WO2019127962A1 - 一种药物检测方法及装置 - Google Patents

一种药物检测方法及装置 Download PDF

Info

Publication number
WO2019127962A1
WO2019127962A1 PCT/CN2018/081324 CN2018081324W WO2019127962A1 WO 2019127962 A1 WO2019127962 A1 WO 2019127962A1 CN 2018081324 W CN2018081324 W CN 2018081324W WO 2019127962 A1 WO2019127962 A1 WO 2019127962A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption spectrum
sample
tested
spectrum
absorption
Prior art date
Application number
PCT/CN2018/081324
Other languages
English (en)
French (fr)
Inventor
谭易东
潘奕
丁庆
Original Assignee
雄安华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雄安华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 雄安华讯方舟科技有限公司
Publication of WO2019127962A1 publication Critical patent/WO2019127962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the invention relates to the field of drug detection, in particular to a drug detection method and device.
  • a method of drug detection comprising:
  • the step of acquiring the detected absorption spectrum of the detection wave of the sample to be tested comprises:
  • the electromagnetic wave being an attenuation wave
  • the detected absorption spectrum is a time domain terahertz spectrum
  • the predetermined reference absorption spectrum is a frequency domain reference absorption spectrum
  • the step of acquiring the detected absorption spectrum of the detection wave of the sample to be tested includes:
  • the step of determining, according to the preset reference absorption spectrum and the detected absorption spectrum, whether the sample to be tested is a drug type corresponding to the reference absorption spectrum comprises:
  • the step of performing a Fourier transform on the detected absorption spectrum to obtain a frequency domain detection absorption spectrum includes:
  • the step of determining, according to the preset reference absorption spectrum and the detected absorption spectrum, whether the sample to be tested is a drug type corresponding to the reference absorption spectrum comprises:
  • the characteristic absorption frequency of the sample to be tested is consistent with the characteristic absorption frequency corresponding to the frequency domain reference absorption spectrum, according to the absorption rate of the sample to be tested and the frequency domain reference
  • the absorption rate corresponding to the absorption spectrum determines whether the sample to be tested is the drug type includes:
  • the detection of the sample to be tested is performed under a nitrogen atmosphere.
  • the standard sample comprises heroin, dextromethamphetamine, ketamine hydrochloride, methicone hydrochloride, pseudoephedrine hydrochloride, ephedrine hydrochloride, cocaine base, caffeine, methylene dioxygen Any one of pyrrolovadeone and synthetic cannabinoids.
  • a medicine detecting device comprising:
  • An electromagnetic generator for transmitting electromagnetic waves in a terahertz band to a sample to be tested; wherein the electromagnetic wave in the terahertz band is a detection wave;
  • a spectrum detector for acquiring a detection absorption spectrum of the detection wave of the sample to be tested
  • a processor configured to connect to the spectrum tester, the processor is configured to determine, according to a preset reference absorption spectrum and the detected absorption spectrum, whether the sample to be tested is a drug type corresponding to the reference absorption spectrum.
  • the spectrum detector transmits electromagnetic waves transmitted by the sample to be tested, the electromagnetic waves are attenuation waves, and the sample to be tested is obtained according to the spectrum of the attenuation wave and the spectrum of the detection wave. The absorption spectrum of the detected wave is detected.
  • the detected absorption spectrum is a time domain terahertz spectrum
  • the predetermined reference absorption spectrum is a frequency domain reference absorption spectrum
  • the processor performs a Fourier transform on the detected absorption spectrum, Obtaining a frequency domain detection absorption spectrum; the processor determining, according to the frequency domain reference absorption spectrum and the frequency domain detection absorption spectrum, whether the sample to be tested is a drug species corresponding to the reference absorption spectrum.
  • the above-mentioned drug detecting method and device use the electromagnetic wave of the terahertz band to detect the sample to be tested, and obtain the detected absorption spectrum of the detected wave of the sample to be tested. Comparing the preset reference absorption spectrum with the detected absorption spectrum of the sample to be tested, according to the comparison result, it can be judged whether the sample to be tested is the drug type corresponding to the reference absorption spectrum. Because for a specific drug, there will be a specific absorption of electromagnetic waves in the terahertz band. In this way, by analyzing the detected absorption spectrum of the electromagnetic wave in the terahertz band of the sample to be tested, it is possible to detect whether the sample to be tested is the above-mentioned drug type. Detection is convenient and fast.
  • FIG. 1 is a schematic flow chart showing a method for detecting an illegal drug based on electromagnetic waves of a terahertz band according to the first embodiment
  • FIG. 2 is a flow chart showing a method of detecting an illicit drug based on electromagnetic waves of a terahertz band according to a second embodiment.
  • a method for detecting a drug which can be used to detect whether a drug to be tested is a predetermined drug type.
  • the drug type is described by the illicit drug.
  • the above-mentioned drug detecting method is used for detecting whether the sample to be tested is a banned drug according to a reference absorption spectrum of electromagnetic waves in the terahertz band according to a standard sample of the illicit drug.
  • the specific absorption spectrum of the electromagnetic wave with respect to the terahertz band, that is, the preset reference absorption spectrum is the absorption spectrum of the standard sample.
  • the preset reference absorption spectrum may be a time domain reference absorption spectrum or a frequency domain reference absorption spectrum obtained by a time domain reference absorption spectrum.
  • the characteristic absorption frequency and absorption rate of the electromagnetic wave of the standard sample can be obtained from the frequency domain reference absorption spectrum.
