WO2019127383A1 - 光场显示系统 - Google Patents

光场显示系统 Download PDF

Info

Publication number
WO2019127383A1
WO2019127383A1 PCT/CN2017/119893 CN2017119893W WO2019127383A1 WO 2019127383 A1 WO2019127383 A1 WO 2019127383A1 CN 2017119893 W CN2017119893 W CN 2017119893W WO 2019127383 A1 WO2019127383 A1 WO 2019127383A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
reflecting
reflective
light field
Prior art date
Application number
PCT/CN2017/119893
Other languages
English (en)
French (fr)
Inventor
李礼操
薛翰聪
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Priority to PCT/CN2017/119893 priority Critical patent/WO2019127383A1/zh
Publication of WO2019127383A1 publication Critical patent/WO2019127383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods

Definitions

  • the present application relates to light field display technology, and in particular to a light field display system.
  • the light field display is a true 3D display technology, which is characterized by recovering the light field of the real scene, allowing the eye to produce a visual effect that is consistent with the real scene, compared to the current common naked-eye 3D technology such as lenticular or parallax barrier technology.
  • the light field display can significantly improve the comfort of viewing, and is a promising technology.
  • the light field display technology of the microlens array is such that the microlens array 2' (abbreviated as MLA, including a plurality of microlenses) is placed at an appropriate position in front of the display panel 1', and the bottom of each microlens is covered.
  • MLA microlens array
  • the number of pixels, the light emitted from the display panel 1' is superimposed in the space through the microlens, and the light field of the original object is reproduced, so that the three-dimensional image can be seen.
  • the resolution of the microlens array light field display technology is low, as shown in FIG. 2, wherein the display image of the display panel is the original image 01', and finally passes through the micro
  • the image obtained by the lens array is the imaged image 02', which significantly increases the graininess of the image, thereby affecting the user's experience.
  • One way to solve the above-mentioned low resolution is to increase the pixel density of the panel, but the current panel density has reached a bottleneck, and it is very difficult to further improve.
  • the main object of the present application is to provide a light field display system to solve the problem of low resolution of the light field display system of the microlens array in the prior art.
  • a light field display system comprising: an imaging unit including a display device and an imaging device disposed on a light exiting side of the display device, the display device For displaying an image, the image forming apparatus is configured to convert an image displayed by the display device into a reduced real image; a microlens array is disposed on a light exiting side of the imaging unit, and the microlens array is configured to convert an image output by the imaging unit For stereoscopic images.
  • the imaging unit further includes: a reflecting device disposed on a light exiting side of the display device.
  • the above reflecting means comprises at least one reflecting device.
  • the above imaging unit is plural.
  • the above-mentioned light field display system includes at least two imaging units, each of which includes one of the above display device and one of the above-mentioned imaging devices, and the area where the light of each of the imaging units projected onto the microlens array is light In the region, the positions of the light regions corresponding to the different imaging units are at least partially different.
  • each of the above-mentioned imaging units further includes two reflection devices, which are respectively a first reflection device and a second reflection device.
  • the imaging device is disposed on a light-emitting side of the display device, and the first reflection The device is disposed on the light exiting side of the image forming apparatus, the second reflecting device is disposed on the light emitting side of the first reflecting device, and the two light regions are connected without a gap.
  • the above-mentioned light field display system includes a plurality of imaging units, a part of the plurality of imaging units is a first imaging unit, and a part is a second imaging unit, and the second imaging unit further includes two reflective devices, respectively a first reflecting device and a second reflecting device, wherein the first reflecting device is disposed on a light emitting side of the image forming device, and the second reflecting device is disposed on a light emitting side of the first reflecting device, and any The two aforementioned light regions partially overlap.
  • the second reflective device is located between the first imaging unit and the microlens array, and the second reflective device is a switchable transmissive/reflective device or a transflective device, wherein the switchable transmissive/reflective device
  • the transflective device is a reflective device in which a portion of the structure is in a transmissive state and another portion of the structure is in a reflective state.
  • the at least one imaging unit includes a plurality of the display devices, and the plurality of images displayed by the plurality of display devices are composed of different display pixels in the source image, and the corresponding display pixels of the plurality of images are projected to the foregoing The light areas on the microlens array partially overlap.
  • the light-emitting surfaces of the plurality of display devices are arranged in parallel and have the same area, and each of the display devices is a transparent display device, and a plane parallel to the light-emitting surface is a first plane, and a plurality of The projection portions of the light-emitting surface of the display device on the first plane coincide.
  • the line connecting the centers of any two adjacent display devices on the first plane is a diagonal of a rectangle, and the diagonal lines of the rectangles are on the same line.
  • the at least one imaging unit includes three display devices, one imaging device, and four reflective devices, and the three display devices are a first display device, a second display device, and a third display device, respectively.
  • the display surface of the first display device is parallel to the display surface of the third display device
  • the display surface of the second display device is perpendicular to the display surface of the first display device
  • the four reflective devices are respectively a first reflective device.
  • the first reflecting device and the second reflecting device are disposed between the second display device and the image forming device, and the first reflecting device and the first
  • the second reflecting device is configured to reflect the light corresponding to the image displayed by the first display device to the image forming device
  • the second reflecting device is configured to correspond to the image displayed by the third display device.
  • the light is reflected onto the imaging device, and the first reflective device and the second reflective device are In other transmission / reflection device or a transflective reflector device, the third device provided on the light reflection side of the image forming apparatus, the fourth apparatus is provided light reflection side of the third reflective device at.
  • the above light field display system further includes: a timing control device electrically connected to the imaging unit for controlling at least the operation of the display device in each of the imaging units.
  • the above light field display system further includes: a shifting device, wherein the display device and/or the image forming device are disposed on the shifting device, and the shifting device moves the display device and/or the image forming device at different times To a different position; a timing control device electrically connected to each of the above shifting devices for controlling at least the operation of the shifting device.
  • the above image forming apparatus includes a convex lens, a Fresnel lens, a graded index lens, and/or a grating lens.
  • the image displayed by the imaging unit at different times is composed of different display pixels in the source image, or the plurality of images displayed by the imaging unit at the same time are composed of different display pixels in the source image, forming a stereoscopic image.
  • the light regions of the display pixels corresponding to the plurality of images of the imaging unit projected onto the microlens array partially overlap.
  • the optical field display system includes an imaging device, and the display image of the display device is changed to a smaller real image by the imaging device, thereby increasing the number of pixels corresponding to each microlens in the microlens array. Thereby the resolution of the resulting image is improved.
  • the present application provides another light field display system, comprising: a display unit, comprising at least one display device, wherein the image displayed by the display unit at different times is different display pixels in the source image.
  • the plurality of images that are composed or displayed at the same time are composed of different display pixels in the source image;
  • the microlens array is disposed on the light exiting side of the display unit, and the microlens array includes a plurality of microlenses arranged in an array, the microlens The array is configured to convert the image displayed by the display unit into a stereoscopic image. In the process of forming the stereoscopic image, the light regions corresponding to the plurality of images displayed by the display unit and projected onto the microlens array partially overlap. .
  • the above display unit includes a plurality of the above display devices.
  • the light-emitting surfaces of the plurality of display devices are arranged in parallel and have the same area, and each of the display devices is a transparent display device, and a plane parallel to the light-emitting surface is a first plane, and a light-emitting surface of the plurality of display devices is The projections on the first plane described above partially overlap.
  • the line connecting the centers of any two adjacent display devices on the first plane is a diagonal of a rectangle, and the diagonal lines of the rectangles are on the same line.
  • the light field display system further includes: a shifting device, wherein the display device is disposed on the shifting device, and the shifting device moves the display device to a different position at different times.
  • At least one reflecting device is disposed on the light emitting side of the display device.
  • the light field display system includes at least two display units, each of the display units includes one of the display device and two of the reflective devices, and the two reflective devices are respectively a first reflective device and a second reflective device.
  • the first reflecting device is disposed on a light emitting side of the display device
  • the second reflecting device is disposed on a light emitting side of the first reflecting device.
  • the above-mentioned light field display system includes at least two display units, wherein some of the display units are first display units, and some of the display units are second display units, and the second display unit includes one display device and two
  • the two reflection devices are respectively a first reflection device and a second reflection device.
  • the first reflection device is disposed on the light exit side of the display device, and the second reflection device is disposed. On the light exit side of the first reflecting device.
  • the second reflective device is located between the first display unit and the microlens array, and the second reflective device comprises a switchable transmissive/reflective device or a transflective device, wherein the switchable transmissive/reflective device
  • the transflective device is a reflective device in which a portion of the structure is in a transmissive state and another portion of the structure is in a reflective state.
  • At least one of the above display units includes three of the above display devices and four of the above-mentioned reflective devices, and the three display devices are respectively a first display device, a second display device, and a third display device, and the first display device
  • the light-emitting surface of the second display device is parallel to the light-emitting surface of the third display device, and the light-emitting surface of the second display device is perpendicular to the light-emitting surface of the first display device
  • the four reflective devices are respectively a first reflective device and a second reflective device.
  • the first reflecting device and the second reflecting device are disposed between the second display device and the third reflecting device, and the first reflecting device and the second reflecting device are The first reflecting device is configured to reflect the light corresponding to the image displayed by the first display device to the third reflecting device, and the second reflecting device is configured to correspond to the image displayed by the third display device. The light is reflected to the third reflecting device, and the first reflecting device and the second reflecting device are switchable A radiation/reflecting device or a transflective device, wherein the fourth reflecting device is disposed on a light exiting side of the third reflecting device.
  • the light field display system further includes: a timing control unit electrically connected to the display unit for controlling at least the operation of the display device.
  • the plurality of images displayed by the display unit at different times or at the same time are differently displayed in the source image.
  • a pixel composition the plurality of images composing a source image, that is, a plurality of images displayed at different times or at the same time are different sub-images of one source image, that is, a plurality of images are a plurality of sub-images decomposed from the source image, forming one
  • the corresponding light regions projected by the display pixels onto the microlens array partially overlap, that is, the display pixels partially overlap in different images, and the portion is the display pixel.
  • the equivalent pixel the area of the equivalent pixel is smaller than the area of the original pixel, so that the density of the equivalent pixel becomes larger, thereby increasing the number of equivalent pixels corresponding to one microlens, thereby improving the resolution of the finally obtained image. .
  • FIG. 1 is a schematic structural view of a light field display system in the prior art
  • FIG. 2 is a view showing a comparison of an image obtained by the display system of FIG. 1 and an image displayed by a display device;
  • 3 to 8 are diagrams showing the structure of the light field display system provided in Embodiments 1 to 6 of the present application.
  • FIG. 9 is a schematic diagram showing a positional relationship of imaging of an image of three display devices after passing through a microlens array according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a light field display system provided in Embodiment 7 of the present application.
  • Figure 11 is a view showing the positional relationship between two images of the light field display system of Figure 10 at different times;
  • FIG. 12 is a schematic structural diagram of a light field display system provided in Embodiment 8 of the present application.
  • Figure 13 is a diagram showing the positional relationship between two images of the light field display system of Figure 12 at different times;
  • FIG. 14 is a schematic structural diagram of a light field display system provided in Embodiment 9 of the present application.
  • Embodiment 15 is a schematic structural diagram of a light field display system provided by Embodiment 10 of the present application.
  • FIG. 16 is a schematic diagram showing the positional relationship of a display unit provided by another embodiment.
  • FIG. 17 is a schematic structural diagram of a light field display system provided in Embodiment 11 of the present application.
  • Figure 18 is a view showing a comparison of an image obtained by the light field display system of the present application and an image displayed by the display device;
  • Embodiment 19 is a schematic structural diagram of a light field display system provided in Embodiment 12 of the present application.
  • Figure 20 is a diagram showing the positional relationship between two images of the light field display system of Figure 19 at different times;
  • FIG. 21 is a schematic structural diagram of a light field display system provided in Embodiment 13 of the present application.
  • Figure 22 is a diagram showing the positional relationship between two images of the light field display system of Figure 21 at different times;
  • Embodiment 23 is a schematic structural diagram of a light field display system provided by Embodiment 14 of the present application.
  • Figure 24 is a diagram showing the positional relationship between two images of the light field display system of Figure 23 at different times;
  • Figure 25 is a block diagram showing the structure of a light field display system provided in Embodiment 15 of the present application.
  • FIG. 26 is a schematic structural diagram of a light field display system provided by Embodiment 16 of the present application.
  • Figure 27 is a diagram showing the positional relationship between two images of the light field display system of Figure 26 at different times;
  • FIG. 28 is a block diagram showing the structure of a light field display system provided in Embodiment 17 of the present application.
  • 29 is a view showing a comparison of an image obtained by the light field display system of the present application and an image displayed by the display device.
  • the present application proposes a light field display system.
  • a light field display system includes an imaging unit and a microlens array 3.
  • the image forming unit includes a display device 1 for displaying an image, and an image forming device 2 for converting an image displayed by the display device 1 into a reduced image, and an image forming device 2 disposed on a light emitting side of the display device 1 A real image; a microlens array 3 disposed on a light exiting side of the imaging unit, wherein the microlens array 3 is configured to convert an image output by the imaging unit into a stereoscopic image.
  • the light field display system includes an imaging device, and the display image of the display device is changed into a smaller real image by the imaging device, thereby increasing the number of pixels corresponding to each microlens in the microlens array, thereby causing the resolution of the finally obtained image. The rate is increased.
  • the image forming unit further includes a reflecting device provided on the light emitting side of the display device 1, and the reflecting device is a device having a function of reflecting light.
  • the reflecting device may be disposed between the display device and the imaging device, and may also be disposed between the imaging device and the microlens array, and a person skilled in the art may select to set the reflecting device at a suitable position according to actual conditions.
  • the reflective device includes at least one reflective device.
  • the reflective device can reflect light.
  • Those skilled in the art can select an appropriate number of reflective devices according to actual conditions, thereby optimizing the optical path of the light field display system to reduce the volume of the light field display system.
  • the reflecting device in FIG. 4 includes a reflecting device disposed on the light emitting side of the image forming device, reflecting the light emitted from the image forming device, and reflecting into the microlens array, which is not required in the system as compared with the system shown in FIG.
  • the microlens array is disposed opposite the imaging device, reducing the volume of the light field display system, making it lightweight.
  • the reflecting device in FIG. 5 includes two reflecting devices, which are respectively a first reflecting device and a second reflecting device.
  • the first reflecting device is disposed on the light emitting side of the image forming device
  • the second reflecting device is disposed on the light emitting side of the first reflecting device.
  • the light from the first reflecting device is reflected and reflected into the microlens array. In this way, the optical path of the light emitted by the display device is adjusted by the two reflecting devices, thereby reducing the volume of the light field display system and making it lighter.
  • the plurality of imaging units are pluralityed, and the images displayed by the plurality of imaging units are projected into the microlens array.
  • the light field display system includes at least two imaging units, each of the imaging units includes one of the display device 1 and one of the imaging devices 2, and each of the imaging units projects to the microlens.
  • the area where the light on the array 3 is located is a light area, and the positions of the light areas corresponding to the different imaging units are at least partially different. This increases the resolution of the image display by projecting light passing through the two imaging devices into the microlens array.
  • each of the imaging units further includes two reflection devices 4, which are a first reflection device 41 and a second reflection device 42, respectively, in each of the imaging units, the imaging The device 2 is disposed on the light emitting side of the display device 1, the first reflecting device 41 is disposed on the light emitting side of the image forming device 2, and the second reflecting device 42 is disposed on the light emitting side of the first reflecting device 41, and the above two The light area is connected without gaps.
  • the image to be displayed is divided into two parts, for example, an image is divided into an upper half and a lower half, respectively, which are displayed by one display device, and are displayed by more display pixels than by an equal display device.
  • the image is displayed, and the image displayed by the display device is separately imaged by an imaging device, and finally projected into two regions in the microlens array, the two regions are connected without gaps, so that a microlens corresponding to the display pixel
  • the number has doubled, further increasing the resolution of the light field display system.
  • the light field display system includes a plurality of imaging units, and among the plurality of imaging units, a portion is a first imaging unit, and a portion is a second imaging unit, and the second The imaging unit further includes two reflection devices 4, which are a first reflection device 41 and a second reflection device 42, respectively.
  • the first reflection device 41 is disposed on the light exit side of the imaging device 2
  • the light emitted from the image forming apparatus is reflected and reflected into the second reflecting device.
  • the second reflecting device 42 is disposed on the light emitting side of the first reflecting device 41, and the light emitted from the first reflecting device is reflected into the microlens array, and any two The above light regions partially overlap.
  • the display images in the plurality of imaging units may be the same, the light regions projected by the imaging unit into the microlens array partially overlap, and the display pixels corresponding to the plurality of images are projected onto the microlens array.
  • the light regions partially overlap, and the coincident portions correspond to equivalent pixels.
  • the equivalent pixel 045 is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the second reflecting device 42 When the second reflecting device 42 is located between the first imaging unit and the microlens array 3, as shown in FIG. 8, the second reflecting device is configured to prevent the second reflecting device from affecting the light path of the first imaging unit.
  • 42 is a switchable transmissive/reflective device or a transflective device, wherein the switchable transmissive/reflective device is a reflective device switchable between a transmissive state and a reflective state, wherein the transflective device is in a transmissive state
