid that blocks the liquid of the external liquid from the ultrasonic signal position, and also realizes stable detection of the ultrasonic signal.
  • the embodiment further provides a detecting device, including the ultrasonic probe 1 according to any of the above embodiments.
  • a heater can be placed on the detection device when detecting certain fluids, such as urea solution or liquid urea.
  • the detecting device further comprises a control box 2, a heater circuit 3, a liquid level detecting tube 4, a fluid tube 5 and a flange 7, and the liquid level detecting tube 4 is arranged to carry out the liquid level of the fluid in the tank 6.
  • the flange 7 is arranged to seal the fluid within the tank 6.
  • the heater circuit 3 can heat a fluid such as a urea solution to prevent the fluid from solidifying
  • the fluid tube 5 can realize the transportation of a fluid such as a urea solution
  • the control box 2 is provided to provide the liquid level detecting tube 4 and the ultrasonic probe 1 and the outside. Electrical connection of electronic devices such as computers.
  • the ultrasonic detector provided by the present disclosure effectively prevents air bubbles and foreign matter in the fluid from entering the detection area, weakens the interference of other sound sources on signal detection, and improves the stability of the ultrasonic detector.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种超声波探测器(1),包括探测区(11)和罩体,罩体包括由内向外依次连通的至少两个腔体、多个流体入口和多个流体出口;其中,流体入口、流体出口与腔体流动连通形成流体通道,流体通道设置为引导流体沿着至少一个弯折路径流动,探测区(11)位于最内部的腔体内。该超声波探测器(1)有效阻止了流体内的气泡及异物进入探测区(11),减弱了其它声源对信号探测的干扰,提高了超声波探测器(1)的稳定性。