  • the electromagnetic wave in the terahertz band refers to an electromagnetic wave having an effective bandwidth of 0-10 THz.
  • Standard samples include heroin, dextromethamphetamine, ketamine hydrochloride, methcatone hydrochloride, pseudoephedrine hydrochloride, ephedrine hydrochloride, cocaine base, caffeine, methylene dioxypyrrolidone (MDPV hydrochloride) Any of the components of synthetic cannabinoids and 2C-B hydrochloride.
  • the above method can be applied to a drug detecting device for illicit drugs based on electromagnetic waves in the terahertz band, and the sample to be tested is detected.
  • the detection device includes an electromagnetic generator, a spectrum detector, and a processor.
  • Fig. 1 is a flow chart showing the method of detecting a drug of the first embodiment. The method includes:
  • Step S110 transmitting electromagnetic waves in the terahertz band to the sample to be tested.
  • the electromagnetic wave in the terahertz band is a probe wave.
  • the probe wave is an electromagnetic wave of a preset terahertz band.
  • the electromagnetic wave of the preset terahertz band is an electromagnetic wave having an effective bandwidth of 0-10 THz.
  • the terahertz generator generates the electromagnetic wave and emits the electromagnetic wave to the sample to be tested for detection.
  • the photon energy of the terahertz wave is only 4 millielectron volts, which is highly safe and can achieve non-destructive and non-contact detection.
  • the detection of the sample to be tested is carried out under a nitrogen atmosphere. Nitrogen is an inert gas, so nitrogen does not absorb electromagnetic waves in the terahertz band.
  • the environment in which the test station is located is filled with nitrogen gas to discharge the air, together with the water vapor in the air, so that the dryness in the detection environment is good.
  • Step S120 Acquire a detection absorption spectrum of the detection wave of the sample to be tested.
  • the spectrum detector transmits electromagnetic waves transmitted by the sample to be tested, and the electromagnetic waves are attenuation waves.
  • the spectrum detector obtains the detected absorption spectrum of the detected wave of the sample to be tested according to the spectrum of the attenuated wave and the spectrum of the detected wave. Further, the spectrum detector compares the spectrum of the detected wave with the spectrum of the attenuated wave.
  • the processor can subtract the spectral energy of the detected wave from the spectral energy of the attenuated wave, so that the detected absorption spectrum of the sample to be tested can be easily obtained.
  • Step S130 determining whether the sample to be tested corresponds to the drug type corresponding to the reference absorption spectrum according to the preset reference absorption spectrum and the detection absorption spectrum.
  • the processor compares the reference absorption spectrum with the detected absorption spectrum, determines the reference absorption spectrum, and detects the absorption parameter of the absorption spectrum to determine whether the sample to be tested is a illicit drug.
  • the above-mentioned drug detecting method uses the electromagnetic wave of the terahertz band to detect the sample to be tested, and obtains the detected absorption spectrum of the detected wave of the sample to be tested. Comparing the reference absorption spectrum of the standard sample of the illicit drug with the detection absorption spectrum of the sample to be tested, according to the comparison result, it can be judged whether the sample to be tested is an illegal drug. Because illicit drugs have a specific absorption of electromagnetic waves in the terahertz band. In this way, by analyzing the detected absorption spectrum of the electromagnetic wave in the terahertz band of the sample to be tested, it is possible to detect whether the sample to be tested is an illegal drug. Detection is convenient and fast.
  • Fig. 2 is a flow chart showing the method of detecting a drug of the second embodiment.
  • the absorption spectrum is detected as a time domain terahertz spectrum.
  • the reference absorption spectrum is a frequency domain reference absorption spectrum.
  • step S120 Obtaining the step of detecting the absorption spectrum of the detection wave of the sample to be tested, that is, after step S120, including:
  • step S122 the absorption spectrum is detected and subjected to Fourier transform to obtain a frequency domain detection absorption spectrum.
  • Step S124 obtaining a characteristic absorption frequency and an absorption coefficient of the sample to be tested from the frequency domain detection absorption spectrum.
  • the characteristic absorption frequency and the absorption coefficient of the sample to be tested are obtained from the frequency domain detection absorption spectrum.
  • the characteristic absorption frequency refers to the frequency value of the peak of the light energy absorption of the sample to be tested.
  • the absorption coefficient refers to the ratio of the peak of the light energy absorption to the light energy of the detected wave at the characteristic absorption frequency.
  • Table 1 shows the characteristic absorption frequency of a standard sample of a series of illicit drugs.
  • the characteristic absorption frequency may be two or more.
  • the characteristic absorption frequency of a standard sample of any illicit drug is the standard characteristic absorption frequency.
  • the standard characteristic absorption frequency containing synthetic cannabinoids is at 1.27 THz and 2.20 THz.
  • the standard characteristic absorption frequency of caffeine is at 1.30 THz, 1.49 THz, 1.64 THz, 1.96 THz. It should be noted that if the sample to be tested is a certain banned drug, the characteristic absorption frequency obtained from the detection absorption spectrum thereof may allow floating near the standard characteristic absorption frequency value of the illicit drug, that is, the absorption spectrum is allowed to be detected therefrom.
  • the characteristic absorption frequency obtained in the method has a certain error range.
  • the error range can be set according to actual conditions. For example, if the characteristic absorption frequency of a sample to be tested is 1.28 THz, the sample to be tested may also be determined as synthetic cannabinoid. For another example, if the characteristic absorption frequency of a sample to be tested is 1.25 THz, the sample to be tested may also be determined as synthetic cannabinoid.
