WO2019127319A1 - 头戴式显示设备的畸变测量方法及系统 - Google Patents

头戴式显示设备的畸变测量方法及系统 Download PDF

Info

Publication number
WO2019127319A1
WO2019127319A1 PCT/CN2017/119707 CN2017119707W WO2019127319A1 WO 2019127319 A1 WO2019127319 A1 WO 2019127319A1 CN 2017119707 W CN2017119707 W CN 2017119707W WO 2019127319 A1 WO2019127319 A1 WO 2019127319A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
display device
mounted display
distortion
head mounted
Prior art date
Application number
PCT/CN2017/119707
Other languages
English (en)
French (fr)
Inventor
周凌
Original Assignee
华勤通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华勤通讯技术有限公司 filed Critical 华勤通讯技术有限公司
Publication of WO2019127319A1 publication Critical patent/WO2019127319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details

Definitions

  • the invention belongs to the field of virtual reality technology, and in particular relates to a distortion measuring method and system for a head mounted display device.
  • Head-mounted display devices include VR (Virtual Reality) glasses and AR (Augmented Reality) glasses.
  • the basic principle is to create a 3D virtual image by projecting two virtual images in front of the eyes of the person and using the parallax of the person.
  • Visual effects As an optically dominant product, optical imaging is critical to the user experience of VR/AR glasses. Among the various factors affecting optical imaging effects, distortion is one of the most important optical indicators.
  • the invention is to overcome the defects that the manual detection method in the prior art is difficult to accurately quantify the distortion, and provides a distortion measurement method and system for the head mounted display device.
  • a method for measuring distortion of a head mounted display device comprising:
  • Distortion of the head mounted display device is calculated based on the projected image.
  • the detection image includes a plurality of groups of detection units, each of the detection units includes detection points sequentially arranged on a straight line, and the lines of detection points of different detection units are different;
  • the projection image includes a plurality of sets of projection units corresponding to the plurality of sets of detection units, each set of the projection units including a projection point generated by a detection point projection included in the detection unit corresponding to the projection unit;
  • the step of calculating the distortion rate of the head mounted display device according to the projected image specifically includes:
  • the distortion is calculated based on the coordinate data.
  • the step of calculating the distortion according to the coordinate data specifically includes:
  • a ratio of the distance value to the length value is calculated, and a maximum of the ratios is used as the distortion.
  • the step of using the display lens of the head mounted display device to project a detected image and generate a projected image specifically includes:
  • the step of acquiring the projected image by using a camera specifically includes:
  • the projection images generated by the corresponding projections of the display lens are respectively acquired by using two cameras.
  • the camera is collinear with a main optical axis of the display lens
  • the field of view of the camera is greater than a theoretical field of view of the head mounted display device
  • the head mounted display device comprises AR glasses or VR glasses.
  • a distortion measuring system for a head mounted display device comprising a camera and a computing module
  • the head mounted display device is configured to project a detected image by using a display lens of the head mounted display device and generate a projected image
  • the camera is configured to acquire the projected image
  • the calculation module is configured to calculate distortion of the head mounted display device according to the projected image.
  • the distortion measurement system further includes a coordinate system establishing module and a coordinate data acquiring module;
  • the detection image includes a plurality of groups of detection units, each of the detection units includes detection points arranged in a line on a straight line, and the lines of detection points of different detection units are different;
  • the projection image includes a plurality of sets of projection units corresponding to the plurality of sets of detection units, each set of the projection units including a projection point generated by a detection point projection included in the detection unit corresponding to the projection unit;
  • the coordinate system establishing module is configured to establish a Cartesian coordinate system on the projected image
  • the coordinate data acquiring module is configured to acquire coordinate data of each of the projection points on each group of the projection units;
  • the calculation module is configured to calculate the distortion according to the coordinate data.
  • the calculating module is configured to calculate a length value of a line connecting the first projection point and the last projection point on each of the projection units, and is further configured to calculate each of the projection points on the projection unit The distance value from the connection;
  • the calculation module is further configured to calculate a ratio of the distance value to the length value, and use a maximum value of the ratio as the distortion.