Description

超声波探测器及探测设备 技术领域
本公开涉及流体探测技术领域,例如涉及一种超声波液位探测器及应用该超声波液位探测器的探测设备。
背景技术
在现代工业生产中,常常需要测量容器中液体的浓度。超声波探测器因具有精度高、体积小以及信号处理可靠等优点而被广泛使用。
市面上的超声波传感器探测区域采用直接裸露或者网布保护进行探测,当裸露时,超声波探测区域直接受加注溶液及车辆运行时晃动引起溶液震荡所产生的气泡及异物影响超声波的信号处理,使得测量值不准确。当采用网布时,网孔过大保护效果比较差,网孔小会造成声源探测处气泡无法完全排出,影响超声波对溶液的探测。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供了一种超声波探测器,可以解决相关技术中存在的超声波探测器易受气泡及异物干扰的技术问题。
本公开提供了一种探测设备,可以解决相关技术中存在的超声波探测设备易受气泡及异物干扰的技术问题。
一实施例提供了一种超声波探测器,包括:
探测区;以及
罩体,包括由内向外依次连通的至少两个腔体、多个流体入口和多个流体出口;其中,所述流体入口、所述流体出口与所述腔体流动连通形成流体通道,所述流体通道设置为引导流体沿着至少一个弯折路径流动,所述探测区位于最内部的所述腔体内。
在一实施例中,所述罩体包括内侧腔体和外侧腔体,所述外侧腔体的流体入口小于所述内侧腔体的流体入口,所述外侧腔体内的流体于所述内侧腔体的流体入口处汇合。
在一实施例中,所述罩体包括内侧腔体和外侧腔体,所述内侧腔体的流体入口小于所述外侧腔体的流体入口,所述外侧腔体内的流体经过分流流入所述内侧腔体。
在一实施例中,所述罩体包括内侧腔体和外侧腔体,所述内侧腔体的流体入口和所述外侧腔体的流体入口错位布置,所述内侧腔体的流体出口和所述外侧腔体的流体出口错位布置。
在一实施例中,所述内侧腔体的流体入口和流体出口错位布置,所述外侧腔体的流体入口和流体出口错位布置。
在一实施例中,所述内侧腔体的流体出口小于所述内侧腔体的流体入口,所述内侧腔体内的流体于所述内侧腔体的流体出口处分流。
在一实施例中,所述内侧腔体的流体出口大于所述内侧腔体的流体入口,所述内侧腔体内的流体于所述内侧腔体的流体出口处汇合。
在一实施例中,所述罩体包括内壳和套设于所述内壳外部的外壳,所述内壳的内部形成所述内侧腔体,所述内壳和所述外壳之间形成所述外侧腔体。
在一实施例中,所述内侧腔体的第一侧设置有开设于所述内壳上的第一孔和开设于所述外壳上的第二孔;所述内侧腔体的第二侧设置有开设于所述内壳上的第三孔和开设于所述外壳上的第四孔。
在一实施例中,所述第一孔和第三孔均为至少两个,所述第二孔和第四孔均为一个。
在一实施例中,所述外壳上于所述第二孔的一侧开设有第五孔,所述第五孔与所述第二孔形成对流,所述第五孔与所述第一孔错位布置。
一实施例提供了一种探测设备,包括如上任一项所述的超声波探测器。
在一实施例中,所述探测设备还包括:控制盒、液位探测管、流体管和法兰;其中,流体管设置为实现流体的运输;
液位探测管设置为对箱体内流体的液位进行探测;
法兰设置为封住箱体内的流体;
所述控制盒设置为为所述液位探测管和超声波探测器与外部电子设备提供电气连接。
在一实施例中,所述探测设备还包括:加热器回路;
所述加热器回路设置为加热所述流体,防止所述流体凝固。
本公开提出的超声波探测器,有效阻止了流体内的气泡及异物进入探测 区,减弱了其他声源对信号探测的干扰,提高超声波探测器的稳定性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是实施例一提供的超声波探测器的剖视图;