  • step S130 includes:
  • the sample to be tested is judged according to the frequency domain reference absorption spectrum and the frequency domain detection absorption spectrum as the drug type corresponding to the reference absorption spectrum.
  • the frequency domain detection absorption spectrum is a relationship between light intensity distribution and frequency.
  • the frequency domain detection absorption spectrum of the sample to be tested can be compared with the frequency domain detection absorption spectrum of the standard sample, and the light intensity distribution of the reference absorption spectrum and the frequency domain detection absorption spectrum can be clearly compared at the same frequency. It is judged whether the sample to be tested is an illegal drug according to the frequency, which makes the detection more convenient.
  • the step of determining whether the sample to be tested is an illegal drug according to the frequency domain reference absorption spectrum and the frequency domain detection absorption spectrum comprises:
  • step S132 the characteristic absorption frequency of the sample to be tested and the characteristic absorption frequency of the standard sample are compared, and the absorption coefficient of the detection wave of the sample to be tested and the absorption coefficient of the standard sample are compared.
  • the processor first determines whether the characteristic absorption frequency of the sample to be tested is consistent with the characteristic absorption frequency of the standard sample. If they are inconsistent, it means that the banned drug is not included in the sample to be tested. If the characteristic absorption frequency of the sample to be tested is consistent with the characteristic absorption frequency of the standard sample, it indicates that the sample to be tested contains illegal drugs. For example, some qualified pharmaceutical products, such as analgesic and antitussive drugs, may also contain illicit compounds. However, as long as the banned compound component is within the prescribed range, the drug product does not constitute a illicit drug. Conversely, if the banned compound component exceeds the specified range, the drug product is a banned drug.
  • Step S134 when the characteristic absorption frequency of the sample to be tested is consistent with the characteristic absorption frequency of the standard sample, whether the sample to be tested is the drug type corresponding to the reference absorption spectrum is determined according to the frequency domain reference absorption spectrum and the frequency domain detection absorption spectrum.
  • the processor continues to determine whether the sample to be tested is a illicit drug based on the absorption coefficient of the sample to be tested and the absorption coefficient of the standard sample.
  • the processor calculates the ratio of the absorption coefficient of the standard sample to the absorption coefficient of the sample to be tested, and compares the ratio with the preset range. When the ratio falls within the preset range, it is determined that the sample to be tested is an illegal drug. In this way, the results of detecting the sample to be tested are more accurate, and it is avoided that some qualified drug products containing the components of the banned compound are misidentified as illicit drugs.
  • a drug detecting device includes a sample stage, an electromagnetic generator, a spectrum detector, and a processor. The above drug detection method can be applied to the drug detecting device. Also, in this embodiment, the drug detecting device is configured to detect whether the sample to be tested is a illicit drug.
  • the sample stage is used to support the sample to be tested
  • the electromagnetic generator is used to emit electromagnetic waves in the terahertz band to the sample to be tested.
  • the electromagnetic wave in the terahertz band is a detection wave;
  • a spectrum detector is configured to acquire a detection absorption spectrum of the detection wave of the sample to be tested
  • the processor is coupled to the spectrum tester, and the processor is configured to determine, according to a preset reference absorption spectrum and the detected absorption spectrum, whether the sample to be tested is a drug type corresponding to the reference absorption spectrum.
  • the above-mentioned drug detecting device detects the sample to be tested by using electromagnetic waves in the terahertz band, and obtains a detection absorption spectrum of the detected wave of the sample to be tested. Comparing the reference absorption spectrum of the standard sample of the illicit drug with the detection absorption spectrum of the sample to be tested, according to the comparison result, it can be judged whether the sample to be tested is an illegal drug. Because illicit drugs have a specific absorption of electromagnetic waves in the terahertz band. In this way, by analyzing the detected absorption spectrum of the electromagnetic wave in the terahertz band of the sample to be tested, it is possible to detect whether the sample to be tested is a banned drug. Detection is convenient and fast.
  • the spectrum detector transmits electromagnetic waves transmitted by the sample to be tested, the electromagnetic waves are attenuation waves, and according to the spectrum of the attenuation wave and the spectrum of the detection wave, the sample to be tested is obtained.
  • the detected absorption spectrum of the probe wave is obtained.
  • the detected absorption spectrum is a time domain terahertz spectrum
  • the predetermined reference absorption spectrum is a frequency domain reference absorption spectrum
  • the processor performs Fourier transform on the detected absorption spectrum to obtain a frequency.
  • the domain detects an absorption spectrum; the processor determines, according to the frequency domain reference absorption spectrum and the frequency domain detection absorption spectrum, whether the sample to be tested is a drug species corresponding to the reference absorption spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种药物检测方法及装置。该方法包括:向待测样品发射太赫兹频段的电磁波;该太赫兹频段的电磁波为探测波;获取待测样品对探测波的检测吸收光谱;根据预设的参考吸收光谱和检测吸收光谱判断待测样品是不是参考吸收光谱对应的药物种类。该药物检测方法及装置通过分析待测样品对太赫兹频段的电磁波的检测吸收光谱即可检测出待测样品的药物种类。检测方便、快捷。