  • the distortion measuring system comprises two cameras;
  • the head mounted display device is configured to project the detected image by two display lenses of the head mounted display device and generate the projected image;
  • the two cameras are configured to respectively acquire the projected image generated by the corresponding projection of the display lens.
  • the camera is collinear with a main optical axis of the display lens
  • the field of view of the camera is greater than a theoretical field of view of the head mounted display device
  • the head mounted display device comprises AR glasses or VR glasses.
  • the positive progress of the present invention is that a camera is used instead of the human eye, a projection image of the image projection is detected on the head-mounted display device by the camera, and the projection image is analyzed, thereby obtaining distortion of the quantized head-mounted display device.
  • FIG. 1 is a flow chart showing a method of measuring distortion of a head mounted display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a specific flowchart of step 130 in the method for measuring distortion of the head mounted display device according to Embodiment 2 of the present invention.
  • FIG. 3 is a specific flowchart of step 133 in the method for measuring distortion of the head mounted display device according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing the structure of a distortion measuring system of a head mounted display device according to Embodiment 4 of the present invention.
  • FIG. 5 is a structural block diagram of a distortion measuring system of a head mounted display device according to Embodiment 5 of the present invention.
  • a method for measuring distortion of a head-mounted display device, as shown in FIG. 1, the method for measuring distortion includes:
  • Step 110 Project a detection image by using a display lens of the head mounted display device to generate a projection image
  • Step 120 Acquire a projection image by using a camera
  • Step 130 Calculate distortion of the head mounted display device according to the projected image.
  • a camera is used instead of the human eye, and a projection image of the image projection is detected by the camera on the head-mounted display device, and then the projection image is analyzed, thereby obtaining distortion of the quantized head-mounted display device.
  • the distortion measurement method of the head mounted display device of the present embodiment is further improved on the basis of Embodiment 1, and the detection image includes multiple groups of detection units, and each group of detection units includes a plurality of detection units.
  • the detection points on the line, the lines of the detection points of different detection units are different;
  • the projection image includes a plurality of sets of projection units corresponding to the plurality of sets of detection units, each set of projection units including a projection point generated by the detection point projection included in the detection unit corresponding to the projection unit;
  • Step 130 specifically includes:
  • Step 131 Establish a Cartesian coordinate system on the projected image
  • Step 132 Acquire coordinate data of each projection point on each group of projection units
  • Step 133 Calculate the distortion according to the coordinate data.
  • step 133 specifically includes:
  • Step 1331 Calculate a length value of a line connecting the first projection point and the last projection point on each group of projection units;
  • Step 1332 Calculate a distance value between each projection point on the projection unit and the connection line;
  • Step 1333 Calculate a ratio of the distance value to the length value, and use the maximum value in the ratio as the distortion.
  • the distortion measurement method of the head-mounted display device of the embodiment is described below by using a specific example.
  • the detection image adopts a black and white checkerboard image, and the intersection of the black grid and the white grid is a detection point, and the intersections on the same line are detected.
  • the projection point can be identified according to the pixel of the captured image. Taking the projection point of one of the lines as an example, it is assumed that P 1 ⁇ P N are the projection points of a projection unit on the projection image, and the projection point The coordinates are (x 1 , y 1 ), (x 2 , y 2 )...(x N , y N );
  • N is the number of projection points
  • L is the length of the line connecting the first projection point and the last projection point
  • d i is the i-th projection point to the connection line.
  • Vertical distance, ⁇ is distortion.
  • the method for measuring the distortion of the head-mounted display device of the present embodiment is further improved on the basis of the embodiment 1.
  • the step 110 specifically includes:
  • Step 120 specifically includes:
  • the projection images generated by the corresponding projections of the display lens are respectively acquired by using two cameras.
  • the camera is collinear with the main optical axis of the display lens; the field of view of the camera is greater than the theoretical field of view of the head mounted display device; the head mounted display device comprises AR glasses or VR glasses.
  • the projection images on the two display lenses of the head-mounted display device are respectively acquired by two cameras, and respectively calculated, and in order to obtain a complete and effective projection image, the field of view of the camera is larger than that of the headset.
