WO2019127118A1 - 噪声检测方法及装置、电子设备和计算机可读存储介质 - Google Patents

噪声检测方法及装置、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2019127118A1
WO2019127118A1 PCT/CN2017/119057 CN2017119057W WO2019127118A1 WO 2019127118 A1 WO2019127118 A1 WO 2019127118A1 CN 2017119057 W CN2017119057 W CN 2017119057W WO 2019127118 A1 WO2019127118 A1 WO 2019127118A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
sensing electrode
difference
component
sensing
Prior art date
Application number
PCT/CN2017/119057
Other languages
English (en)
French (fr)
Inventor
姜海宽
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780002368.3A priority Critical patent/CN110199247B/zh
Priority to EP17935050.9A priority patent/EP3547088B1/en
Priority to PCT/CN2017/119057 priority patent/WO2019127118A1/zh
Priority to US16/455,650 priority patent/US10969904B2/en
Publication of WO2019127118A1 publication Critical patent/WO2019127118A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0441Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for receiving changes in electrical potential transmitted by the digitiser, e.g. tablet driving signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components

Definitions

  • the present application relates to the field of touch, and in particular, to a noise detecting method and apparatus, an electronic device, and a computer readable storage medium.
  • Touch screen also known as “touch screen” or “touch panel”
  • touch screen is an inductive liquid crystal display device that can receive input signals. It can be used to replace the mechanical button panel and create a live sound and video through the liquid crystal display. effect.
  • the touch screen realizes a simple, convenient and natural human-computer interaction mode, and the electronic devices such as mobile phones, tablet computers, and personal computers are inseparable from the touch input function.
  • a capacitive touch screen works by current sensing of a human body, and realizes touch by recognizing a change in capacitance generated when a finger approaches a capacitive touch panel.
  • capacitive touch screens have been widely used in today's society.
  • the touch screen may be interfered with by many different noise sources during use.
  • the effect of common mode noise interference is particularly significant, which may cause false clicks or elimination points, which seriously affect the user experience. Therefore, how to effectively identify and reduce noise interference becomes a problem that needs to be solved currently.
  • the present application provides a noise detecting method and apparatus, an electronic device, and a computer readable storage medium for accurately identifying current noise interference.
  • a first aspect of the present application is to provide a noise detecting method, including: acquiring noise of each sensing electrode of the touch screen at a current working frequency point during operation of the touch screen; calculating noise of each sensing electrode and the sensing electrode a difference between the current noise standards, obtaining a noise difference of each of the sensing electrodes; performing a difference processing on the adjacent sensing electrodes on the noise difference of the sensing electrodes to obtain a first processing result, and maximizing the first processing result
  • the value is compared with a preset first threshold; if the maximum is greater than the threshold, it is determined that there is noise interference at the current operating frequency.
  • a second aspect of the present application is to provide a noise detecting apparatus, including: an acquiring module, configured to acquire noise of each sensing electrode of the touch screen at a current working frequency point during operation of the touch screen; and a processing module for calculating each The difference between the noise of the sensing electrodes and the current noise reference of the sensing electrodes to obtain a noise difference between the sensing electrodes; the processing module is further configured to perform differential processing on adjacent sensing electrodes for the noise difference of the sensing electrodes Obtaining a first processing result and comparing a maximum value of the first processing result with a preset first threshold value; and a determining module, configured to determine that there is noise under the current working frequency point if the maximum value is greater than the threshold value interference.
  • a third aspect of the present application is to provide an electronic device comprising: at least one processor and a memory; the memory storage computer executing instructions; the at least one processor executing the memory stored computer execution instructions to perform The method described previously.
  • a fourth aspect of the present application is to provide a computer readable storage medium having stored therein program instructions that, when executed by a processor, implement the method as previously described.
  • the noise detecting method and device, the electronic device and the computer readable storage medium provided by the present application acquire the noise of the sensing electrode of the touch screen at the current frequency point during the operation of the touch screen, and obtain the difference between the noise of the sensing electrode and the corresponding noise reference.
  • the noise of the sensing electrode is poor, and the noise difference of each sensing electrode is further subjected to adjacent differential processing to obtain a processing result, and then whether the current noise interference exists according to whether the maximum value in the processing result exceeds a preset threshold.
  • the scheme can eliminate the influence of signal difference between the sensing electrodes by introducing a noise reference, and more accurately reflect the actual noise.
  • the scheme can eliminate the influence of the DC component in the demodulation process by performing the adjacent difference calculation on the noise difference, and improve the accuracy of the noise detection.
  • FIG. 1 is a schematic structural diagram of a capacitive touch screen to which the noise detecting method provided by the present application is applicable;
  • FIGS. 2A to 2C are schematic flowcharts of a noise detecting method according to Embodiment 1 of the present application;
  • 3A-3B are schematic flowcharts of a noise detecting method according to Embodiment 2 of the present application.
  • FIGS. 4A-4B are schematic flowcharts of a noise detecting method according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic flowchart diagram of a noise detecting method according to Embodiment 4 of the present application.
  • FIG. 6A is a schematic diagram of noise reference of each sensing electrode in Embodiment 5 of the present application.
  • FIG. 6B is a schematic diagram of noise of each sensing electrode in Embodiment 5 of the present application.
  • FIG. 7 is a schematic structural diagram of a noise detecting apparatus according to Embodiment 6 of the present application.
  • the capacitive sensor of the capacitive touch screen generally consists of a driving electrode (TX) and a sensing electrode (RX).
  • the touch control chip inputs a driving signal of a certain operating frequency into the driving electrode, and the signal is returned to the touch control chip via the sensing electrode through the sensing electrode, and finally can be analyzed by analog-to-digital converter (ADC) conversion and digital signal processing inside the touch control chip.
  • ADC analog-to-digital converter
  • noise interference such as common mode noise
  • common mode noise is usually present at the point where the finger touches, and the common mode noise is small in the area where the finger is not touched.
  • FIG. 2A is a schematic flowchart of a noise detecting method according to Embodiment 1 of the present application.
  • the present embodiment provides a noise detecting method, which is used to accurately identify current noise.
  • the noise detection method includes:
  • the execution body of the noise detecting method may be a noise detecting device.
  • the noise detecting device may be implemented by a software code, and the noise detecting device may also be a medium storing an associated execution code, such as a USB flash drive, etc.; or the noise detecting device may also be integrated or installed with relevant A physical device that executes code, such as a chip, a smart terminal, a computer, and various electronic devices.
  • the noise detection method provided by the solution can be triggered in multiple ways.
  • the noise detection scheme may be periodically executed according to a preset period. For example, it may be set to perform a noise detection every time a touch scan is performed to achieve continuous stable detection noise to ensure stability and reliability of noise detection.
  • the solution first needs to acquire the noise of the sensing electrode.
  • there are various implementation scenarios for obtaining the noise of the sensing electrode One scenario is in the initial scene (before driving the touch screen for the first time), that is, before the first input of the driving signal to the touch screen, the noise of the sensing electrode in the initial state is obtained, and the noise will be used as the initial noise reference.
  • Another scenario is to acquire the noise of the sensing electrode during the normal operation of the touch screen, that is, the process of inputting the driving signal to the touch screen, and subsequently, based on the noise and noise reference, noise detection is implemented through a series of processes. That is to say, the scene for obtaining the noise of the sensing electrode is different, and the processing of the noise is also different.
  • the noise of the sensing electrode acquired before driving the touch screen for the first time will be used as an initial noise reference; the noise of the sensing electrode acquired during the operation of the touch screen will be used for noise detection.
  • the method may further include:
  • the noise of each sensing electrode of the touch screen at the current working frequency is obtained and used as the current noise reference of each sensing electrode.
  • the frequency point described in this solution refers to the frequency of the driving signal used to drive the touch screen, and the working frequency point is the frequency of the driving signal used to drive the touch screen currently.
  • the signal obtained by sampling from the sensing electrode needs to be demodulated. Therefore, the noise at a certain frequency point described in the embodiments of the present solution refers to using the signal frequency and the frequency point.
  • the noise finally obtained after the demodulation of the uniform demodulated signal is the noise at the frequency.
  • the initial noise reference is determined, and the noise of the sensing electrode acquired in the driving signal input process is combined with the noise reference to achieve accurate noise detection.
  • the noise of the sensing electrode can be obtained in a plurality of manners, and the methods for obtaining noise in the different implementation scenarios may be the same or different.
  • the noise of each sensing electrode of the touch screen at the current working frequency is obtained, which may specifically include :
  • the driving signal input to the driving electrode is first turned off, and then the signal received by each sensing electrode is sampled at the sensing electrode end, and then the signal obtained by the sampling is demodulated and integrated.
  • the noise of each sensing electrode is obtained.
  • there are usually a plurality of driving electrodes and sensing electrodes of the touch screen which may be arranged in a matrix array. Taking the M-column sensing electrodes arranged on the touch screen as an example, by using the present embodiment, M pieces of noise data can be acquired each time.
  • the driving electrode can be grounded to achieve the closing of the driving signal.
  • the noise of the sensing electrode is obtained according to the signal collected from the sensing electrode in a state where the driving electrode does not receive the driving signal.
  • the noise of the sensing electrode is acquired according to the sensing electrode signal collected in a state where the driving signal is off, and the same-frequency interference noise can be identified, thereby improving the accuracy of subsequent noise detection.
  • the method for acquiring the noise of the sensing electrode provided by the embodiment may be applied to various implementation scenarios. For example, when determining the initial noise reference, the method of the present embodiment can be used to obtain the noise of the sensing electrode. When the touch screen is working normally, the method of the present embodiment can also be used to obtain the noise of the sensing electrode.
  • the same-frequency interference noise can be accurately obtained, thereby further improving the subsequent noise detection. The accuracy.
  • the demodulation and integration processing methods may be variously used, for example, demodulation based on a single demodulated signal, or IQ demodulation based on an IQ component demodulation signal, etc., which is not limited herein.
  • the noise difference of each of the sensing electrodes is obtained by performing a difference calculation based on the current noise reference corresponding to each of the sensing electrodes. Further, the noise difference of each sensing electrode needs to be differentially processed by the adjacent sensing electrodes to eliminate the influence of the DC component generated during the demodulation process and improve the noise detection. accuracy.
  • the noise difference of the sensing electrodes is subjected to differential processing of adjacent sensing electrodes to obtain a first processing result, specifically Can include:
  • a difference between the noise differences of the sensing electrodes and the adjacent sensing electrodes is calculated to obtain a first processing result, wherein the adjacent sensing electrodes are located on a fixed side of the sensing electrodes.
  • the noise of each sensing electrode is obtained, and the difference between the noise of each sensing electrode and the corresponding noise reference is calculated, and the noise difference of each sensing electrode is obtained.
  • a difference between a noise difference of the sensing electrode and a noise difference of the sensing electrode adjacent to the sensing electrode is calculated, and a processing result of the adjacent difference processing is obtained.
  • the adjacent fingers here are adjacent to the same side. For example, if the left side is adjacent to each other, for each of the sensing electrodes, when the noise difference is adjacently differentiated, the difference is selected. The noise difference between the adjacent sensing electrodes on the left side is evaluated.
  • the noise difference of the M sensing electrodes is Diff 1 , Diff 2 , ... Diff M
  • the M sensing noise differential electrode is adjacent differential processing request to obtain the processing result Diff 1 -Diff 2, Diff 2 -Diff 3, ... Diff M-1 -Diff M.