  • Another portion of the structure is a reflective device in a reflective state that reflects a portion of the light while transmitting a portion of the light. For example, a half lens.
  • the image displayed by the imaging unit at different times is composed of different display pixels in the source image, or the imaging unit is displayed at the same time.
  • the images are composed of different display pixels in the source image, and the plurality of images constitute a source image, that is, multiple images displayed at different times or at the same time are different sub-images of one source image, that is, multiple images are decomposed by the source image.
  • the plurality of sub-images that come out may be completely different or partially identical, and the source image may be a high-resolution image.
  • the plurality of images of the imaging unit (the plurality of images may be displayed by a display device at different times, or may be displayed by a plurality of display devices) corresponding to the display pixels
  • the light regions projected onto the above-described microlens array partially overlap.
  • the display regions corresponding to the plurality of images are partially overlapped with the light regions projected onto the microlens array, and the overlapped portions correspond to equivalent pixels, and the equivalent pixels are smaller, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving The display resolution.
  • At least one of the above imaging units includes a plurality of the display devices 1 as shown in FIG. 15 and FIG.
  • the plurality of images are composed of different display pixels in the source image, and the light regions of the plurality of images corresponding to the display pixels projected onto the microlens array 3 partially overlap.
  • the display regions corresponding to the plurality of images are partially overlapped with the light regions projected onto the microlens array, and the overlapped portions correspond to equivalent pixels, and the equivalent pixels are smaller, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving The display resolution.
  • the light-emitting surfaces of the plurality of display devices 1 are arranged in parallel and have the same area, and each of the display devices 1 is a transparent display device, and the above The plane in which the light-emitting surfaces are parallel is the first plane, and the projection portions of the light-emitting surfaces of the plurality of display devices 1 on the first plane coincide.
  • the coincident portions correspond to equivalent pixels 045, equivalent The pixel 045 is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the projection of the center of any two adjacent display devices 1 on the first plane is performed.
  • the line is a diagonal of a rectangle, and the diagonals of the above rectangles are on the same line.
  • At least one of the above imaging units includes three display devices 1, one imaging device 2, and four reflection devices 4, and the three display devices 1 are respectively a first display device 11, a second display device 12, and a third display device 13, and the display surface of the first display device 11 is parallel to the display surface of the third display device 13, and the display surface of the second display device 12 is
  • the display surface of the first display device 11 is vertical
  • the four reflection devices 4 are respectively a first reflection device 41, a second reflection device 42, a third reflection device 43, and a fourth reflection device 44, and the first reflection device 41 is
  • the second reflecting device 42 is disposed between the second display device 12 and the imaging device 2, and the first reflecting device 41 intersects with the second reflecting device 42 and is perpendicular to the first reflecting device 41.
  • the light corresponding to the image displayed by the first display device 11 is reflected on the imaging device 2, and the second reflective device 42 is configured to reflect the light corresponding to the image displayed by the third display device 13.
  • the first reflecting device 41 and the second reflecting device 42 are switchable transmissive/reflective devices or transflective devices, and the third reflecting device 43 is disposed on the light emitting side of the image forming device 2,
  • the fourth reflecting device 44 is disposed on the light outgoing side of the third reflecting device 43 described above.
  • the light field display system further includes a timing control device, and the timing control device is electrically connected to the imaging unit for controlling each of the imaging units. The operation of device 1 is displayed.
  • the above-described light field display system further includes a shifting device 5 and a timing control device, and the display device 1 and/or the above-described image forming device 2 are disposed in the shifting device 5 described above.
  • the shifting device 5 moves the display device 1 and/or the imaging device 2 to different positions at different times, so that the light regions projected to the microlens array at different times are different; the timing control device and each of the above shifts
  • the device 5 is electrically connected for controlling the operation of the displacement device 5 such that the displacement devices are at different positions at different times, thereby causing the display devices to be at different positions at different times.
  • the above-described imaging device 2 includes a convex lens, a Fresnel lens, a graded index lens, and/or a grating lens.
  • a person skilled in the art can select a suitable imaging device according to actual conditions, and of course, is not limited to the above-mentioned imaging device.
  • the display device in the present application may be any display device in the prior art, such as an LCD panel, an OLED panel or an LED array, and a person skilled in the art may select a suitable display device according to actual conditions.
  • the light field display system includes an imaging unit and a microlens array 3, and the specific positional relationship is as shown in FIG. 3.
  • the imaging unit includes a display device 1 and an imaging device 2, and the display device 1 is an LCD panel. a display panel, the imaging device 2 is a convex lens, and the imaging device 2 converts the image displayed by the display unit into a reduced image 02, thereby projecting the image into the microlens array 3 such that the pixels corresponding to the respective microlenses in the microlens array 3 The number is increased, so that the resolution of the resulting image is improved.
  • the light field display system includes an imaging unit and a microlens array 3, and the specific positional relationship is as shown in FIG. 4.
  • the imaging unit includes a display device 1, a reflecting device and an imaging device 2, and a reflecting device.
  • a reflection device 4 is included, the display device 1 is an OLED display panel, the imaging device 2 is a convex lens, and the reflection device 4 is a reflective film.
  • the reflection device 4 is disposed on the light exit side of the imaging device 2, reflects the light emitted from the imaging device 2, and reflects In the microlens array 3, compared to the system shown in Fig. 3, it is not necessary to face the microlens array 3 with the imaging device 2 in the system, which reduces the volume of the light field display system and makes it lighter.
  • the light field display system includes an imaging unit and a microlens array 3, and the specific positional relationship is as shown in FIG. 5.
  • the imaging unit includes a display device 1, a reflecting device and an imaging device 2, and a reflecting device.
  • the two reflective devices are respectively a first reflective device 41 and a second reflective device 42.
  • the display device 1 is an LCD display panel
  • the imaging device 2 is a convex lens
  • the first reflective device 41 and the second reflective device 42 are both reflective films.
  • the first reflecting device 41 is disposed on the light exiting side of the image forming apparatus 2
  • the second reflecting device 42 is disposed on the light emitting side of the first reflecting device 41, reflects the light emitted from the first reflecting device 41, and reflects the same to the microlens array 3. in.
  • the volume of the light field display system can be further reduced, making it lighter.
  • the light field display system is different from Embodiment 3 in that the imaging device 2 is a Fresnel lens.
  • the volume of the light field display system can be further reduced by using a Fresnel lens, making it lighter.
  • the light field display system includes two imaging units and a microlens array 3, wherein each imaging unit includes a display device 1, a reflecting device and an imaging device 2, and the reflecting device includes two reflections.
  • the device is a first reflecting device 41 and a second reflecting device 42 respectively
  • the display device 1 is an OLED display panel
  • the imaging device 2 is a convex lens
  • the first reflecting device 41 and the second reflecting device 42 are both reflective films
  • two imaging devices The light regions projected by the unit to the microlens array 3 are connected without gaps.
  • the light field display system divides an image into an upper half and a lower half, respectively, which are displayed by a display device 1 and displayed by an display device 1 having an equal area, in such a manner that the image is displayed by more display pixels.
  • the images displayed by the display device 1 are respectively imaged by an imaging device 2, and finally projected to two regions in the microlens array 3, the two regions being connected without gaps, so that the number of display pixels corresponding to one microlens
  • the doubling has further increased the resolution of the light field display system.
  • the light field display system includes a first imaging unit, a second imaging unit, a microlens array 3, and a timing control device (not shown), wherein the second imaging unit includes a display device.
  • a reflection device and an imaging device 2 the reflection device comprising two reflection devices, respectively a first reflection device 41 and a second reflection device 42
  • the display device 1 is an LED array display panel
  • the imaging device 2 is a convex lens
  • first The reflective device 41 is a reflective film
  • the second reflective device 42 is a switchable transmission/reflection device.
  • the specific positional relationship is as shown in FIG.
  • the display images in the above two imaging units are different sub-images in one source image, and the two sub-images are interlaced, and the light regions projected by the imaging unit into the microlens array 3 partially coincide.
  • the timing control device is electrically connected to the display device 1 of the two imaging units, and is also electrically connected to the second reflection device 42.
  • the timing control device controls the image displayed by the display device 1 in the first imaging unit at the first moment as the first An image, at this time, the timing control device controls the second reflection device 42 to be in a transmissive state, and then controls the image displayed by the display device 1 in the second imaging unit at the second time to be a second image, at which time, the timing control device controls The second reflecting device 42 is in a reflective state, and the time difference between the first time and the second time is smaller than a time difference that can be perceived by the human eye. As shown in FIG. 9 , the display pixels corresponding to the first image are projected to the light region of the microlens array 3 .
  • the light region of the display pixel corresponding to the second image projected onto the microlens array 3 is the second light region 05, and the two light regions partially overlap, and the display pixels in the first image are in the first light region.
  • a corresponding portion in 04 is referred to as a first pixel light unit 040; and a portion of the second image in the second image region is referred to as a second pixel light unit 050, first An optical element unit 040 and the second light unit 050 overlaps the pixel portion 045 is equivalent to the pixel, the smaller the equivalent pixel 045, so that one microlens 045 corresponds to an equivalent number of pixels increases, thereby further improving the display resolution.
  • the timing control device can control the display device in the first imaging unit because the second reflective device 42 can simultaneously achieve transmission and reflection. The image is displayed simultaneously with the display device in the second imaging unit.
  • the light field display system includes an imaging unit, a microlens array 3, a shifting device 5, and a timing control device.
  • the imaging unit includes a display device 1 and an imaging device 2, and the display device 1 is an OLED.
  • the display panel, the imaging device 2 is a convex lens, and the display device 1 is disposed on the shifting device 5.
  • the timing control device is electrically connected to the shifting device 5 for controlling the operation of the shifting device 5, so that the shifting device 5 is located at the first position at the first moment, and the image displayed by the corresponding display device 1 is the first image, so that the shifting device
  • the bit device 5 is located at the second position at the second time, and the image displayed by the corresponding display device 1 is the second image.
  • the time difference between the first time and the second time is smaller than the time difference that can be perceived by the human eye.
  • the light area of the display pixel corresponding to the first image is the first light area 04, and the display pixel corresponding to the second image is projected.
  • the light region to the microlens array 3 is the second light region 05, the two light regions partially overlap, and the corresponding portion of the display pixels in the first image in the first light region 04 is referred to as the first pixel light unit 040;
  • a portion of the display pixel in the second image corresponding to the second light region 05 is referred to as a second pixel light unit 050.
  • the portion where the first pixel light unit 040 and the second pixel light unit 050 overlap is equal to
  • the effect pixel 045 and the equivalent pixel 045 are small, so that the number of equivalent pixels 045 corresponding to one microlens is increased, thereby further improving the display resolution.
  • the light field display system includes an imaging unit, a microlens array 3, a shifting device 5, and a timing control device.
  • the imaging unit includes a display device 1, a reflecting device and an imaging device 2.
  • the reflecting device comprises two reflecting devices, which are a first reflecting device 41 and a second reflecting device 42, respectively, the display device 1 is an OLED display panel, the imaging device 2 is a convex lens, and the first reflecting device 41 and the second reflecting device 42 are reflecting The film, display device 1 is disposed on the shifting device 5.
  • the timing control device is electrically connected to the shifting device 5 for controlling the operation of the shifting device 5, so that the shifting device 5 is located at the first position at the first moment, and the image displayed by the corresponding display device 1 is the first image, so that the shifting device
  • the bit device 5 is located at the second position at the second time, and the image displayed by the corresponding display device 1 is the second image.
  • the time difference between the first time and the second time is smaller than the time difference that can be perceived by the human eye.
  • the light area of the display pixel corresponding to the first image is the first light area 04, and the display pixel corresponding to the second image is projected.
  • the light region to the microlens array 3 is the second light region 05, the two light regions partially overlap, and a portion of the display pixel in one of the images in the first light region is referred to as a first pixel light unit 040;
  • a portion of the display pixel in the other image in the first light region is referred to as a second pixel light unit 050, and a portion in which the first pixel light unit 040 and the second pixel light unit are coincident is an equivalent pixel 045, as shown in FIG. It is shown that the equivalent pixel is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the light field display system includes an imaging unit, a microlens array 3, a shifting device 5, and a timing control device.
  • the imaging unit includes a display device 1, a reflecting device and an imaging device 2.
  • the reflecting device comprises two reflecting devices, which are a first reflecting device 41 and a second reflecting device 42, respectively, the display device 1 is an OLED display panel, the imaging device 2 is a convex lens, and the first reflecting device 41 and the second reflecting device 42 are reflecting membrane.
  • the imaging device 2 is disposed on the shifting device 5.
  • the timing control device is electrically connected to the above-mentioned shifting device 5 for controlling the operation of the shifting device 5 such that the displacement devices are located at different positions at different times, thereby causing the imaging device 2 to have different positions at different times, thereby making the difference
  • the light regions projected to the microlens array 3 are partially coincident, and the light regions of the plurality of images corresponding to the display pixels projected to the microlens array 3 are partially overlapped, and the overlapping portions correspond to equivalent pixels, and the equivalent pixels are small, such that one The number of equivalent pixels corresponding to the microlens is increased, thereby further improving the display resolution.
  • the light field display system includes an imaging unit, a microlens array 3 and a timing control device.
  • the imaging unit includes three display devices 1 and an imaging device 2, and the three display devices 1 are OLED displays.
  • the panel, the imaging device 2 is a convex lens, and the first reflecting device 41 and the second reflecting device 42 are reflective films.
  • the light-emitting surfaces of the three display devices 1 are arranged in parallel and have the same area.
  • the lines connecting the centers of any two adjacent display devices 1 on the first plane are rectangular diagonal lines, and the pairs of the rectangles are The angle lines are on the same straight line, and each of the display devices 1 is a transparent display device 1.
  • the plane parallel to the light exit surface is a first plane, and the projection surfaces of the three display devices 1 are projected on the first plane. Partially coincident.
  • the timing control device is electrically connected to each display unit for controlling different display devices 1 to display images at different times, and the timing control unit controls the first display device 11 to display the first image at the first moment, and controls the second display device 12 to The second image displays the second image, and the third display device 13 is controlled to display the third image at the third time.
  • the time difference between the first time and the second time and the time difference between the second time and the third time are both smaller than the time difference that can be perceived by the human eye, and the display area corresponding to the first image is projected to the light area of the microlens array 3 as the first light.
  • the light region of the display pixel corresponding to the second image projected to the microlens array 3 is the second light region 05
  • the light region of the display pixel corresponding to the third image projected to the microlens array 3 is the third light region 06
  • the three light regions partially overlap, and the portions of the display pixels in the respective graphics corresponding to the light regions are also partially coincident, and the overlapping portions are equivalent pixels 045.
  • the equivalent pixels are small, so that one microlens corresponds to The number of equivalent pixels is increased, which further improves the display resolution.
  • the light field display system includes an imaging unit, a microlens array 3 and a timing control device.
  • the imaging unit includes three display devices 1, one imaging device 2, and four reflection devices, three displays.
  • the device 1 is an OLED display panel
  • the imaging device 2 is a convex lens
  • the third reflecting device 43 and the fourth reflecting device 44 are reflective films.
  • the three display devices 1 are the first display device 11, the second display device 12, and the third display device 13, respectively, and the display surface of the first display device 11 is parallel to the display surface of the third display device 13,
  • the display surface of the display device 12 is perpendicular to the display surface of the first display device 11, and the four reflective devices 4 are the first reflective device 41, the second reflective device 42, the third reflective device 43, and the fourth reflective device 44, respectively.
  • the first reflecting device 41 and the second reflecting device 42 are disposed between the second display device 12 and the imaging device 2, and the first reflecting device 41 and the second reflecting device 42 intersect and are perpendicular to each other.
  • the first reflecting device 41 is configured to reflect the light corresponding to the image displayed by the first display device 11 onto the imaging device 2 and the second reflecting device 42 is configured to reflect the light corresponding to the image displayed by the third display device 13.
  • the first reflecting device 41 and the second reflecting device 42 are switchable transmission/reflection devices, and the third reflecting device 43 is disposed on the image forming device 2 Light side, the fourth reflective devices 44 disposed in the third reflected light 43 side of the apparatus.
  • the timing control device is electrically connected to the three display devices 1 and is also electrically connected to the first reflective device 41 and the second reflective device 42 to control the three display devices 1 to display images at different times, and the timing control device controls the first display.
  • the image displayed by the device 11 at the first moment is the first image.
  • the timing control device controls the first reflective device 41 to be in a reflective state, the second reflective device 42 is in a transmissive state, and then controls the second display device 1 at the second moment.
  • the displayed image is a second image.
  • the timing control device controls the first reflective device 41 to be in a transmissive state, and the second reflective device 42 is in a reflective state, and controls the image displayed by the third display device 1 at the third moment to be a third image.
  • the timing control device controls the first reflection device 41 and the second reflection device 42 to be in a transmissive state, and the time difference between the first time and the second time and the time difference between the second time and the third time are smaller than the human eye can perceive Time difference, and the corresponding display pixels of the three images displayed by the three display devices 1 are partially overlapped, and the coincident portions are equivalent pixels,
  • the equivalent pixel is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby improving the resolution of the light field display system, and the resulting image of the system is compared with the image displayed by the original display device 1 as shown in FIG.
  • the sharpness of the finally obtained imaged image 03 is substantially the same as the original image 01 displayed by the display device.
  • the light field display system of the present application includes an imaging device, and the display image of the display device is changed into a smaller real image by the imaging device, thereby increasing the number of pixels corresponding to each microlens in the microlens array, thereby finally obtaining The resolution of the image is increased.
  • a light field display system includes a display unit and a microlens array 3, and the display unit includes at least one display device 1.
  • the images displayed by the display unit at different times are composed of different display pixels in the source image, or the plurality of images displayed at the same time are composed of different display pixels in the source image;