  • the theoretical field of view of the display device, and the camera and the main optical axis of the display lens are collinear.
  • the projection image is inversely distorted according to the distortion of the camera to exclude The distortion of the camera itself affects the distortion measurement results of the head mounted display device.
  • a distortion measuring system for a head mounted display device as shown in FIG. 4, the distortion measuring system includes a camera 1 and a computing module 2;
  • the head mounted display device is configured to project a detected image through the display lens 3 of the head mounted display device and generate a projected image;
  • the camera 1 is configured to acquire the projected image
  • the calculating module 2 is configured to calculate distortion of the head mounted display device according to the projected image.
  • a camera is used instead of the human eye, and a projection image of the image projection is detected by the camera on the head-mounted display device, and then the projection image is analyzed, thereby obtaining distortion of the quantized head-mounted display device.
  • the distortion measuring method of the head mounted display device of the present embodiment is further improved on the basis of the embodiment 1.
  • the distortion measuring system further includes a coordinate system establishing module 5 and a coordinate data acquiring module 4;
  • the detection image includes a plurality of groups of detection units, each of the detection units includes detection points arranged in a line on a straight line, and the lines of detection points of different detection units are different;
  • the projection image includes a plurality of sets of projection units corresponding to the plurality of sets of detection units, each set of the projection units including a projection point generated by a detection point projection included in the detection unit corresponding to the projection unit;
  • the coordinate system establishing module 5 is configured to establish a Cartesian coordinate system on the projected image
  • the coordinate data acquiring module 4 is configured to acquire coordinate data of each of the projection points on each group of the projection units;
  • the calculation module 2 is configured to calculate the distortion according to the coordinate data.
  • the calculation module 2 is configured to calculate a length value of a line connecting the first projection point and the last projection point on each of the projection units, and is also used to calculate each of the projection points on the projection unit. The distance value from the connection;
  • the calculation module 2 is further configured to calculate a ratio of the distance value to the length value, and use a maximum value of the ratio as the distortion.
  • the distortion measurement method of the head-mounted display device of the embodiment is described below by using a specific example.
  • the detection image adopts a black and white checkerboard image, and the intersection of the black grid and the white grid is a detection point, and the intersections on the same line are detected.
  • the projection point can be identified according to the pixel of the captured image. Taking the projection point of one of the lines as an example, it is assumed that P 1 ⁇ P N are the projection points of a projection unit on the projection image, and the projection point The coordinates are (x 1 , y 1 ), (x 2 , y 2 )...(x N , y N );
  • N is the number of projection points
  • L is the length of the line connecting the first projection point and the last projection point
  • d i is the i-th projection point to the connection line.
  • Vertical distance, ⁇ is distortion.
  • the distortion measuring method of the head mounted display device of the embodiment is further improved on the basis of Embodiment 5, as shown, the distortion measuring system includes two cameras;
  • the head mounted display device is configured to respectively project the detection image by two display lenses of the head mounted display device and generate the projection image;
  • the two cameras are used to respectively acquire the projection images generated by the corresponding projections of the display lens 3.
  • the camera is collinear with a main optical axis of the display lens; an angle of view of the camera 1 is greater than a theoretical field of view of the head mounted display device; the head mounted display device comprises AR glasses or VR glasses.
  • the projection images on the two display lenses of the head-mounted display device are respectively acquired by two cameras, and respectively calculated, and in order to obtain a complete and effective projection image, the field of view of the camera is larger than that of the headset.
  • the theoretical field of view of the display device, and the camera and the main optical axis of the display lens are collinear.
  • the projection image is inversely distorted according to the distortion of the camera to exclude The distortion of the camera itself affects the distortion measurement results of the head mounted display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种头戴式显示设备的畸变测量方法及系统,畸变测量方法包括:利用头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像;利用摄像机获取投影图像;根据投影图像计算头戴式显示设备的畸变。通过使用摄像机代替人眼,通过摄像机拍摄头戴式显示设备上检测图像投影的投影图像,再对投影图像进行分析,从而得到量化的头戴式显示设备的畸变。

