WO2019127128A1 - 一种基于石墨的有机肥料的制备方法 - Google Patents

一种基于石墨的有机肥料的制备方法 Download PDF

Info

Publication number
WO2019127128A1
WO2019127128A1 PCT/CN2017/119079 CN2017119079W WO2019127128A1 WO 2019127128 A1 WO2019127128 A1 WO 2019127128A1 CN 2017119079 W CN2017119079 W CN 2017119079W WO 2019127128 A1 WO2019127128 A1 WO 2019127128A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic fertilizer
graphite
slurry
fermentation
raw material
Prior art date
Application number
PCT/CN2017/119079
Other languages
English (en)
French (fr)
Inventor
李铁才
张世凡
Original Assignee
深圳市大富科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富科技股份有限公司 filed Critical 深圳市大富科技股份有限公司
Priority to PCT/CN2017/119079 priority Critical patent/WO2019127128A1/zh
Priority to CN201780035655.4A priority patent/CN109311776A/zh
Publication of WO2019127128A1 publication Critical patent/WO2019127128A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Definitions

  • the present application relates to the field of organic fertilizers, and in particular to a method for preparing a graphite-based organic fertilizer.
  • Natural graphite is a mixture of long-term changes and depositions of organic organisms with the earth's crust changes hundreds of millions of years ago. The refined graphite products are widely used. At the same time, the production of graphite scrap slurry produced by processing natural graphite is also very large and is not fully utilized. This is because the graphite scrap slurry has a low content of graphite, and the recycling process is complicated and costly; directly discharging it and discharging it causes serious waste of resources.
  • the technical problem mainly solved by the present application is to provide a preparation method of a graphite-based organic fertilizer, which can solve the problem of resource waste caused by insufficient utilization of the graphite waste slurry in the prior art.
  • one technical solution adopted in the present application is: a preparation method of a graphite-based organic fertilizer.
  • the method comprises:
  • the organic fertilizer raw material and the graphite scrap slurry are mixed and subjected to a fermentation reaction in accordance with the requirements of organic fertilizer fermentation to obtain the organic fertilizer.
  • the graphite scrap slurry is a slurry of graphite processed waste.
  • the method comprises:
  • the graphite scrap slurry is concentrated into a semi-dry graphite scrap slurry.
  • the organic fertilizer raw material is a pulverized organic fertilizer raw material.
  • the organic fertilizer raw material is one or more of plant fiber powder, animal waste, industrial waste or domestic garbage.
  • the organic fertilizer raw material and the graphite waste slurry are mixed and subjected to a fermentation reaction, including:
  • the organic fertilizer raw material and the graphite scrap slurry are mixed according to the requirements of organic fertilizer fermentation, and a predetermined amount of yeast is added to carry out a fermentation reaction.
  • the yeast is a composite yeast combination;
  • the composite yeast combination comprises a flora that fermentatively decomposes lignocellulosic molecules, and a starter that promotes repeated repeated fermentation of the flora;
  • the composite yeast combination includes photosynthetic bacteria, pay-off Bacteria, yeast, Bacillus, lactic acid bacteria.
  • the organic fertilizer raw materials are different types of straw raw materials; according to different users' requirements for the organic fertilizer, the different types of straw raw materials adopt different composite yeast combinations and different graphite waste slurry for fermentation reaction.
  • the organic fertilizer is an organic fertilizer slurry or an organic fertilizer dry powder.
  • the organic fertilizer raw material and the graphite waste slurry are mixed and subjected to a fermentation reaction to obtain the organic fertilizer, comprising:
  • the mixture after the fermentation reaction is processed into the organic fertilizer slurry according to the requirements of the organic fertilizer slurry, or the mixture after the fermentation reaction is concentrated to obtain the organic fertilizer dry powder.
  • the mass fraction of nitrogen element in the graphite scrap slurry is 0.25% to 2.1%.
  • the mass fraction of phosphorus in the graphite scrap slurry is 0.6% to 3.3%.
  • the mass fraction of potassium element in the graphite scrap slurry is 0.04% to 1%.
  • the mass fraction of magnesium in the graphite scrap slurry is 0.05% to 1%.
  • the beneficial effects of the present application are: different from the prior art, the present application can recycle the graphite waste slurry produced by processing the graphite, thereby avoiding waste of resources; meanwhile, the graphite waste slurry can be combined with the organic
  • the fertilizer raw materials are combined to prepare organic fertilizer at a lower cost, which is beneficial to the promotion and application of the organic fertilizer.
  • FIG. 1 is a flow chart of an embodiment of a method for preparing a graphite-based organic fertilizer according to the present invention
  • FIG. 2 is a schematic diagram of an embodiment of step S200 of FIG. 1.
  • FIG. 1 is a flow chart of an embodiment of a method for preparing a graphite-based organic fertilizer according to the present invention, the method comprising:
  • the organic fertilizer raw material may be one or more of plant fiber powder, animal waste, industrial waste or domestic garbage; the plant fiber powder is a powder of straw, soybean meal or cotton aphid; the animal is excreted; And one or more of pig manure, cow dung, chicken manure or horse manure; the industrial waste comprises one or more of distiller's grains, vinegar grains, cassava slag, sugar slag or furfural slag; Domestic garbage includes kitchen waste such as drowning.
  • the organic fertilizer raw material may be an unpulverized organic fertilizer raw material or a crushed organic fertilizer raw material.
  • the pulverized organic fertilizer raw material can be sufficiently contacted with other raw materials for preparing the organic fertilizer to increase the reaction rate.
  • the pulverized organic fertilizer raw material includes one or more of animal waste, industrial waste or domestic garbage, it is necessary to take off the animal waste, industrial waste or domestic garbage by drying or drying. It is pulverized after removing moisture.
  • the organic fertilizer feedstock is a comminuted organic fertilizer feedstock.
  • the organic fertilizer raw material is plant fiber powder; the vegetable fiber powder is a powder after straw pulverization; the straw is a part of the stem and leaf remaining after the plant is picked, and is usually treated by incineration, which not only pollutes the environment but also wastes Resources; while straw is rich in nitrogen, phosphorus, potassium, calcium, magnesium and organic matter, it is a multi-purpose renewable biological resource.
  • the waste of resources is avoided, and at the same time, the low-cost straw as the organic fertilizer raw material can further reduce the cost of preparing the organic fertilizer, and is beneficial to the promotion and application of the organic fertilizer.
  • the straw comprises the remainder of wheat, rice, corn, potato, oil, cotton, sugar cane, and other crops after harvesting the seed; the straw comprises corn stover, sorghum straw, wheat straw, straw, rice At least one of shell, bean straw, cotton stalk, wood chips, and branches.
  • the selection of the straw type mainly considers the local material and reduces the cost. For example, for the northern region, wheat, corn, and potatoes can be selected for the remainder after harvesting seeds, or corn stover, sorghum straw, wheat straw, bean straw, cotton stalks, and the like. In the south, rice, oilseeds, sugar cane and other crops can be selected for the remainder of the harvest. Of course, other organic fertilizer raw materials, such as wood chips and branches, which are advantageous for cost reduction, can also be selected according to actual conditions.