Description

一种药物检测方法及装置 技术领域
本发明涉及药物检测领域,特别涉及一种药物检测方法及装置。
背景技术
在过去的十年里,越来越多的违禁药物流入市场,违禁药物不仅影响到各国政府的施政决策,更会严重干扰一国国民经济的健康发展,违禁药物的泛滥已成了本世纪一个重大的社会问题,同时针对违禁药物的检测也成为了一个重要的研究领域。但是,常见的违禁药物的检测方法大多数是接触式的(如化学的比色测试、经过训练的缉毒犬使用嗅觉分辨),操作复杂,无法达到快速、高效的对违禁药物进行检查。
发明内容
基于此,有必要针对传统的违禁药物的检测复杂、无法进行快速检测的问题,提供一种药物检测方法及装置。
一种药物检测方法,包括:
向待测样品发射太赫兹频段的电磁波;其中,所述太赫兹频段的电磁波为探测波;
获取所述待测样品对所述探测波的检测吸收光谱;
根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类。
在其中一实施例中,所述获取所述待测样品对所述探测波的检测吸收光谱的步骤包括:
接收由所述待测样品透射的电磁波,该电磁波为衰减波;
根据所述衰减波的光谱和所述探测波的光谱,得到所述待测样品对所述探测波的检测吸收光谱。
在其中一实施例中,所述检测吸收光谱为时域太赫兹光谱;所述预设的参考吸收光谱是频域参考吸收光谱;
所述获取所述待测样品对所述探测波的检测吸收光谱的步骤之后包括:
将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱;
所述根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类的步骤包括:
根据所述频域参考吸收光谱和所述频域检测吸收光谱判断所述待测样品是否是所述参考吸收光谱对应的药物种类。
在其中一实施例中,所述将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱的步骤之后包括:
从所述频域检测吸收光谱中获取待测样品的特征吸收频率和吸收系数;
所述根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类的步骤包括:
比较所述待测样品的特征吸收频率和所述频域参考吸收光谱中对应的特征吸收频率,且比较所述待测样品对所述探测波的吸收系数和所述频域参考吸收光谱对应的吸收系数;
在所述待测样品的特征吸收频率与所述频域参考吸收光谱对应的特征吸收频率一致时,根据所述待测样品的吸收率和所述频域参考吸收光谱对应的吸收系数判断所述待测样品是不是所述药物种类。
在其中一实施例中,所述在所述待测样品的特征吸收频率与所述频域参考吸收光谱对应的特征吸收频率一致时,根据所述待测样品的吸收率和所述频域参考吸收光谱对应的吸收率判断所述待测样品是不是所述药物种类的步骤包括:
计算所述标准样品的吸收率与所述待测样品的吸收率的比值;
比较所述比值与预设范围,当所述比值在所述预设范围内时,判定所述待测样品是所述药物。
在其中一实施例中,对所述待测样品的检测是在氮气环境下进行。
在其中一实施例中,所述标准样品包含海洛因、右旋甲基苯丙胺、氯胺酮盐酸盐、甲卡西酮盐酸盐、盐酸伪麻黄碱、盐酸麻黄碱、可卡因碱、咖啡碱、亚甲基二氧吡咯戊酮及合成大麻素中的任意一种成分。
一种药物检测装置,包括:
样品台,用于支撑待测样品;
电磁发生仪,用于向待测样品发射太赫兹频段的电磁波;其中,所述太赫兹频段的电磁波为探测波;
光谱检测仪,用于获取所述待测样品对所述探测波的检测吸收光谱;
处理器,与所述光谱测试仪连接,所述处理器用于根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类。
在其中一实施例中,所述光谱检测仪由所述待测样品透射的电磁波,该电磁波为衰减波,并根据所述衰减波的光谱和所述探测波的光谱,得到所述待测样品对所述探测波的检测吸收光谱。
在其中一实施例中,所述检测吸收光谱为时域太赫兹光谱;所述预设的参考吸收光谱是频域参考吸收光谱;所述处理器将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱;所述处理器根据所述频域参考吸收光谱和所述频域检测吸收光谱判断所述待测样品是否是所述参考吸收光谱对应的药物种类。