Description

头戴式显示设备的畸变测量方法及系统
本申请要求申请日为2017年12月26日的中国专利申请CN201711437454.5的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于虚拟现实技术领域,特别涉及一种头戴式显示设备的畸变测量方法及系统。
背景技术
头戴式显示设备包括VR(虚拟现实)眼镜和AR(增强现实)眼镜,其基本原理是通过在人的双眼前分别投射两个虚拟的影像,利用人自身的视差从而产生一种3D虚拟的视觉效果。作为一个光学主导的产品,光学的成像效果对于VR/AR眼镜的用户体验至关重要。在影响光学成像效果的各类因素中,畸变是其中一个非常重要的光学指标。
在生产过程中,由于光路可能会偏离理论设计,不可避免地会导致成像结果会留有一定的畸变。在生产测试环节中,这样的畸变检测都是采用人工抽样检测的方法,即直接用肉眼观察成像效果,并做出一个主观性的判断。显然人工检测的方法既不快捷,也不方便,不同测试者的标准也很难统一,更无法准确地定量畸变大小。于此同时,在研发测试环节中,也缺乏一个可以用来比较不同光路设计方案以及不同畸变矫正参数的畸变测试方案。
发明内容
本发明是为了克服现有技术中人工检测的方法很难准确地定量得出畸变的缺陷,提供一种头戴式显示设备的畸变测量方法及系统。
本发明通过以下技术方案来解决上述问题:
一种头戴式显示设备的畸变测量方法,包括:
利用所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像;
利用摄像机获取所述投影图像;
根据所述投影图像计算所述头戴式显示设备的畸变。
可选地,所述检测图像包括多组检测单元,每组所述检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
所述投影图像包括与所述多组检测单元对应的多组投影单元,每组所述投影单元均包括与所述投影单元对应的检测单元所包括的检测点投影生成的投影点;
所述根据所述投影图像计算所述头戴式显示设备的畸变率的步骤具体包括:
在所述投影图像上建立直角坐标系;
获取每组所述投影单元上每个所述投影点的坐标数据;
根据所述坐标数据计算所述畸变。
可选地,所述根据所述坐标数据计算所述畸变的步骤具体包括:
计算每组所述投影单元上第一个投影点与最后一个投影点的连线的长度值;
计算所述投影单元上每个所述投影点与所述连线之间的距离值;
计算所述距离值与所述长度值的比值,并将所述比值中的最大值作为所述畸变。
可选地,所述利用所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像的步骤具体包括:
利用所述头戴式显示设备的两个显示镜片分别对所述检测图像进行投影并生成所述投影图像;
所述利用摄像机获取所述投影图像的步骤具体包括:
利用两个摄像机分别获取所述显示镜片对应投影生成的所述投影图像。
可选地,所述摄像机与所述显示镜片的主光轴共线;
和/或,所述摄像机的视场角大于所述头戴式显示设备的理论视场角;
和/或,所述头戴式显示设备包括AR眼镜或VR眼镜。
一种头戴式显示设备的畸变测量系统,包括摄像机和计算模块;
所述头戴式显示设备用于通过所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像;
所述摄像机用于获取所述投影图像;
所述计算模块用于根据所述投影图像计算所述头戴式显示设备的畸变。
可选地,所述畸变测量系统还包括坐标系建立模块和坐标数据获取模块;
所述检测图像包括多组检测单元,每组所述检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
所述投影图像包括与所述多组检测单元对应的多组投影单元,每组所述投影单元均包括与所述投影单元对应的检测单元所包括的检测点投影生成的投影点;
所述坐标系建立模块用于在所述投影图像上建立直角坐标系;
所述坐标数据获取模块用于获取每组所述投影单元上每个所述投影点的坐标数据;