  • the plant fiber powder has a particle diameter of 5 to 50 ⁇ m. Reducing the particle size of the plant fiber powder enables it to be brought into fuller contact with other raw materials for preparing organic fertilizers, thereby increasing the reaction rate.
  • the treatment of plant fibers such as straw into plant fiber powder having too small a particle size not only increases the performance requirements for the pulverizing equipment, but also the plant fiber powder having a too small particle size is likely to float in the air, making the production process inconvenient. Therefore, the plant fiber powder has a particle diameter of 5 to 50 ⁇ m, for example, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 35 ⁇ m or 48 ⁇ m.
  • the particle size of the suitable plant fiber powder can be comprehensively selected according to the actual needs of the organic fertilizer preparation process and the performance of the current pulverizing equipment.
  • the graphite scrap slurry is a slurry of graphite processed waste.
  • the graphite processing process usually extracts graphite elemental material, and the natural graphite contains a large amount of nutrients and trace elements suitable for biological growth accumulated in the formation process.
  • the nutrient and trace elements can play a role in the fermentation process for preparing the organic fertilizer.
  • the nutrient in the graphite waste slurry can be supplemented as an organic fertilizer raw material, which is advantageous for reducing the The amount of organic fertilizer raw materials further reduces costs.
  • the trace elements in the graphite scrap slurry can be used as a catalyst to catalyze the preparation of organic fertilizers.
  • the graphite scrap slurry has a wide range of uses.
  • the graphite scrap slurry has a wide range of sources, which can be used for preparing refractory waste graphite scrap slurry, preparing conductive waste material, waste graphite first humification reaction material slurry,
  • the graphite scrap slurry of the lubricating material waste is prepared, and the composition of the graphite scrap slurry also differs depending on the nature of the prepared materials and the preparation process.
  • graphite scrap slurry of corresponding source can be used to prepare corresponding organic fertilizers that meet certain requirements or standards.
  • the graphite scrap slurry refers to a graphite scrap slurry prepared by preparing a graphite electrode.
  • the graphite scrap slurry has a graphite content of less than 95%. Since the graphite scrap slurry has a low graphite content, recycling the graphite therein for recycling requires a complicated recovery and purification process, and the cost is also high.
  • the use of the graphite waste slurry having a low graphite content for preparing the organic fertilizer not only recycles the graphite waste slurry but also is convenient to operate.
  • the method comprises: concentrating the graphite waste slurry having a graphite content of less than 95% into a semi-dry Graphite scrap slurry. Part of the moisture in the graphite scrap slurry can be removed by heating evaporation or the like to increase the content of nutrients and trace elements in the graphite scrap slurry, which is advantageous for obtaining a better fermentation effect. Additionally, concentrating the graphite waste slurry into a semi-dry graphite waste slurry facilitates transportation and use of the graphite waste slurry. Further, the graphite waste slurry concentration process may be performed at any time after the production of the graphite waste slurry, before the mixing of the organic fertilizer raw material and the graphite waste slurry.
  • the graphite waste slurry contains nitrogen, phosphorus, potassium and other nutrient elements and trace elements such as calcium and magnesium, which are beneficial to the metabolism of microorganisms during fermentation, improve fermentation efficiency, and remain in the prepared fertilizer. In the process of plant growth and absorption, to improve fertilizer efficiency.
  • the graphite waste slurry used may have a water content of 45% to 85%, for example, 45%, 55%, 65%, 75%, 85%, and the like.
  • the dry material of the graphite waste slurry contains nutrients such as nitrogen, phosphorus, potassium, calcium, sulfur, magnesium, sodium, manganese, iron, and other nutrients required for the growth of crops.
  • nitrogen is 0.25% to 2.1%
  • phosphorus is 0.6% to 3.3%
  • potassium is 0.04% to 1%.
  • the organic fertilizer raw material and the graphite waste slurry are mixed and subjected to a fermentation reaction
  • the method for obtaining an organic fertilizer comprises: according to the requirement of organic fertilizer fermentation, the organic The fertilizer raw material is mixed with the graphite scrap slurry, and a predetermined amount of yeast is added to carry out a fermentation reaction.
  • FIG. 2 is a schematic diagram of an embodiment of step S200 in FIG. 1, the method includes:
  • step S210 first, 100 parts by mass of the organic fertilizer raw material, 40 to 100 parts by mass of the graphite scrap slurry, 50 to 100 parts by mass of water, and 1-3 parts by mass of the yeast are mechanically stirred. The mixture is uniformly mixed to obtain an organic fertilizer raw material mixture.
  • the organic fertilizer raw material comprises a composite plant fiber powder having a particle size ranging from 5 to 35 micrometers or a combination of the composite plant fiber powder and other organic fertilizer raw materials, wherein the composite plant fiber powder is corn stover, sorghum straw, a mixture of one or more of fiber powder of wheat straw, straw, rice husk, and soybean meal, and the mass fraction of different fiber powders is the same or different; the combination of the composite plant fiber powder and other organic fertilizer raw materials includes composite plants A combination of fiber powder and animal waste, such as cow dung; a combination of the composite plant fiber powder and industrial waste, such as vinasse.
  • the graphite scrap slurry may be a semi-dry graphite scrap slurry or the graphite scrap slurry that has not been concentrated.
  • the water is added to ensure that the fermentation process is carried out in an environment close to the solution, and the contact area of different fermentation raw materials is increased, which is beneficial to the improvement of fermentation efficiency.
  • the yeast may be a single species or a composite yeast combination, and the composite yeast combination includes a plurality of species, and the organic fertilizer raw material can be fully utilized to improve the conversion rate of the fermentation process.
  • the composite yeast combination includes a flora that fermentatively decomposes lignocellulosic molecules, and a starter that promotes repeated repeated fermentation of the flora.
  • the strain can directly utilize the fermentable sugar such as monosaccharide in the fermentation process
  • the straw-based organic fertilizer raw material is rich in cellulose and the like, and needs to be converted into fermentable sugar to be directly utilized by the strain, so it is required
  • the composite yeast combination includes a flora that fermentatively decomposes lignocellulosic molecules, and the bacterium that produces the lignin-degrading enzyme in a metabolic process by the fermentation group that decomposes the lignocellulose molecules, the cellulose in the organic fertilizer raw material, and the like
  • the polysaccharide is described as fermentable sugar to realize the utilization of the straw-based organic fertilizer raw material.
  • the fermentation process in production needs to be carried out by means of continuous fermentation, and the fermentation agent which promotes continuous repeated fermentation of the flora can slow down the inhibition of the growth of the fermentation process product to ensure the production efficiency and the stability of the product quality.