  • the microlens array 3 is disposed on the display unit On the side, the microlens array includes a plurality of microlenses arranged in an array, and the microlens array 3 is configured to convert an image displayed by the display unit into a stereoscopic image, and in the process of forming one of the stereoscopic images, the display unit displays The light regions projected onto the microlens array 3 by the display pixels corresponding to the images partially overlap.
  • the plurality of images displayed by the display unit at different times or at the same time are composed of different display pixels in the source image, and the plurality of images are composed.
  • the source image that is, the plurality of images displayed at different times or at the same time, are different sub-images of one source image, that is, the plurality of images are a plurality of sub-images decomposed by the source image, and the plurality of sub-images may be completely different or partially
  • the source image can be a high resolution image, which can be a high resolution image.
  • the corresponding light regions of the display pixels projected onto the microlens array partially overlap, that is, the display pixels are partially overlapped in different images, and the portion is this
  • the equivalent pixel of the display pixel, the area of the equivalent pixel is smaller than the area of the original pixel, so that the density of the equivalent pixel becomes larger, thereby increasing the number of equivalent pixels corresponding to one microlens, thereby making the resulting image
  • the resolution is improved.
  • the display unit includes a plurality of display devices 1 that control different display device operations at different times, display multiple images, and multiple images are projected onto the microlens array.
  • the regions are different, and the light regions of the display pixels corresponding to the plurality of images projected onto the microlens array 3 partially overlap.
  • Corresponding portions of each display pixel in the light region are referred to as pixel light units, that is, corresponding pixel light units in the plurality of images partially overlap, as shown in FIG. 20, and the overlapped portions are referred to as equivalent pixels 045, equivalent pixels It is smaller than the area of the original pixel light unit, and therefore, the number of equivalent pixels corresponding to one microlens is increased, so that the resolution of the light field display system is improved.
  • the light-emitting surfaces of the plurality of display devices 1 are arranged in parallel and have the same area, and each of the display devices 1 is a transparent display device, and a plane parallel to the light-emitting surface.
  • the first plane, and the projection portions of the plurality of light-emitting surfaces of the display device 1 on the first plane overlap. Controlling different display devices to display images at different times, so that the light regions projected by the corresponding display pixels in each image onto the microlens array partially overlap, as shown in FIG. 20, the coincident portions correspond to equivalent pixels 045, equivalent The pixel 045 is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the projection of the center of any two adjacent display devices 1 on the first plane is performed.
  • the line is a diagonal of a rectangle, and the diagonals of the above rectangles are on the same line.
  • the light field display system further includes a shifting device 5, and the display device 1 is disposed on the shifting device 5, and the shifting device 5 is The display device 1 is moved to different positions at different times, so that the light regions projected by the corresponding display pixels in the respective images onto the microlens array are partially overlapped.
  • the overlapping portions correspond to the equivalent pixels 045.
  • the equivalent pixel 045 is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the display unit further includes at least one reflection device 4 disposed on the light exit side of the display device 1, and the reflection device is a device having a function of reflecting light.
  • the light field display system includes at least two display units, and each of the display units includes one display device 1 and two reflective devices 4, two of the above.
  • the reflecting device 4 is a first reflecting device 41 and a second reflecting device 42 respectively.
  • the first reflecting device 41 is disposed on a light emitting side of the display device 1
  • the second reflecting device 42 is disposed in the first The light exit side of a reflecting device 41.
  • Controlling different display devices to display images at different times such that the corresponding display pixels in each image are partially overlapped with the light regions projected onto the microlens array, and the coincident portions correspond to equivalent pixels, and the equivalent pixels are small, so that one micro The number of equivalent pixels corresponding to the lens is increased, further improving the display resolution.
  • the light field display system includes at least two display units, wherein some of the display units are first display units, and some of the display units are second display units.
  • the second display unit includes a display device 1 and two reflective devices 4, and the two reflective devices 4 are respectively a first reflective device 41 and a second reflective device 42.
  • the foregoing A reflection device 41 is disposed on the light exit side of the display device 1
  • the second reflection device 42 is disposed on the light exit side of the first reflection device 41
  • the first reflection device 41 reflects the light from the display device and reflects to the second
  • the second reflecting device 42 is disposed on the light emitting side of the first reflecting device 41
  • the light emitted from the first reflecting device 41 is reflected into the microlens array 3, and any two of the light regions partially overlap.
  • the display images in the plurality of display units are different, the light regions projected by the display units into the microlens array partially overlap, and the display pixels corresponding to the plurality of images are projected onto the light region portion of the microlens array.
  • the coincident and coincident portions correspond to equivalent pixels.
  • the equivalent pixel 045 is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby further improving the display resolution.
  • the second reflective device 42 When the second reflective device 42 is located between the first display unit and the microlens array 3, as shown in FIG. 26, in order to prevent the second reflective device from affecting the optical path of the light emitted by the first display unit, the second reflective device 42 is located between the first display unit and the microlens array 3, wherein the second reflective device 42 comprises a switchable transmissive/reflective device or a transflective device, wherein the switchable transmissive/reflective device is in a transmissive state
  • a reflective device that switches with a reflective state, such as a semi-lens, is a reflective device in which a portion of the structure is in a transmissive state and another portion of the structure is in a reflective state.
  • At least one of the above display units includes three display devices 1 and four reflection devices 4, and the three display devices 1 are respectively the first display device 11. a second display device 12 and a third display device 13 , wherein the light emitting surface of the first display device 11 is parallel to the light emitting surface of the third display device 13 , and the light emitting surface of the second display device 12 and the first display device
  • the light-emitting surface of the 11 is vertical
  • the four reflection devices 4 are the first reflection device 41, the second reflection device 42, the third reflection device 43, and the fourth reflection device 44, respectively, and the first reflection device 41 and the second reflection
  • the device 42 is disposed between the second display device 12 and the third reflective device 43, and the first reflective device 41 intersects and is perpendicular to the second reflective device 42.
  • the first reflective device 41 is configured to use the first The light corresponding to the image displayed by the display device 11 is reflected on the third reflecting device 43, and the second reflecting device 42 is configured to reflect the light corresponding to the image displayed by the third display device 13 to the above
  • the first reflecting device 41 and the second reflecting device 42 is switchably reflective transmissive or transflective device apparatus, apparatus 44 is provided above the fourth reflecting / light-out 43 in the side of the third reflective devices.
  • the light field display system further includes a timing control unit electrically connected to the display unit for controlling the operation of each of the display devices 1 in order to control the operation of the display device.
  • the display device in the present application may be any display device in the prior art, such as an LCD panel, an OLED panel or an LED array, and a person skilled in the art may select a suitable display device according to actual conditions.
  • the light field display system includes a display unit, a microlens array 3 and a timing control device.
  • the display unit includes three display devices 1.
  • the three display devices 1 are OLED display panels, and the first reflective device 41 and The second reflecting device 42 is a reflective film.
  • the light-emitting surfaces of the three display devices 1 are arranged in parallel and have the same area.
  • the lines connecting the centers of any two adjacent display devices 1 on the first plane are rectangular diagonal lines, and the pairs of the rectangles are The angle lines are on the same straight line, and each of the display devices 1 is a transparent display device 1.
  • the plane parallel to the light exit surface is a first plane, and the projection surfaces of the three display devices 1 are projected on the first plane. Partially coincident.
  • the timing control device is electrically connected to each display unit for controlling different display devices 1 to display images at different times, and the timing control unit controls the first display device 11 to display the first image at the first moment, and controls the second display device 12 to The second image displays the second image, and the third display device 13 is controlled to display the third image at the third time.
  • the time difference between the first time and the second time and the time difference between the second time and the third time are both smaller than the time difference that can be perceived by the human eye, and the display area corresponding to the first image is projected to the light area of the microlens array 3 as the first light.
  • the light region of the display pixel corresponding to the second image projected to the microlens array 3 is the second light region 05
  • the light region of the display pixel corresponding to the third image projected to the microlens array 3 is the third light region 06, which
  • the three light regions partially overlap, and the portions of the display pixels in the respective graphics corresponding to the light regions are also partially coincident, and the overlapping portions are equivalent pixels 045.
  • the equivalent pixels are small, so that one microlens corresponds to The number of equivalent pixels is increased, which in turn increases the display resolution.
  • the light field display system includes a display unit, a microlens array 3, a shifting device 5, and a timing control device.
  • the display unit includes a display device 1.
  • the display device 1 is an OLED display panel, and the display device 1 is configured. On the shifting device 5.
  • the timing control device is electrically connected to the shifting device 5 for controlling the operation of the shifting device 5, so that the shifting device 5 is located at the first position at the first moment, and the image displayed by the corresponding display device 1 is the first image, so that the shifting device
  • the bit device 5 is located at the second position at the second time, and the image displayed by the corresponding display device 1 is the second image.
  • the time difference between the first time and the second time is smaller than the time difference that can be perceived by the human eye.
  • the light area of the display pixel corresponding to the first image is the first light area 04, and the display pixel corresponding to the second image is projected.
  • the light region to the microlens array 3 is the second light region 05, the two light regions partially overlap, and the corresponding portion of the display pixels in the first image in the first light region 04 is referred to as the first pixel light unit 040;
  • a portion of the display pixel in the second image corresponding to the second light region 05 is referred to as a second pixel light unit 050.
  • a portion where the first pixel light unit 040 and the second pixel light unit 050 coincide with each other is equal.
  • the effect pixel 045, the equivalent pixel 045 is small, so that the number of equivalent pixels 045 corresponding to one microlens is increased, thereby improving the display resolution.
  • the light field display system includes a display unit, a microlens array 3, a shifting device 5, and a timing control device.
  • the display unit includes a display device 1 and two reflective devices 4, and the two reflective devices are respectively
  • the first reflecting device 41 and the second reflecting device 42, the display device 1 is an OLED display panel, the first reflecting device 41 and the second reflecting device 42 are reflective films, and the display device 1 is disposed on the shifting device 5.
  • the timing control device is electrically connected to the shifting device 5 for controlling the operation of the shifting device 5, so that the shifting device 5 is located at the first position at the first moment, and the image displayed by the corresponding display device 1 is the first image, so that the shifting device
  • the bit device 5 is located at the second position at the second time, and the image displayed by the corresponding display device 1 is the second image.
  • the time difference between the first time and the second time is smaller than the time difference that can be perceived by the human eye.
  • the light area of the display pixel corresponding to the first image is the first light area 04, and the display pixel corresponding to the second image is projected.
  • the light region to the microlens array 3 is the second light region 05, the two light regions partially overlap, and a portion of the display pixel in one of the images in the first light region is referred to as a first pixel light unit 040;
  • a portion of the display pixel in the other image in the first light region is referred to as a second pixel light unit 050, and a portion in which the first pixel light unit and the second pixel light unit coincide is an equivalent pixel 045, as shown in FIG.
  • the equivalent pixel is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby improving the display resolution.
  • the light field display system includes two display units, a microlens array 3 and a timing control device, wherein each display unit includes a display device 1 and two reflection devices, and the two reflection devices are respectively a first reflecting device 41 and a second reflecting device 42.
  • the display device 1 is an OLED display panel, and the first reflecting device 41 and the second reflecting device 42 are both reflective films, and the timing control device and the display devices of the two display units are respectively Electrical connection.
  • the timing control device is electrically connected to the shifting device 5 for controlling the operation of the shifting device 5, so that the shifting device 5 is located at the first position at the first moment, and the image displayed by the corresponding display device 1 is the first image, so that the shifting device
  • the bit device 5 is located at the second position at the second time, and the image displayed by the corresponding display device 1 is the second image.
  • the time difference between the first time and the second time is smaller than the time difference that can be perceived by the human eye.
  • the light area of the display pixel corresponding to the first image is the first light area 04, and the display pixel corresponding to the second image is projected to
  • the light region of the microlens array 3 is the second light region 05, and a portion of the display pixel in one image in the first light region is referred to as a first pixel light unit; and a display pixel in the other image is at the first
  • the corresponding portion in the light region is referred to as a second pixel light unit, and the portion where the first pixel light unit and the second pixel light unit overlap is an equivalent pixel, and the equivalent pixel is small, so that the number of equivalent pixels corresponding to one microlens Increased, which in turn increases display resolution.
  • the light field display system includes a first display unit, a second display unit, a microlens array 3 and a timing control device (not shown), wherein the second display unit includes a display device 1 and two reflecting devices, the two reflecting devices are a first reflecting device 41 and a second reflecting device 42, respectively, the display device 1 is an LED array display panel, the first reflecting device 41 is a reflective film, and the second reflecting device 42 is The transmission/reflection device is switched, and the specific positional relationship is as shown in FIG.
  • the display images in the two display units are different sub-images in one source image, the two sub-images are interlaced, and the light regions projected by the display unit into the microlens array 3 partially overlap.
  • the timing control device is electrically connected to the display device 1 of the two display units, and is also electrically connected to the second reflection device 42.
  • the timing control device controls the image displayed by the display device 1 in the first display unit at the first moment as the first An image, at this time, the timing control device controls the second reflection device 42 to be in a transmissive state, and then controls the image displayed by the display device 1 in the second display unit at the second time to be the second image, and at this time, the timing control device controls The second reflecting device 42 is in a reflective state, and the time difference between the first time and the second time is smaller than a time difference that can be perceived by the human eye. As shown in FIG. 27, the display pixels corresponding to the first image are projected to the light region of the microlens array 3.
  • the light region of the display pixel corresponding to the second image projected onto the microlens array 3 is the second light region 05, and the two light regions partially overlap, and the display pixels in the first image are in the first light region.
  • a corresponding portion in 04 is referred to as a first pixel light unit 040; and a portion of the second image in the second image region is referred to as a second pixel light unit 050, first An optical element unit 040 and the second light unit 050 overlaps the pixel portion 045 is equivalent to the pixel, the smaller the equivalent pixel 045, so that one microlens 045 corresponds to an equivalent number of pixels increases, thereby improving the display resolution.
  • the timing control device can simultaneously control the display in the first display unit.
  • the device simultaneously displays an image with the display device in the second display unit.
  • the light field display system includes a display unit, a microlens array 3 and a timing control device.
  • the display unit includes three display devices 1 and four reflection devices, and the three display devices 1 are OLED displays.
  • the panel, the first reflecting device 41 and the second reflecting device 42 are switchable transmission/reflection devices, and the third reflecting device 43 and the fourth reflecting device 44 are reflective films.
  • the three display devices 1 are the first display device 11, the second display device 12, and the third display device 13, respectively, and the display surface of the first display device 11 is parallel to the display surface of the third display device 13,
  • the display surface of the display device 12 is perpendicular to the display surface of the first display device 11, and the four reflective devices 4 are the first reflective device 41, the second reflective device 42, the third reflective device 43, and the fourth reflective device 44, respectively.
  • first reflecting device 41 and the second reflecting device 42 are disposed between the second display device 12 and the third reflecting device 43, and the first reflecting device 41 intersects with the second reflecting device 42 and is vertical
  • the first reflecting device 41 is configured to reflect the light corresponding to the image displayed by the first display device 11 onto the third reflecting device 43
  • the second reflecting device 42 is configured to display the image displayed by the third display device 13
  • the corresponding light is reflected on the third reflecting device 43
  • the third reflecting device 43 is disposed on the light emitting side of the display device 1
  • the fourth reflecting device 44 is disposed on the third reflecting device 43. Light outgoing side.
  • the timing control device is electrically connected to the three display devices 1 and is also electrically connected to the first reflective device 41 and the second reflective device 42 to control the three display devices 1 to display images at different times, and the timing control device controls the first display.
  • the image displayed by the device 11 at the first moment is the first image.
  • the timing control device controls the first reflective device 41 to be in a reflective state
  • the second reflective device 42 is in a transmissive state
  • the displayed image is a second image.
  • the timing control device controls the first reflective device 41 to be in a transmissive state
  • the second reflective device 42 is in a reflective state, and controls the image displayed by the third display device 1 at the third moment to be a third image.
  • the timing control device controls the first reflection device 41 and the second reflection device 42 to be in a transmissive state, and the time difference between the first time and the second time and the time difference between the second time and the third time are smaller than the human eye can perceive Time difference, and the corresponding display pixels of the three images displayed by the three display devices 1 are partially overlapped, and the coincident portions are equivalent pixels, The equivalent pixel is small, so that the number of equivalent pixels corresponding to one microlens is increased, thereby improving the resolution of the light field display system.
  • the resulting image of the system and the graphic display result of the original display device 1 are shown in FIG. 29
  • the sharpness of the finally obtained imaged image 03 is substantially the same as the original image 01 displayed by the display device.
  • the plurality of images displayed by the display unit at different times or at the same time are composed of different display pixels in the source image, and the plurality of images are composed.
  • the source image that is, the plurality of images displayed at different times or at the same time, are different sub-images of one source image, that is, the plurality of images are a plurality of sub-images decomposed by the source image, and in the process of forming one of the stereo images, corresponding
  • the light regions projected onto the microlens array are partially overlapped, that is, the display pixels are partially overlapped in different images, and the portion is the equivalent pixel of the display pixel, and the area of the equivalent pixel is smaller than the area of the original pixel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种光场显示系统包括:成像单元,包括显示设备(1)与成像设备(2),成像设备(2)用于将显示设备(1)显示的图像转化为缩小的实像;微透镜阵列(3),设置在成像单元的出光侧,用于把成像单元输出的图像转化为立体图像。另一种光场显示系统包括:显示单元,包括显示设备(1),显示单元在不同时刻或在同一个时刻显示的多个图像由源图像中不同的显示像素组成;微透镜阵列(3),设置在显示单元的出光侧,用于把显示单元显示的图像转化为立体图像,在形成一个立体图像的过程中,显示单元显示的多个图像对应的显示像素投射到微透镜阵列(3)上的光区域部分重叠。以上两种光场显示系统最终得到的图像的分辨率提高。