图2是实施例一提供的超声波探测器的结构剖视图;
图3是实施例一提供的超声波探测器的结构示意图;
图4是实施例二提供的超声波探测器的剖视图;
图5是实施例三提供的超声波探测器的剖视图;
图6是实施例四提供的探测设备的结构示意图;
图7是实施例四提供的探测设备在使用时的结构示意图。
图中:
1、超声波探测器;2、控制盒;3、加热器回路;4、液位探测管;5、尿素管;6、箱体;7、法兰;
11、探测区;
12、内壳;121、第一孔;122、第三孔;123、超声波反射面;124、超声波发射接收面;
13、外壳;131、第二孔;132、第四孔;133、第五孔。
具体实施方式
实施例一
参见图1至图3,本实施例提供一种超声波探测器1,包括探测区11和罩体,该超声波探测器1可以用于多种流体的探测,例如汽油、柴油、液压流体、传动液和尿素溶液等,也可以和其他部件结合使用。用于探测探测区11的流体特征的探测元件可以位于探测区11,也可以与探测区11用隔板间隔。
罩体包括由内向外依次连通的至少两个腔体、多个流体入口和多个流体出口,流体入口、流体出口与腔体之间流动连通形成流体通道,流体通道引导流体沿着至少一个弯折路径流动,探测区位于最内部的腔体内。流体的流动路径弯折,能够阻止流体内的气泡及异物进入探测区11,减弱了其他声源对信号探测的干扰,提高超声波探测器1的稳定性。
罩体包括内侧腔体和外侧腔体,外侧腔体的流体入口、内侧腔体的流体入 口、内侧腔体的流体出口和外侧腔体的流体出口之间形成弯折的流体通道,流体的流动路径狭窄曲折,流体中的气泡由于质量较轻,沿外侧腔体向上流动,减少了流入内侧腔体的气体量。当然,罩体也可以包括由内向外依次连通的内侧腔体、外侧腔体和第三腔体,流体流动原理相同,在此不再赘述。在此对流体入口和流体出口的数量可以分别为多个。
在本实施例中,外侧腔体的流体入口小于内侧腔体的流体入口,外侧腔体内的流体于内侧腔体的流体入口处汇合,使得流体的流动路径弯折。即外界的流体通过外侧腔体上的流体入口分流进入外侧腔体,并于内侧腔体的流体入口处汇合。
本实施例中的流体入口可以是用于流体流入,流体出口可以是用于流体流出,当罩体放置的位置不同时,流体入口还可用于流体流出,流体出口还可用于流体流入,即流体入口和流体出口均是用于流体流过。
鉴于流体入口与流体出口的互换性,罩体可以是沿轴线对称设置的,即当流体于内侧腔体的流体入口处汇合进入内侧腔体后,再汇合后从内侧腔体的另一侧流出,再经分流从外侧腔体流出。罩体也可以不沿轴线对称设置,当流体于内侧腔体的流体入口处汇合进入内侧腔体后,经分流从内侧腔体的另一侧流出。
在本实施例中,内侧腔体的流体出口小于内侧腔体的流体入口,内侧腔体内的流体于内侧腔体的流体出口处分流,使得流体的流动路径弯折,减小流体波动,利于气体排出。
当流体流出内侧腔体后,可以经分流后从外侧腔体流出,也可以汇合后从外侧腔体流出。
可选地,罩体包括内壳12和套设于内壳12外部的外壳13,内壳12的内部形成内侧腔体,内壳12和外壳13之间形成外侧腔体。流体由外侧腔体的流体入口流入,一部分流体流经内侧腔体再由外侧腔体的流体出口流出,内侧腔体内的探测元件对流体的特征进行探测;另一部分流体不流经内侧腔体,直接由外侧腔体的流体出口流出;流体的流动路径狭窄曲折,流体中的气泡由于质量较轻,由外侧腔体的流体入口流入后,沿外侧腔体向上流动,直接由外侧腔体的流体出口流出;减少了流入内侧腔体的气体量,减弱了其他声源对信号探测的干扰。
内侧腔体的一侧设置有开设于内壳12上的第一孔121和开设于外壳13上 的第二孔131,内侧腔体的另一侧设置有开设于内壳12上的第三孔122和开设于外壳13上的第四孔132,在此,对第一孔121、第二孔131、第三孔122和第四孔132的数量均可以为一个或者多个。