  • additional nitrogen sources such as soybean meal, animal droppings, etc. can be added to regulate the metabolism of the strain by adjusting the C/N ratio in the fermented raw material.
  • the amount of addition can be determined according to the needs of the actual production process.
  • the composite yeast combination includes photosynthetic bacteria, actinomycetes, yeasts, Bacillus, and lactic acid bacteria.
  • the combination of the strain and the fermentation material has a significant effect on the fermentation efficiency. That is, for different types of straw raw materials, different composite yeast combinations and different graphite waste slurry are needed for fermentation reaction, and a better fermentation effect can be obtained.
  • the composite yeast combination includes actinomycetes, yeasts, and the graphite waste slurry is added in an amount of 10- 30 parts, for example, 10 parts, 20 parts or 30 parts; when the organic fertilizer raw material used is the composite plant fiber powder of rice husk, bean straw, cotton stalk and wood chips, the composite yeast combination includes yeast, Bacillus And lactic acid bacteria, and the graphite waste slurry is added in an amount of 40-80 parts, for example, 40 parts, 60 parts or 80 parts; when the organic fertilizer raw materials are pig manure, cow dung and horse dung, the compound
  • the yeast combination includes yeast, nitrogen-fixing bacteria, and bacillus, and the graphite waste slurry is added in an amount of 20 to 50 parts, for example, 25 parts, 35 parts, or 45 parts.
  • a pH adjuster may be appropriately added to adjust the pH to 6.2 to 8.5, specifically, 6.2, 6.5, 7.0, 7.5, 8.0, 8.5, etc., followed by fermentation. reaction.
  • the organic fertilizer raw material mixture is subjected to a fermentation reaction in an environment of 30 to 65 ° C for 8 to 15 days to obtain a fermentation product.
  • the fermentation reaction temperature may be 30 ° C, 40 ° C or 65 ° C, etc., since the fermentation process is an exothermic process, the temperature of the fermentation reaction should not be too high, and the selection of 30-65 ° C can increase the fermentation reaction rate. Accordingly, the higher the fermentation temperature, the shorter the fermentation reaction time. For example, fermentation at 30 ° C for 15 days, fermentation at 40 ° C for 13 days, fermentation at 65 ° C for 8 days, and the like.
  • the organic fertilizer raw material mixture needs to be stirred every 8-16 hours, for example, 8 hours, 12 hours or 16 hours, on the one hand, the bacteria are sufficiently contacted with the raw materials not subjected to the fermentation reaction to improve The efficiency of the fermentation process; on the other hand, the temperature of the organic fertilizer raw material mixture can be made uniform, and the local temperature is too high to cause a decrease in reaction efficiency.
  • the fermentation process can be considered to be relatively complete, and the fermentation process can be terminated by stopping the heating. After the fermentation process is finished, it can also be at room temperature (20-35 ° C). Stabilize for 1-3 days to make the obtained organic fertilizer properties more stable.
  • additives such as a strain growth promoter and a strain antibiotic agent may be added to the fermentation raw material to obtain a better conversion rate.
  • the fermentation product is subjected to filtration or drying granulation to obtain the organic fertilizer. Specifically, the fermentation product is filtered to obtain an organic fertilizer slurry, the organic fertilizer slurry is granulated, and the obtained granules are dried to obtain the organic fertilizer dry powder. According to different needs, the fermentation product is made into an organic fertilizer in different states.
  • the organic fertilizer slurry can be directly applied to the land, which is convenient to use.
  • the organic fertilizer dry powder is convenient for long-distance transportation and long-term preservation, and can add other raw materials as needed to obtain better fertility.
  • the organic fertilizer raw material mixture was fermented in an environment of 65 ° C, and stirred once every 12 hours, and when the organic fertilizer raw material mixture was odorless and has an ammonium taste (about 8 days), a fermentation product was obtained.
  • Example 1 Example 2
  • Example 3 Organic matter (wt%) ⁇ 45 51 55 60 68
  • Moisture (wt%) ⁇ 30 30 30 twenty three twenty one pH (pH) 5.5-8.5 5.8 6.5 7.5 5.8
  • Table 1 is a comparison table of graphite-based organic fertilizer performance prepared by the present invention.
  • the organic matter and total nutrients are measured by a drying base, and the moisture is measured by fresh samples.
  • For the detection method refer to NY525-2012 organic fertilizer standard.
  • the organic fertilizer prepared by the method of the present invention meets the NY525-2012 organic fertilizer standard and can be put into use. Meanwhile, in the process of the embodiment 1-3, the amount of the graphite waste slurry is increased, and the total organic matter and the total nutrient content of the prepared organic fertilizer are increased, indicating that the graphite waste slurry can be matched with the organic fertilizer raw material. , catalyzing the progress of the fermentation reaction.
  • Example 2 Example 3 Total arsenic (mg/kg) ⁇ 15 3 3 4 3.7 Total mercury (mg/kg) ⁇ 2 1 1.2 1.9 2.1 Total lead (mg/kg) ⁇ 50 10 13 18 twenty one Total cadmium (mg/kg) ⁇ 3 0.8 0.7 1.2 1.4 Total chromium (mg/kg) ⁇ 150 28 30 43 48
  • Table 2 is a comparison table of heavy metal content in the graphite-based organic fertilizer prepared by the invention, and the measurement of different heavy metal content is measured for the drying base, and the detection method is referred to the NY525-2012 organic fertilizer standard.
  • the total nitrogen, phosphorus, potassium and aphid egg mortality in the organic fertilizer prepared by the invention all meet the NY525-2012 organic fertilizer standard.
  • Table 3 is a graph of the income of graphite-based organic fertilizer prepared by the present invention. It can be seen from the contents of Tables 1-3 and the examples that the raw material cost and time cost of the example 1 and the blank example are similar, but the organic preparation of the two is similar. The yield of fertilizer is different. It can be clearly seen that the yield of organic fertilizer in Comparative Example 1 is 1.17 times that in the blank case, that is, in the case of the same access, adding the appropriate amount of graphite fertilizer slurry to the fermentation raw material can produce the yield. Increasing the value by 17% and effectively increasing the output value will help to further reduce the price per unit weight of the organic fertilizer and promote its promotion and application.
  • the present invention discloses a method for preparing a graphite-based organic fertilizer, wherein the method comprises: separately providing an organic fertilizer raw material and a graphite waste slurry; and the organic fertilizer according to the requirement of organic fertilizer fermentation.
  • the raw material and the graphite scrap slurry are mixed and subjected to a fermentation reaction to obtain the organic fertilizer.
  • the present application can recycle the graphite waste slurry produced by processing the graphite, thereby avoiding waste of resources; at the same time, the graphite waste slurry can be combined with the organic fertilizer raw material to prepare organic at a lower cost. Fertilizer is beneficial to the promotion and application of the organic fertilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种基于石墨的有机肥料的制备方法,其中,所述方法包括:分别提供有机肥料原料和石墨废料浆料;按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料。通过上述方式,能够将石墨经加工后产生的石墨废料浆料回收利用,避免了资源浪费;同时,所述石墨废料浆料能够与所述有机肥料原料配合,以更低的成本制备有机肥料,有利于所述有机肥料的推广应用。