Description

光场显示系统 技术领域
本申请涉及光场显示技术,具体而言,涉及一种光场显示系统。
背景技术
光场显示是一种真3D显示技术,其特点是通过恢复真实场景的光场,让人眼产生与真实场景比较一致的视觉效果,相对于目前常见的裸眼3D技术如柱镜或视差障壁技术来说,光场显示可以明显改善观看的舒适度,是一种很有发展前景的技术。
如图1所示,微透镜阵列的光场显示技术是把微透镜阵列2'(简称MLA,包括多个微透镜)置于显示面板1'前适当的位置,每个微透镜底部会覆盖一定数量的像素,显示面板1'上发出的光经过微透镜在空间中叠加,再现出原物体的光场,即可看到三维图像。
由于每个微透镜下覆盖着像素的数量有限,因此,微透镜阵列光场显示技术的分辨率较低,如图2所示,其中,显示面板的显示图像为原始图像01',最后经过微透镜阵列得到的图像为成像图像02',这个会显著增大画面的颗粒感,从而影响到用户的体验。
解决上述分辨率过低的一个方法是增加面板的像素密度,但是目前的面板密度已发展到瓶颈,要想进一步提升有很大困难。
发明内容
本申请的主要目的在于提供一种光场显示系统,以解决现有技术中微透镜阵列的光场显示系统的分辨率较低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种光场显示系统,该光场显示系统包括:成像单元,包括显示设备与设置在上述显示设备的出光侧的成像设备,上述显示设备用于显示图像,上述成像设备用于将上述显示设备显示的图像转化为缩小的实像;微透镜阵列,设置在上述成像单元的出光侧,上述微透镜阵列用于把上述成像单元输出的图像转化为立体图像。
进一步地,上述成像单元还包括:反射装置,设置在上述显示设备的出光侧。
进一步地,上述反射装置包括至少一个反射设备。
进一步地,上述成像单元为多个。
进一步地,上述光场显示系统包括至少两个上述成像单元,各上述成像单元中包括一个上述显示设备与一个上述成像设备,各上述成像单元投射到上述微透镜阵列上的光所在的区域为光区域,不同的上述成像单元对应的上述光区域的位置至少部分不同。
进一步地,各上述成像单元还包括两个上述反射设备,分别为第一反射设备与第二反射设备,在各上述成像单元中,上述成像设备设置在上述显示设备的出光侧,上述第一反射设备设置在上述成像设备的出光侧,上述第二反射设备设置在上述第一反射设备的出光侧,且两个上述光区域无间隙衔接。
进一步地,上述光场显示系统包括多个成像单元,多个上述成像单元中,部分为第一成像单元,部分为第二成像单元,上述第二成像单元还包括两个上述反射设备,分别为第一反射设备与第二反射设备,在上述第二成像单元中,上述第一反射设备设置在上述成像设备的出光侧,上述第二反射设备设置在上述第一反射设备的出光侧,且任意两个上述光区域部分重合。
进一步地,上述第二反射设备位于上述第一成像单元与上述微透镜阵列之间,上述第二反射设备为可切换透射/反射设备或半透射半反射设备,其中,上述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备,上述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备。
进一步地,至少一个上述成像单元中包括多个上述显示设备,多个上述显示设备显示的多个图像由源图像中不同的显示像素组成,且多个上述图像中对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠。
进一步地,在至少一个上述成像单元中,多个上述显示设备的出光面平行设置且面积相等,各上述显示设备为透明的显示设备,与上述出光面平行的平面为第一平面,且多个上述显示设备的出光面在上述第一平面上的投影部分重合。
进一步地,任意相邻的两个上述显示设备的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上。
进一步地,至少一个上述成像单元中包括三个上述显示设备、一个上述成像设备与四个上述反射设备,三个上述显示设备分别为第一显示设备、第二显示设备与第三显示设备,且上述第一显示设备的显示面与上述第三显示设备的显示面平行,上述第二显示设备的显示面与上述第一显示设备的显示面垂直,四个上述反射设备分别为第一反射设备、第二反射设备、第三反射设备与第四反射设备,且上述第一反射设备与上述第二反射设备设置在上述第二显示设备与上述成像设备之间,且上述第一反射设备与上述第二反射设备相交且垂直,上述第一反射设备用于将上述第一显示设备显示的图像对应的光反射到上述成像设备上,上述第二反射设备用于将上述第三显示设备显示的图像对应的光反射到上述成像设备上,上述第一反射设备与上述第二反射设备为可切换透射/反射设备或半透射半反射设备,上述第三反射设备设置在上述成像设备的出光侧,上述第四反射设备设置在上述第三反射设备的出光侧。
进一步地,上述光场显示系统还包括:时序控制设备,与上述成像单元电连接,用于至少控制各上述成像单元中的上述显示设备的工作。
进一步地,上述光场显示系统还包括:移位设备,上述显示设备和/或上述成像设备设置在上述移位设备上,上述移位设备在不同时刻将上述显示设备和/或上述成像设备移动至不同的位置;时序控制设备,与各上述移位设备电连接,用于至少控制上述移位设备的工作。
进一步地,上述成像设备包括凸透镜、菲涅尔透镜、渐变折射率透镜和/或光栅透镜。
进一步地,上述成像单元在不同时刻显示的图像由源图像中不同的显示像素组成,或者上述成像单元在同一个时刻显示的多个图像由源图像中不同的显示像素组成,在形成一个上述立体图像的过程中,上述成像单元的多个图像对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠。
应用本申请的上述技术方案,光场显示系统中包括成像设备,通过成像设备将显示设备的显示图像变为较小的实像,进而使得微透镜阵列中的各个微透镜对应的像素的数量增加,从而使得最终得到的图像的分辨率提高。
为了实现上述目的,本申请提供了另一种光场显示系统,该光场显示系统包括:显示单元,包括至少一个显示设备,上述显示单元在不同时刻显示的图像由源图像中不同的显示像素组成或者在同一个时刻显示的多个图像由源图像中不同的显示像素组成;微透镜阵列,设置在上述显示单元的出光侧,上述微透镜阵列包括多个阵列排列的微透镜,上述微透镜阵列用于把上述显示单元显示的图像转化为立体图像,在形成一个上述立体图像的过程中,上述显示单元显示的多个图像对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠。
进一步地,上述显示单元包括多个上述显示设备。
进一步地,多个上述显示设备的出光面平行设置且面积相等,且各上述显示设备为透明的显示设备,与上述出光面平行的平面为第一平面,且多个上述显示设备的出光面在上述第一平面上的投影部分重叠。
进一步地,任意相邻的两个上述显示设备的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上。
进一步地,上述光场显示系统还包括:移位设备,上述显示设备设置在上述移位设备上,上述移位设备在不同时刻将上述显示设备移动至不同的位置。
进一步地,至少一个反射设备,设置在上述显示设备的出光侧。
进一步地,上述光场显示系统包括至少两个显示单元,各上述显示单元中包括一个上述显示设备与两个上述反射设备,两个上述反射设备分别为第一反射设备与第二反射设备,在各上述显示单元中,上述第一反射设备设置在上述显示设备的出光侧,上述第二反射设备设置在上述第一反射设备的出光侧。
进一步地,上述光场显示系统包括至少两个上述显示单元,其中,部分上述显示单元为第一显示单元,部分上述显示单元为第二显示单元,上述第二显示单元包括一个上述显示设备与两个上述反射设备,两个上述反射设备分别为第一反射设备与第二反射设备,在上述第二显示单元中,上述第一反射设备设置在上述显示设备的出光侧,上述第二反射设备设置在上述第一反射设备的出光侧。
进一步地,上述第二反射设备位于上述第一显示单元与上述微透镜阵列之间,上述第二反射设备包括可切换透射/反射设备或半透射半反射设备,其中,上述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备,上述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备。
进一步地,至少一个上述显示单元中包括三个上述显示设备与四个上述反射设备,三个上述显示设备分别为第一显示设备、第二显示设备与第三显示设备,且上述第一显示设备的出光面与上述第三显示设备的出光面平行,上述第二显示设备的出光面与上述第一显示设备的出光面垂直,四个上述反射设备分别为第一反射设备、第二反射设备、第三反射设备与第四反射设备,且上述第一反射设备与上述第二反射设备设置在上述第二显示设备与上述第三反射设备之间,且上述第一反射设备与上述第二反射设备相交且垂直,上述第一反射设备用于将上述第一显示设备显示的图像对应的光反射到上述第三反射设备上,上述第二反射设备 用于将上述第三显示设备显示的图像对应的光反射到上述第三反射设备上,上述第一反射设备与上述第二反射设备为可切换透射/反射设备或半透射半反射设备,上述第四反射设备设置在上述第三反射设备的出光侧。
进一步地,上述光场显示系统还包括:时序控制单元,与上述显示单元电连接,用于至少控制上述显示设备的工作。
应用本申请的上述技术方案,本申请的光场显示系统中,显示单元在形成一个上述立体图像的过程中,上述显示单元在不同时刻或者同一时刻显示的多个图像由源图像中不同的显示像素组成,这多个图像组成源图像,即不同时刻或者同一时刻显示的多个图像是一个源图像的不同的子图像,即多个图像是由源图像分解出来的多个子图像,在形成一个上述立体图像(即源图像的立体图像)的过程中,对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠,即使得不同图像中显示像素部分重叠,该部分为这个显示像素的等效像素,等效像素的面积小于原来的像素的面积,从而使得等效像素的密度变大,进而使得一个微透镜对应的等效像素的数量增加,从而使得最终得到的图像的分辨率提高。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中的一种光场显示系统的结构示意图;
图2示出了图1的显示系统得到的图像与显示设备显示的图像的对比图;
图3至8依次示出了本申请的实施例1至6提供的光场显示系统的结构示意图;
图9示出了本申请的一种实施例提供的3个显示设备的图像经过微透镜阵列后的成像的位置关系示意图;
图10示出了本申请的实施例7提供的光场显示系统的结构示意图;
图11示出了图10的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图12示出了本申请的实施例8提供的光场显示系统的结构示意图;
图13示出了图12的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图14示出了本申请的实施例9提供的光场显示系统的结构示意图;
图15示出了本申请的实施例10提供的光场显示系统的结构示意图;
图16示出了另一种实施例提供的显示单元的位置关系示意图;
图17示出了本申请的实施例11提供的光场显示系统的结构示意图;
图18示出了本申请的光场显示系统得到的图像与显示设备显示的图像的对比图;
图19示出了本申请的实施例12提供的光场显示系统的结构示意图;
图20示出了图19的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图21示出了本申请的实施例13提供的光场显示系统的结构示意图;
图22示出了图21的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图23示出了本申请的实施例14提供的光场显示系统的结构示意图;
图24示出了图23的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图25示出了本申请的实施例15提供的光场显示系统的结构示意图;
图26示出了本申请的实施例16提供的光场显示系统的结构示意图;
图27示出了图26的光场显示系统在不同时刻的两个成像之间的位置关系示意图;
图28示出了本申请的实施例17提供的光场显示系统的结构示意图;以及
图29示出了本申请的光场显示系统得到的图像与显示设备显示的图像的对比图。
其中,上述附图包括以下附图标记:
1'、显示面板;2'、微透镜阵列;01'、原始图像;02'、成像图像;1、显示设备;2、成像设备;3、微透镜阵列;4、反射设备;5、移位设备;11、第一显示设备;12、第二显示设备;13、第三显示设备;41、第一反射设备;42、第二反射设备;43、第三反射设备;44、第四反射设备;01、原始图像;02、缩小的像;03、成像图像;04、第一光区域;05、第二光区域;06、第三光区域;040、第一像素光单元;050、第二像素光单元;045、等效像素。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及下面的权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“电连接”至该另一元件。
正如背景技术所介绍的,现有技术中微透镜阵列的光场显示系统的分辨率较低,为了解决如上的技术问题,本申请提出了一种光场显示系统。
本申请的一种典型的实施方式中,提供了一种光场显示系统,如图3所示,该光场显示系统包括成像单元与微透镜阵列3。其中,成像单元包括显示设备1与设置在上述显示设备1的出光侧的成像设备2,上述显示设备1用于显示图像,上述成像设备2用于将上述显示设备1显示的图像转化为缩小的实像;微透镜阵列3设置在上述成像单元的出光侧,上述微透镜阵列3用于把上述成像单元输出的图像转化为立体图像。
光场显示系统中包括成像设备,通过成像设备将显示设备的显示图像变为较小的实像,进而使得微透镜阵列中的各个微透镜对应的像素的数量增加,从而使得最终得到的图像的分辨率提高。
为了进一步优化光场显示系统的光路,进而减小光场显示系统的体积,使得光场显示轻量化,进而更加迎合现代社会对轻薄产品的要求,本申请的一种实施例中,如图4至图8、图12、图14以及图17所示,上述成像单元还包括反射装置,设置在上述显示设备1的出光侧,该反射装置为具有反射光的功能的装置。
具体地,反射装置可以设置在显示设备与成像设备之间,还可以设置在成像设备与微透镜阵列之间,本领域技术人员可以根据实际情况选择将反射装置设置在合适的位置上。
本申请的一种实施例中,如图4至图8、图12、图14以及图17所示,上述反射装置包括至少一个反射设备。反射设备可以对光进行反射。本领域技术人员可以根据实际情况选择合适数量的反射设备,进而对光场显示系统的光路进行优化,以减小光场显示系统的体积。
图4中的反射装置包括一个反射设备,设备设置在成像设备的出光侧,对成像设备的出光进行反射,并且反射至微透镜阵列中,相比图3所示的系统,该系统中无需将微透镜阵列与成像设备正对设置,减小了光场显示系统的体积,使得其轻量化。
图5中的反射装置包括两个反射设备,分别是第一反射设备与第二反射设备,第一反射设备设置在成像设备的出光侧,第二反射设备设置在第一反射设备的出光侧,对第一反射设备的出光进行反射,并将其反射至微透镜阵列中。这样通过两个反射设备调整显示设备发出的光的光路,进而减小光场显示系统的体积,使得其轻量化。
为了进一步提高光场显示系统的分辨率,本申请的一种实施例中,上述成像单元为多个,进而将多个成像单元显示的图像投射到微透镜阵列中。
本申请的另一种实施例中,上述光场显示系统包括至少两个上述成像单元,各上述成像单元中包括一个上述显示设备1与一个上述成像设备2,各上述成像单元投射到上述微透镜阵列3上的光所在的区域为光区域,不同的上述成像单元对应的上述光区域的位置至少部分不同。这样通过将经过两个成像设备的光投射到微透镜阵列中,使得图像显示的分辨率提高。