  • the sensing electrode without the adjacent sensing electrodes the above-mentioned difference calculation is not performed.
  • the sensing electrode A M is not subjected to difference calculation, that is, the processing result includes M-1 values.
  • the effect of the DC component can be eliminated and the accuracy of the noise detection can be improved while the effect of retaining the common mode noise.
  • the solution acquires the noise of the sensing electrode during the normal operation of the touch screen, obtains the noise difference of the sensing electrode in combination with the noise reference of the sensing electrode, and performs differential processing of adjacent sensing electrodes by the noise difference of each sensing electrode.
  • the subsequent selection of the maximum value from the processing result of the differential processing is compared with a preset threshold. If the maximum value is greater than the threshold, the current noise interference exists.
  • This scheme introduces the noise reference concept, and then performs noise calculation based on the difference between the acquired noise and the noise reference, which can eliminate the influence of different differences of the sensing electrodes and can more accurately reflect the actual noise.
  • noise reduction processing is performed.
  • the method for reducing noise may be various, for example, linear filtering or nonlinear filtering processing may be performed, and for example, the signal may be subjected to secondary processing by a software algorithm, and, in addition, noise may be less.
  • the frequency of the drive signal is adjusted based on the signal-to-noise ratio during the linear filtering process.
  • the solution implements noise processing through a frequency modulation scheme.
  • the method may further include:
  • 106 For each frequency point, calculate a difference between a noise of each sensing electrode at the frequency point and a current noise reference of the sensing electrode, obtain a noise difference of each sensing electrode, and generate noise of each sensing electrode. Performing differential processing of adjacent sensing electrodes to obtain a processing result and using a maximum value in the processing result as the noise amount of the frequency point;
  • a plurality of frequencies are selected in advance as pre-selected working frequency points.
  • the noise detection method provided by the present scheme detects the noise interference at the current frequency point, and if it is determined that there is noise interference at the current frequency point, The traversal obtains the current noise of all preselected frequency points, and then selects the frequency point with the smallest noise as the current working frequency point, that is, switches the current working frequency point to the frequency point with the smallest current noise to implement noise processing.
  • the noise under each pre-selected frequency point is traversed, and the frequency point with the least noise is selected as the current working frequency point, thereby realizing the processing of noise interference and effectively reducing Noise interference.
  • the noise detecting method provided by the embodiment obtains the noise of the sensing electrode of the touch screen at the current frequency point during the input of the driving signal to the touch screen, and obtains the noise difference of the sensing electrode by calculating the difference between the noise of the sensing electrode and the corresponding noise reference, and Further, the noise difference of each sensing electrode is subjected to adjacent differential processing to obtain a processing result, and further, whether or not there is noise interference currently according to whether the maximum value in the processing result exceeds a preset threshold.
  • the scheme can eliminate the influence of signal difference between the sensing electrodes by introducing a noise reference, and more accurately reflect the actual noise. Moreover, the scheme can eliminate the influence of the DC component in the demodulation process by performing the adjacent difference calculation on the noise difference, and improve the accuracy of the noise detection.
  • FIG. 3A is a schematic flowchart of a noise detecting method according to Embodiment 2 of the present application.
  • Embodiment 2 is based on Embodiment 1 and uses a single demodulation when acquiring noise of the sensing electrode.
  • the signal is demodulated.
  • 1012 may specifically include:
  • 201 Demodulating a signal obtained by sampling each of the sensing electrodes by using a demodulated signal to obtain a demodulated signal, wherein a phase difference between the sampled signal and the demodulated signal is ⁇ /2;
  • the figure is a schematic flowchart of demodulating and integrating the signal obtained by the acquisition in the second embodiment.
  • the sample receives the ideal signal received by the sensing electrode.
  • the signal is demodulated and integrated in sequence, wherein the frequency of the signal coupled to the sensing electrode is ⁇ , the phase of the signal coupled to the sensing electrode is ⁇ , and the signal coupled to the sensing electrode The phase amplitude is A.
  • the frequency of the demodulated signal is the same as the frequency of the sampled signal, and the phase of the demodulated signal is ⁇ 1 , and the decoded and integrated signal is NAsin( ⁇ - ⁇ 1 )/2+C.
  • C is the DC component of the integrator and N is the integration time.
  • it is preferable to set the phase of the demodulated signal to be different from the phase of the sampled obtained signal by ⁇ /2, that is, ⁇ - ⁇ 1 ⁇ /2, so that a superior signal demodulation result can be obtained.
  • the final signal obtained is NAsin( ⁇ - ⁇ 1 )/2+ through the above demodulation and integration processing.
  • the noise is usually unstable, and the phase and amplitude will change randomly, thereby reducing the signal-to-noise ratio.
  • the noise signal can be preserved and the influence of the DC component can be eliminated. Improve the accuracy of noise detection.
  • the noise difference of each sensing electrode after obtaining the noise of each sensing electrode based on the solution of the embodiment, calculating the noise difference of each sensing electrode according to the noise and the noise reference, further performing the difference processing of the adjacent sensing electrodes, and selecting the maximum value from the processing result.
  • the preset thresholds are compared to accurately determine the current noise interference.
  • the signal of the sensing electrode is collected, and the signal is demodulated by a demodulated signal with a phase difference of ⁇ /2, and the demodulation result can be optimized, and then the demodulation is performed.
  • the signal is integrated to obtain noise of each sensing electrode and perform noise detection, thereby further improving the accuracy of noise detection.
  • FIG. 4A is a schematic flowchart of a noise detecting method according to Embodiment 3 of the present application.
  • Embodiment 3 is based on Embodiment 1 and uses IQ solution when acquiring noise of the sensing electrode.
  • the signal is modulated for demodulation.
  • 1012 may specifically include:
  • 301 performing IQ demodulation on a signal obtained by sampling each sensing electrode by using a demodulated signal corresponding to the I component and a demodulated signal corresponding to the Q component, wherein the demodulated signal corresponding to the I component is demodulated corresponding to the Q component.
  • the phase difference between the signals is ⁇ /2;
  • the figure is a schematic flowchart of performing IQ demodulation and integration processing on the acquired signals in Embodiment 3.
  • the signal is Bsin( ⁇ t+ ⁇ ), and the signal is demodulated and integrated in sequence, wherein the frequency of the signal coupled to the sensing electrode is ⁇ , the phase of the signal coupled to the sensing electrode is ⁇ , and the signal coupled to the sensing electrode The phase amplitude is B.
  • the frequency of the demodulated signal corresponding to the I component and the Q component is also ⁇ , and the phase difference between the two components is ⁇ /2, and the decoded and integrated processed signal includes the I component signal and the Q component signal shown in the figure.
  • C is the DC component of the integrator and N is the integration time.
  • the phase of the demodulated signal corresponding to the I component and the Q component is preferably set to be different by ⁇ /2 to obtain a better signal demodulation result. It can be understood that the scheme introduces a noise reference, and the noise is compared with the noise reference, which can preserve the noise signal and eliminate the influence of the direct current component, thereby improving the accuracy of the noise detection.
  • the noise of each sensing electrode includes I component noise and Q component noise
  • the corresponding noise reference determined by the noise of the sensing electrode also includes an I component reference and a Q component reference, and correspondingly, the noise is calculated.
  • the specific process of the difference is that the difference between the I component noise and the I component reference and the difference between the Q component noise and the Q component reference are respectively obtained, and the noise difference of the sensing electrode is obtained, and the noise difference includes the I component noise difference and the Q component noise difference.
  • 102 may specifically include:
  • the difference between the Q component noise of each of the sensing electrodes and the Q component reference of the current noise reference of the sensing electrode is calculated, and the Q component noise difference of each sensing electrode is obtained.
  • the noise difference of the sensing electrodes is subjected to the difference processing of the adjacent sensing electrodes to obtain the first processing result, which may specifically include:
  • a square root calculation is performed on the sum of the squares of the I component result and the Q component result of the sensing electrode to obtain a first processing result.
  • the difference between the I component noise difference of the adjacent sensing electrodes and the Q component noise difference of the adjacent sensing electrodes are respectively obtained, and the I component result is obtained.
  • the difference result of the Q component result is calculated by summing the I component result and the Q component result, that is, the sum of the square of the I component result and the square of the Q component result, and then calculating the square root of the obtained sum.
  • the final processing result is obtained, that is, the modulus result is obtained. Subsequently, the maximum value selected from the processing results is compared with a preset threshold to detect the current noise.
  • the noise detecting method provided in this embodiment collects the signal of the sensing electrode during the normal operation of the touch screen, performs IQ demodulation and integration on the signal, can optimize the demodulation result, and after obtaining the noise including the two components, The noise difference and the adjacent difference processing finally obtain the modulus result, and the noise is measured according to the modulus result instead of the single component signal, which can more accurately reflect the common mode noise and reduce the frequent phase change of the common mode noise. The resulting effects further improve the accuracy of noise detection.
  • noise reference there may be an initial noise reference containing noise (for example, noise at power-on) or environmental changes, resulting in the current noise reference not being able to continue to apply.
  • the noise reference contains common mode noise
  • the subsequent period may be in a normal environment without common mode noise
  • the noise calculated based on the original noise reference may have a large error, thereby affecting the accuracy of subsequent noise detection results. Therefore, the noise reference needs to be updated and maintained to ensure the stability and reliability of noise detection.
  • FIG. 5 is a schematic flowchart of a noise detecting method according to Embodiment 4 of the present application.
  • Embodiment 4 performs update and maintenance on noise based on any of the foregoing embodiments.
  • the method may further include:
  • the noise variation amplitude of the sensing electrode is within a preset range, the noise of the sensing electrode acquired this time is used as a current noise reference of the sensing electrode.
  • the noise reference may be updated.
  • the noise variation amplitude of the sensing electrode is small, that is, the noise is relatively stable
  • the noise reference may be updated.
  • the noise variation amplitude of the sensing electrode is large, the current noise signal is unstable, and the noise is not correct.
  • the baseline is updated to ensure the stability of noise detection.
  • the specific update strategy is to update the current noise reference based on the noise of the newly acquired sensing electrode.
  • the embodiment may detect whether the noise is stable by analyzing a plurality of consecutive noise data.
  • the 401 may specifically include:
  • the noise variation amount is obtained according to the noise acquired this time and the noise acquired last time, and the sensing electrodes are The amount of noise variation is subjected to the difference processing of the adjacent sensing electrodes.
  • the process of performing the adjacent difference processing is similar to the process of performing the adjacent difference processing, and only the processing objects are different. Therefore, reference may be made to the related content in the foregoing embodiments. I will not repeat them here.
  • the second processing result is obtained, and the maximum value is selected from the second processing result as the noise variation result obtained this time.
  • the above process is executed multiple times in a loop. If the noise change result obtained by successive M times is less than a certain threshold, the current noise is relatively stable, and the current noise reference can be updated. If the number of noise change results that are continuously obtained less than a certain threshold does not reach the preset M times, if the noise change result that occurs once exceeds the threshold value, the noise reference is not updated, and the previously measured noise change smaller than the threshold value The result is cleared, and the number of noise change results that are continuously obtained from the current threshold less than the preset threshold is re-stated.
  • the noise detecting method provided in this embodiment detects the current noise variation range according to the acquired noise of the sensing electrode. If the noise is relatively stable, the noise reference is updated according to the acquired noise of the sensing electrode, thereby realizing the update of the noise reference. Maintenance, to avoid false detection of noise caused by inaccurate noise reference, to ensure the stability and reliability of noise detection.