所述计算模块用于根据所述坐标数据计算所述畸变。
可选地,所述计算模块用于计算每组所述投影单元上第一个投影点与最后一个投影点的连线的长度值,还用于计算所述投影单元上每个所述投影点与所述连线之间的距离值;
所述计算模块还用于计算所述距离值与所述长度值的比值,并将所述比值中的最大值作为所述畸变。
可选地,所述畸变测量系统包括两个摄像机;
所述头戴式显示设备用于通过所述头戴式显示设备的两个显示镜片分 别对所述检测图像进行投影并生成所述投影图像;
所述两个摄像机用于分别获取所述显示镜片对应投影生成的所述投影图像。
可选地,所述摄像机与所述显示镜片的主光轴共线;
和/或,所述摄像机的视场角大于所述头戴式显示设备的理论视场角;
和/或,所述头戴式显示设备包括AR眼镜或VR眼镜。
本发明的积极进步效果在于:使用摄像机代替人眼,通过摄像机拍摄头戴式显示设备上检测图像投影的投影图像,再对投影图像进行分析,从而得到量化的头戴式显示设备的畸变。
附图说明
图1为本发明实施例1的头戴式显示设备的畸变测量方法的流程图。
图2为本发明实施例2的头戴式显示设备的畸变测量方法中步骤130的具体流程图。
图3为本发明实施例2的头戴式显示设备的畸变测量方法中步骤133的具体流程图。
图4为本发明实施例4的头戴式显示设备的畸变测量系统的结构框图。
图5为本发明实施例5的头戴式显示设备的畸变测量系统的结构框图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
一种头戴式显示设备的畸变测量方法,如图1所示,畸变测量方法包括:
步骤110、利用头戴式显示设备的显示镜片对检测图像进行投影并生成 投影图像;
步骤120、利用摄像机获取投影图像;
步骤130、根据投影图像计算头戴式显示设备的畸变。
本实施例中,使用摄像机代替人眼,通过摄像机拍摄头戴式显示设备上检测图像投影的投影图像,再对投影图像进行分析,从而得到量化的头戴式显示设备的畸变。
实施例2
如图2-3所示,本实施例的头戴式显示设备的畸变测量方法是在实施例1的基础上进一步改进,检测图像包括多组检测单元,每组检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
投影图像包括与多组检测单元对应的多组投影单元,每组投影单元均包括与投影单元对应的检测单元所包括的检测点投影生成的投影点;
步骤130具体包括:
步骤131、在投影图像上建立直角坐标系;
步骤132、获取每组投影单元上每个投影点的坐标数据;
步骤133、根据坐标数据计算畸变。
其中,步骤133具体包括:
步骤1331、计算每组投影单元上第一个投影点与最后一个投影点的连线的长度值;
步骤1332、计算投影单元上每个投影点与连线之间的距离值;
步骤1333、计算距离值与长度值的比值,并将比值中的最大值作为畸变。
下面通过一具体示例进行阐述本实施例的头戴式显示设备的畸变测量方法,检测图像采用黑白棋盘格图像,黑格与白格的交叉点为检测点,在同一行上的交叉点组成检测单元,摄像机获取投影图像后,可以根据拍摄图像的像素点识别出投影点,以其中一行的投影点为例,假设P 1~P N为投影图像上某一投影单元的投影点,投影点的坐标分别为(x 1,y 1)、(x 2,y 2)…(x N,y N);
Figure PCTCN2017119707-appb-000001
Figure PCTCN2017119707-appb-000002
Figure PCTCN2017119707-appb-000003
其中,i=1、2…N,N为投影点的个数,L为第1个投影点与最后一个投影点的连线的长度,d i为第i个投影点到所述连线的垂直距离,σ为畸变。
实施例3
本实施例的头戴式显示设备的畸变测量方法是在实施例1的基础上进一步改进,步骤110具体包括:
利用头戴式显示设备的两个显示镜片分别对检测图像进行投影并生成投影图像;
步骤120具体包括:
利用两个摄像机分别获取显示镜片对应投影生成的投影图像。