内壳12和外壳13均为柱状管体,第一孔121开设于内壳12的表面上,第三孔122开设于与第一孔121沿管体的径向相对的表面上。内壳12的第一端面为超声波反射面123,与第一端面相对设置的第二端面为超声波发射接收面124。内壳12的端面可以为圆形或椭圆形。内壳12和外壳13也可以为长方体或球体,只要满足流体流动时的弯曲路径即可。
当罩体的轴线水平放置,第二孔131位于罩体的下侧时,第二孔131的位置低于第一孔121的位置,第四孔132的位置高于第三孔122的位置。当流体由下向上逐渐增多时,流体可以沿如下第一路径流动:流体由第二孔131流入外侧腔体,一部分流体经第一孔121流入内侧腔体,再经第三孔122流出,由第四孔132流出外侧腔体,内侧腔体内的探测元件对流体的特征进行探测;另一部分流体由第二孔131流入外侧腔体后经第四孔132流出。在流体由第二孔131流入外侧腔体时,流体中的气泡由于质量较轻,沿外侧腔体向上流动,直接由第四孔132流出。当由上向下注入流体时,流体的流动方向还可以是沿第二路径流动,其中液体的流体方向与第一路径相反,气体由于质量较轻,仍然保持向上流动。因为超声波探测器1还可以用于检测流体浓度,即将超声波探测器1直接浸于流体内部,在流体发生晃动时,流体的流动方向可以是第一路径与第二路径的结合,如图1中箭头所示。
参见图2和图3,外壳13上于第二孔131的一侧开设有第五孔133,第五孔133与第二孔131形成对流,第五孔133与第一孔121错位布置。在本实施例中,沿管体的轴向,第五孔133与第二孔131位于同一位置。第五孔133与第二孔131形成对流,流体或气泡均能由第五孔133流出,能加快溶液的置换,快速排解来自探测器底部的气泡及异物,实现了快速的探测出新加入溶液的品质,提高了探测器内溶液置换的速率。
当罩体的轴线水平放置,第二孔131位于罩体的下侧时,第五孔133的位置高于第一孔121的位置,能够避开超声波反射面123和超射波发射接收面有气泡置入时直接附着于超声波反射面123和超射波发射接收面上影响超声波的信号处理。
在本实施例中,第一孔121有一个,当柱状管体的轴线水平放置时,两个 第四孔132设置于外壳13的顶部中间部位,两个第三孔122包括第六孔1221和第七孔1222,第六孔1221和第七孔1222与内壳12的顶部位于同一水平面内,第六孔1221靠近内壳12的第一端设置,并且第七孔1222靠近内壳12的第二端设置,防止加注溶液内的气泡及异物的灌入,提高超声波探测器1的稳定性,减弱了其他声源对信号探测的干扰。两个第三孔122分别位于超声波反射面123和超声波发射接收面124的上方,能快速排解超声波反射面123和超声波发射接收面124产生的气泡,减小对超声波信号处理的影响。
当罩体的轴线水平放置,第二孔131位于罩体的下侧时,第一孔121设置于内壳12的底部中间部位,四个第二孔131位于同一水平面内并绕第一孔121均匀分布,四个第五孔133位于同一水平面内并绕第一孔121均匀分布,第五孔133的位置高于第一孔121的位置,第二孔131的位置低于第一孔121的位置,即第二孔131的位置低于超声波信号处理位,即超声波反射面123和超声波发射接收面124的位置,实现低液位时快速排出超声波信号处理位的溶液。
罩体的材质可以是塑胶,也可以是金属,为了降低成本,例如可以是选橡胶。
实施例二
图4示出了实施例二,其中与实施例一相同或相应的零部件采用与实施例一相应的附图标记。为简便起见,仅描述实施例二与实施例一的区别。区别之处在于,内侧腔体的流体入口小于外侧腔体的流体入口,外侧腔体内的流体经过分流流入内侧腔体。即外界的流体通过外侧腔体上的流体入口汇合进入外侧腔体,并于内侧腔体的流体入口处分流。所述流体入口与流体出口是可以互换的。