  • the fifth embodiment of the present application provides a noise detection method.
  • the process of the embodiment mainly includes acquiring noise, combining noise reference detection noise, and noise reference maintenance.
  • the specific steps are as follows:
  • the number of sensing electrodes is 8 as an example, as shown in FIG. 6A, which is a schematic diagram of the noise reference of each sensing electrode.
  • the driving signal is input to the driving electrode, and the noise of each sensing electrode is acquired, as shown in FIG. 6B.
  • the noise of each sensing electrode is Raw_I 1 , Raw_I 2 ... Raw_I m ; Raw_Q 1 , Raw_Q 2 ... Raw_Q m , that is, the noise Raw includes Raw_I and Ra w_Q.
  • Diff2_I k Diff_I k -Diff_I k+1
  • Diff2_Q k Diff2_Q k -Diff2_Q k+1
  • the amount of noise at the current frequency can be obtained.
  • the selection of the working frequency is as follows:
  • the frequency point with the smallest noise is selected as the current working frequency point, and the noise frequency detection is continued after the working frequency point is switched.
  • the noise detecting method provided by the embodiment obtains the noise of the sensing electrode of the touch screen at the current frequency point during the input of the driving signal to the touch screen, and obtains the noise difference of the sensing electrode by calculating the difference between the noise of the sensing electrode and the corresponding noise reference, and Further, the noise difference of each sensing electrode is subjected to adjacent differential processing to obtain a processing result, and further, whether or not there is noise interference currently according to whether the maximum value in the processing result exceeds a preset threshold.
  • the scheme can eliminate the influence of signal difference between the sensing electrodes by introducing a noise reference, and more accurately reflect the actual noise. Moreover, the scheme can eliminate the influence of the DC component in the demodulation process by performing the adjacent difference calculation on the noise difference, and improve the accuracy of the noise detection.
  • FIG. 7 is a schematic structural diagram of a noise detecting apparatus according to Embodiment 6 of the present application.
  • the noise detecting apparatus is used to accurately identify current noise.
  • the noise detecting apparatus includes:
  • the obtaining module 71 is configured to acquire noise of each sensing electrode of the touch screen at a current working frequency point during operation of the touch screen;
  • the processing module 72 is configured to calculate a difference between a noise of each sensing electrode and a current noise reference of the sensing electrode, to obtain a noise difference of each sensing electrode;
  • the processing module 72 is further configured to perform differential processing of the adjacent sensing electrodes on the noise difference of the sensing electrodes, obtain a first processing result, and compare a maximum value in the first processing result with a preset first threshold. ;
  • the determining module 73 is configured to determine that there is noise interference at the current working frequency point if the maximum value is greater than the threshold.
  • the noise detecting device may be implemented by a software code, and the noise detecting device may also be a medium storing an associated execution code, such as a USB flash drive, etc.; or the noise detecting device may also be integrated or installed with relevant A physical device that executes code, such as a chip, a smart terminal, a computer, and various electronic devices.
  • the acquisition module 71 acquires the sensing electrode noise.
  • One scenario is that in the initial scenario, the acquisition module 71 acquires the noise of the sensing electrode in an initial state, which noise will serve as an initial noise reference.
  • Another scenario is that when the touch screen is working normally, the acquisition module 71 acquires the noise of the sensing electrode, and subsequently implements noise detection.
  • the obtaining module 71 is further configured to acquire the noise of each sensing electrode of the touch screen at the current working frequency point before driving the touch screen for the first time, and As the current noise reference for each sensing electrode.
  • the initial noise reference is determined, and the noise of the sensing electrode acquired in the driving signal input process is combined with the noise reference to achieve accurate noise detection.
  • the acquiring module 71 may include: a sampling unit, specifically configured to turn off the driving signal and perform signals received by the sensing electrodes. Sampling; processing unit, demodulating and integrating the signals obtained from sampling of each sensing electrode to obtain noise of each sensing electrode at the current working frequency. Specifically, when the noise of the sensing electrode needs to be acquired, the sampling unit first turns off the driving signal input to the driving electrode, and then samples the signal received by each sensing electrode at the sensing electrode end, and the subsequent processing unit demodulates the signal obtained by the sampling. And integral processing to obtain noise of each sensing electrode.
  • the method for acquiring the noise of the sensing electrode may be applied to various implementation scenarios.
  • this embodiment by collecting the signal received by the sensing electrode in a state where the driving signal is turned off, and demodulating and integrating the signal to obtain the noise of the sensing electrode, the same-frequency interference noise can be accurately obtained, thereby further improving the subsequent noise detection. The accuracy.
  • the processing module 72 is specifically configured to calculate a difference between the noise difference between the sensing electrode and the adjacent sensing electrode for each sensing electrode, and obtain The first processing result, wherein the adjacent sensing electrodes are located on a fixed side of the sensing electrodes.
  • the processing module 72 by performing the difference processing of the adjacent sensing electrodes on the noise difference of the respective sensing electrodes, the effect of the DC component can be eliminated and the accuracy of the noise detection can be improved while the effect of retaining the common mode noise.
  • the obtaining module 71 is further configured to acquire noise of each sensing electrode of the touch screen under the preselected multiple frequency points if there is noise interference at the current working frequency point; the processing module 72 And for each frequency point, calculating a difference between a noise of each of the sensing electrodes at the frequency point and a current noise reference of the sensing electrode, obtaining a noise difference of each of the sensing electrodes, and obtaining the noise electrodes of the sensing electrodes
  • the noise difference is subjected to differential processing of the adjacent sensing electrodes, the processing result is obtained, and the maximum value in the processing result is used as the noise amount of the frequency point; the device further includes: an optimization module, configured to update the current working frequency point A frequency point in which the amount of noise is the smallest among the plurality of frequency points.
  • the noise under each pre-selected frequency point is traversed, and the frequency point with the least noise is selected as the current working frequency point, thereby realizing the processing of noise interference and effectively reducing Noise interference.
  • the noise detecting device acquires the noise of the sensing electrode of the touch screen at the current frequency point during the input of the driving signal to the touch screen, and obtains the noise difference of the sensing electrode by calculating the difference between the noise of the sensing electrode and the corresponding noise reference, and Further, the noise difference of each sensing electrode is subjected to adjacent differential processing to obtain a processing result, and further, whether or not there is noise interference currently according to whether the maximum value in the processing result exceeds a preset threshold.
  • the scheme can eliminate the influence of signal difference between the sensing electrodes by introducing a noise reference, and more accurately reflect the actual noise. Moreover, the scheme can eliminate the influence of the DC component in the demodulation process by performing the adjacent difference calculation on the noise difference, and improve the accuracy of the noise detection.
  • the seventh embodiment of the present application provides a noise detecting apparatus.
  • the processing unit includes:
  • a first demodulation subunit configured to demodulate a signal obtained from each of the sensing electrode samples to obtain a demodulated signal by using a demodulated signal, wherein a phase difference between the sampled signal and the demodulated signal is ⁇ /2;
  • the first integration sub-unit is configured to perform integration processing on the demodulated signal to obtain noise of each sensing electrode at the current working frequency point.
  • the noise detecting device collects the signal of the sensing electrode when the touch screen works normally, and demodulates the signal by using a demodulated signal with a phase difference of ⁇ /2, which can optimize the demodulation result, and subsequently demodulate the signal.
  • the signal is integrated to obtain the noise of each sensing electrode and perform noise detection, thereby further improving the accuracy of noise detection.
  • the eighth embodiment of the present application provides a noise detecting apparatus.
  • the processing unit includes:
  • a second demodulation subunit configured to perform IQ demodulation on a signal obtained by sampling each of the sensing electrodes by using a demodulated signal corresponding to the I component and a demodulated signal corresponding to the Q component, wherein the demodulated signal corresponding to the I component
  • the phase difference between the demodulated signals corresponding to the Q component is ⁇ /2;
  • a second integration sub-unit configured to perform integration processing on the I component signal and the Q component signal corresponding to each sensing electrode obtained after demodulation, to obtain noise of each sensing electrode at a current working frequency point, and the noise of the sensing electrode includes I component noise and Q component noise.
  • the noise of each of the sensing electrodes is based on the scheme of the embodiment, including the I component noise and the Q component noise.
  • the processing module includes:
  • a first calculating unit configured to calculate a difference between an I component noise of each sensing electrode and an I component reference of a current noise reference of the sensing electrode, to obtain an I component noise difference of each sensing electrode;
  • the first calculating unit is further configured to calculate a difference between a Q component noise of each sensing electrode and a Q component reference in a current noise reference of the sensing electrode, to obtain a Q component noise difference of each sensing electrode;
  • a first difference unit configured to calculate a difference between a difference between an I component noise difference of the sensing electrode and an adjacent sensing electrode and a Q component noise difference for each sensing electrode, to obtain a difference result of the sensing electrode, where
  • the difference result includes an I component result and a Q component result, wherein the adjacent sensing electrode is located on a fixed side of the sensing electrode;
  • the first calculating unit is further configured to calculate a square root of the sum of the I component result and the Q component result of the sensing electrode for each sensing electrode to obtain a first processing result.
  • the noise detecting device collects the signal of the sensing electrode when the touch screen operates normally, performs IQ demodulation and integration on the signal, can optimize the demodulation result, and after obtaining the noise including the two components, The noise difference and the adjacent difference processing finally obtain the modulus result, and the noise is measured according to the modulus result instead of the single component signal, which can more accurately reflect the common mode noise and reduce the frequent phase change of the common mode noise. The resulting effects further improve the accuracy of noise detection.
  • the solution also determines whether the noise reference needs to be updated based on the "stationarity" of the noise.
  • the ninth embodiment of the present application provides a noise detecting device. Based on any of the foregoing embodiments, the device further includes:
  • a detecting module configured to detect, after the driving signal is input to the touch screen, the noise of each sensing electrode of the touch screen at a current working frequency point, and then detect a noise variation amplitude of the sensing electrode for each sensing electrode;
  • the update module is configured to use the noise of the sensing electrode obtained this time as the current noise reference of the sensing electrode if the amplitude of the noise variation of the sensing electrode is within a preset range.
  • the detecting module includes:
  • a second calculating unit configured to calculate, for each sensing electrode, a difference between the noise of the sensing electrode and the last acquired sensing electrode, and obtain a noise variation amount of each sensing electrode
  • a second difference unit configured to perform differential processing on adjacent sensing electrodes on the amount of noise change of each of the sensing electrodes, obtain a second processing result, and use a maximum value in the second processing result as the noise variation obtained this time result;
  • a detecting unit configured to instruct the acquiring module to perform the step of acquiring the noise of each sensing electrode of the touch screen at the current working frequency point during the input of the driving signal to the touch screen, until the noise obtained by the continuous M times is detected If the change result is less than the preset second threshold, it is determined that the noise variation amplitude of the sensing electrode is within a preset range, and M is a preset positive integer.
  • the noise detecting apparatus detects the current noise variation range according to the acquired noise of the sensing electrode, and if the noise is relatively stable, updates the noise reference according to the acquired noise of the sensing electrode, thereby realizing the update of the noise reference. Maintenance, to avoid false detection of noise caused by inaccurate noise reference, to ensure the stability and reliability of noise detection.
  • the tenth embodiment of the present application further provides a computer readable storage medium, which may include: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (RAM, Random).