Description

一种基于石墨的有机肥料的制备方法 【技术领域】
本申请涉及有机肥料领域,特别是涉及一种基于石墨的有机肥料的制备方法。
【背景技术】
天然石墨是几亿年前的有机生物随地壳变迁长期变化、沉积而来的混合物,其精炼后的产物石墨单质用途广泛。与此同时,天然石墨经加工后产生的石墨废料浆料产量也非常巨大,且没有被充分利用。这是因为,所述石墨废料浆料中石墨的含量较低,回收利用过程较为复杂且成本高;直接将其废弃排放造成了严重的资源浪费。
【发明内容】
本申请主要解决的技术问题是提供一种基于石墨的有机肥料的制备方法,能够解决现有技术中石墨废料浆料没有充分利用造成的资源浪费问题。
为解决上述技术问题,本申请采用的一个技术方案是:一种基于石墨的有机肥料的制备方法。
其中,所述方法包括:
分别提供有机肥料原料和石墨废料浆料;
按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料。
其中,所述石墨废料浆料为石墨经加工后的废料的浆料。
其中,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应之前,包括:
将所述石墨废料浆料浓缩成半干石墨废料浆料。
其中,所述有机肥料原料为粉碎后的有机肥料原料。
其中,所述有机肥料原料为植物纤维粉、动物排泄物、工业废弃物或生活垃圾中的一种或多种。
其中,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,包括:
按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合,并加入预定量的酵母进行发酵反应。
其中,所述酵母为复合酵母组合;所述复合酵母组合包括使木质纤维素分子发酵分解的菌群、促进所述菌群连续重复发酵的发酵剂;所述复合酵母组合包括光合菌、放线菌、酵母菌、芽孢杆菌、乳酸菌。
其中,所述有机肥料原料为不同类型的秸秆原料;根据不同用户对所述有机肥料的要求,所述不同类型的秸秆原料采用不同的复合酵母组合和不同的石墨废料浆料进行发酵反应。
其中,所述有机肥料为有机肥料浆料或者有机肥料干粉。
其中,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料,包括:
按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应;
根据有机肥料浆料的要求,将发酵反应后的混合物加工成所述有机肥料浆料,或者,将发酵反应后的混合物进行浓缩,以获得所述有机肥料干粉。
其中,所述石墨废料浆料中氮元素的质量份数为0.25%~2.1%。
其中,所述石墨废料浆料中磷元素的质量分数为0.6%~3.3%。
其中,所述石墨废料浆料中钾元素的质量分数为0.04%~1%。
其中,所述石墨废料浆料中镁元素的质量分数为0.05%~1%。
本申请的有益效果是:区别于现有技术的情况,本申请能够将石墨经加工后产生的石墨废料浆料回收利用,避免了资源浪费;同时,所述石墨废料浆料能够与所述有机肥料原料配合,以更低的成本制备有机肥料,有利于所述有机 肥料的推广应用。
【附图说明】
图1是本发明基于石墨的有机肥料的制备方法一实施例的流程图;
图2是图1中所述步骤S200的一实施例的示意图。
【具体实施方式】
请参考图1,图1是本发明基于石墨的有机肥料的制备方法一实施例的流程图,所述方法包括:
S100、分别提供有机肥料原料和石墨废料浆料;
在所述步骤S100中,需要提供制备所述有机肥料的有机肥料原料和石墨废料浆料。所述有机肥料原料可以为植物纤维粉、动物排泄物、工业废弃物或生活垃圾中的一种或多种;所述植物纤维粉为秸秆、豆粕或棉粕粉碎后的粉末;所述动物排泄物包括猪粪、牛粪、鸡粪或马粪中的一种或多种;所述工业废弃物包括酒糟、醋糟、木薯渣、糖渣或糠醛渣中的一种或多种;所述生活垃圾包括泔水等餐厨垃圾。所述有机肥料原料可以为未粉碎的有机肥料原料,也可以为粉碎后的有机肥料原料。所述粉碎后的有机肥料原料能够与制备有机肥料的其它原料充分接触,提高反应速率。当所述粉碎的有机肥料原料中包括动物排泄物、工业废弃物或生活垃圾中的一种或多种时,需要将动物排泄物、工业废弃物或生活垃圾采用晒干或烘干的方式脱除水分后再进行粉碎。在一个实施例中,所述有机肥料原料为粉碎后的有机肥料原料。
进一步的,所述有机肥料原料为植物纤维粉;所述植物纤维粉为秸秆粉碎后的粉末;秸秆即为植物采摘后剩余的茎叶部分,通常采用焚烧的方法进行处理,不仅污染环境且浪费资源;而秸秆富含氮、磷、钾、钙、镁和有机质等,是一种具有多用途的可再生的生物资源。将其作为有机肥料原料一方面避免资源的浪费,同时,将价格低廉的秸秆作为所述有机肥料原料能够进一步降低制 备所述有机肥料的成本,有利于所述有机肥料的推广应用。在一个实施例中,所述秸秆包括小麦、水稻、玉米、薯类、油料、棉花、甘蔗和其它农作物在收获籽实后的剩余部分;所述秸秆包括玉米秸、高粱秸、麦秸、稻草、稻壳、豆秸、棉秆、木屑以及树枝中的至少一种。所述秸秆种类的选择主要是考虑就地取材及降低成本。如,对于北方地区,可以选择小麦、玉米、薯类等在收获籽实后的剩余部分,或者玉米秸、高粱秸、麦秸、豆秸、棉秆等。南方地区可以选择水稻、油料、甘蔗和其它农作物在收获籽实后的剩余部分。当然,也可以根据实际情况选择有利于降低成本的其它有机肥料原料,如木屑以及树枝等。
更进一步的,所述植物纤维粉的粒径为5-50微米。降低所述植物纤维粉的粒径能够使其与制备有机肥料的其它原料更充分的接触,提高反应速率。但是,将秸秆等植物纤维处理成粒径太小的植物纤维粉不仅增加对粉碎设备的性能要求,且粒径太小的植物纤维粉容易漂浮在空气中,使生产过程较为不便。因此,所述植物纤维粉的粒径为5-50微米,如,5微米、10微米、20微米、35微米或48微米。总之,可以根据所述有机肥料制备过程的实际需要及当前粉碎设备的性能,综合选择合适的所述植物纤维粉的粒径。
所述石墨废料浆料为石墨经加工后的废料的浆料,石墨加工过程通常是提取石墨单质,而天然石墨在形成过程中积累的大量适合生物生长所需的营养物质和微量元素残存在石墨废料浆料中,所述营养物质和微量元素能够在制备有机肥料的发酵过程中发挥作用,一方面,所述石墨废料浆料中的营养物质可以作为有机肥料原料的补充,有利于减少所述有机肥料原料的用量,进一步降低成本。另一方面,所述石墨废料浆料中的微量元素能够作为催化剂催化有机肥料制备的过程。