上述药物检测方法及装置,利用太赫兹频段的电磁波对待测样品进行检测,并且得到待测样品对探测波的检测吸收光谱。比较预设的参考吸收光谱和待测样品的检测吸收光谱,根据比较结果便可以判断待测样品是否是参考吸收光谱对应的药物种类。因为对于一种特定的药物,会对太赫兹频段的电磁波会有特定的吸收。这样,分析待测样品对太赫兹频段的电磁波的检测吸收光谱即可检测出待测样品是否是上述药物种类。检测方便、快捷。
附图说明
图1为第一实施例的基于太赫兹频段的电磁波的违禁药物的检测方法的流程示意图;
图2为第二实施例的基于太赫兹频段的电磁波的违禁药物的检测方法的流程示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
一种药物检测方法,可用于检测待测药物是否是预设的药物种类。本实施方式中,药物种类以违禁药物来说明上述药物检测方法。本实施例中,上述药物检测方法用于依据违禁药物的标准样品对太赫兹频段的电磁波的参考吸收光谱检测待测样品是否是违禁药物。对于标准样品而言,具有对太赫兹频段的电磁波的特定的吸收光谱,即预设的参考吸收光谱为标准样品的吸收光谱。预设参考吸收光谱可以为时域参考吸收光谱,也可以是由时域参考吸收光谱得到的频域参考吸收光谱。从频域参考吸收光谱中可以得到标准样品对该电磁波的特征吸收频率和吸收率。
需要说明的是,太赫兹频段的电磁波是指有效频宽0-10THz范围的电磁波。
标准样品包含海洛因、右旋甲基苯丙胺、氯胺酮盐酸盐、甲卡西酮盐酸盐、盐酸伪麻黄碱、盐酸麻黄碱、可卡因碱、咖啡碱、亚甲基二氧吡咯戊酮(MDPV盐酸盐)、合成大麻素中及2C-B盐酸盐的任意一种成分。
上述方法可以应用于基于太赫兹频段的电磁波的违禁药物的药物检测装置中,以对待测样品进行检测。该检测装置包括电磁发生仪、光谱检测仪和处理器。
图1为第一实施例的药物检测方法的流程示意图。该方法包括:
步骤S110,向待测样品发射太赫兹频段的电磁波。
具体地,太赫兹频段的电磁波为探测波。本实施例中,探测波是预设太赫兹频段的电磁波。预设太赫兹频段的电磁波为有效频宽0-10THz范围的电磁波。太赫兹发生仪产生该电磁波,并将该电磁波发射至待测样品进行检测。太赫兹波的光子能量只有4毫电子伏特,安全性高,可以实现无损、非接触检测。本实施例中,对待测样品的检测是在氮气环境下进行。氮气是惰性气体,因此,氮气不会吸收太赫兹频段的电磁波。并且,将检测台所在的环境中充满氮气可以将空气排出,连同空气中的水汽全部排出,使得检测环境中的干燥度较好。
步骤S120,获取所述待测样品对所述探测波的检测吸收光谱。
具体地,光谱检测仪由所述待测样品透射的电磁波,该电磁波为衰减波。光谱检测仪根据衰减波的光谱和探测波的光谱,得到待测样品对探测波的检测吸收光谱。进一步地,光谱检测仪对比探测波的光谱和衰减波的光谱。本实施例中,处理器可以将探测波的光谱能量与衰减波的光谱能量相减,从而很容易得到待测样品的检测吸收光谱。
步骤S130,根据预设的参考吸收光谱和检测吸收光谱判断待测样品是不是所述参考吸收光谱对应的药物种类。
具体地,处理器对比参考吸收光谱和检测吸收光谱,判断参考吸收光谱和检测吸收光谱的吸收参数,从而判断待测样品是否是违禁药物。
上述药物检测方法,利用太赫兹频段的电磁波对待测样品进行检测,并且得到待测样品对探测波的检测吸收光谱。比较违禁药物的标准样品的参考吸收光谱和待测样品的检测吸收光谱,根据比较结果便可以判断待测样品是否是违禁药物。因为违禁药物对太赫兹频段的电磁波会有特定的吸收。这样,分析待测样品对太赫兹频段的电磁波的检测吸收光谱即可检测出待测样品是否是违禁药物。检测方便、快捷。
图2为第二实施例的药物检测方法的流程示意图。
本实施例中,检测吸收光谱为时域太赫兹光谱。参考吸收光谱为频域参考吸收光谱。
获取所述待测样品对所述探测波的检测吸收光谱的步骤,即步骤S120之后包括:
步骤S122,将检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱。
步骤S124,从频域检测吸收光谱中获取待测样品的特征吸收频率和吸收系数。
具体地,从频域检测吸收光谱中获取待测样品的特征吸收频率和吸收系数。特征吸收频率是指待测样品的光能量吸收峰值的频率值。吸收系数是指光能量吸收峰值与探测波在该特征吸收频率处的光能量的比值。
表1为一系列违禁药物的标准样品的特征吸收频率。
Figure PCTCN2018081324-appb-000001