  • a computer readable storage medium which may include: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (RAM, Random).
  • the computer readable storage medium stores program instructions for use in the noise detecting method in the above embodiment.
  • Embodiment 11 of the present application provides an electronic device, where the electronic device includes at least one processor and a memory, where the memory is used to store computer execution instructions, and the number of processors may be one or more, and may work separately or in cooperation.
  • the processor is configured to execute the computer-executed instructions of the memory storage to implement the noise detecting method in the above embodiments.
  • the disclosed related systems and methods may be implemented in other manners.
  • the system embodiment described above is merely illustrative.
  • the division of the module or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, system or unit, and may be electrical, mechanical or otherwise.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种噪声检测方法及装置、电子设备和计算机可读存储介质,所述方法包括:在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声(101);计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差(102);对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果并将第一处理结果中的最大值与预设的第一阈值进行比较(103);若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰(104)。所述方法能消除解调过程中直流分量的影响,提高噪声检测的精准度。

Description

噪声检测方法及装置、电子设备和计算机可读存储介质 技术领域
本申请涉及触控领域,尤其涉及一种噪声检测方法及装置、电子设备和计算机可读存储介质。
背景技术
触摸屏又称为“触控屏”、“触控面板”,是一种可接收输入讯号的感应式液晶显示装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。触摸屏实现了简单、方便、自然的人机交互方式,手机、平板电脑、个人电脑等电子设备更是离不开触摸输入功能。
作为触摸屏的一种,电容式触摸屏利用人体的电流感应进行工作,其通过识别手指接近电容触控面板时所产生的电容变化实现触控。如今电容式触摸屏在当今社会已得到广泛的应用。然而在触控领域,触摸屏可能会在使用中受到许多不同噪声源的干扰,例如,共模噪声干扰产生的影响就尤为显著,其可能会导致误冒点或消点,严重影响用户体验。因此如何有效识别和减少噪声干扰成为当前需要解决的问题。
发明内容
本申请提供了一种噪声检测方法及装置、电子设备和计算机可读存储介质,用于精确识别出当前的噪声干扰。
本申请的第一方面是为了提供一种噪声检测方法,包括:在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差;对所述各感应电极的噪声差进行相邻感应电极的求差分处理,以获得第一处理结果,将所述第一处理结果中的最大值与预设的第一阈值进行比较;若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
本申请的第二方面是为了提供一种噪声检测装置,包括:获取模块,用于在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;处理模块,用于计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差;所述处理模块,还用于对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果并将第一处理结果中的最大值与预设的第一阈值进行比较;判断模块,用于若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
本申请的第三方面是为了提供一种电子设备,包括:至少一个处理器和存储器;所述存储器存储计算机执行指令;所述至少一个处理器执行所述存储器存储的计算机执行指令,以执行如前所述的方法。
本申请的第四方面是为了提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令被处理器执行时实现如前所述的方法。
本申请提供的噪声检测方法及装置、电子设备和计算机可读存储介质,在触摸屏工作期间,获取当前频点下触摸屏的感应电极的噪声,通过计算感应电极的噪声与对应的噪声基准之差获得感应电极的噪声差,并进一步对各感应电极的噪声差进行相邻求差分处理,获得处理结果,进而根据处理结果中的最大值是否超出预设的阈值,判断当前是否存在噪声干扰。本方案在识别噪声干扰的过程中,通过引入噪声基准,可以消除各感应电极之间的信号差异带来的影响,更加准确地反映实际的噪声。并且,本方案通过对噪声差进行相邻求差分计算能够消除解调过程中直流分量的影响,提高噪声检测的精准度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请提供的噪声检测方法可应用于的电容触摸屏的结构示意图;
图2A~图2C为本申请实施例一提供的噪声检测方法的流程示意图;
图3A~图3B为本申请实施例二提供的噪声检测方法的流程示意图;
图4A~图4B为本申请实施例三提供的一种噪声检测方法的流程示意图;。
图5为本申请实施例四提供的一种噪声检测方法的流程示意图;
图6A为本申请实施例五中各感应电极的噪声基准示意图;
图6B为本申请实施例五中各感应电极的噪声示意图;
图7为本申请实施例六提供的一种噪声检测装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,电容触摸屏的电容传感器一般由驱动电极(TX)和感应电极(RX)组成。触摸控制芯片将一定工作频率的驱动信号输入驱动电极,信号经过电容传感器经由感应电极返回至触摸控制芯片,最终经触摸控制芯片内部的模数转换器(ADC)转换和数字信号处理后,可分析得到各电容感应节点的电容变化,实现触控识别。
实际应用中,当手指在触摸屏上进行触控操作的同时,基于诸多因素的影响,可能会引入一些噪声干扰,比如共模噪声。共模噪声通常会在手指触摸的位置存在,手指未触摸的区域共模噪声较小。为了降低噪声干扰,需要从触摸屏的感应电极采集信号,并对该信号进行处理和分析,以识别出当前存在的噪声,进而采取降噪方案。如果噪声识别不准确,就会严重影响最终 的降噪效果。
基于上述需要,图2A为本申请实施例一提供的一种噪声检测方法的流程示意图;参考附图2A可知,本实施例提供了一种噪声检测方法,该噪声检测方法用于准确识别当前噪声,具体的,该噪声检测方法包括:
101:在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;
102:计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差;
103:对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果并将第一处理结果中的最大值与预设的第一阈值进行比较;
104:若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
具体的,该噪声检测方法的执行主体可以为噪声检测装置。在实际应用中,该噪声检测装置可以通过软件代码实现,该噪声检测装置也可以为存储有相关执行代码的介质,例如,U盘等;或者,该噪声检测装置还可以为集成或安装有相关执行代码的实体装置,例如,芯片、智能终端、计算机、以及各种电子设备。
实际应用中,共模噪声通常由手指触摸引入,其特点是在某一两根感应电极引入噪声信号比较显著,而在其他非触摸区域引入的噪声不显著。但在噪声监测过程中,由于触摸屏下方的液晶显示屏(Liquid Crystal Display,简称LCD)的电压的极性翻转,会对其上方触摸屏中的整列感应电极产生直流分量信号,该直流分量信号会影响噪声检测结果的准确性。对此,本方案中,获取触摸屏正常工作时各感应电极的噪声,基于噪声基准获得各感应电极的噪声差,通过对各感应电极的噪声差进行相邻求差分处理,可以消除直流分量的影响,提高噪声监测的准确性。
另外,本方案提供的噪声检测方法的触发方式可以有多种。例如,噪声检测方案可以按照预设的周期定期执行,例如,可以设定为每执行一次触控扫描则执行一次噪声检测,以实现持续稳定检测噪声,以保证噪声检测的稳定性和可靠性。
具体的,本方案首先需要获取感应电极的噪声。本方案中,获取感应电极噪声的实施场景有多种。一种场景是在初始场景下(首次驱动触摸屏前), 即向触摸屏首次输入驱动信号之前,获取初始状态下感应电极的噪声,该噪声将作为初始的噪声基准。另一种场景是在触摸屏正常工作时,即向触摸屏输入驱动信号的过程中,获取感应电极的噪声,后续需要基于该噪声和噪声基准,经由一系列处理实现噪声检测。也就是说,获取感应电极噪声的场景不同,对该噪声的处理也会有所不同。具体的,首次驱动触摸屏前获取的感应电极的噪声,将被作为初始的噪声基准;触摸屏工作期间获取的感应电极的噪声,将被用于进行噪声检测。
相应的,为了确定初始的噪声基准,在实施例一的基础上,在101中向触摸屏输入驱动信号之前,方法还可以包括:
在首次驱动触摸屏前,获取当前工作频点下所述触摸屏的各感应电极的噪声,并将其作为各感应电极的当前噪声基准。
其中,本方案所述的频点指用于驱动触摸屏的驱动信号的频率,工作频点即当前驱动触摸屏工作所使用的驱动信号的频率。具体的,在获取噪声的过程中,需要对从感应电极采样得到的信号进行解调,故本方案各实施例中阐述的某频点下的噪声指的是,利用其信号频率与该频点一致的解调信号进行解调处理后最终获得的噪声,即为该频点下的噪声。
通过本实施方式,确定出初始的噪声基准,后续根据驱动信号输入过程中获取的感应电极的噪声,结合该噪声基准,实现准确地噪声检测。
具体的,可以通过多种方式获取感应电极的噪声,另外上述不同实施场景下获取噪声的方法可以相同也可以不同。可选的,作为一种获取感应电极噪声的实施方式,如图2B所示,在任一实施方式的基础上,所述获取当前工作频点下所述触摸屏的各感应电极的噪声,具体可以包括:
1011:关闭所述驱动信号并对各感应电极接收到的信号进行采样;
1012:对从各感应电极采样获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声。
具体的,需要获取感应电极的噪声时,先关闭向驱动电极输入的驱动信号,再在感应电极端对各感应电极接收到的信号进行采样,后续对采样获得的信号进行解调和积分处理,获得各感应电极的噪声。实际应用中,触摸屏的驱动电极和感应电极通常有多个,可以以矩阵阵列的方式排布。以触摸屏排布有M列感应电极为例,通过基于本实施方式,每次可以获取到M个噪 声数据。
实际应用中,可以将驱动电极接地来实现驱动信号的关闭,即本实施方式是在驱动电极未接收到驱动信号的状态下,根据从感应电极采集到的信号,获得感应电极的噪声。本实施方式,根据在驱动信号关闭的状态下采集的感应电极信号,获取感应电极的噪声,可以识别出同频干扰噪声,从而提高后续噪声检测的准确性。需要说明的是,本实施方式提供的获取感应电极的噪声的方法可以应用在各个实施场景。例如,在确定初始的噪声基准时,可以采用本实施方式提供的方法获取感应电极的噪声,在触摸屏正常工作时,同样可以采用本实施方式提供的方法获取感应电极的噪声。
本实施方式,通过在关闭驱动信号的状态下,采集感应电极接收的信号,并对该信号进行解调和积分处理获取感应电极的噪声,能够精准获得同频干扰噪声,从而进一步提高后续噪声检测的准确性。
如上所述,在获取感应电极的噪声的过程中,需要对从感应电极采集的信号进行解调和积分处理。具体采用的解调和积分处理方法可以有多种,例如,基于单个解调信号进行解调,或者也可以基于IQ分量解调信号进行IQ解调等,本实施例在此不对其进行限制。