其中,摄像机与显示镜片的主光轴共线;摄像机的视场角大于头戴式显示设备的理论视场角;头戴式显示设备包括AR眼镜或VR眼镜。
本实施例中,分别用两个摄像机分别获取头戴式显示设备的两个显示镜片上的投影图像,并分别进行计算,同时为了获取到完整有效的投影图像,摄像机的视场角大于头戴式显示设备的理论视场角,且摄像机与显示镜片的主光轴共线,另外为了确保计算结果的精确度,获取投影图像后要根据摄像机的自身畸变对投影图像进行反畸变处理,以排除摄像机自身的畸变对头戴式显示设备的畸变测量结果的影响。
实施例4
一种头戴式显示设备的畸变测量系统,如图4所示,所述畸变测量系统包括摄像机1和计算模块2;
所述头戴式显示设备用于通过所述头戴式显示设备的显示镜片3对检测图像进行投影并生成投影图像;
所述摄像机1用于获取所述投影图像;
所述计算模块2用于根据所述投影图像计算所述头戴式显示设备的畸变。
本实施例中,使用摄像机代替人眼,通过摄像机拍摄头戴式显示设备上检测图像投影的投影图像,再对投影图像进行分析,从而得到量化的头戴式显示设备的畸变。
实施例5
本实施例的头戴式显示设备的畸变测量方法是在实施例1的基础上进一步改进,如图5所示,所述畸变测量系统还包括坐标系建立模块5和坐标数据获取模块4;
所述检测图像包括多组检测单元,每组所述检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
所述投影图像包括与所述多组检测单元对应的多组投影单元,每组所述投影单元均包括与所述投影单元对应的检测单元所包括的检测点投影生成的投影点;
所述坐标系建立模块5用于在所述投影图像上建立直角坐标系;
所述坐标数据获取模块4用于获取每组所述投影单元上每个所述投影点的坐标数据;
所述计算模块2用于根据所述坐标数据计算所述畸变。
具体地,所述计算模块2用于计算每组所述投影单元上第一个投影点与最后一个投影点的连线的长度值,还用于计算所述投影单元上每个所述投影点与所述连线之间的距离值;
所述计算模块2还用于计算所述距离值与所述长度值的比值,并将所述比值中的最大值作为所述畸变。
下面通过一具体示例进行阐述本实施例的头戴式显示设备的畸变测量方法,检测图像采用黑白棋盘格图像,黑格与白格的交叉点为检测点,在同 一行上的交叉点组成检测单元,摄像机获取投影图像后,可以根据拍摄图像的像素点识别出投影点,以其中一行的投影点为例,假设P 1~P N为投影图像上某一投影单元的投影点,投影点的坐标分别为(x 1,y 1)、(x 2,y 2)…(x N,y N);
Figure PCTCN2017119707-appb-000004
Figure PCTCN2017119707-appb-000005
Figure PCTCN2017119707-appb-000006
其中,i=1、2…N,N为投影点的个数,L为第1个投影点与最后一个投影点的连线的长度,d i为第i个投影点到所述连线的垂直距离,σ为畸变。
实施例6
本实施例的头戴式显示设备的畸变测量方法是在实施例5的基础上进一步改进,如图所示,所述畸变测量系统包括两个摄像机;
所述头戴式显示设备用于通过所述头戴式显示设备的两个显示镜片分别对所述检测图像进行投影并生成所述投影图像;
所述两个摄像机用于分别获取所述显示镜片3对应投影生成的所述投影图像。
其中,所述摄像机与所述显示镜片的主光轴共线;所述摄像机1的视场角大于所述头戴式显示设备的理论视场角;所述头戴式显示设备包括AR眼镜或VR眼镜。
本实施例中,分别用两个摄像机分别获取头戴式显示设备的两个显示镜片上的投影图像,并分别进行计算,同时为了获取到完整有效的投影图像,摄像机的视场角大于头戴式显示设备的理论视场角,且摄像机与显示镜片的主光轴共线,另外为了确保计算结果的精确度,获取投影图像后要根据摄像机的自身畸变对投影图像进行反畸变处理,以排除摄像机自身的畸变对头戴式显示设备的畸变测量结果的影响。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (10)