一种具体的实施例中,如图7所示,各上述成像单元还包括两个上述反射设备4,分别为第一反射设备41与第二反射设备42,在各上述成像单元中,上述成像设备2设置在上述显示设备1的出光侧,上述第一反射设备41设置在上述成像设备2的出光侧,上述第二反射设备42设置在上述第一反射设备41的出光侧,且两个上述光区域无间隙衔接。这样将要显示的图像分为两部分,比如将一个图像分为上半部分与下半部分,分别通过一个显示设备显示,相比通过一个面积相等的显示设备显示,这样方式通过更多的显示像素显示了该图像,经过显示设备显示的图像再分别通过一个成像设备成像,最终投射到微透镜阵列中的两个区域,这两个区域是无间隙衔接的,使得一个微透镜对应的显示像素的数量增加了一倍,进而进一步增加了光场显示系统的分辨率。
另一种具体的实施例中,如图8所示,上述光场显示系统包括多个成像单元,多个上述成像单元中,部分为第一成像单元,部分为第二成像单元,上述第二成像单元还包括两个上述反射设备4,分别为第一反射设备41与第二反射设备42,在上述第二成像单元中,上述第一反射设备41设置在上述成像设备2的出光侧,对成像设备的出光进行反射,反射到第二反射设备中,上述第二反射设备42设置在上述第一反射设备41的出光侧,对第一反射设备的出光反射至微透镜阵列中,且任意两个上述光区域部分重合。在该实施例中,上述多个成像单元中的显示图像可以是相同的,这些成像单元投射到微透镜阵列中的光区域部分重合,并且,多个图像对应的显示像素投射到微透镜阵列的光区域部分重合,重合的部分对应为等效像素,如图9所示,等效像素045较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
当上述第二反射设备42位于上述第一成像单元与上述微透镜阵列3之间时,如图8所示,为了避免第二反射设备影响第一成像单元的出光的光路,上述第二反射设备42为可切换透射/反射设备或半透射半反射设备,其中,上述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备,上述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备,该设备在透射一部分光的同时还可以反射一部分光。例如半透镜。
为了进一步提高光场显示系统的分辨率,本申请的一种实施例中,上述成像单元在不同时刻显示的图像由源图像中不同的显示像素组成,或者上述成像单元在同一个时刻显示的多个图像由源图像中不同的显示像素组成,这多个图像组成源图像,即不同时刻或者同一时刻显示的多个图像是一个源图像的不同的子图像,即多个图像是由源图像分解出来的多个子图像,这多个子图像可以完全不同,也可以部分相同,该源图像可以是高分辨率图像。在形成一个上述立体图像的过程中,上述成像单元的多个图像(这多个图像可以是一个显示设备在不同的时刻显示出的,也可以是多个显示设备显示的)对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠。多个图像对应的显示像素投射到微透镜阵列的光区域部分重合,重合的部分对应为等效像素,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
为了进一步提高光场显示系统的分辨率,本申请的一种实施例中,至少一个上述成像单元中包括多个上述显示设备1,如图15与图17所示,多个上述显示设备1显示的多个图像由源图像中不同的显示像素组成且多个图像中对应的上述显示像素投射到上述微透镜阵列3上的光区域部分重叠。多个图像对应的显示像素投射到微透镜阵列的光区域部分重合,重合的部分对应为等效像素,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
一种具体的实施例中,如图15所示,在至少一个上述成像单元中,多个上述显示设备1的出光面平行设置且面积相等,各上述显示设备1为透明的显示设备,与上述出光面平行的平面为第一平面,且多个上述显示设备1的出光面在上述第一平面上的投影部分重合。控制不同的显示设备在不同的时刻显示图像,使得各图像中对应的显示像素投射到微透镜阵列上的光区域部分重合,如图16所示,重合的部分对应为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
为了进一步保证光场显示系统具有较高的分辨率,本申请的一种实施例中,如图15所示,任意相邻的两个上述显示设备1的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上。
另一种具体的实施例中,如图17所示,至少一个上述成像单元中包括三个上述显示设备1、一个上述成像设备2与四个上述反射设备4,三个上述显示设备1分别为第一显示设备11、第二显示设备12与第三显示设备13,且上述第一显示设备11的显示面与上述第三显示设备13的显示面平行,上述第二显示设备12的显示面与上述第一显示设备11的显示面垂直,四个上述反射设备4分别为第一反射设备41、第二反射设备42、第三反射设备43与第四反射设备44,且上述第一反射设备41与上述第二反射设备42设置在上述第二显示设备12与上述成像设备2之间,且上述第一反射设备41与上述第二反射设备42相交且垂直,上述第一反射设备41用于将上述第一显示设备11显示的图像对应的光反射到上述成像设备2上,上述 第二反射设备42用于将上述第三显示设备13显示的图像对应的光反射到上述成像设备2上,上述第一反射设备41与上述第二反射设备42为可切换透射/反射设备或半透射半反射设备,上述第三反射设备43设置在上述成像设备2的出光侧,上述第四反射设备44设置在上述第三反射设备43的出光侧。控制三个显示设备在不同的时刻显示图像,并且,这三个显示设备显示的三个图像中对应的显示像素部分重合,重合的部分为等效像素,由于等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了光场显示系统的分辨率。
为了更加方便高效地控制显示设备的工作,本申请的一种实施例中,上述光场显示系统还包括时序控制设备,时序控制设备与上述成像单元电连接,用于控制各上述成像单元中的显示设备1的工作。
本申请的再一种实施例中,如图10所示,上述光场显示系统还包括移位设备5与时序控制设备,上述显示设备1和/或上述成像设备2设置在上述移位设备5上,上述移位设备5在不同时刻将上述显示设备1和/或上述成像设备2移动至不同的位置,进而使得不同时刻投射到微透镜阵列的光区域不同;时序控制设备与各上述移位设备5电连接,用于至控制移位设备5的工作,使得位移设备在不同的时刻位于不同的位置,进而使得显示设备在不同的时刻的位置不同。
为了进一步减小光场显示系统的体积,本申请的一种实施例中,上述成像设备2包括凸透镜、菲涅尔透镜、渐变折射率透镜和/或光栅透镜。本领域技术人员可以根据实际情况选择合适的成像设备,当然,并不限于上述提到的成像设备。
本申请中的显示设备可以是现有技术中的任何一种显示设备,比如说LCD面板、OLED面板或LED阵列,本领域技术人员可以根据实际情况选择合适的显示设备。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案。
实施例1
如图3所示,光场显示系统包括一个成像单元与一个微透镜阵列3,具体位置关系如图3所示,该成像单元包括一个显示设备1与一个成像设备2,显示设备1为LCD面板显示面板,成像设备2为凸透镜,成像设备2将显示单元显示的图像转化为缩小的像02,进而将图像投影到微透镜阵列3中,使得微透镜阵列3中的各个微透镜对应的像素的数量增加,从而使得最终得到的图像的分辨率提高。
实施例2
如图4所示,光场显示系统包括一个成像单元与一个微透镜阵列3,具体位置关系如图4所示,该成像单元包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括一个反射设备4,显示设备1为OLED显示面板,成像设备2为凸透镜,反射设备4为反射膜,反射设备4设置在成像设备2的出光侧,对成像设备2的出光进行反射,并且反射至微透镜阵列3中,相比图3所示的系统,该系统中无需将微透镜阵列3与成像设备2正对设置,减小了光场显示系统的体积,使得其轻量化。
实施例3
如图5所示,光场显示系统包括一个成像单元与一个微透镜阵列3,具体位置关系如图5所示,该成像单元包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括两个 反射设备,分别是第一反射设备41与第二反射设备42,显示设备1为LCD显示面板,成像设备2为凸透镜,第一反射设备41与第二反射设备42均为反射膜,第一反射设备41设置在成像设备2的出光侧,第二反射设备42设置在第一反射设备41的出光侧,对第一反射设备41的出光进行反射,并将其反射至微透镜阵列3中。这样通过两个反射设备调整显示设备1发出的光的光路,可以进一步减小光场显示系统的体积,使得其轻量化。
实施例4
如图6所示,该光场显示系统与实施例3的不同之处在于:成像设备2为菲涅尔透镜。
通过使用菲涅尔透镜能够进一步减小光场显示系统的体积,使得其轻量化。
实施例5
如图7所示,该光场显示系统包括两个成像单元与一个微透镜阵列3,其中,各成像单元中包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括两个反射设备,分别是第一反射设备41与第二反射设备42,显示设备1为OLED显示面板,成像设备2为凸透镜,第一反射设备41与第二反射设备42均为反射膜,且两个成像单元投射到微透镜阵列3的光区域无间隙衔接。
该光场显示系统将一个图像分为上半部分与下半部分,分别通过一个显示设备1显示,相比通过一个面积相等的显示设备1显示,这样方式通过更多的显示像素显示了该图像,经过显示设备1显示的图像再分别通过一个成像设备2成像,最终投射到微透镜阵列3中的两个区域,这两个区域是无间隙衔接的,使得一个微透镜对应的显示像素的数量增加了一倍,进而进一步增加了光场显示系统的分辨率。
实施例6
如图8所示,该光场显示系统包括第一成像单元、第二成像单元、一个微透镜阵列3与时序控制设备(图中未示出),其中,第二成像单元中包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括两个反射设备,分别是第一反射设备41与第二反射设备42,显示设备1为LED阵列显示面板,成像设备2为凸透镜,第一反射设备41为反射膜,第二反射设备42为可切换透射/反射设备,具体的位置关系如图8所示。
在该实施例中,上述两个成像单元中的显示图像是一个源图像中的不同子图像,且这两个子图像是交错的,且成像单元投射到微透镜阵列3中的光区域部分重合。时序控制设备与两个成像单元中的显示设备1均电连接,且还与第二反射设备42电连接,时序控制设备控制第一成像单元中的显示设备1在第一时刻显示的图像为第一图像,此时,时序控制设备控制第二反射设备42为透射状态,然后,控制第二成像单元中的显示设备1在第二时刻显示的图像为第二图像,此时,时序控制设备控制第二反射设备42为反射状态,第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,如图9所示,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,第一图像中的显示像素在第一光区域04中对应的部分称为第一像素光单元040;且第二图像中的显示像素在第二光区域05中对应的部分称为第二像素光单元050,第一像素光单元040与第二像素光单元050重合的部分为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素045的数量变多,进而进一步提高了显示分辨率。
需要说明的一点是,当该第二反射设备42为半透射半反射设备时,由于该第二反射设备42可以同时实现透射与反射,所以该时序控制设备可以控制第一成像单元中的显示设备与第二成像单元中的显示设备同时显示图像。
实施例7
如图10所示,该光场显示系统包括一个成像单元、一个微透镜阵列3、移位设备5与时序控制设备,成像单元中包括一个显示设备1以及一个成像设备2,显示设备1为OLED显示面板,成像设备2为凸透镜,显示设备1设置在移位设备5上。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得移位设备5在第一时刻位于第一位置,对应显示设备1显示的图像为第一图像,使得移位设备5在第二时刻位于第二位置,对应显示设备1显示的图像为第二图像。第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,第一图像中的显示像素在第一光区域04中对应的部分称为第一像素光单元040;且第二图像中的显示像素在第二光区域05中对应的部分称为第二像素光单元050,如图11所示,第一像素光单元040与第二像素光单元050重合的部分为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素045的数量变多,进而进一步提高了显示分辨率。
实施例8
如图12所示,该光场显示系统包括一个成像单元、一个微透镜阵列3、一个移位设备5以及一个时序控制设备,成像单元中包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括两个反射设备,分别是第一反射设备41与第二反射设备42,显示设备1为OLED显示面板,成像设备2为凸透镜,第一反射设备41与第二反射设备42为反射膜,显示设备1设置在移位设备5上。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得移位设备5在第一时刻位于第一位置,对应显示设备1显示的图像为第一图像,使得移位设备5在第二时刻位于第二位置,对应显示设备1显示的图像为第二图像。第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,且其中一个图像中的显示像素在第一光区域中对应的部分称为第一像素光单元040;且另一个图像中的显示像素在第一光区域中对应的部分称为第二像素光单元050,第一像素光单元040与第二像素光单元重合的部分为等效像素045,如图13所示,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
实施例9
如图14所示,该光场显示系统包括一个成像单元、一个微透镜阵列3、一个移位设备5以及一个时序控制设备,成像单元中包括一个显示设备1、一个反射装置与一个成像设备2,反射装置包括两个反射设备,分别是第一反射设备41与第二反射设备42,显示设备1为OLED显示面板,成像设备2为凸透镜,第一反射设备41与第二反射设备42为反射膜。成像设备2设置在移位设备5上。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得位移设备在不同的时刻位于不同的位置,进而使得成像设备2在不同的时刻的位置不同,进而使得不同时刻投射到微透镜阵列3的光区域部分重合并且,多个图像对应的显示像素投射到微透镜阵列3的光区域部分重合,重合的部分对应为等效像素,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
实施例10
如图15所示,该光场显示系统包括一个成像单元、一个微透镜阵列3与一个时序控制设备,成像单元中包括三个显示设备1以及一个成像设备2,三个显示设备1为OLED显示面板,成像设备2为凸透镜,第一反射设备41与第二反射设备42为反射膜。