经过上述过程获取各感应电极的噪声后,根据各感应电极对应的当前的噪声基准,通过进行求差运算获得各感应电极的噪声差。进一步的,需要对各感应电极的噪声差进行进行相邻感应电极的求差分处理,以在保留共模噪声的效果上,消除解调过程中产生的直流分量带来的影响,提高噪声检测的准确性。
具体的,作为一种可选的实施方式,在任一实施方式的基础上,103中所述对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果,具体可以包括:
针对每个感应电极,计算所述感应电极与相邻感应电极的噪声差之差,获得第一处理结果,其中,所述相邻感应电极位于所述感应电极的固定一侧。
以实际场景举例来说:在向触摸屏输入驱动信号的过程中,获取各感应电极的噪声,计算各感应电极的噪声与对应的噪声基准之差,获得各感应电极的噪声差。后续,针对每个感应电极,计算该感应电极的噪声差和与该感应电极相邻的感应电极的噪声差之间的差值,获得相邻求差分处理的处理结 果。具体的,这里的相邻指的是同一侧的相邻,例如,假定为左侧相邻,则对于每个感应电极来说,对其噪声差进行相邻求差分处理时,均会选取其左侧相邻的感应电极的噪声差进行求差。
具体举例来说,假设当前有M个感应电极A 1、A 2、…A M,获得这M个感应电极的噪声差为Diff 1、Diff 2、…Diff M,相应的,对这M个感应电极的噪声差进行相邻求差分处理,获得处理结果Diff 1-Diff 2、Diff 2-Diff 3、…Diff M-1-Diff M。具体的,对于没有相邻感应电极的感应电极,则不再进行上述的求差运算,结合举例,即对感应电极A M则不进行求差分计算,即处理结果中包含M-1个值。
本实施方式,通过对各感应电极的噪声差进行相邻感应电极的求差分处理,能够在保留共模噪声的效果上,消除直流分量的影响,提高噪声检测的准确性。
总的来说,本方案在触摸屏正常工作期间,获取感应电极的噪声,结合感应电极的噪声基准获得感应电极的噪声差,并通过对各感应电极的噪声差进行相邻感应电极的求差分处理,消除直流分量的影响,后续从求差分处理的处理结果中选取最大值与预设的阈值进行比较,如果最大值大于阈值,则说明当前存在噪声干扰。本方案引入了噪声基准概念,在获取的噪声与噪声基准做差的基础上再进行噪声计算,可以消除各感应电极不同差异带来的影响,可以更准确地反映实际噪声。
后续,基于噪声检测结果,进行降低噪声的处理。具体的,降低噪声的处理方法可以有多种,例如,可以进行线性滤波或者非线性滤波处理,再例如,也可以通过软件算法对信号进行二次处理等,此外,还可以在噪声较小的线性滤波处理过程中基于信噪比来调整驱动信号的频率等。
优选的,本方案通过调频的方案实现噪声处理。具体的,如图2C所示,在实施例一的基础上,所述方法还可以包括:
105:若当前工作频点下存在噪声干扰,则获取预选的多个频点下所述触摸屏的各感应电极的噪声;
106:针对每个频点,计算所述频点下每个感应电极的噪声与该感应电极的当前噪声基准之差,获得所述各感应电极的噪声差,并对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得处理结果并将处理结果中的 最大值作为所述频点的噪声量;
107:将当前工作频点更新为所述多个频点中噪声量最小的频点。
具体的,预先选取多个频率作为预选的工作频点,在触摸屏正常工作过程中,基于本方案提供的噪声检测方法检测当前频点下的噪声干扰,若判定当前频点下存在噪声干扰,则遍历获取所有预选频点的当前噪声,然后选择噪声最小的频点作为当前工作频点,即将当前的工作频点切换至当前噪声最小的频点,实现噪声处理。
本实施方式,当检测到当前工作频点下存在噪声干扰时,遍历各预选频点下的噪声,并从中选取噪声最小的频点作为当前的工作频点,实现对噪声干扰的处理,有效降低噪声干扰。
本实施例提供的噪声检测方法,在向触摸屏输入驱动信号期间,获取当前频点下触摸屏的感应电极的噪声,通过计算感应电极的噪声与对应的噪声基准之差获得感应电极的噪声差,并进一步对各感应电极的噪声差进行相邻求差分处理,获得处理结果,进而根据处理结果中的最大值是否超出预设的阈值,判断当前是否存在噪声干扰。本方案在识别噪声干扰的过程中,通过引入噪声基准,可以消除各感应电极之间的信号差异带来的影响,更加准确地反映实际的噪声。并且,本方案通过对噪声差进行相邻求差分计算能够消除解调过程中直流分量的影响,提高噪声检测的精准度。
具体的,如实施例一中所述,获取感应电极的噪声可以基于不同的解调方法实现。作为一种可实施的方式,图3A为本申请实施例二提供的一种噪声检测方法的流程示意图,实施例二在实施例一的基础上,在获取感应电极的噪声时,采用单个解调信号进行解调。如图3A所示,在实施例一的基础上,1012具体可以包括:
201:利用解调信号,对从每个感应电极采样获得的信号进行解调以获得解调后的信号,其中,采样获得的信号与解调信号的相位差为π/2;
202:对解调后的信号进行积分处理,获得当前工作频点下各感应电极的噪声。
以实际场景举例来说:如图3B所示,该图为实施例二中对采集获得的信号进行解调和积分处理的流程示意图,如图所示,假设采样获得感应电极接 收到的理想信号为Asin(ωt+φ),依次对该信号进行解调和积分处理,其中,耦合到感应电极的信号的频率为ω,耦合到感应电极的信号的相位为φ,耦合到感应电极的信号的相位幅度为A。具体的,解调信号的频率与采样获得的信号的频率相同为ω,解调信号的相位为φ 1,则经过解码和积分处理后的信号为NAsin(φ-φ 1)/2+C,其中C为积分器的直流分量,N为积分时间。本实施例中,优选地将解调信号的相位设定为与采样获得信号的相位相差π/2,即φ-φ 1=π/2,这样能够获得更优的信号解调结果。
实际应用中,若存在幅度为B,相位为β的同频(即频率也为ω)噪声信号,则经由上述解调和积分处理,最终得到的信号为NAsin(φ-φ 1)/2+C+NB sin(β-φ 1)/2。由此可见,噪声引入的部分会在解调结果中体现并伴随体现在后续的噪声检测过程,后续经噪声检测方案检测出该噪声信号。具体实际应用中,噪声通常是不稳定的,相位和幅度会随机变化,从而降低信噪比,而本方案通过引入噪声基准和相邻求差分处理,能够保留噪声信号,消除直流分量的影响,提高噪声检测的准确性。
具体的,基于本实施例的方案获取各感应电极的噪声后,根据噪声和噪声基准计算各感应电极的噪声差,进一步进行相邻感应电极的求差分处理,并从处理结果中选取最大值与预设的阈值进行比较,准确判断出当前存在的噪声干扰。
本实施例提供的噪声检测的方法,在触摸屏正常工作时,采集感应电极的信号,以相位相差π/2的解调信号对该信号进行解调,能够优化解调结果,后续对解调后的信号进行积分处理,获得各感应电极的噪声并进行噪声检测,从而进一步提高噪声检测的准确性。
作为另一种可实施的方式,图4A为本申请实施例三提供的一种噪声检测方法的流程示意图,实施例三在实施例一的基础上,在获取感应电极的噪声时,采用IQ解调信号进行解调。如图4A所示,在实施例一的基础上,1012具体可以包括:
301:利用I分量对应的解调信号和Q分量对应的解调信号,对从每个感应电极采样获得的信号进行IQ解调,其中,I分量对应的解调信号与Q分量对应的解调信号之间的相位差为π/2;
302:对解调后获得的各感应电极对应的I分量信号和Q分量信号分别进行积分处理,获得当前工作频点下各感应电极的噪声,所述感应电极的噪声包括I分量噪声和Q分量噪声。
以实际场景举例来说:如图4B所示,该图为实施例三中对采集获得的信号进行IQ解调和积分处理的流程示意图,如图所示,假设采样获得感应电极接收到的理想信号为Bsin(ωt+φ),依次对该信号进行解调和积分处理,其中,耦合到感应电极的信号的频率为ω,耦合到感应电极的信号的相位为φ,耦合到感应电极的信号的相位幅度为B。具体的,I分量和Q分量对应的解调信号的频率同样为ω,两者的相位相差π/2,则经过解码和积分处理后的信号包括图中所示的I分量信号和Q分量信号,其中C为积分器的直流分量,N为积分时间。本实施例中,优选地将I分量和Q分量对应的解调信号的相位设定为相差π/2,以获得更优的信号解调结果。可以理解,本方案通过引入噪声基准,将噪声与噪声基准求差,能够保留噪声信号,并消除直流分量的影响,从而提高噪声检测的准确性。
具体的,基于本实施例的方案获取各感应电极的噪声包含I分量噪声和Q分量噪声,相应的基于感应电极的噪声确定的噪声基准同样包含I分量基准和Q分量基准,相应的,计算噪声差的具体过程为,分别求得I分量噪声和I分量基准之差以及Q分量噪声和Q分量基准之差,获得感应电极的噪声差,该噪声差包含I分量噪声差和Q分量噪声差。相应的,在实施例三的基础上,102具体可以包括:
计算每个感应电极的I分量噪声与该感应电极的当前噪声基准中I分量基准之差,获得各感应电极的I分量噪声差;
计算每个感应电极的Q分量噪声与该感应电极的当前噪声基准中Q分量基准之差,获得各感应电极的Q分量噪声差。
进一步的,后续对噪声差进行相邻感应电极的求差分处理时,需要分别对各感应电极的I分量噪声差和各感应电极的Q分量噪声差进行相邻求差分。相应的,在实施例三的基础上,103中所述对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果,具体可以包括:
针对每个感应电极,分别计算所述感应电极与相邻感应电极的I分量噪声差之差和Q分量噪声差之差,获得所述感应电极的求差分结果,所述求差 分结果包括I分量结果和Q分量结果,其中,所述相邻感应电极位于所述感应电极的固定一侧;
针对每个感应电极,对所述感应电极的I分量结果和Q分量结果的平方和进行求平方根计算,获得第一处理结果。
具体的,根据各感应电极的I分量噪声差和Q分量噪声差,分别进行相邻感应电极的I分量噪声差求差和相邻感应电极的Q分量噪声差求差,获得包含I分量结果和Q分量结果的求差分结果,后续再对I分量结果和Q分量结果进行平方和计算,即求得I分量结果的平方与Q分量结果的平方之和,再对求得的和进行求平方根计算,获得最终的处理结果,即获得模值结果。后续,从该处理结果中选出最大值与预设的阈值进行比较,检测出当前存在的噪声。
本实施例提供的噪声检测方法,在触摸屏正常工作时,采集感应电极的信号,对该信号进行IQ解调和积分,能够优化解调结果,并且在获取包含两个分量的噪声后,进行求噪声差和相邻求差分的处理,最终求得模值结果,根据该模值结果而非单一的分量信号来衡量噪声,更能准确反映共模噪声的大小,降低共模噪声的相位频繁变化造成的影响,从而进一步提高噪声检测的准确性。
此外,在实际应用中,可能存在初始的噪声基准含有噪声(例如,上电时就存在噪声)或者环境变化,导致当前的噪声基准无法继续适用。例如,若噪声基准含有共模噪声,而后续某时段可能处于没有共模噪声的正常环境,那么基于原噪声基准计算得到的噪声会有较大误差,进而影响后续噪声检测结果的准确性。故还需要对噪声基准进行更新维护,以保证噪声检测的稳定性和可靠性。
可选的,本方案基于噪声的“平稳性”判断是否需要更新噪声基准。作为示例说明,图5为本申请实施例四提供的一种噪声检测方法的流程示意图,实施例四在前述任一实施例的基础上,对噪声进行进行更新维护。如图5所示,在前述任一实施例的基础上,在101之后,方法还可以包括:
401:针对每个感应电极,检测所述感应电极的噪声变化幅度;
402:若所述感应电极的噪声变化幅度在预设的范围内,则将本次获取的 所述感应电极的噪声作为所述感应电极的当前噪声基准。
具体的,如果感应电极的噪声变化幅度较小,即噪声比较平稳,则可以对噪声基准进行更新,反之,如果感应电极的噪声变化幅度较大,则说明当前的噪声信号不稳定,则不对噪声基准进行更新,以保证噪声检测的稳定性。具体更新的策略为,根据最新获取的感应电极的噪声,更新当前的噪声基准。
可选的,检测噪声变化幅度的方法可以有多种。示例来说,该实施方式通过分析连续多个噪声数据,检测噪声是否平稳,具体的,在实施例四的基础上,401具体可以包括:
针对每个感应电极,计算本次与上一次获取的所述感应电极的噪声之差,获得各感应电极的噪声变化量;
对所述各感应电极的噪声变化量进行相邻感应电极的求差分处理,获得第二处理结果并将第二处理结果中的最大值作为本次求得的噪声变化结果;
返回执行所述在向触摸屏输入驱动信号期间,获取当前工作频点下所述触摸屏的各感应电极的噪声的步骤,直至检测到连续M次求得的噪声变化结果均小于预设的第二阈值,则判定所述感应电极的噪声变化幅度在预设的范围内,M为预设的正整数。
具体的,在触摸屏正常工作过程中,获取感应电极的噪声后,除了基于前述方案进行噪声检测外,还根据本次获取的噪声和上一次获取的噪声,获得噪声变化量,对各感应电极的噪声变化量进行相邻感应电极的求差分处理,具体进行相邻求差分处理的过程与前述进行相邻求差分处理的过程类似,仅处理对象不同,故可以参考前述实施例中的相关内容,在此不再赘述。对各感应电极的噪声变化量进行相邻求差分后,获得第二处理结果,从第二处理结果中选取最大值作为本次求得的噪声变化结果。后续,循环执行多次上述流程,如果检测到连续M次求得的噪声变化结果均小于一定的阈值,则说明当前噪声比较平稳,可以对当前的噪声基准进行更新。如果连续求得的小于一定阈值的噪声变化结果的数量未达到预设的M次时,出现某次求得的噪声变化结果超出阈值,则不更新噪声基准,并且此前统计的小于阈值的噪声变化结果清零,重新自当前起统计连续求得的小于预设阈值的噪声变化结果的数量。
本实施例提供的噪声检测方法,根据获取的感应电极的噪声,检测当前 噪声的变化幅度,如果噪声较平稳则根据获取的感应电极的噪声,对噪声基准进行更新,从而实现对噪声基准的更新维护,避免因噪声基准不准确导致的噪声误检测,保证噪声检测的稳定性和可靠性。
作为示例说明,本申请实施例五提供一种噪声检测方法,本实施例的过程主要包括获取噪声、结合噪声基准检测噪声、噪声基准维护等过程,具体步骤如下:
1、触摸屏上电后,首先将各驱动电极接地,通过对采样获得的感应电极的信号进行IQ解调和积分,获取各感应电极的噪声Ref_I 1,Ref_I 2…Ref_I m;R ef_Q 1,Ref_Q 2…Ref_Q m,作为各感应电极的初始的噪声基准Ref_I和Ref_Q,其中m为感应电极的数目。
以感应电极的数量为8进行举例,如图6A所示,为各感应电极的噪声基准示意图。后续向驱动电极输入驱动信号,期间获取各感应电极的噪声,如图6B所示的各感应电极的噪声示意图,图中各感应电极的噪声为Raw_I 1,Raw_I 2…Raw_I m;Raw_Q 1,Raw_Q 2…Raw_Q m,即噪声Raw包括Raw_I、Ra w_Q。
2、计算各感应电极的噪声差,具体方法如下:(仍以8列感应电极为例,其中,k为1~7):
1)将获取的噪声Raw_I和噪声基准Ref_I相减,得到各感应电极的噪声差Diff_I、Diff_Q:
Diff_I=Raw_I-Ref_I
Diff_Q=Raw_Q-Ref_Q
2)对Diff_I和Diff_Q分别进行相邻求差分处理,以消除直流分量影响并保留共模噪声:
Diff2_I k=Diff_I k-Diff_I k+1
Diff2_Q k=Diff2_Q k-Diff2_Q k+1
3)对得到的Diff2_I k和Diff2_Q k进行平方和开根号处理来得到各感应电极的模值噪声:
Figure PCTCN2017119057-appb-000001
4)取各模值噪声的最大值Noise,根据Noise和预设的第一阈值进行比较,判断当前是否存在噪声干扰:
Noise=max{Noise 1…Noise k}
3、设计了一种噪声基准的更新维护机制,具体方法如下:
1)利用当前噪声Raw与上一次获取的噪声Raw old做差,得到各个感应电极的噪声变化量Raw
2)对各个感应电极的噪声变化量Raw 进行相邻求差分得到Raw △diff
3)根据I分量和Q分量对应的Raw △diff求各感应电极的模值噪声M,取其中最大的M作为噪声变化结果Noise
4)若Noise 连续M次小于预设的第二阈值,则说明当前的噪声变化很小,将当前噪声Raw作为当前的噪声基准。
4、基于上述步骤,可以得到当前频点下的噪声量,工作频点的选择如下:
1)若当前工作频点下不存在噪声干扰,即第一处理结果中的最大值不大于预设的第一阈值,则继续进行噪声检测,否则获取多个预选频点的噪声量。
2)从多个预选频点中,选择噪声最小的频点作为当前的工作频点,切换工作频点后继续进行噪声检测。
本实施例提供的噪声检测方法,在向触摸屏输入驱动信号期间,获取当前频点下触摸屏的感应电极的噪声,通过计算感应电极的噪声与对应的噪声基准之差获得感应电极的噪声差,并进一步对各感应电极的噪声差进行相邻求差分处理,获得处理结果,进而根据处理结果中的最大值是否超出预设的阈值,判断当前是否存在噪声干扰。本方案在识别噪声干扰的过程中,通过引入噪声基准,可以消除各感应电极之间的信号差异带来的影响,更加准确地反映实际的噪声。并且,本方案通过对噪声差进行相邻求差分计算能够消除解调过程中直流分量的影响,提高噪声检测的精准度。
图7为本申请实施例六提供的一种噪声检测装置的结构示意图,该噪声检测装置用于准确识别当前噪声;参考附图7可知,该噪声检测装置包括:
获取模块71,用于在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;
处理模块72,用于计算每个感应电极的噪声与该感应电极的当前噪声基 准之差,获得各感应电极的噪声差;
处理模块72,还用于对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果并将第一处理结果中的最大值与预设的第一阈值进行比较;
判断模块73,用于若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
在实际应用中,该噪声检测装置可以通过软件代码实现,该噪声检测装置也可以为存储有相关执行代码的介质,例如,U盘等;或者,该噪声检测装置还可以为集成或安装有相关执行代码的实体装置,例如,芯片、智能终端、计算机、以及各种电子设备。
本方案中,获取模块71获取感应电极噪声的实施场景有多种。一种场景是在初始场景下,获取模块71获取初始状态下感应电极的噪声,该噪声将作为初始的噪声基准。另一种场景是在触摸屏正常工作时,获取模块71获取感应电极的噪声,后续实现噪声检测。
相应的,为了确定初始的噪声基准,在实施例六的基础上,获取模块71,还用于在首次驱动触摸屏前,获取当前工作频点下所述触摸屏的各感应电极的噪声,并将其作为各感应电极的当前噪声基准。通过本实施方式,确定出初始的噪声基准,后续根据驱动信号输入过程中获取的感应电极的噪声,结合该噪声基准,实现准确地噪声检测。
可选的,作为一种获取感应电极噪声的实施方式,在任一实施方式的基础上,获取模块71可以包括:采样单元,具体用于关闭所述驱动信号并对各感应电极接收到的信号进行采样;处理单元,对从各感应电极采样获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声。具体的,需要获取感应电极的噪声时,采样单元先关闭向驱动电极输入的驱动信号,再在感应电极端对各感应电极接收到的信号进行采样,后续处理单元对采样获得的信号进行解调和积分处理,获得各感应电极的噪声。需要说明的是,本实施方式提供的获取感应电极的噪声的方法可以应用在各个实施场景。本实施方式,通过在关闭驱动信号的状态下,采集感应电极接收的信号,并对该信号进行解调和积分处理获取感应电极的噪声,能够精准获得同频干扰噪声,从而进一步提高后续噪声检测的准确性。
如上所述,在获取感应电极的噪声的过程中,需要对从感应电极采集的信号进行解调和积分处理。具体采用的解调和积分处理方法可以有多种,本实施例在此不对其进行限制。
具体的,作为一种可选的实施方式,在任一实施方式的基础上,处理模块72,具体用于针对每个感应电极,计算所述感应电极与相邻感应电极的噪声差之差,获得第一处理结果,其中,所述相邻感应电极位于所述感应电极的固定一侧。本实施方式,通过对各感应电极的噪声差进行相邻感应电极的求差分处理,能够在保留共模噪声的效果上,消除直流分量的影响,提高噪声检测的准确性。
后续,基于噪声检测结果,可以进行降低噪声的处理。优选的,在实施例六的基础上,获取模块71,还用于若当前工作频点下存在噪声干扰,则获取预选的多个频点下所述触摸屏的各感应电极的噪声;处理模块72,还用于针对每个频点,计算所述频点下每个感应电极的噪声与该感应电极的当前噪声基准之差,获得所述各感应电极的噪声差,并对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得处理结果并将处理结果中的最大值作为所述频点的噪声量;所述装置还包括:优化模块,用于将当前工作频点更新为所述多个频点中噪声量最小的频点。本实施方式,当检测到当前工作频点下存在噪声干扰时,遍历各预选频点下的噪声,并从中选取噪声最小的频点作为当前的工作频点,实现对噪声干扰的处理,有效降低噪声干扰。
本实施例提供的噪声检测装置,在向触摸屏输入驱动信号期间,获取当前频点下触摸屏的感应电极的噪声,通过计算感应电极的噪声与对应的噪声基准之差获得感应电极的噪声差,并进一步对各感应电极的噪声差进行相邻求差分处理,获得处理结果,进而根据处理结果中的最大值是否超出预设的阈值,判断当前是否存在噪声干扰。本方案在识别噪声干扰的过程中,通过引入噪声基准,可以消除各感应电极之间的信号差异带来的影响,更加准确地反映实际的噪声。并且,本方案通过对噪声差进行相邻求差分计算能够消除解调过程中直流分量的影响,提高噪声检测的精准度。
作为一种可实施的方式,本申请实施例七提供一种噪声检测装置,在实施例六的基础上,处理单元包括:
第一解调子单元,用于利用解调信号,对从每个感应电极采样获得的信号进行解调以获得解调后的信号,其中,采样获得的信号与解调信号的相位差为π/2;
第一积分子单元,用于对解调后的信号进行积分处理,获得当前工作频点下各感应电极的噪声。
本实施例提供的噪声检测装置,在触摸屏正常工作时,采集感应电极的信号,以相位相差π/2的解调信号对该信号进行解调,能够优化解调结果,后续对解调后的信号进行积分处理,获得各感应电极的噪声并进行噪声检测,从而进一步提高噪声检测的准确性。
作为另一种可实施的方式,本申请实施例八提供一种噪声检测装置,在实施例六的基础上,处理单元包括:
第二解调子单元,用于利用I分量对应的解调信号和Q分量对应的解调信号,对从每个感应电极采样获得的信号进行IQ解调,其中,I分量对应的解调信号与Q分量对应的解调信号之间的相位差为π/2;
第二积分子单元,用于对解调后获得的各感应电极对应的I分量信号和Q分量信号分别进行积分处理,获得当前工作频点下各感应电极的噪声,所述感应电极的噪声包括I分量噪声和Q分量噪声。
具体的,基于本实施例的方案获取各感应电极的噪声包含I分量噪声和Q分量噪声,相应的,在实施例八的基础上,处理模块包括:
第一计算单元,用于计算每个感应电极的I分量噪声与该感应电极的当前噪声基准中I分量基准之差,获得各感应电极的I分量噪声差;
所述第一计算单元,还用于计算每个感应电极的Q分量噪声与该感应电极的当前噪声基准中Q分量基准之差,获得各感应电极的Q分量噪声差;
第一差分单元,用于针对每个感应电极,分别计算所述感应电极与相邻感应电极的I分量噪声差之差和Q分量噪声差之差,获得所述感应电极的求差分结果,所述求差分结果包括I分量结果和Q分量结果,其中,所述相邻感应电极位于所述感应电极的固定一侧;
所述第一计算单元,还用于针对每个感应电极,对所述感应电极的I分量结果和Q分量结果的平方和进行求平方根计算,获得第一处理结果。
本实施例提供的噪声检测装置,在触摸屏正常工作时,采集感应电极的信号,对该信号进行IQ解调和积分,能够优化解调结果,并且在获取包含两个分量的噪声后,进行求噪声差和相邻求差分的处理,最终求得模值结果,根据该模值结果而非单一的分量信号来衡量噪声,更能准确反映共模噪声的大小,降低共模噪声的相位频繁变化造成的影响,从而进一步提高噪声检测的准确性。
可选的,本方案还基于噪声的“平稳性”判断是否需要更新噪声基准。作为示例说明,本申请实施例九提供一种噪声检测装置,在前述任一实施例的基础上,所述装置还包括:
检测模块,用于在向触摸屏输入驱动信号期间,所述获取模块获取当前工作频点下所述触摸屏的各感应电极的噪声之后,针对每个感应电极,检测所述感应电极的噪声变化幅度;
更新模块,用于若所述感应电极的噪声变化幅度在预设的范围内,则将本次获取的所述感应电极的噪声作为所述感应电极的当前噪声基准。
可选的,检测噪声变化幅度的方法可以有多种。示例来说,在实施例九的基础上,检测模块包括:
第二计算单元,用于针对每个感应电极,计算本次与上一次获取的所述感应电极的噪声之差,获得各感应电极的噪声变化量;
第二差分单元,用于对所述各感应电极的噪声变化量进行相邻感应电极的求差分处理,获得第二处理结果并将第二处理结果中的最大值作为本次求得的噪声变化结果;
检测单元,用于指示所述获取模块再次执行所述在向触摸屏输入驱动信号期间,获取当前工作频点下所述触摸屏的各感应电极的噪声的步骤,直至检测到连续M次求得的噪声变化结果均小于预设的第二阈值,则判定所述感应电极的噪声变化幅度在预设的范围内,M为预设的正整数。
本实施例提供的噪声检测装置,根据获取的感应电极的噪声,检测当前噪声的变化幅度,如果噪声较平稳则根据获取的感应电极的噪声,对噪声基准进行更新,从而实现对噪声基准的更新维护,避免因噪声基准不准确导致的噪声误检测,保证噪声检测的稳定性和可靠性。
本申请实施例十还提供一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序指令,程序指令用于上述实施例中的噪声检测方法。
本申请实施例十一提供一种电子设备,该电子设备包括至少一个处理器和存储器,存储器用于存储计算机执行指令,处理器的个数可以为一个或多个,且可以单独或协同工作,处理器用于执行所述存储器存储的计算机执行指令,以实现上述实施例中的噪声检测方法。
以上各个实施例中的技术方案、技术特征在不相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本申请所提供的几个实施例中,应该理解到,所揭露的相关系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,系统或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间 接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种噪声检测方法,其特征在于,包括:
    在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;
    计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差;
    对所述各感应电极的噪声差进行相邻感应电极的求差分处理,以获得第一处理结果,将所述第一处理结果中的最大值与预设的第一阈值进行比较;
    若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在首次驱动触摸屏前,获取当前工作频点下所述触摸屏的各感应电极的噪声,并将其作为各感应电极的当前噪声基准。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取当前工作频点下所述触摸屏的各感应电极的噪声,包括:
    关闭所述驱动信号并对各感应电极接收到的信号进行采样;