  1. 一种头戴式显示设备的畸变测量方法,其特征在于,所述畸变测量方法包括:
    利用所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像;
    利用摄像机获取所述投影图像;
    根据所述投影图像计算所述头戴式显示设备的畸变。
  2. 如权利要求1所述的头戴式显示设备的畸变测量方法,其特征在于,所述检测图像包括多组检测单元,每组所述检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
    所述投影图像包括与所述多组检测单元对应的多组投影单元,每组所述投影单元均包括与所述投影单元对应的检测单元所包括的检测点投影生成的投影点;
    所述根据所述投影图像计算所述头戴式显示设备的畸变率的步骤具体包括:
    在所述投影图像上建立直角坐标系;
    获取每组所述投影单元上每个所述投影点的坐标数据;
    根据所述坐标数据计算所述畸变。
  3. 如权利要求2所述的头戴式显示设备的畸变测量方法,其特征在于,所述根据所述坐标数据计算所述畸变的步骤具体包括:
    计算每组所述投影单元上第一个投影点与最后一个投影点的连线的长度值;
    计算所述投影单元上每个所述投影点与所述连线之间的距离值;
    计算所述距离值与所述长度值的比值,并将所述比值中的最大值作为所述畸变。
  4. 如权利要求1-3中至少一项所述的头戴式显示设备的畸变测量方法,其特征在于,所述利用所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像的步骤具体包括:
    利用所述头戴式显示设备的两个显示镜片分别对所述检测图像进行投影并生成所述投影图像;
    所述利用摄像机获取所述投影图像的步骤具体包括:
    利用两个摄像机分别获取所述显示镜片对应投影生成的所述投影图像。
  5. 如权利要求1-4中至少一项所述的头戴式显示设备的畸变测量方法,其特征在于,所述摄像机与所述显示镜片的主光轴共线;
    和/或,所述摄像机的视场角大于所述头戴式显示设备的理论视场角;
    和/或,所述头戴式显示设备包括AR眼镜或VR眼镜。
  6. 一种头戴式显示设备的畸变测量系统,其特征在于,所述畸变测量系统包括摄像机和计算模块;
    所述头戴式显示设备用于通过所述头戴式显示设备的显示镜片对检测图像进行投影并生成投影图像;
    所述摄像机用于获取所述投影图像;
    所述计算模块用于根据所述投影图像计算所述头戴式显示设备的畸变。
  7. 如权利要求6所述的头戴式显示设备的畸变测量系统,其特征在于,所述畸变测量系统还包括坐标系建立模块和坐标数据获取模块;
    所述检测图像包括多组检测单元,每组所述检测单元均包括依次排列在一条直线上的检测点,不同检测单元的检测点所在的直线不同;
    所述投影图像包括与所述多组检测单元对应的多组投影单元,每组所述投影单元均包括与所述投影单元对应的检测单元所包括的检测点投影生成的投影点;
    所述坐标系建立模块用于在所述投影图像上建立直角坐标系;
    所述坐标数据获取模块用于获取每组所述投影单元上每个所述投影点 的坐标数据;
    所述计算模块用于根据所述坐标数据计算所述畸变。
  8. 如权利要求7所述的头戴式显示设备的畸变测量系统,其特征在于,所述计算模块用于计算每组所述投影单元上第一个投影点与最后一个投影点的连线的长度值,还用于计算所述投影单元上每个所述投影点与所述连线之间的距离值;
    所述计算模块还用于计算所述距离值与所述长度值的比值,并将所述比值中的最大值作为所述畸变。
  9. 如权利要求6-8中至少一项所述的头戴式显示设备的畸变测量系统,其特征在于,所述畸变测量系统包括两个摄像机;
    所述头戴式显示设备用于通过所述头戴式显示设备的两个显示镜片分别对所述检测图像进行投影并生成所述投影图像;
    所述两个摄像机用于分别获取所述显示镜片对应投影生成的所述投影图像。
  10. 如权利要求6-9中至少一项所述的头戴式显示设备的畸变测量系统,其特征在于,所述摄像机与所述显示镜片的主光轴共线;
    和/或,所述摄像机的视场角大于所述头戴式显示设备的理论视场角;
    和/或,所述头戴式显示设备包括AR眼镜或VR眼镜。
PCT/CN2017/119707 2017-12-26 2017-12-29 头戴式显示设备的畸变测量方法及系统 WO2019127319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711437454.5 2017-12-26
CN201711437454.5A CN108124152A (zh) 2017-12-26 2017-12-26 头戴式显示设备的畸变测量方法及系统