石墨的用途广泛,相应的,所述石墨废料浆料的来源也非常广,其可以为制备耐火材料废弃的石墨废料浆料、制备导电材料废弃的石墨废第一腐殖化反应料浆料、制备润滑材料废弃的石墨废料浆料,根据制备的不同材料的性质和制备工艺的不同,所述石墨废料浆料的组成也存在差异。根据不同的有机肥料 的要求或者标准,可以采用相应来源的石墨废料浆料来制备对应的满足一定要求或者标准的有机肥料。本发明一实施例中,所述的石墨废料浆料是指制备石墨电极废弃的石墨废料浆料。
在一个实施例中,所述石墨废料浆料的石墨含量在95%以下。由于所述石墨废料浆料的石墨含量低,回收其中的石墨进行重复利用需要复杂的回收及提纯工艺,成本也较高。而将所述石墨含量较低的所述石墨废料浆料用于制备有机肥料不仅将所述石墨废料浆料回收利用且操作方便。进一步的,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应之前,包括:将石墨含量在95%以下的石墨废料浆料浓缩成半干石墨废料浆料。可以通过加热蒸发等方式除去所述石墨废料浆料中的部分水分,提高所述石墨废料浆料中营养物质和微量元素的含量,有利于获得更好的发酵效果。此外,将所述石墨废料浆料浓缩成半干石墨废料浆料便于所述石墨废料浆料的运输和使用。更进一步的,所述石墨废料浆料浓缩过程可以在所述石墨废料浆料产生之后,所述有机肥料原料和所述石墨废料浆料混合之前的任意时刻进行。
进一步的,所述石墨废料浆料中含有氮、磷、钾等营养元素及钙、镁等微量元素,这些一方面有利于发酵过程中微生物的新陈代谢,提高发酵效率,同时,留存在制备的肥料中,供植物生长过程吸收利用,以提高肥效。具体的,所采用的石墨废料浆料中含水量可在45%~85%,例如可以是45%、55%、65%、75%、85%等。其中,在石墨废料浆料的绝干物料中,含有氮、磷、钾、钙、硫、镁、钠、锰、铁等营养元素,以及其它一些农作物生长所需要的营养元素。具体地,石墨废料浆料中(均为质量份数,且所述质量份数为绝干质量份数)含氮0.25%~2.1%、磷0.6%~3.3%、钾0.04%~1%、钙0.03%~1%、镁0.05%~1%、硫0.03%~0.12%、钠0.02%~0.05%、锰0.02%~0.03%、铁0.02%~0.04%。
S200、按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料。
在所述步骤S200中,为获得有机肥料,所述有机肥料原料和所述石墨废料 浆料混合并进行发酵反应,所述获得有机肥料的方法包括:按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合,并加入预定量的酵母进行发酵反应。
具体的,请参考图2,图2是图1中所述步骤S200的一实施例的示意图,所述方法包括:
S210、按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应;
在所述步骤S210中,首先,将100质量份的有机肥料原料、40-100质量份的所述石墨废料浆料、50-100质量份的水及1-3质量份的酵母采用机械搅拌的方式混合均匀得到有机肥料原料混合物。进一步的,所述有机肥料原料包括粒径范围在5-35微米的复合植物纤维粉或所述复合植物纤维粉与其它有机肥料原料的组合,所述复合植物纤维粉为玉米秸、高粱秸、麦秸、稻草、稻壳、豆粕的纤维粉中的一种或多种的混合物,且不同种纤维粉的质量份数相同或不同;所述复合植物纤维粉与其它有机肥料原料的组合包括复合植物纤维粉与动物排泄物的组合,如牛粪;所述复合植物纤维粉与工业废弃物的组合,如酒糟。所述石墨废料浆料可以为半干石墨废料浆料或未经浓缩的所述石墨废料浆料。所述水的加入是为了保证发酵过程在接近溶液的环境下进行,提高不同发酵原料的接触面积,有利于发酵效率的提升。而所述酵母可以为单独的某一种菌种,也可以是复合酵母组合,复合酵母组合中包括多种菌种,能够将所述有机肥料原料充分利用,提高发酵过程的转化率。所述复合酵母组合包括使木质纤维素分子发酵分解的菌群、促进所述菌群连续重复发酵的发酵剂。由于发酵过程中,菌种能够直接利用的是单糖等可发酵糖,而秸秆类有机肥料原料中富含纤维素等多糖,需要将其转化为可发酵糖才能被菌种直接利用,因此需要所述复合酵母组合包括使木质纤维素分子发酵分解的菌群,通过所述使木质纤维素分子发酵分解的菌群在代谢过程产生木质素分解酶,将所述有机肥料原料中的纤维素等多糖讲解为可发酵糖,以实现所述秸秆类有机肥料原料的利用。而生产中的 发酵过程需要采用连续发酵的方式进行,所述促进所述菌群连续重复发酵的发酵剂能够减缓发酵过程产物对菌种生长的抑制作用,以保证生产效率和产品质量的稳定。此外,还可以添加额外的氮源如豆粕、动物粪便等,通过调节发酵原料中的C/N比,以促进菌种的新陈代谢,当然,添加量可以根据实际生产过程的需要而确定。
所述复合酵母组合包括光合菌、放线菌、酵母菌、芽孢杆菌、乳酸菌。对于发酵过程而言,菌种与发酵原料的配合对发酵效率有显著的影响。即,针对不同类型的秸秆原料,需要采用不同的复合酵母组合和不同的石墨废料浆料进行发酵反应,能够获得更好的发酵效果。如采用的有机肥料原料为包括玉米秸、高粱秸、麦秸的所述复合植物纤维粉时,所述复合酵母组合包括放线菌、酵母菌,且所述石墨废料浆料的添加量为10-30份,如,10份、20份或30份;采用的有机肥料原料为稻壳、豆秸、棉秆及木屑的所述复合植物纤维粉时,所述复合酵母组合包括酵母菌、芽孢杆菌及乳酸菌,且所述石墨废料浆料的添加量为40-80份,如,40份、60份或80份;当所述有机肥料原料为猪粪、牛粪和马粪时,所述复合酵母组合包括酵母菌、固氮菌及芽孢杆菌,所述石墨废料浆料的添加量为20-50份,如,25份、35份或45份。将有机肥料原料和石墨废料浆料混合后,在进行发酵反应前,可适当加入pH调节剂,调节pH至6.2~8.5,具体如6.2、6.5、7.0、7.5、8.0、8.5等,然后进行发酵反应。