    对从各感应电极采样获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声。
  4. 根据权利要求3所述的方法,其特征在于,所述对从各感应电极采样获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声,包括:
    利用解调信号,对从每个感应电极采样获得的信号进行解调以获得解调后的信号,其中,采样获得的信号与解调信号的相位差为π/2;
    对解调后的信号进行积分处理,以获得当前工作频点下各感应电极的噪声。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果,包括:
    针对每个感应电极,计算所述感应电极与相邻感应电极的噪声差之差,获得第一处理结果,其中,所述相邻感应电极位于所述感应电极的固定一侧。
  6. 根据权利要求3所述的方法,其特征在于,所述对从各感应电极采样 获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声,包括:
    利用I分量对应的解调信号和Q分量对应的解调信号,对从每个感应电极采样获得的信号进行IQ解调,其中,I分量对应的解调信号与Q分量对应的解调信号之间的相位差为π/2;
    对解调后获得的各感应电极对应的I分量信号和Q分量信号分别进行积分处理,获得当前工作频点下各感应电极的噪声,所述感应电极的噪声包括I分量噪声和Q分量噪声。
  7. 根据权利要求6所述的方法,其特征在于,所述噪声基准包括I分量基准和Q分量基准;所述计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差,包括:
    计算每个感应电极的I分量噪声与该感应电极的当前噪声基准中I分量基准之差,获得各感应电极的I分量噪声差;
    计算每个感应电极的Q分量噪声与该感应电极的当前噪声基准中Q分量基准之差,获得各感应电极的Q分量噪声差;
    所述对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果,包括:
    针对每个感应电极,分别计算所述感应电极与相邻感应电极的I分量噪声差之差和Q分量噪声差之差,获得所述感应电极的求差分结果,所述求差分结果包括I分量结果和Q分量结果,其中,所述相邻感应电极位于所述感应电极的固定一侧;
    针对每个感应电极,对所述感应电极的I分量结果和Q分量结果的平方和进行求平方根计算,获得第一处理结果。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述在向触摸屏输入驱动信号期间,获取当前工作频点下所述触摸屏的各感应电极的噪声之后,还包括:
    针对每个感应电极,检测所述感应电极的噪声变化幅度;
    若所述感应电极的噪声变化幅度在预设的范围内,则将本次获取的所述感应电极的噪声作为所述感应电极的当前噪声基准。
  9. 根据权利要求8所述的方法,其特征在于,所述针对每个感应电极, 检测所述感应电极的噪声变化幅度,包括:
    针对每个感应电极,计算本次与上一次获取的所述感应电极的噪声之差,获得各感应电极的噪声变化量;
    对所述各感应电极的噪声变化量进行相邻感应电极的求差分处理,获得第二处理结果并将第二处理结果中的最大值作为本次求得的噪声变化结果;
    返回执行所述在向触摸屏输入驱动信号期间,获取当前工作频点下所述触摸屏的各感应电极的噪声的步骤,直至检测到连续M次求得的噪声变化结果均小于预设的第二阈值,则判定所述感应电极的噪声变化幅度在预设的范围内,M为预设的正整数。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    若当前工作频点下存在噪声干扰,则获取预选的多个频点下所述触摸屏的各感应电极的噪声;
    针对每个频点,计算所述频点下每个感应电极的噪声与该感应电极的当前噪声基准之差,获得所述各感应电极的噪声差,并对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得处理结果并将处理结果中的最大值作为所述频点的噪声量;
    将当前工作频点更新为所述多个频点中噪声量最小的频点。
  11. 一种噪声检测装置,其特征在于,包括:
    获取模块,用于在触摸屏工作期间,获取当前工作频点下所述触摸屏的各感应电极的噪声;
    处理模块,用于计算每个感应电极的噪声与该感应电极的当前噪声基准之差,获得各感应电极的噪声差;
    所述处理模块,还用于对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得第一处理结果并将第一处理结果中的最大值与预设的第一阈值进行比较;
    判断模块,用于若所述最大值大于所述阈值,则判定当前工作频点下存在噪声干扰。
  12. 根据权利要求11所述的装置,其特征在于,
    所述获取模块,还用于在首次驱动触摸屏前,获取当前工作频点下所述 触摸屏的各感应电极的噪声,并将其作为各感应电极的当前噪声基准。
  13. 根据权利要求11或12所述的装置,其特征在于,所述获取模块包括:
    采样单元,具体用于关闭所述驱动信号并对各感应电极接收到的信号进行采样;
    处理单元,对从各感应电极采样获得的信号进行解调和积分处理,以获得当前工作频点下各感应电极的噪声。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元包括:
    第一解调子单元,用于利用解调信号,对从每个感应电极采样获得的信号进行解调以获得解调后的信号,其中,采样获得的信号与解调信号的相位差为π/2;
    第一积分子单元,用于对解调后的信号进行积分处理,获得当前工作频点下各感应电极的噪声。
  15. 根据权利要求14所述的装置,其特征在于,
    所述处理模块,具体用于针对每个感应电极,计算所述感应电极与相邻感应电极的噪声差之差,获得第一处理结果,其中,所述相邻感应电极位于所述感应电极的固定一侧。
  16. 根据权利要求13所述的装置,其特征在于,所述处理单元包括:
    第二解调子单元,用于利用I分量对应的解调信号和Q分量对应的解调信号,对从每个感应电极采样获得的信号进行IQ解调,其中,I分量对应的解调信号与Q分量对应的解调信号之间的相位差为π/2;
    第二积分子单元,用于对解调后获得的各感应电极对应的I分量信号和Q分量信号分别进行积分处理,获得当前工作频点下各感应电极的噪声,所述感应电极的噪声包括I分量噪声和Q分量噪声。
  17. 根据权利要求16所述的装置,其特征在于,所述噪声基准包括I分量基准和Q分量基准;所述处理模块包括:
    第一计算单元,用于计算每个感应电极的I分量噪声与该感应电极的当前噪声基准中I分量基准之差,获得各感应电极的I分量噪声差;
    所述第一计算单元,还用于计算每个感应电极的Q分量噪声与该感应电极的当前噪声基准中Q分量基准之差,获得各感应电极的Q分量噪声差;
    第一差分单元,用于针对每个感应电极,分别计算所述感应电极与相邻感应电极的I分量噪声差之差和Q分量噪声差之差,获得所述感应电极的求差分结果,所述求差分结果包括I分量结果和Q分量结果,其中,所述相邻感应电极位于所述感应电极的固定一侧;
    所述第一计算单元,还用于针对每个感应电极,对所述感应电极的I分量结果和Q分量结果的平方和进行求平方根计算,获得第一处理结果。
  18. 根据权利要求11-17中任一项所述的装置,其特征在于,所述装置还包括:
    检测模块,用于在向触摸屏输入驱动信号期间,所述获取模块获取当前工作频点下所述触摸屏的各感应电极的噪声之后,针对每个感应电极,检测所述感应电极的噪声变化幅度;
    更新模块,用于若所述感应电极的噪声变化幅度在预设的范围内,则将本次获取的所述感应电极的噪声作为所述感应电极的当前噪声基准。
  19. 根据权利要求18所述的装置,其特征在于,所述检测模块包括:
    第二计算单元,用于针对每个感应电极,计算本次与上一次获取的所述感应电极的噪声之差,获得各感应电极的噪声变化量;
    第二差分单元,用于对所述各感应电极的噪声变化量进行相邻感应电极的求差分处理,获得第二处理结果并将第二处理结果中的最大值作为本次求得的噪声变化结果;
    检测单元,用于指示所述获取模块再次执行所述在向触摸屏输入驱动信号期间,获取当前工作频点下所述触摸屏的各感应电极的噪声的步骤,直至检测到连续M次求得的噪声变化结果均小于预设的第二阈值,则判定所述感应电极的噪声变化幅度在预设的范围内,M为预设的正整数。
  20. 根据权利要求11-19中任一项所述的装置,其特征在于,
    所述获取模块,还用于若当前工作频点下存在噪声干扰,则获取预选的多个频点下所述触摸屏的各感应电极的噪声;
    所述处理模块,还用于针对每个频点,计算所述频点下每个感应电极的噪声与该感应电极的当前噪声基准之差,获得所述各感应电极的噪声差,并对所述各感应电极的噪声差进行相邻感应电极的求差分处理,获得处理结果并将处理结果中的最大值作为所述频点的噪声量;
    所述装置还包括:
    优化模块,用于将当前工作频点更新为所述多个频点中噪声量最小的频点。
  21. 一种电子设备,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;所述至少一个处理器执行所述存储器存储的计算机执行指令,以执行如权利要求1-10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有程序指令,所述程序指令被处理器执行时实现权利要求1-10中任一项所述的方法。
PCT/CN2017/119057 2017-12-27 2017-12-27 噪声检测方法及装置、电子设备和计算机可读存储介质 WO2019127118A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780002368.3A CN110199247B (zh) 2017-12-27 2017-12-27 噪声检测方法及装置、电子设备和计算机可读存储介质
EP17935050.9A EP3547088B1 (en) 2017-12-27 2017-12-27 Noise detection method and electronic device
PCT/CN2017/119057 WO2019127118A1 (zh) 2017-12-27 2017-12-27 噪声检测方法及装置、电子设备和计算机可读存储介质
US16/455,650 US10969904B2 (en) 2017-12-27 2019-06-27 Noise detecting method and apparatus, electronic device, and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119057 WO2019127118A1 (zh) 2017-12-27 2017-12-27 噪声检测方法及装置、电子设备和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/455,650 Continuation US10969904B2 (en) 2017-12-27 2019-06-27 Noise detecting method and apparatus, electronic device, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019127118A1 true WO2019127118A1 (zh) 2019-07-04

Family

ID=67064304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119057 WO2019127118A1 (zh) 2017-12-27 2017-12-27 噪声检测方法及装置、电子设备和计算机可读存储介质

Country Status (4)

Country Link
US (1) US10969904B2 (zh)
EP (1) EP3547088B1 (zh)
CN (1) CN110199247B (zh)
WO (1) WO2019127118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466792A (zh) * 2021-06-01 2021-10-01 浙江大学 一种用于氮化镓场效应传感器的低频噪声定位方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739953B (zh) * 2019-10-18 2023-05-09 四川中微芯成科技有限公司 一种电容触摸按键的场景式信号自适应处理方法及电子装置
US11550434B2 (en) * 2020-10-19 2023-01-10 Synaptics Incorporated Short-term noise suppression
CN113157132B (zh) * 2021-04-13 2023-06-16 合肥松豪电子科技有限公司 一种降低tp芯片噪声的滤波器及其滤波方法
CN114257256B (zh) * 2021-12-15 2023-08-15 哲库科技(北京)有限公司 噪声估计方法、装置、设备和可读存储介质