鉴于流体入口与流体出口的互换性,罩体可以是沿轴线对称设置的,即当流体于内侧腔体第一侧的流体入口处分流进入内侧腔体后,再分流后从内侧腔体的第二侧流出,再经汇合从外侧腔体流出。
在一实施例中,罩体也可以不沿轴线对称设置,当流体于内侧腔体第一侧的流体入口处分流进入内侧腔体后,经汇合从内侧腔体的第二侧流出。即内侧腔体的流体出口大于内侧腔体的流体入口,内侧腔体内的流体于内侧腔体的流体出口处汇合,使得流体的流动路径弯折,减小流体波动,利于气体排出。
当流体流出内侧腔体后,可以经分流后从外侧腔体流出,也可以汇合后从外侧腔体流出。
在本实施例中,第一孔121和第三孔122均有至少两个,第二孔131和第四孔132均有一个。第一孔121于内壳12上沿远离超声波发射接收面124的方向间隔排布,第二孔131于外壳13上靠近超声波反射面123开设;第三孔122于内壳12上沿远离超声波反射面123的方向间隔排布,第四孔132于外壳13上靠近超声波发射接收面124开设。
第一孔121的孔径小于第二孔131的孔径,第三孔122的孔径小于第四孔132的孔径,因此流体由外侧腔体流入内侧腔体时和流体流出内侧腔体时,均实现了分流,通过分流减小流体波动,实现超声波区域的液体的流动稳定性,也实现超声波信号的稳定探测。
实施例三
图5示出了实施例三,其中与实施例一相同或相应的零部件采用与实施例一相应的附图标记。为简便起见,仅描述实施例三与实施例一的区别点。区别之处在于,内侧腔体的流体入口和外侧腔体的流体入口错位布置,内侧腔体的流体出口和外侧腔体的流体出口错位布置。增加了流体流动的路径弯折,延长缓冲时间,便于气泡排出。
在一些实施例中,当流体可以汇合进入内侧腔体,也可以分流进入内侧腔体;当流体进入内侧腔体后,可以经分流后流出,也可以汇合后流出。当流体流出内侧腔体后,可以经分流后从外侧腔体流出,也可以汇合后从外侧腔体流出。
在本实施例中,第一孔121与第二孔131错位布置,第三孔122与第四孔132错位布置。
为了延长流体的流动路径,每个腔体的流体入口与流体出口错位布置,即内侧腔体的流体入口和流体出口错位布置,外侧腔体的流体入口和流体出口错位布置。
在本实施例中,第一孔121与第三孔122错位布置,第二孔131与第四孔132错位布置。第一孔121于内壳12上靠近超声波发射接收面124开设,第二孔131于外壳13上靠近超声波反射面123开设,使得第一孔121与第二孔131之间的距离尽量大,相应地,为了实现错位,第三孔122于内壳12上靠近超声波反射面123开设,第四孔132于外壳13上靠近超声波发射接收面124开设。如图5中箭头方向所示,液体流向采用S型流向设计实现阻挡外界液体同超声波信号位的液体形成非对向性的流体,也实现超声波信号的稳定探测。
实施例四
参见图6和图7,本实施例还提供一种探测设备,包括上述任一实施例所述的超声波探测器1。在探测一些特定流体,如尿素溶液或者液体尿素时,可以在探测设备上设置加热器。在一实施例中,探测设备还包括控制盒2、加热器回路3、液位探测管4、流体管5和法兰7,液位探测管4设置为对箱体6内流体的液位进行探测;法兰7设置为封住箱体6内的流体。在实际使用中,加热器回路3可加热尿素溶液等流体,防止流体凝固,流体管5可实现尿素溶液等流体的运输,控制盒2设置为提供液位探测管4和超声波探测器1与外部计算机等电子设备的电气连接。
工业实用性
本公开提供的超声波探测器有效阻止了流体内的气泡及异物进入探测区,减弱了其他声源对信号探测的干扰,提高超声波探测器的稳定性。