三个上述显示设备1的出光面平行设置且面积相等,任意相邻的两个上述显示设备1的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上,各上述显示设备1为透明的显示设备1,与上述出光面平行的平面为第一平面,且三个上述显示设备1的出光面在上述第一平面上的投影部分重合。时序控制设备与各显示单元电连接,用于控制不同的显示设备1在不同的时刻显示图像,时序控制单元控制第一显示设备11在第一时刻显示第一图像,控制第二显示设备12在第二时刻显示第二图像,控制第三显示设备13在第三时刻显示第三图像。第一时刻与第二时刻的时间差以及第二时刻与第三时刻的时间差均小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,第三图像对应的显示像素投射到微透镜阵列3的光区域为第三光区域06,这三个光区域部分重合,且各图形中的显示像素对应光区域中的部分也是部分重合,重合的部分为等效像素045,如图16所示,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
实施例11
如图17所示,该光场显示系统包括一个成像单元、一个微透镜阵列3与一个时序控制设备,成像单元中包括三个显示设备1、一个成像设备2以及四个反射设备,三个显示设备1为OLED显示面板,成像设备2为凸透镜,第三反射设备43与第四反射设备44为反射膜。
三个上述显示设备1分别为第一显示设备11、第二显示设备12与第三显示设备13,且上述第一显示设备11的显示面与上述第三显示设备13的显示面平行,上述第二显示设备12的显示面与上述第一显示设备11的显示面垂直,四个上述反射设备4分别为第一反射设备41、第二反射设备42、第三反射设备43与第四反射设备44,且上述第一反射设备41与上述第二反射设备42设置在上述第二显示设备12与上述成像设备2之间,且上述第一反射设备41与上述第二反射设备42相交且垂直,上述第一反射设备41用于将上述第一显示设备11显示的图像对应的光反射到上述成像设备2上,上述第二反射设备42用于将上述第三显示设备13显示的图像对应的光反射到上述成像设备2上,上述第一反射设备41与上述第二反射设备42为可切换透射/反射设备,上述第三反射设备43设置在上述成像设备2的出光侧,上述第四反射设备44设置在上述第三反射设备43的出光侧。时序控制设备与三个显示设备1均电连接,且还与第一反射设备41以及第二反射设备42电连接,控制三个显示设备1在不同的时刻显示图像,时序控制设备控制第一显示设备11在第一时刻显示的图像为第一图像,此时,时序 控制设备控制第一反射设备41为反射状态,第二反射设备42为透射状态然后,控制第二显示设备1在第二时刻显示的图像为第二图像,此时,时序控制设备控制第一反射设备41为透射状态,第二反射设备42为反射状态,控制第三显示设备1在第三时刻显示的图像为第三图像,此时,时序控制设备控制第一反射设备41与第二反射设备42均为透射状态,第一时刻与第二时刻的时间差以及第二时刻与第三时刻的时间差小于人的肉眼可以感知到的时间差,并且,这三个显示设备1显示的三个图像中对应的显示像素部分重合,重合的部分为等效像素,由于等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了光场显示系统的分辨率,该系统最终得到的图像与原始显示设备1显示的图形对比结果见图18,最后得到的成像图像03的清晰度基本与显示设备显示的原始图像01差不多。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
本申请的光场显示系统中包括成像设备,通过成像设备将显示设备的显示图像变为较小的实像,进而使得微透镜阵列中的各个微透镜对应的像素的数量增加,从而使得最终得到的图像的分辨率提高。
本申请的一种典型的实施方式中,提供了一种光场显示系统,如图19所示,该光场显示系统包括显示单元与微透镜阵列3,上述显示单元包括至少一个显示设备1,上述显示单元在不同时刻显示的图像由源图像中不同的显示像素组成,或者在同一个时刻显示的多个图像由源图像中不同的显示像素组成;微透镜阵列3设置在上述显示单元的出光侧,上述微透镜阵列包括多个阵列排列的微透镜,上述微透镜阵列3用于把上述显示单元显示的图像转化为立体图像,在形成一个上述立体图像的过程中,上述显示单元显示的多个图像对应的上述显示像素投射到上述微透镜阵列3上的光区域部分重叠。
本申请的光场显示系统中,显示单元在形成一个上述立体图像的过程中,上述显示单元在不同时刻或者同一时刻显示的多个图像由源图像中不同的显示像素组成,这多个图像组成源图像,即不同时刻或者同一时刻显示的多个图像是一个源图像的不同的子图像,即多个图像是由源图像分解出来的多个子图像,这多个子图像可以完全不同,也可以部分相同,该源图像可以是高分辨率图像,该源图像可以是高分辨率图像。在形成一个上述立体图像(即源图像的立体图像)的过程中,对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠,即使得不同图像中显示像素部分重叠,该部分为这个显示像素的等效像素,等效像素的面积小于原来的像素的面积,从而使得等效像素的密度变大,进而使得一个微透镜对应的等效像素的数量增加,从而使得最终得到的图像的分辨率提高。
本申请的一种实施例中,如图19所示,上述显示单元包括多个显示设备1,不同的时刻控制不同的显示设备工作,显示多个图像,多个图像投射到微透镜阵列的光区域不同,且多个图像对应的上述显示像素投射到上述微透镜阵列3上的光区域部分重叠。将各显示像素在光区域中的对应部分称为像素光单元,即多个图像中对应的像素光单元部分重叠,如图20所示,且重叠的部分称为等效像素045,等效像素小于原来的像素光单元的面积,因此,一个微透镜对应的等效像素变多,使得光场显示系统的分辨率提高。
本申请的另一种实施例中,如图19所示,多个上述显示设备1的出光面平行设置且面积相等,且各上述显示设备1为透明的显示设备,与上述出光面平行的平面为第一平面,且多个上述显示设备1的出光面在上述第一平面上的投影部分重叠。控制不同的显示设备在不同 的时刻显示图像,使得各图像中对应的显示像素投射到微透镜阵列上的光区域部分重合,如图20所示,重合的部分对应为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
为了进一步保证光场显示系统具有较高的分辨率,本申请的一种实施例中,如图19所示,任意相邻的两个上述显示设备1的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上。
本申请的再一种实施例中,如图21与图23所示,上述光场显示系统还包括移位设备5,上述显示设备1设置在上述移位设备5上,上述移位设备5在不同时刻将上述显示设备1移动至不同的位置,进而使得各图像中对应的显示像素投射到微透镜阵列上的光区域部分重合,如图22所示,重合的部分对应为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
为了进一步优化光场显示系统的光路,进而减小光场显示系统的体积,使得光场显示轻量化,进而更加迎合现代社会对轻薄产品的要求,本申请的一种实施例中,如图23、图25、图27以及图28所示,上述显示单元还包括至少一个反射设备4,设置在上述显示设备1的出光侧,该反射设备为具有反射光的功能的装置。
本申请的再一种实施例中,如图25所示,上述光场显示系统包括至少两个显示单元,各上述显示单元中包括一个上述显示设备1与两个上述反射设备4,两个上述反射设备4分别为第一反射设备41与第二反射设备42,在各上述显示单元中,上述第一反射设备41设置在上述显示设备1的出光侧,上述第二反射设备42设置在上述第一反射设备41的出光侧。控制不同的显示设备在不同的时刻显示图像,使得各图像中对应的显示像素投射到微透镜阵列上的光区域部分重合,重合的部分对应为等效像素,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进一步提高了显示分辨率。
本申请的又一种实施例中,如图26所示,上述光场显示系统包括至少两个上述显示单元,其中,部分上述显示单元为第一显示单元,部分上述显示单元为第二显示单元,上述第二显示单元包括一个上述显示设备1与两个上述反射设备4,两个上述反射设备4分别为第一反射设备41与第二反射设备42,在上述第二显示单元中,上述第一反射设备41设置在上述显示设备1的出光侧,上述第二反射设备42设置在上述第一反射设备41的出光侧,上述第一反射设备41对显示设备的出光进行反射,反射到第二反射设备中,上述第二反射设备42设置在上述第一反射设备41的出光侧,对第一反射设备41的出光反射至微透镜阵列3中,且任意两个上述光区域部分重合。在该实施例中,上述多个显示单元中的显示图像不同,这些显示单元投射到微透镜阵列中的光区域部分重合,并且,多个图像对应的显示像素投射到微透镜阵列的光区域部分重合,重合的部分对应为等效像素,如图27所示,等效像素045较小,使得一个微透镜对应的等效像素的数量变多,进而进一步提高了显示分辨率。
当上述第二反射设备42位于上述第一显示单元与上述微透镜阵列3之间时,如图26所示,为了避免第二反射设备影响第一显示单元的出光的光路,上述第二反射设备42位于上述第一显示单元与上述微透镜阵列3之间,上述第二反射设备42包括可切换透射/反射设备或半透射半反射设备,其中,上述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备, 上述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备,例如半透镜。
本申请的再一种实施例中,如图28所示,至少一个上述显示单元中包括三个上述显示设备1与四个上述反射设备4,三个上述显示设备1分别为第一显示设备11、第二显示设备12与第三显示设备13,且上述第一显示设备11的出光面与上述第三显示设备13的出光面平行,上述第二显示设备12的出光面与上述第一显示设备11的出光面垂直,四个上述反射设备4分别为第一反射设备41、第二反射设备42、第三反射设备43与第四反射设备44,且上述第一反射设备41与上述第二反射设备42设置在上述第二显示设备12与上述第三反射设备43之间,且上述第一反射设备41与上述第二反射设备42相交且垂直,上述第一反射设备41用于将上述第一显示设备11显示的图像对应的光反射到上述第三反射设备43上,上述第二反射设备42用于将上述第三显示设备13显示的图像对应的光反射到上述第三反射设备43上,上述第一反射设备41与上述第二反射设备42为可切换透射/反射设备或半透射半反射设备,上述第四反射设备44设置在上述第三反射设备43的出光侧。控制三个显示设备在不同的时刻显示图像,并且,这三个显示设备显示的三个图像中对应的显示像素部分重合,重合的部分为等效像素,由于等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了光场显示系统的分辨率。
为了更加方便高效地控制显示设备的工作,本申请的一种实施例中,上述光场显示系统还包括:时序控制单元,与上述显示单元电连接,用于控制各上述显示设备1的工作。
本申请中的显示设备可以是现有技术中的任何一种显示设备,比如说LCD面板、OLED面板或LED阵列,本领域技术人员可以根据实际情况选择合适的显示设备。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案。
实施例12
如图19所示,该光场显示系统包括显示单元、微透镜阵列3与时序控制设备,该显示单元包括三个显示设备1,三个显示设备1为OLED显示面板,第一反射设备41与第二反射设备42为反射膜。
三个上述显示设备1的出光面平行设置且面积相等,任意相邻的两个上述显示设备1的中心在上述第一平面上的投影的连线为矩形的对角线,各上述矩形的对角线在同一条直线上,各上述显示设备1为透明的显示设备1,与上述出光面平行的平面为第一平面,且三个上述显示设备1的出光面在上述第一平面上的投影部分重合。时序控制设备与各显示单元电连接,用于控制不同的显示设备1在不同的时刻显示图像,时序控制单元控制第一显示设备11在第一时刻显示第一图像,控制第二显示设备12在第二时刻显示第二图像,控制第三显示设备13在第三时刻显示第三图像。第一时刻与第二时刻的时间差以及第二时刻与第三时刻的时间差均小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,第三图像对应的显示像素投射到微透镜阵列3的光区域为第三光区域06,这三个光区域部分重合,且各图形中的显示像素对应光区域中的部分也是部分重合,重合的部分为等效像素045, 如图20所示,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了显示分辨率。
实施例13
如图21所示,该光场显示系统包括显示单元、微透镜阵列3、移位设备5与时序控制设备,显示单元中包括一个显示设备1,显示设备1为OLED显示面板,显示设备1设置在移位设备5上。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得移位设备5在第一时刻位于第一位置,对应显示设备1显示的图像为第一图像,使得移位设备5在第二时刻位于第二位置,对应显示设备1显示的图像为第二图像。第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,第一图像中的显示像素在第一光区域04中对应的部分称为第一像素光单元040;且第二图像中的显示像素在第二光区域05中对应的部分称为第二像素光单元050,如图22所示,第一像素光单元040与第二像素光单元050重合的部分为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素045的数量变多,进而提高了显示分辨率。
实施例14
如图23所示,该光场显示系统包括显示单元、微透镜阵列3、移位设备5以及时序控制设备,显示单元中包括一个显示设备1、两个反射设备4,两个反射设备分别是第一反射设备41与第二反射设备42,显示设备1为OLED显示面板,第一反射设备41与第二反射设备42为反射膜,显示设备1设置在移位设备5上。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得移位设备5在第一时刻位于第一位置,对应显示设备1显示的图像为第一图像,使得移位设备5在第二时刻位于第二位置,对应显示设备1显示的图像为第二图像。第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,且其中一个图像中的显示像素在第一光区域中对应的部分称为第一像素光单元040;且另一个图像中的显示像素在第一光区域中对应的部分称为第二像素光单元050,第一像素光单元与第二像素光单元重合的部分为等效像素045,如图24所示,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了显示分辨率。
实施例15
如图25所示,该光场显示系统包括两个显示单元、一个微透镜阵列3与时序控制设备,其中,各显示单元中包括一个显示设备1与两个反射设备,两个反射设备分别是第一反射设备41与第二反射设备42,显示设备1为OLED显示面板,第一反射设备41与第二反射设备42均为反射膜,且时序控制设备与两个显示单元中的显示设备分别电连接。
时序控制设备与上述移位设备5电连接,用于控制移位设备5的工作,使得移位设备5在第一时刻位于第一位置,对应显示设备1显示的图像为第一图像,使得移位设备5在第二时刻位于第二位置,对应显示设备1显示的图像为第二图像。第一时刻与第二时刻的时间差 小于人的肉眼可以感知到的时间差,第一图像对应的显示像素投射到微透镜阵列的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,且其中一个图像中的显示像素在第一光区域中对应的部分称为第一像素光单元;且另一个图像中的显示像素在第一光区域中对应的部分称为第二像素光单元,第一像素光单元与第二像素光单元重合的部分为等效像素,等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了显示分辨率。