之后,将所述有机肥料原料混合物在30-65℃的环境下发酵反应8-15天,得到发酵产物。所述发酵反应温度可以为30℃、40℃或65℃等,由于发酵过程为放热过程,发酵反应的温度不宜过高,选择30-65℃能够提高发酵反应速率。相应的,发酵温度越高,发酵反应时间越短。如30℃发酵15天、40℃发酵13天、65℃发酵8天等。在发酵过程中,需要每隔8-16小时对所述有机肥料原料混合物进行搅拌,如,8小时、12小时或16小时,一方面使菌种与未进行发酵反应的原料充分接触,以提高发酵过程的效率;另一方面能够使所述有机肥料原料混合物温度均匀,避免局部温度过高造成反应效率降低。当所述有机肥料原料 混合物无臭味且有铵味或香味时,可以认为发酵过程进行比较完全,可以通过停止加热的方式结束发酵过程,发酵过程结束后,还可以在室温(20-35℃)稳定1-3天,以使获得的有机肥料性质更加稳定。当然,为获得更好的发酵效果,可以在所述发酵原料中添加菌种生长促进剂、菌种抗病剂等添加剂,获得更好的转化率。
S220、根据有机肥料浆料的要求,将发酵反应后的混合物加工成所述有机肥料浆料,或者,将发酵反应后的混合物进行浓缩,以获得所述有机肥料干粉。
将所述发酵产物进过滤或烘干造粒,得到所述有机肥料。具体的,将所述发酵产物过滤得到有机肥料浆料,将所述有机肥料浆料进行造粒,并将得到的颗粒进行烘干,得到所述有机肥料干粉。根据不同的需求,将所述发酵产物制成不同状态的有机肥料。所述有机肥料浆料可以直接施用到土地中,使用较为方便。而所述有机肥料干粉便于长距离运输和长期保存,且能够根据需要添加其它原料获得更好的肥力。
下面通过实施例来对本发明进行具体说明。
空白例
1)将100质量份的玉米秸、80质量份的水及3质量份的复合酵母组合,其中包括放线菌和酵母菌,同时,采用机械搅拌的方式混合均匀得到有机肥料原料混合物。
2)将所述有机肥料原料混合物在40℃的环境下发酵,每隔12h搅动一次,当所述有机肥料原料混合物无臭味且有氨味后(约13天),得到发酵产物。
3)将所述发酵产物进行过滤,得到所述有机肥料浆料。
实施例1
1)将100质量份的玉米秸、50质量份的所述石墨废料浆料、80质量份的水及3质量份的复合酵母组合,其中包括放线菌和酵母菌,同时,采用机械搅拌的方式混合均匀得到有机肥料原料混合物。
2)将所述有机肥料原料混合物在40℃的环境下发酵,每隔12h搅动一次, 当所述有机肥料原料混合物无臭味且有氨味后(约13天),得到发酵产物。
3)将所述发酵产物进行过滤,得到所述有机肥料浆料。
实施例2
1)将100质量份的玉米秸、40质量份的所述石墨废料浆料、60质量份的水及2质量份的复合酵母组合,其中包括酵母菌、芽孢杆菌、乳酸菌,同时,采用机械搅拌的方式混合均匀得到有机肥料原料混合物。
2)将所述有机肥料原料混合物在30℃的环境下发酵,每隔16h搅动一次,当所述有机肥料原料混合物无臭味且有铵味后(约15天),得到发酵产物。
3)将所述发酵产物进行造粒,并将得到的有机肥料烘干,得到所述有机肥料干粉。
实施例3
1)将100质量份的玉米秸、100质量份的所述石墨废料浆料、80质量份的水及1质量份的复合酵母组合,其中包括放线菌和酵母菌,同时,采用机械搅拌的方式混合均匀得到有机肥料原料混合物。
2)将所述有机肥料原料混合物在65℃的环境下发酵,每隔12h搅动一次,当所述有机肥料原料混合物无臭味且有铵味后(约8天),得到发酵产物。
3)将所述发酵产物进行造粒,并将得到的有机肥料烘干,得到所述有机肥料干粉。
表1 本发明制备的基于石墨的有机肥料性能对照表
项目 检测标准 空白例 实施例1 实施例2 实施例3
有机质(wt%) ≥45 51 55 60 68
总养分(wt%) ≥5.0 5.8 6.0 6.2 7.1
水分(wt%) ≤30 30 30 23 21
酸碱度(pH) 5.5-8.5 5.8 6.5 7.5 5.8
表1为本发明制备的基于石墨的有机肥料性能对照表,所述有机质及总养分以烘干基进行测量,水分以鲜样进行测量,检测方法参见NY525-2012有机肥料标准。
从表1中可以看出,采用本发明方法制备的有机肥符合NY525-2012有机肥料标准,能够投入使用。同时,从实施例1-3的过程中,所述石墨废料浆料加入量提升,制备的有机肥料总有机质和总养分含量有所增加,表明所述石墨废料浆料能够与有机肥料原料相配合,催化发酵反应的进行。
表2 本发明制备的基于石墨的有机肥料重金属含量对照表
项目 检测标准 空白例 实施例1 实施例2 实施例3
总砷(mg/kg) ≤15 3 3 4 3.7
总汞(mg/kg) ≤2 1 1.2 1.9 2.1
总铅(mg/kg) ≤50 10 13 18 21
总镉(mg/kg) ≤3 0.8 0.7 1.2 1.4
总铬(mg/kg) ≤150 28 30 43 48
表2为本发明制备的基于石墨的有机肥料中重金属含量对照表,且不同重金属含量的测量均针对烘干基进行测量,检测方法参见NY525-2012有机肥料标准。
从表2中可以看出,虽然在制备有机肥料中添加了石墨废料浆料这种工业废料,但是,所述有机肥料中各种重金属的含量均满足检测标准,使用安全;此外,实施例1-3制备的有机肥料中各种重金属的含量与空白例相比差别不大,不会造成土壤重金属污染问题。
此外,经检测,本发明制备的有机肥料中总氮、磷、钾及蛔虫卵死亡率均满足NY525-2012有机肥料标准。
表3 本发明制备的基于石墨的有机肥料收益表
  空白例 实施例1
产量比较 53质量份 62质量份
产值比较 1 1.17
表3为本发明制备的基于石墨的有机肥料收益表,结合表1-3及实施例的内容可以看出,实施例1与空白例投入的原料成本和时间成本相近,但二者制备的有机肥料的产量不同,可以明显看出,对比例1中有机肥料的产量是空白例中的1.17倍,也就是在相同通入的情况下,在发酵原料中添加适量的石墨肥料 浆料能够将产量提高17%,有效提高产值,有利于进一步降低所述有机肥料的单位重量的价格,促进其推广应用。
综上所述,本发明公开了一种基于石墨的有机肥料的制备方法,其中,所述方法包括:分别提供有机肥料原料和石墨废料浆料;按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料。通过上述方式,本申请能够将石墨经加工后产生的石墨废料浆料回收利用,避免了资源浪费;同时,所述石墨废料浆料能够与所述有机肥料原料配合,以更低的成本制备有机肥料,有利于所述有机肥料的推广应用。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (14)