Claims (14)

  1. 一种超声波探测器,包括:
    探测区(11);以及
    罩体,包括由内向外依次连通的至少两个腔体、多个流体入口和多个流体出口;
    其中,所述流体入口、所述流体出口与所述腔体流动连通形成流体通道,所述流体通道设置为引导流体沿着至少一个弯折路径流动,所述探测区(11)位于最内部的所述腔体内。
  2. 根据权利要求1所述的超声波探测器,其中,所述罩体包括内侧腔体和外侧腔体,所述外侧腔体的流体入口小于所述内侧腔体的流体入口,所述外侧腔体内的流体于所述内侧腔体的流体入口处汇合。
  3. 根据权利要求1所述的超声波探测器,其中,所述罩体包括内侧腔体和外侧腔体,所述内侧腔体的流体入口小于所述外侧腔体的流体入口,所述外侧腔体内的流体经过分流流入所述内侧腔体。
  4. 根据权利要求1所述的超声波探测器,其中,所述罩体包括内侧腔体和外侧腔体,所述内侧腔体的流体入口和所述外侧腔体的流体入口错位布置,所述内侧腔体的流体出口和所述外侧腔体的流体出口错位布置。
  5. 根据权利要求4所述的超声波探测器,其中,所述内侧腔体的流体入口和流体出口错位布置,所述外侧腔体的流体入口和流体出口错位布置。
  6. 根据权利要求2、4或5所述的超声波探测器,其中,所述内侧腔体的流体出口小于所述内侧腔体的流体入口,所述内侧腔体内的流体于所述内侧腔体的流体出口处分流。
  7. 根据权利要求3-5任一项所述的超声波探测器,其中,所述内侧腔体的流体出口大于所述内侧腔体的流体入口,所述内侧腔体内的流体于所述内侧腔体的流体出口处汇合。
  8. 根据权利要求2-5任一项所述的超声波探测器,其中,所述罩体包括内壳(12)和套设于所述内壳(12)外部的外壳(13),所述内壳(12)的内部形成所述内侧腔体,所述内壳(12)和所述外壳(13)之间形成所述外侧腔体。
  9. 根据权利要求8所述的超声波探测器,其中,所述内侧腔体的第一侧设置有开设于所述内壳(12)上的第一孔(121)和开设于所述外壳(13)上的第二孔(131);所述内侧腔体的第二侧设置有开设于所述内壳(12)上的第三孔(122)和开设于所述外壳(13)上的第四孔(132)。
  10. 根据权利要求9所述的超声波探测器,其中,所述第一孔(121)和第三孔(122)均为至少两个,所述第二孔(131)和第四孔(132)均为一个。
  11. 根据权利要求9所述的超声波探测器,其中,所述外壳(13)的第一侧开设有第五孔(133),所述第五孔(133)与所述第二孔(131)形成对流,所述第五孔(133)与所述第一孔(121)错位布置。
  12. 一种探测设备,包括如权利要求1-11任一项所述的超声波探测器。
  13. 根据权利要求12所述的探测设备,还包括:控制盒、液位探测管、流体管和法兰;其中,流体管设置为实现流体的运输;
    液位探测管设置为对箱体内流体的液位进行探测;
    法兰设置为封住箱体内的流体;
    所述控制盒设置为为所述液位探测管和超声波探测器与外部电子设备提供电气连接。
  14. 根据权利要求13所述的探测设备,还包括:加热器回路;
    所述加热器回路设置为加热所述流体,防止所述流体凝固。
PCT/CN2018/082266 2017-12-26 2018-04-09 超声波探测器及探测设备 WO2019127972A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020554340A JP6976673B2 (ja) 2017-12-26 2018-04-09 超音波検出器および検出装置
EP18897593.2A EP3734239B1 (en) 2017-12-26 2018-04-09 Ultrasonic detector and detection device
US16/769,022 US11359954B2 (en) 2017-12-26 2018-04-09 Ultrasonic detector and detection device
KR1020207019064A KR102425650B1 (ko) 2017-12-26 2018-04-09 초음파 검출기 및 검출 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711434072.7A CN109959429B (zh) 2017-12-26 一种超声波探测器及探测设备
CN201711434072.7 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019127972A1 true WO2019127972A1 (zh) 2019-07-04