Figure PCTCN2018081324-appb-000002
表1
具体地,对于上述任一种违禁药物,其特征吸收频率可以有两个或多个。设任一种违禁药物的标准样品的特征吸收频率为标准特征吸收频率。比如,含有合成大麻素的标准特征吸收频率位于1.27THz和2.20THz处。咖啡碱的标准特征吸收频率位于1.30THz,1.49THz,1.64THz,1.96THz处。需要说明的是,如果待测样品是某一种违禁药物,则从其检测吸收光谱中得到的特征吸收频率可以允许在该违禁药物的标准特征吸收频率值附近浮动,即允许从其检测吸收光谱中得到的特征吸收频率具有一定的误差范围。具体地误差范围可以根据实际情况设置。比如,某一待测样品的特征吸收频率为1.28THz,则也可以将该待测样品判定为合成大麻素。又如,某一待测样品的特征吸收频率为1.25THz,则也可以将该待测样品判定为合成大麻素。
根据参考吸收光谱和检测吸收光谱判断待测样品是否是参考吸收光谱对应的药物种类的步骤,即步骤S130包括:
根据频域参考吸收光谱和频域检测吸收光谱判断待测样品是否是所述参考吸收光谱对应的药物种类。
具体地,频域检测吸收光谱为光强分布和频率的关系。这样,可以使得待测样品的频域检测吸收光谱和标准样品的频域检测吸收光谱具有可比性,并且可以清晰地比较相同频率下,参考吸收光谱和频域检测吸收光谱的光强分布,以根据频率判断待测样品是否是违禁药物,使得检测更方便。
本实施例中,根据频域参考吸收光谱和频域检测吸收光谱判断待测样品是否是违禁药物的步骤包括:
步骤S132,比较待测样品的特征吸收频率和标准样品的特征吸收频率,且比较待测样品对探测波的吸收系数和标准样品的吸收系数。
具体地,处理器首先判断待测样品的特征吸收频率与标准样品的特征吸收 频率是否一致。如果不一致,则说明待测样品中不含该违禁药物。如果待测样品的特征吸收频率与标准样品的特征吸收频率一致时,说明待测样品中包含违禁药物。例如,一些合格的药物产品,如止痛止咳类药物也可能含有违禁化合物成分。但是,只要违禁化合物成分在规定的范围内,该药物产品就不构成违禁药物。相反,如果违禁化合物成分超过规定的范围,则该药物产品为违禁药物。
步骤S134,在待测样品的特征吸收频率与标准样品的特征吸收频率一致时,根据频域参考吸收光谱和频域检测吸收光谱判断待测样品是否是参考吸收光谱对应的药物种类。
具体地,处理器继续根据待测样品的吸收系数和标准样品的吸收系数判断待测样品是不是违禁药物。
本实施例中,处理器计算标准样品的吸收系数与待测样品的吸收系数的比值,并比较比值与预设范围,在比值落入预设范围时,判定待测样品是违禁药物。这样,检测待测样品的结果更准确,避免将含有违禁化合物成分的一些合格药物产品误判为违禁药物。
一种药物检测装置,包括样品台、电磁发生仪、光谱检测仪和处理器。上述药物检测方法可应用于该药物检测装置中。同样,本实施例中,该药物检测装置用于检测待测样品是不是违禁药物。
样品台用于支撑待测样品;
电磁发生仪用于向待测样品发射太赫兹频段的电磁波。其中,所述太赫兹频段的电磁波为探测波;
光谱检测仪用于获取所述待测样品对所述探测波的检测吸收光谱;
处理器与所述光谱测试仪连接,所述处理器用于根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类。
上述药物检测装置,利用太赫兹频段的电磁波对待测样品进行检测,并且得到待测样品对探测波的检测吸收光谱。比较违禁药物的标准样品的参考吸收光谱和待测样品的检测吸收光谱,根据比较结果便可以判断待测样品是否是违禁药物。因为违禁药物对太赫兹频段的电磁波会有特定的吸收。这样,分析待测样品对太赫兹频段的电磁波的检测吸收光谱即可检测出待测样品是否是违禁 药物。检测方便、快捷。
一实施例中,所述光谱检测仪由所述待测样品透射的电磁波,该电磁波为衰减波,并根据所述衰减波的光谱和所述探测波的光谱,得到所述待测样品对所述探测波的检测吸收光谱。
一实施例中,所述检测吸收光谱为时域太赫兹光谱;所述预设的参考吸收光谱是频域参考吸收光谱;所述处理器将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱;所述处理器根据所述频域参考吸收光谱和所述频域检测吸收光谱判断所述待测样品是否是所述参考吸收光谱对应的药物种类。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种药物检测方法,其特征在于,包括:
    向待测样品发射太赫兹频段的电磁波;其中,所述太赫兹频段的电磁波为探测波;
    获取所述待测样品对所述探测波的检测吸收光谱;
    根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述待测样品对所述探测波的检测吸收光谱的步骤包括:
    接收由所述待测样品透射的电磁波,该电磁波为衰减波;
    根据所述衰减波的光谱和所述探测波的光谱,得到所述待测样品对所述探测波的检测吸收光谱。
  3. 根据权利要求1所述的方法,其特征在于,所述检测吸收光谱为时域太赫兹光谱;所述预设的参考吸收光谱是频域参考吸收光谱;
    所述获取所述待测样品对所述探测波的检测吸收光谱的步骤之后包括:
    将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱;
    所述根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类的步骤包括:
    根据所述频域参考吸收光谱和所述频域检测吸收光谱判断所述待测样品是否是所述参考吸收光谱对应的药物种类。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱的步骤之后包括:
    从所述频域检测吸收光谱中获取待测样品的特征吸收频率和吸收系数;
    所述根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类的步骤包括:
    比较所述待测样品的特征吸收频率和所述频域参考吸收光谱中对应的特征吸收频率,且比较所述待测样品对所述探测波的吸收系数和所述频域参考吸收光谱对应的吸收系数;
    在所述待测样品的特征吸收频率与所述频域参考吸收光谱对应的特征吸收 频率一致时,根据所述待测样品的吸收率和所述频域参考吸收光谱对应的吸收系数判断所述待测样品是不是所述药物种类。
  5. 根据权利要求4所述的方法,其特征在于,所述在所述待测样品的特征吸收频率与所述频域参考吸收光谱对应的特征吸收频率一致时,根据所述待测样品的吸收率和所述频域参考吸收光谱对应的吸收率判断所述待测样品是不是所述药物种类的步骤包括:
    计算所述标准样品的吸收率与所述待测样品的吸收率的比值;
    比较所述比值与预设范围,当所述比值在所述预设范围内时,判定所述待测样品是所述药物。
  6. 根据权利要求1所述的方法,其特征在于,对所述待测样品的检测是在氮气环境下进行。
  7. 根据权利要求1所述的方法,其特征在于,所述标准样品包含海洛因、右旋甲基苯丙胺、氯胺酮盐酸盐、甲卡西酮盐酸盐、盐酸伪麻黄碱、盐酸麻黄碱、可卡因碱、咖啡碱、亚甲基二氧吡咯戊酮及合成大麻素中的任意一种成分。
  8. 一种药物检测装置,其特征在于,包括:
    样品台,用于支撑待测样品;
    电磁发生仪,用于向待测样品发射太赫兹频段的电磁波;其中,所述太赫兹频段的电磁波为探测波;
    光谱检测仪,用于获取所述待测样品对所述探测波的检测吸收光谱;
    处理器,与所述光谱测试仪连接,所述处理器用于根据预设的参考吸收光谱和所述检测吸收光谱判断所述待测样品是不是所述参考吸收光谱对应的药物种类。
  9. 根据权利要求8所述的装置,其特征在于,所述光谱检测仪由所述待测样品透射的电磁波,该电磁波为衰减波,并根据所述衰减波的光谱和所述探测波的光谱,得到所述待测样品对所述探测波的检测吸收光谱。
  10. 根据权利要求8所述的装置,其特征在于,所述检测吸收光谱为时域太赫兹光谱;所述预设的参考吸收光谱是频域参考吸收光谱;所述处理器将所述检测吸收光谱进行傅里叶变换,得到频域检测吸收光谱;所述处理器根据所述频域参考吸收光谱和所述频域检测吸收光谱判断所述待测样品是否是所述参考吸收光谱对应的药物种类。
PCT/CN2018/081324 2017-12-30 2018-03-30 一种药物检测方法及装置 WO2019127962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711488874.6A CN108226088B (zh) 2017-12-30 2017-12-30 一种药物检测方法及装置
CN201711488874.6 2017-12-30