  1. 一种基于石墨的有机肥料的制备方法,其特征在于,所述方法包括:
    分别提供有机肥料原料和石墨废料浆料;
    按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料。
  2. 根据权利要求1所述的方法,其特征在于,所述石墨废料浆料为石墨经加工后的废料的浆料。
  3. 根据权利要求2所述的方法,其特征在于,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应之前,包括:
    将所述石墨废料浆料浓缩成半干石墨废料浆料。
  4. 根据权利要求1所述的方法,其特征在于,所述有机肥料原料为粉碎后的有机肥料原料。
  5. 根据权利要求4所述的方法,其特征在于,所述有机肥料原料为植物纤维粉、动物排泄物、工业废弃物或生活垃圾中的一种或多种。
  6. 根据权利要求1所述的方法,其特征在于,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,包括:
    按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合,并加入预定量的酵母进行发酵反应。
  7. 根据权利要求6所述的方法,其特征在于,所述酵母为复合酵母组合;所述复合酵母组合包括使木质纤维素分子发酵分解的菌群、促进所述菌群连续重复发酵的发酵剂;所述复合酵母组合包括光合菌、放线菌、酵母菌、芽孢杆菌、乳酸菌。
  8. 根据权利要求7所述的方法,其特征在于,所述有机肥料原料为不同类型的秸秆原料;根据不同用户对所述有机肥料的要求,所述不同类型的秸秆原料采用不同的复合酵母组合和不同的石墨废料浆料进行发酵反应。
  9. 根据权利要求1所述的方法,其特征在于,所述有机肥料为有机肥料浆料或者有机肥料干粉。
  10. 根据权利要求9所述的方法,其特征在于,所述按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应,以获得所述有机肥料,包括:
    按照有机肥料发酵的要求,将所述有机肥料原料和所述石墨废料浆料混合并进行发酵反应;
    根据有机肥料浆料的要求,将发酵反应后的混合物加工成所述有机肥料浆料,或者,将发酵反应后的混合物进行浓缩,以获得所述有机肥料干粉.
  11. 根据权利要求1所述的方法,其特征在于,所述石墨废料浆料中氮元素的质量份数为0.25%~2.1%。
  12. 根据权利要求1所述的方法,其特征在于,所述石墨废料浆料中磷元素的质量分数为0.6%~3.3%。
  13. 根据权利要求1所述的方法,其特征在于,所述石墨废料浆料中钾元素的质量分数为0.04%~1%。
  14. 根据权利要求1所述的方法,其特征在于,所述石墨废料浆料中镁元素的质量分数为0.05%~1%。
PCT/CN2017/119079 2017-12-27 2017-12-27 一种基于石墨的有机肥料的制备方法 WO2019127128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/119079 WO2019127128A1 (zh) 2017-12-27 2017-12-27 一种基于石墨的有机肥料的制备方法
CN201780035655.4A CN109311776A (zh) 2017-12-27 2017-12-27 一种基于石墨的有机肥料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119079 WO2019127128A1 (zh) 2017-12-27 2017-12-27 一种基于石墨的有机肥料的制备方法