实施例16
如图26所示,该光场显示系统包括第一显示单元、第二显示单元、一个微透镜阵列3与时序控制设备(图中未示出),其中,第二显示单元中包括一个显示设备1与两个反射设备,两个反射设备分别是第一反射设备41与第二反射设备42,显示设备1为LED阵列显示面板,第一反射设备41为反射膜,第二反射设备42为可切换透射/反射设备,具体的位置关系如图26所示。
在该实施例中,上述两个显示单元中的显示图像是一个源图像中的不同子图像,两个子图像是交错的,且显示单元投射到微透镜阵列3中的光区域部分重合。时序控制设备与两个显示单元中的显示设备1均电连接,且还与第二反射设备42电连接,时序控制设备控制第一显示单元中的显示设备1在第一时刻显示的图像为第一图像,此时,时序控制设备控制第二反射设备42为透射状态,然后,控制第二显示单元中的显示设备1在第二时刻显示的图像为第二图像,此时,时序控制设备控制第二反射设备42为反射状态,第一时刻与第二时刻的时间差小于人的肉眼可以感知到的时间差,如图27所示,第一图像对应的显示像素投射到微透镜阵列3的光区域为第一光区域04,第二图像对应的显示像素投射到微透镜阵列3的光区域为第二光区域05,这两个光区域部分重合,第一图像中的显示像素在第一光区域04中对应的部分称为第一像素光单元040;且第二图像中的显示像素在第二光区域05中对应的部分称为第二像素光单元050,第一像素光单元040与第二像素光单元050重合的部分为等效像素045,等效像素045较小,使得一个微透镜对应的等效像素045的数量变多,进而提高了显示分辨率。
需要说明的一点是,当该第二反射设备42为半透射半反射设备时,由于该第二反射设备42可以同时实现透射与反射,所以该时序控制设备可以同时控制第一显示单元中的显示设备与第二显示单元中的显示设备同时显示图像。
实施例17
如图28所示,该光场显示系统包括一个显示单元、一个微透镜阵列3与一个时序控制设备,显示单元中包括三个显示设备1以及四个反射设备,三个显示设备1为OLED显示面板,第一反射设备41与第二反射设备42为可切换透射/反射设备,第三反射设备43与第四反射设备44为反射膜。
三个上述显示设备1分别为第一显示设备11、第二显示设备12与第三显示设备13,且上述第一显示设备11的显示面与上述第三显示设备13的显示面平行,上述第二显示设备12的显示面与上述第一显示设备11的显示面垂直,四个上述反射设备4分别为第一反射设备41、第二反射设备42、第三反射设备43与第四反射设备44,且上述第一反射设备41与上述第二反射设备42设置在上述第二显示设备12与上述第三反射设备43之间,且上述第一反射设备 41与上述第二反射设备42相交且垂直,上述第一反射设备41用于将上述第一显示设备11显示的图像对应的光反射到上述第三反射设备43上,上述第二反射设备42用于将上述第三显示设备13显示的图像对应的光反射到第三反射设备43上,上述第三反射设备43设置在上述显示设备1的出光侧,上述第四反射设备44设置在上述第三反射设备43的出光侧。时序控制设备与三个显示设备1均电连接,且还与第一反射设备41以及第二反射设备42电连接,控制三个显示设备1在不同的时刻显示图像,时序控制设备控制第一显示设备11在第一时刻显示的图像为第一图像,此时,时序控制设备控制第一反射设备41为反射状态,第二反射设备42为透射状态然后,控制第二显示设备1在第二时刻显示的图像为第二图像,此时,时序控制设备控制第一反射设备41为透射状态,第二反射设备42为反射状态,控制第三显示设备1在第三时刻显示的图像为第三图像,此时,时序控制设备控制第一反射设备41与第二反射设备42均为透射状态,第一时刻与第二时刻的时间差以及第二时刻与第三时刻的时间差小于人的肉眼可以感知到的时间差,并且,这三个显示设备1显示的三个图像中对应的显示像素部分重合,重合的部分为等效像素,由于等效像素较小,使得一个微透镜对应的等效像素的数量变多,进而提高了光场显示系统的分辨率,该系统最终得到的图像与原始显示设备1显示的图形对比结果见图29,最后得到的成像图像03的清晰度基本与显示设备显示的原始图像01差不多。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
本申请的光场显示系统中,显示单元在形成一个上述立体图像的过程中,上述显示单元在不同时刻或者同一时刻显示的多个图像由源图像中不同的显示像素组成,这多个图像组成源图像,即不同时刻或者同一时刻显示的多个图像是一个源图像的不同的子图像,即多个图像是由源图像分解出来的多个子图像,在形成一个上述立体图像的过程中,对应的上述显示像素投射到上述微透镜阵列上的光区域部分重叠,即使得不同图像中显示像素部分重叠,该部分为这个显示像素的等效像素,等效像素的面积小于原来的像素的面积,从而使得等效像素的密度变大,进而使得一个微透镜对应的等效像素的数量增加,从而使得最终得到的图像的分辨率提高。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种光场显示系统,其特征在于,所述光场显示系统包括:
    成像单元,包括显示设备(1)与设置在所述显示设备(1)的出光侧的成像设备(2),所述显示设备(1)用于显示图像,所述成像设备(2)用于将所述显示设备(1)显示的图像转化为缩小的实像;以及
    微透镜阵列(3),设置在所述成像单元的出光侧,所述微透镜阵列(3)用于把所述成像单元输出的图像转化为立体图像。
  2. 根据权利要求1所述的光场显示系统,其特征在于,所述成像单元还包括:
    反射装置,设置在所述显示设备(1)的出光侧。
  3. 根据权利要求2所述的光场显示系统,其特征在于,所述反射装置包括至少一个反射设备(4)。
  4. 根据权利要求3所述的光场显示系统,其特征在于,所述成像单元为多个。
  5. 根据权利要求4所述的光场显示系统,其特征在于,所述光场显示系统包括至少两个所述成像单元,各所述成像单元中包括一个所述显示设备(1)与一个所述成像设备(2),各所述成像单元投射到所述微透镜阵列(3)上的光所在的区域为光区域,不同的所述成像单元对应的所述光区域的位置至少部分不同。
  6. 根据权利要求5所述的光场显示系统,其特征在于,各所述成像单元还包括两个所述反射设备(4),分别为第一反射设备(41)与第二反射设备(42),在各所述成像单元中,所述成像设备(2)设置在所述显示设备(1)的出光侧,所述第一反射设备(41)设置在所述成像设备(2)的出光侧,所述第二反射设备(42)设置在所述第一反射设备(41)的出光侧,且两个所述光区域无间隙衔接。
  7. 根据权利要求5所述的光场显示系统,其特征在于,所述光场显示系统包括多个成像单元,多个所述成像单元中,部分为第一成像单元,部分为第二成像单元,所述第二成像单元还包括两个所述反射设备(4),分别为第一反射设备(41)与第二反射设备(42),在所述第二成像单元中,所述第一反射设备(41)设置在所述成像设备(2)的出光侧,所述第二反射设备(42)设置在所述第一反射设备(41)的出光侧,且任意两个所述光区域部分重合。
  8. 根据权利要求7所述的光场显示系统,其特征在于,所述第二反射设备(42)位于所述第一成像单元与所述微透镜阵列(3)之间,所述第二反射设备(42)为可切换透射/反射设备或半透射半反射设备,其中,所述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备,所述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备。
  9. 根据权利要求1所述的光场显示系统,其特征在于,至少一个所述成像单元中包括多个所述显示设备(1),多个所述显示设备(1)显示的多个图像由源图像中不同的显示像素组成,且多个所述图像中对应的所述显示像素投射到所述微透镜阵列(3)上的光区域部分重叠。
  10. 根据权利要求9所述的光场显示系统,其特征在于,在至少一个所述成像单元中,多个所述显示设备(1)的出光面平行设置且面积相等,各所述显示设备(1)为透明的显示设备,与所述出光面平行的平面为第一平面,且多个所述显示设备(1)的出光面在所述第一平面上的投影部分重合。
  11. 根据权利要求10所述的光场显示系统,其特征在于,任意相邻的两个所述显示设备(1)的中心在所述第一平面上的投影的连线为矩形的对角线,各所述矩形的对角线在同一条直线上。
  12. 根据权利要求3所述的光场显示系统,其特征在于,至少一个所述成像单元中包括三个所述显示设备(1)、一个所述成像设备(2)与四个所述反射设备(4),三个所述显示设备(1)分别为第一显示设备(11)、第二显示设备(12)与第三显示设备(13),且所述第一显示设备(11)的显示面与所述第三显示设备(13)的显示面平行,所述第二显示设备(12)的显示面与所述第一显示设备(11)的显示面垂直,四个所述反射设备(4)分别为第一反射设备(41)、第二反射设备(42)、第三反射设备(43)与第四反射设备(44),且所述第一反射设备(41)与所述第二反射设备(42)设置在所述第二显示设备(12)与所述成像设备(2)之间,且所述第一反射设备(41)与所述第二反射设备(42)相交且垂直,所述第一反射设备(41)用于将所述第一显示设备(11)显示的图像对应的光反射到所述成像设备(2)上,所述第二反射设备(42)用于将所述第三显示设备(13)显示的图像对应的光反射到所述成像设备(2)上,所述第一反射设备(41)与所述第二反射设备(42)为可切换透射/反射设备或半透射半反射设备,所述第三反射设备(43)设置在所述成像设备(2)的出光侧,所述第四反射设备(44)设置在所述第三反射设备(43)的出光侧。
  13. 根据权利要求1至12中任一项所述的光场显示系统,其特征在于,所述光场显示系统还包括:
    时序控制设备,与所述成像单元电连接,用于至少控制各所述成像单元中的所述显示设备(1)的工作。
  14. 根据权利要求1至12中任一项所述的光场显示系统,其特征在于,所述光场显示系统还包括:
    移位设备(5),所述显示设备(1)和/或所述成像设备(2)设置在所述移位设备(5)上,所述移位设备(5)在不同时刻将所述显示设备(1)和/或所述成像设备(2)移动至不同的位置;以及
    时序控制设备,与各所述移位设备(5)电连接,用于至少控制所述移位设备(5)的工作。
  15. 根据权利要求1至12中任一项所述的光场显示系统,其特征在于,所述成像设备(2)包括凸透镜、菲涅尔透镜、渐变折射率透镜和/或光栅透镜。
  16. 根据权利要求1所述的光场显示系统,其特征在于,所述成像单元在不同时刻显示的图像由源图像中的不同的显示像素组成,或者所述成像单元在同一个时刻显示的多个图像由源图像中的不同的显示像素组成,在形成一个所述立体图像的过程中,所述成像单元的多个图像对应的所述显示像素投射到所述微透镜阵列(3)上的光区域部分重叠。
  17. 一种光场显示系统,其特征在于,所述光场显示系统包括:
    显示单元,包括至少一个显示设备(1),所述显示单元在不同时刻显示的图像由源图像中的不同的显示像素组成,或者在同一个时刻显示的多个图像由源图像中的不同的显示像素组成;以及
    微透镜阵列(3),设置在所述显示单元的出光侧,所述微透镜阵列包括多个阵列排列的微透镜,所述微透镜阵列(3)用于把所述显示单元显示的图像转化为立体图像,
    在形成一个所述立体图像的过程中,所述显示单元显示的多个图像对应的所述显示像素投射到所述微透镜阵列(3)上的光区域部分重叠。
  18. 根据权利要求17所述的光场显示系统,其特征在于,所述显示单元包括多个所述显示设备(1)。
  19. 根据权利要求18所述的光场显示系统,其特征在于,多个所述显示设备(1)的出光面平行设置且面积相等,且各所述显示设备(1)为透明的显示设备,与所述出光面平行的平面为第一平面,且多个所述显示设备(1)的出光面在所述第一平面上的投影部分重叠。
  20. 根据权利要求19所述的光场显示系统,其特征在于,任意相邻的两个所述显示设备(1)的中心在所述第一平面上的投影的连线为矩形的对角线,各所述矩形的对角线在同一条直线上。
  21. 根据权利要求17所述的光场显示系统,其特征在于,所述光场显示系统还包括:
    移位设备(5),所述显示设备(1)设置在所述移位设备(5)上,所述移位设备(5)在不同时刻将所述显示设备(1)移动至不同的位置。
  22. 根据权利要求17所述的光场显示系统,其特征在于,所述显示单元还包括:
    至少一个反射设备(4),设置在所述显示设备(1)的出光侧。
  23. 根据权利要求22所述的光场显示系统,其特征在于,所述光场显示系统包括至少两个显示单元,各所述显示单元中包括一个所述显示设备(1)与两个所述反射设备(4),两个 所述反射设备(4)分别为第一反射设备(41)与第二反射设备(42),在各所述显示单元中,所述第一反射设备(41)设置在所述显示设备(1)的出光侧,所述第二反射设备(42)设置在所述第一反射设备(41)的出光侧。
  24. 根据权利要求22所述的光场显示系统,其特征在于,所述光场显示系统包括至少两个所述显示单元,其中,部分所述显示单元为第一显示单元,部分所述显示单元为第二显示单元,所述第二显示单元包括一个所述显示设备(1)与两个所述反射设备(4),两个所述反射设备(4)分别为第一反射设备(41)与第二反射设备(42),在所述第二显示单元中,所述第一反射设备(41)设置在所述显示设备(1)的出光侧,所述第二反射设备(42)设置在所述第一反射设备(41)的出光侧。
  25. 根据权利要求24所述的光场显示系统,其特征在于,所述第二反射设备(42)位于所述第一显示单元与所述微透镜阵列(3)之间,所述第二反射设备(42)包括可切换透射/反射设备或半透射半反射设备,其中,所述可切换透射/反射设备为可在透射状态与反射状态切换的反射设备,所述半透射半反射设备为一部分结构处于透射状态且另一部分结构处于反射状态的反射设备。
  26. 根据权利要求22所述的光场显示系统,其特征在于,至少一个所述显示单元中包括三个所述显示设备(1)与四个所述反射设备(4),三个所述显示设备(1)分别为第一显示设备(11)、第二显示设备(12)与第三显示设备(13),且所述第一显示设备(11)的出光面与所述第三显示设备(13)的出光面平行,所述第二显示设备(12)的出光面与所述第一显示设备(11)的出光面垂直,四个所述反射设备(4)分别为第一反射设备(41)、第二反射设备(42)、第三反射设备(43)与第四反射设备(34),且所述第一反射设备(41)与所述第二反射设备(42)设置在所述第二显示设备(12)与所述第三反射设备(43)之间,且所述第一反射设备(41)与所述第二反射设备(42)相交且垂直,所述第一反射设备(41)用于将所述第一显示设备(11)显示的图像对应的光反射到所述第三反射设备(43)上,所述第二反射设备(42)用于将所述第三显示设备(13)显示的图像对应的光反射到所述第三反射设备(43)上,所述第一反射设备(41)与所述第二反射设备(42)为可切换透射/反射设备或半透射半反射设备,所述第四反射设备(34)设置在所述第三反射设备(43)的出光侧。
  27. 根据权利要求17或21所述的光场显示系统,其特征在于,所述光场显示系统还包括:
    时序控制单元,与所述显示单元电连接,用于至少控制所述显示设备(1)的工作。
PCT/CN2017/119893 2017-12-29 2017-12-29 光场显示系统 WO2019127383A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119893 WO2019127383A1 (zh) 2017-12-29 2017-12-29 光场显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119893 WO2019127383A1 (zh) 2017-12-29 2017-12-29 光场显示系统