Publications (1)

Publication Number Publication Date
WO2019127962A1 true WO2019127962A1 (zh) 2019-07-04

Family

ID=62647305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081324 WO2019127962A1 (zh) 2017-12-30 2018-03-30 一种药物检测方法及装置

Country Status (2)

Country Link
CN (1) CN108226088B (zh)
WO (1) WO2019127962A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108204956A (zh) * 2017-12-30 2018-06-26 深圳市太赫兹科技创新研究院 一种基于电磁波检测药物质量的方法及装置
CN108132227A (zh) * 2018-03-13 2018-06-08 深圳市太赫兹科技创新研究院 萘普生胶囊剂的鉴别方法及系统
CN110108648B (zh) * 2019-04-30 2022-01-14 深圳市太赫兹科技创新研究院有限公司 一种陈皮的鉴别方法和鉴别系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818635A (zh) * 2006-03-15 2006-08-16 首都师范大学 十二种毒品的THz检测方法及其指纹谱
CN101620065A (zh) * 2008-07-01 2010-01-06 中国科学院上海应用物理研究所 麻醉药品的太赫兹检测方法
GB2465896A (en) * 2007-01-29 2010-06-09 Teraview Ltd A Pharmaceutical Analysis Method and Apparatus
CN101782510A (zh) * 2009-01-20 2010-07-21 中国科学院上海应用物理研究所 麻醉药品的检测方法
US20130187050A1 (en) * 2012-01-25 2013-07-25 Hamamatsu Photonics K.K. Drug evaluation method and drug evaluation device
CN104251838A (zh) * 2014-08-27 2014-12-31 北京环境特性研究所 违禁物品检测方法和装置
CN104266993A (zh) * 2014-08-28 2015-01-07 北京环境特性研究所 基于太赫兹频段的物品特征提取方法和装置
CN105737984A (zh) * 2016-04-29 2016-07-06 深圳市太赫兹系统设备有限公司 太赫兹时域光谱辐射与检测装置
CN105841816A (zh) * 2016-04-18 2016-08-10 深圳市太赫兹系统设备有限公司 太赫兹时域光谱系统
CN105954227A (zh) * 2016-07-13 2016-09-21 深圳市太赫兹系统设备有限公司 铝塑板泡罩包装药品的太赫兹监测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216890A (ja) * 2009-03-13 2010-09-30 Toshiba Solutions Corp 異種製品検出装置及び異種製品検出方法
JP2014112078A (ja) * 2012-11-04 2014-06-19 Canon Inc 被検体情報取得装置及び方法
JP5510851B2 (ja) * 2012-12-28 2014-06-04 独立行政法人日本原子力研究開発機構 テラヘルツ測定法
CN104316487B (zh) * 2014-09-19 2017-02-15 北京环境特性研究所 违禁物品检测方法和装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818635A (zh) * 2006-03-15 2006-08-16 首都师范大学 十二种毒品的THz检测方法及其指纹谱
GB2465896A (en) * 2007-01-29 2010-06-09 Teraview Ltd A Pharmaceutical Analysis Method and Apparatus
CN101620065A (zh) * 2008-07-01 2010-01-06 中国科学院上海应用物理研究所 麻醉药品的太赫兹检测方法
CN101782510A (zh) * 2009-01-20 2010-07-21 中国科学院上海应用物理研究所 麻醉药品的检测方法
US20130187050A1 (en) * 2012-01-25 2013-07-25 Hamamatsu Photonics K.K. Drug evaluation method and drug evaluation device
CN104251838A (zh) * 2014-08-27 2014-12-31 北京环境特性研究所 违禁物品检测方法和装置
CN104266993A (zh) * 2014-08-28 2015-01-07 北京环境特性研究所 基于太赫兹频段的物品特征提取方法和装置
CN105841816A (zh) * 2016-04-18 2016-08-10 深圳市太赫兹系统设备有限公司 太赫兹时域光谱系统
CN105737984A (zh) * 2016-04-29 2016-07-06 深圳市太赫兹系统设备有限公司 太赫兹时域光谱辐射与检测装置
CN105954227A (zh) * 2016-07-13 2016-09-21 深圳市太赫兹系统设备有限公司 铝塑板泡罩包装药品的太赫兹监测方法

Also Published As

Publication number Publication date
CN108226088A (zh) 2018-06-29
CN108226088B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2019127962A1 (zh) 一种药物检测方法及装置
CN106574868B (zh) 用于减小ftir或ftir-atr光谱法中采集背景/参考谱的频率的方法以及具体实施所述方法的手持型测量装置
Naftaly Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration
WO2019153460A1 (zh) 基于atr模式的物质成分鉴别方法、装置和计算机设备
CN111213048B (zh) 用于非侵入性地确定蛋性质的系统及方法
US10267678B2 (en) Raman spectroscopic detection method
RU2008129064A (ru) Детектор и способ обнаружения
WO2019223364A1 (zh) 基于太赫兹频段的电磁波检测冬虫夏草质量的方法
CN107782705B (zh) 岩石含油量测定方法及装置
KR101739628B1 (ko) 테라헤르츠파를 이용한 반도체 웨이퍼 분석장치 및 그의 분석방법
TW201250233A (en) Systems and methods for wavelength spectrum analysis for detection of various gases using a treated tape
CN101782510A (zh) 麻醉药品的检测方法
KR20220053015A (ko) 금지물질의 결정 장치 및 방법
Algethami et al. Chemical fingerprinting and quantitative monitoring of the doping drugs bambuterol and terbutaline in human urine samples using ATR-FTIR coupled with a PLSR chemometric tool
CN101620065A (zh) 麻醉药品的太赫兹检测方法
WO2019127953A1 (zh) 一种基于电磁波检测药物质量的方法及装置
CN101487796B (zh) 测定固体样品中三聚氰胺含量的方法
Lian et al. Qualitative and quantitative analyses of potassium sorbate in milk powder using terahertz spectra
Defratyka et al. Ethane measurement by Picarro CRDS G2201-i in laboratory and field conditions: potential and limitations
US20150022802A1 (en) Spectroscopy detection system and method for material identification
CN108267421A (zh) 一种奶粉中三聚氰胺的检测方法及检测系统
Risoluti et al. Development of a “single-click” analytical platform for the detection of cannabinoids in hemp seed oil
JPWO2014132620A1 (ja) 毛髪等の繊維状物質の検出方法および装置
CA2659470A1 (en) Method and apparatus for minimizing the effect of baseline depression in ionizing radiation measuring equipment
Risoluti et al. The detection of cannabinoids in veterinary feeds by microNIR/chemometrics: a new analytical platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894414

Country of ref document: EP

Kind code of ref document: A1