Publications (1)

Publication Number Publication Date
WO2019127128A1 true WO2019127128A1 (zh) 2019-07-04

Family

ID=65225722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119079 WO2019127128A1 (zh) 2017-12-27 2017-12-27 一种基于石墨的有机肥料的制备方法

Country Status (2)

Country Link
CN (1) CN109311776A (zh)
WO (1) WO2019127128A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456002A (zh) * 2022-02-18 2022-05-10 江苏科维森新材料技术有限公司 石墨有机复合肥料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078712A (zh) * 1992-05-21 1993-11-24 李永林 高温发酵制取硅锰氮磷钾有机多微复合肥
CN101100400A (zh) * 2007-07-03 2008-01-09 中国科学院地球化学研究所 两步转化法生产生物钾肥的方法及产品
CN102030594A (zh) * 2010-11-29 2011-04-27 北京林业大学 硅钙铁钾生物磁化肥
CN105384536A (zh) * 2015-12-15 2016-03-09 广州市泓玮装饰制品有限公司 一种屋面种植佛甲草专用有机肥及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078712A (zh) * 1992-05-21 1993-11-24 李永林 高温发酵制取硅锰氮磷钾有机多微复合肥
CN101100400A (zh) * 2007-07-03 2008-01-09 中国科学院地球化学研究所 两步转化法生产生物钾肥的方法及产品
CN102030594A (zh) * 2010-11-29 2011-04-27 北京林业大学 硅钙铁钾生物磁化肥
CN105384536A (zh) * 2015-12-15 2016-03-09 广州市泓玮装饰制品有限公司 一种屋面种植佛甲草专用有机肥及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, RUI ET AL.: "Development Status of Comprehensive Utilization Technology of Graphite Tailings", PROCEEDINGS OF THE 16TH NATIONAL NON-METALLIC MINERAL PROCESSING AND UTILIZATION TECHNOLOGY EXCHANGE CONFERENCE, 18 April 2016 (2016-04-18), pages 126 - 130 *

Also Published As

Publication number Publication date
CN109311776A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN102206102B (zh) 利用稻草生产黄腐酸的方法
CN103304281B (zh) 一种有机废弃物快速资源化热酶好氧处理工艺
CN106083264A (zh) 一种资源化利用小麦秸秆制备生物有机肥的新工艺
CN102153393A (zh) 海洋生物钙多元素肥料
CN106278526A (zh) 一种微生物有机肥的制备方法
CN109851450A (zh) 一种煤炭废弃物的微生物降解方法和应用
CN105152707A (zh) 蔬菜育苗基质的发酵原料及蔬菜育苗基质快速培育工艺
CN109180236A (zh) 一种好氧发酵处理鸡粪的新工艺
CN102173890A (zh) 精制生物有机肥
Gunjal et al. Management of pressmud (agroindustry by-product) by conversion to value-added products: a review
WO2019127121A1 (zh) 一种基于石墨的腐殖质的制备方法
WO2019127128A1 (zh) 一种基于石墨的有机肥料的制备方法
WO2019127126A1 (zh) 一种基于石墨的有机肥料浆料的制备方法
WO2019127129A1 (zh) 一种基于石墨的有机肥料浆料的制备方法
CN106631225A (zh) 一种高养分复合肥及其生产方法
Arumugam et al. Biofertilizers from food and agricultural by‐products and wastes
CN109232131A (zh) 一种生物环保肥料
WO2019127127A1 (zh) 一种基于石墨的有机肥料的制备方法
CN104119113A (zh) 一种樱桃番茄专用复合肥
RU2539781C1 (ru) Способ получения биоудобрения
CN110885269A (zh) 一种小麦秸秆有机肥的制备方法
CN105819977A (zh) 一种高楼绿化植物用生物质有机肥料
KR100923403B1 (ko) 자트로파 유박을 주성분으로 하는 유기질비료 및 이의제조방법
CN102180715B (zh) 一种秸秆堆肥后熟促进剂及其使用方法
CN104844381A (zh) 一种适于甘蔗生长的有机复合肥料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936010

Country of ref document: EP

Kind code of ref document: A1