Publications (1)

Publication Number Publication Date
WO2019127383A1 true WO2019127383A1 (zh) 2019-07-04

Family

ID=67064206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119893 WO2019127383A1 (zh) 2017-12-29 2017-12-29 光场显示系统

Country Status (1)

Country Link
WO (1) WO2019127383A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146994A1 (en) * 2010-12-14 2012-06-14 Samsung Mobile Display Co., Ltd. 2D/3D Switchable Image Display Apparatus and Method of Displaying 2D and 3D Images
CN102566250A (zh) * 2010-12-22 2012-07-11 康佳集团股份有限公司 一种裸眼自由立体显示的投影系统及显示器
CN102692805A (zh) * 2012-05-31 2012-09-26 浙江大学 基于多层液晶的投影式三维显示装置和方法
CN105892061A (zh) * 2016-06-24 2016-08-24 北京国承万通信息科技有限公司 显示装置及方法
CN106647094A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 光场显示装置
CN108037592A (zh) * 2017-12-29 2018-05-15 张家港康得新光电材料有限公司 光场显示系统
CN108037591A (zh) * 2017-12-29 2018-05-15 张家港康得新光电材料有限公司 光场显示系统
CN207676061U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统
CN207676062U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146994A1 (en) * 2010-12-14 2012-06-14 Samsung Mobile Display Co., Ltd. 2D/3D Switchable Image Display Apparatus and Method of Displaying 2D and 3D Images
CN102566250A (zh) * 2010-12-22 2012-07-11 康佳集团股份有限公司 一种裸眼自由立体显示的投影系统及显示器
CN102692805A (zh) * 2012-05-31 2012-09-26 浙江大学 基于多层液晶的投影式三维显示装置和方法
CN105892061A (zh) * 2016-06-24 2016-08-24 北京国承万通信息科技有限公司 显示装置及方法
CN106647094A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 光场显示装置
CN108037592A (zh) * 2017-12-29 2018-05-15 张家港康得新光电材料有限公司 光场显示系统
CN108037591A (zh) * 2017-12-29 2018-05-15 张家港康得新光电材料有限公司 光场显示系统
CN207676061U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统
CN207676062U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统

Similar Documents

Publication Publication Date Title
KR102625625B1 (ko) 투사형 3d 라이트 필드 생성을 위한 라이트 필드 이미지 방법 및 장치
US10459126B2 (en) Visual display with time multiplexing
US7699472B2 (en) Multi-view autostereoscopic projection system using single projection lens unit
TW571120B (en) Three-dimensional display method and its device
US9291830B2 (en) Multiview projector system
EP1285304A2 (en) Method and apparatus for displaying 3d images
CN103221873A (zh) 自由立体3d显示器
US11087666B2 (en) 3D display substrate, 3D display device and display method
JP5069360B2 (ja) 3次元表示装置
CN113748671A (zh) 用于可变分辨率屏幕的方法和装置
US11754974B2 (en) Relay systems
JP4703477B2 (ja) 3次元表示装置
CN111929914A (zh) 一种单向匀光扩束屏及三维显示装置
JP2007024975A (ja) 立体画像表示装置
CN101546103A (zh) 用于真三维固态体积式立体显示系统的投影光学引擎
US20150054927A1 (en) Method of glassless 3D display
CN207676062U (zh) 光场显示系统
JP5031909B2 (ja) 3次元表示装置
CN207676061U (zh) 光场显示系统
WO2019127383A1 (zh) 光场显示系统
CN108037591A (zh) 光场显示系统
CN108037592A (zh) 光场显示系统
CN102081239A (zh) 广角裸眼立体显示系统
WO2022209986A1 (ja) 表示装置
KR101575147B1 (ko) 무안경식 입체 영상 디스플레이장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936899

Country of ref document: EP

Kind code of ref document: A1