Family

ID=67022217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082266 WO2019127972A1 (zh) 2017-12-26 2018-04-09 超声波探测器及探测设备

Country Status (5)

Country Link
US (1) US11359954B2 (zh)
EP (1) EP3734239B1 (zh)
JP (1) JP6976673B2 (zh)
KR (1) KR102425650B1 (zh)
WO (1) WO2019127972A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232037B2 (ja) * 2018-12-26 2023-03-02 上田日本無線株式会社 気体センサ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092862A (zh) * 1993-03-18 1994-09-28 清华大学 自校正式超声波测量液位装置
CN2206449Y (zh) * 1994-07-11 1995-08-30 马志敏 壁外式超声波液位检测装置
US5456108A (en) * 1993-11-15 1995-10-10 Simmonds Precision Products, Inc. Baffle assembly for ultrasonic liquid level measuring probe
US5856953A (en) * 1996-11-27 1999-01-05 Simmonds Precision Products, Inc. Processing echoes in ultrasonic liquid gauging systems
CN101490515A (zh) * 2006-07-18 2009-07-22 康蒂特米克微电子有限公司 用于确定液体液位的多腔式超声波传感器
CN201653498U (zh) * 2010-01-12 2010-11-24 太原科技大学 用超声波液位计测量液位的传感装置
CN102192771A (zh) * 2010-03-16 2011-09-21 赫拉胡克公司 用于确定液位的装置
CN105222860A (zh) * 2014-06-27 2016-01-06 赫拉胡克公司 用于利用超声波传感器测量容器中的液体的液位的装置
CN106596717A (zh) * 2016-12-27 2017-04-26 东莞正扬电子机械有限公司 超声波浓度探测器及带超声波浓度探测功能的液位传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825047A1 (de) * 1987-10-19 1989-04-27 Siemens Ag Sensor zur erfassung des fluessigkeitsstandes in einem behaelter
GB9021441D0 (en) * 1990-10-02 1990-11-14 British Gas Plc Measurement system
CN1032667C (zh) * 1990-12-11 1996-08-28 同济大学 超声波液体浓度检测仪
EP2667162B1 (en) * 2012-05-24 2015-09-30 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
US10012121B2 (en) * 2014-05-20 2018-07-03 Ssi Technologies, Inc. Reduction of aeration interference via tortuous path and sensor boot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092862A (zh) * 1993-03-18 1994-09-28 清华大学 自校正式超声波测量液位装置
US5456108A (en) * 1993-11-15 1995-10-10 Simmonds Precision Products, Inc. Baffle assembly for ultrasonic liquid level measuring probe
CN2206449Y (zh) * 1994-07-11 1995-08-30 马志敏 壁外式超声波液位检测装置
US5856953A (en) * 1996-11-27 1999-01-05 Simmonds Precision Products, Inc. Processing echoes in ultrasonic liquid gauging systems
CN101490515A (zh) * 2006-07-18 2009-07-22 康蒂特米克微电子有限公司 用于确定液体液位的多腔式超声波传感器
CN201653498U (zh) * 2010-01-12 2010-11-24 太原科技大学 用超声波液位计测量液位的传感装置
CN102192771A (zh) * 2010-03-16 2011-09-21 赫拉胡克公司 用于确定液位的装置
CN105222860A (zh) * 2014-06-27 2016-01-06 赫拉胡克公司 用于利用超声波传感器测量容器中的液体的液位的装置
CN106596717A (zh) * 2016-12-27 2017-04-26 东莞正扬电子机械有限公司 超声波浓度探测器及带超声波浓度探测功能的液位传感器

Also Published As

Publication number Publication date
US20210255024A1 (en) 2021-08-19
JP6976673B2 (ja) 2021-12-08
US11359954B2 (en) 2022-06-14
KR102425650B1 (ko) 2022-07-28
EP3734239B1 (en) 2023-08-09
EP3734239A1 (en) 2020-11-04
EP3734239C0 (en) 2023-08-09
JP2021508060A (ja) 2021-02-25
CN109959429A (zh) 2019-07-02
EP3734239A4 (en) 2021-08-25
KR20200093024A (ko) 2020-08-04

Similar Documents

Publication Publication Date Title
AU2016359473B2 (en) Flow measurement insert
US9261389B2 (en) Ultrasonic flowmeter
US7647840B2 (en) Plastic ultrasonic measurement section and corresponding measurement method
JP2015064209A (ja) 超音波流量計
EP3392651B1 (en) Ultrasonic concentration detector and liquid characteristic detector
JP2010077962A (ja) 容器中の流体の充填レベルを検出するための装置
CN106030254A (zh) 气体流量计
WO2019127972A1 (zh) 超声波探测器及探测设备
JP2009008406A (ja) 超音波流量計及び超音波送受波器ユニット
CN108474766A (zh) 声学确定介质特性的方法和借助反射元件声学确定介质特性的设备
US20160161525A1 (en) Apparatus and a method for providing a time measurement
CN109959429B (zh) 一种超声波探测器及探测设备
JP2006208159A (ja) 超音波流量計
JP6677486B2 (ja) 超音波流量計
JP2007033115A (ja) 超音波流量計の検出部
JP2022111407A (ja) 物理量計測装置
CN216900366U (zh) 一种超声波传感器
CN207622831U (zh) 一种超声波探测器及探测设备
JP2019196968A (ja) 超音波流量計
FI63300B (fi) Anordning foer bestaemning av placeringen av graensytan mellantvao material i en behaollare
KR20220044361A (ko) 개선된 초음파 유량계
JP2020016610A (ja) 超音波流量計の測定管路部の製造方法
JP2019191040A (ja) 超音波流量計
JP2007033032A (ja) 超音波流量計
CN111174844A (zh) 传感器装置及包括该传感器装置的科里奥利质量流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019064

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018897593

Country of ref document: EP

Effective date: 20200727