Publications (1)

Publication Number Publication Date
WO2019127319A1 true WO2019127319A1 (zh) 2019-07-04

Family

ID=62231986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119707 WO2019127319A1 (zh) 2017-12-26 2017-12-29 头戴式显示设备的畸变测量方法及系统

Country Status (2)

Country Link
CN (1) CN108124152A (zh)
WO (1) WO2019127319A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880188B (zh) * 2018-09-06 2022-07-01 舜宇光学(浙江)研究院有限公司 用于近眼显示光学系统的标定方法、标定装置和标定系统
CN110967166B (zh) * 2018-09-28 2022-07-01 舜宇光学(浙江)研究院有限公司 近眼显示光学系统的检测方法、检测装置和检测系统
CN113138066B (zh) * 2020-01-16 2022-11-01 舜宇光学(浙江)研究院有限公司 外部畸变检测方法及其系统和平台以及电子设备
CN113099203B (zh) * 2021-05-10 2023-08-22 青岛小鸟看看科技有限公司 显示系统校准方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093392A (ja) * 2005-09-29 2007-04-12 Aisin Seiki Co Ltd 3次元形状評価方法及び3次元形状評価装置
US20100135595A1 (en) * 2008-12-02 2010-06-03 Pfu Limited Image processing apparatus and image processing method
CN103792674A (zh) * 2014-01-21 2014-05-14 浙江大学 一种测量和校正虚拟现实显示器畸变的装置和方法
CN105867606A (zh) * 2015-12-15 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔中的图像获取方法、装置及虚拟现实头盔
CN106127714A (zh) * 2016-07-01 2016-11-16 南京睿悦信息技术有限公司 一种虚拟现实头戴显示器设备畸变参数的测量方法
CN106644404A (zh) * 2016-11-30 2017-05-10 深圳市虚拟现实技术有限公司 虚拟现实头盔畸变整机检测的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105791789B (zh) * 2016-04-28 2019-03-19 努比亚技术有限公司 头戴设备、显示设备及自动调整显示输出的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093392A (ja) * 2005-09-29 2007-04-12 Aisin Seiki Co Ltd 3次元形状評価方法及び3次元形状評価装置
US20100135595A1 (en) * 2008-12-02 2010-06-03 Pfu Limited Image processing apparatus and image processing method
CN103792674A (zh) * 2014-01-21 2014-05-14 浙江大学 一种测量和校正虚拟现实显示器畸变的装置和方法
CN105867606A (zh) * 2015-12-15 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔中的图像获取方法、装置及虚拟现实头盔
CN106127714A (zh) * 2016-07-01 2016-11-16 南京睿悦信息技术有限公司 一种虚拟现实头戴显示器设备畸变参数的测量方法
CN106644404A (zh) * 2016-11-30 2017-05-10 深圳市虚拟现实技术有限公司 虚拟现实头盔畸变整机检测的方法及装置

Also Published As

Publication number Publication date
CN108124152A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2019127319A1 (zh) 头戴式显示设备的畸变测量方法及系统
CN106127714B (zh) 一种虚拟现实头戴显示器设备畸变参数的测量方法
WO2020042345A1 (zh) 一种单相机采集人眼视线方向的方法及系统
CN110967166B (zh) 近眼显示光学系统的检测方法、检测装置和检测系统
WO2021103430A1 (zh) 活体检测方法及装置、存储介质
WO2017107524A1 (zh) 虚拟现实头盔的成像畸变测试方法及装置
CN109690553A (zh) 执行眼睛注视跟踪的系统和方法
CN109767472B (zh) 一种用于测量眼戴式显示器fov的方法
CN109167997A (zh) 一种视频质量诊断系统及方法
CN105092473B (zh) 一种多晶硅薄膜的质量检测方法和系统
WO2023019847A1 (zh) 一种平板玻璃缺陷的三维检测方法
CN105405115B (zh) 一种影像模组对心系统及其方法
WO2020147574A1 (zh) 一种基于深度学习的双目动态视觉传感器立体匹配方法
CN110261069B (zh) 一种用于光学镜头的检测方法
TWI606421B (zh) 魚眼相機全自動校正方法及其裝置
US10402996B2 (en) Distance measuring device for human body features and method thereof
CN109376595B (zh) 基于人眼注意力的单目rgb摄像头活体检测方法及系统
KR100930594B1 (ko) 안면 영상 촬영장치 및 그의 안면 특징점 검출 방법
CN106580329A (zh) 基于双目立体视觉技术的身高测量系统及方法
CN113411564A (zh) 一种人眼跟踪参数的测量方法、装置、介质及系统
CN108364265A (zh) 一种影像校正方法及装置
CN111263137B (zh) 单图像的畸变检测处理方法
WO2023030109A1 (zh) 头戴式显示设备及其显示亮度调节方法
JP5958082B2 (ja) 画像処理装置、画像処理方法
CN109363687A (zh) 一种颈椎活动度检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936333

Country of ref document: EP

Kind code of ref document: A1