US11567606B1 (en) 2022-05-31 2023-01-31 Microsoft Technology Licensing, Llc Touch input detection using complex gradients
CN116974401B (zh) * 2023-09-22 2023-12-05 深圳市柯达科电子科技有限公司 一种lcd电感触摸屏干扰信号数据处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707821A (zh) * 2011-03-28 2012-10-03 深圳市汇顶科技有限公司 触摸检测装置的降噪处理方法及系统
CN102788910A (zh) * 2012-06-29 2012-11-21 敦泰科技有限公司 互电容触摸屏的噪声检测、扫描及频率跳转方法
CN107003783A (zh) * 2017-02-16 2017-08-01 深圳市汇顶科技股份有限公司 一种按键检测方法及装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2282703C (en) * 1998-11-02 2002-10-29 Kabushiki Kaisha Meidensha Qcm sensor
JP4007606B2 (ja) * 2004-02-03 2007-11-14 キヤノン株式会社 センサおよび検出方法
US7863902B2 (en) * 2008-06-30 2011-01-04 Baker Hughes Incorporated Coherent in-phase demodulation for resistivity image tools with spread spectrum continuous phase modulation stimulus
CN105045423B (zh) * 2010-02-26 2020-09-29 辛纳普蒂克斯公司 修改解调以避免干扰
US8493356B2 (en) * 2010-04-22 2013-07-23 Maxim Integrated Products, Inc. Noise cancellation technique for capacitive touchscreen controller using differential sensing
WO2013066993A2 (en) * 2011-10-31 2013-05-10 Analog Devices, Inc. Noise compensation techniques for capacitive touch screen systems
US8294687B1 (en) * 2012-02-23 2012-10-23 Cypress Semiconductor Corporation False touch filtering for capacitance sensing systems
US9444452B2 (en) * 2012-02-24 2016-09-13 Parade Technologies, Ltd. Frequency hopping algorithm for capacitance sensing devices
CN102750060B (zh) * 2012-06-04 2015-06-10 天津昌立微电子技术有限公司 利用空间差异性的投射式电容触摸屏系统时域降噪方法
CN102722285B (zh) * 2012-06-08 2015-05-27 深圳市汇顶科技股份有限公司 触摸检测装置检测数据中的形变噪声的消除方法及系统
US9411928B2 (en) * 2012-07-17 2016-08-09 Parade Technologies, Ltd. Discontinuous integration using half periods
CN102830837B (zh) * 2012-07-19 2016-01-27 深圳市汇顶科技股份有限公司 一种用于触摸检测的噪声抑制方法、系统及触摸终端
WO2014042489A2 (ko) * 2012-09-17 2014-03-20 주식회사 실리콘웍스 터치스크린의 제어 회로 및 노이즈 제거 방법
JP6037327B2 (ja) * 2012-09-24 2016-12-07 株式会社ジャパンディスプレイ 液晶表示装置
KR101455315B1 (ko) * 2012-11-13 2014-10-27 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
US9442598B2 (en) * 2013-02-08 2016-09-13 Synaptics Incorporated Detecting interference in an input device having electrodes
US9244550B2 (en) * 2013-08-16 2016-01-26 Blackberry Limited Electronic device and method of identifying frequency for detecting touches
US9128554B2 (en) * 2013-08-30 2015-09-08 Atmel Corporation Chained differential sensing for touch sensors
WO2015056484A1 (ja) * 2013-10-15 2015-04-23 シャープ株式会社 タッチパネル
KR101416724B1 (ko) * 2013-10-15 2014-07-09 주식회사 아나패스 공통 노이즈 제거 방법 및 이를 이용한 터치 정보 검출 방법
US9746960B2 (en) * 2013-11-06 2017-08-29 Apex Material Technology Corp. Handling of electromagnetic interference in an electronic apparatus
KR101548819B1 (ko) * 2013-11-29 2015-08-31 삼성전기주식회사 터치스크린 장치 및 그의 터치 감지 방법
US9886142B2 (en) * 2013-12-03 2018-02-06 Pixart Imaging Inc. Capacitive touch sensing system
US9547400B2 (en) * 2014-04-25 2017-01-17 Synaptics Incorporated Interference detection using frequency modulation
US9600121B2 (en) * 2014-04-25 2017-03-21 Synaptics Incorporated Driving sensor electrodes for noise measurement
US9557868B2 (en) * 2014-11-21 2017-01-31 Apple Inc. Noise reduction for touch sensor system with active stylus
US20190042056A1 (en) * 2015-08-12 2019-02-07 Cirque Corporation Avoiding noise when using multiple capacitive measuring integrated circuits
US20170046005A1 (en) * 2015-08-12 2017-02-16 Cirque Corporation Avoiding noise when using multiple capacitive measuring integrated circuits
US9880664B2 (en) * 2015-09-24 2018-01-30 Apple Inc. Common pixel correction for sensor panels
US20170090609A1 (en) * 2015-09-25 2017-03-30 Synaptics Incorporated Oversampled step and wait system for capacitive sensing
US10444892B2 (en) * 2015-10-07 2019-10-15 Microchip Technology Incorporated Capacitance measurement device with reduced noise
US9891774B2 (en) * 2015-12-31 2018-02-13 Synaptics Incorporated Touch noise canceling for dot-inversion driving scheme
US9864466B2 (en) * 2015-12-31 2018-01-09 Synaptics Incorporated Mitigating common mode display noise using hybrid estimation approach
CN106775046B (zh) * 2015-12-31 2020-02-11 深圳市汇顶科技股份有限公司 一种同频噪声处理方法、同频噪声处理装置及同频噪声处理系统
US9811181B2 (en) * 2016-02-24 2017-11-07 Apple Inc. Noise correction for a stylus touch device
US10423276B2 (en) * 2017-01-30 2019-09-24 Atmel Corporation Applying a signal to a touch sensor
CN111356974B (zh) * 2017-11-01 2024-04-16 株式会社和冠 位置检测系统及触摸传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707821A (zh) * 2011-03-28 2012-10-03 深圳市汇顶科技有限公司 触摸检测装置的降噪处理方法及系统
CN102788910A (zh) * 2012-06-29 2012-11-21 敦泰科技有限公司 互电容触摸屏的噪声检测、扫描及频率跳转方法
CN107003783A (zh) * 2017-02-16 2017-08-01 深圳市汇顶科技股份有限公司 一种按键检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547088A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466792A (zh) * 2021-06-01 2021-10-01 浙江大学 一种用于氮化镓场效应传感器的低频噪声定位方法
CN113466792B (zh) * 2021-06-01 2023-12-05 浙江大学 一种用于氮化镓场效应传感器的低频噪声定位方法

Also Published As

Publication number Publication date
EP3547088A1 (en) 2019-10-02
EP3547088B1 (en) 2021-03-24
US10969904B2 (en) 2021-04-06
US20190317637A1 (en) 2019-10-17
CN110199247B (zh) 2022-07-29
CN110199247A (zh) 2019-09-03
EP3547088A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2019127118A1 (zh) 噪声检测方法及装置、电子设备和计算机可读存储介质
US9864894B2 (en) Capacitive fingerprint sensor with quadrature demodulator and multiphase scanning
CN107526466B (zh) 触碰感测方法、处理器与系统
US9372581B2 (en) Interference estimation and adaptive reconfiguration of a capacitive touch controller
US10459546B2 (en) Channel aggregation for optimal stylus detection
US8823678B2 (en) Waterproof baseline tracking in capacitive touch controllers
JP6337156B2 (ja) 静電容量プロフィールを使用するバイオメトリックをベースにしたセキュリティのための方法および装置
EP2587360B1 (en) System and method for identifying inputs input to mobile device with touch panel
US10048775B2 (en) Stylus detection and demodulation
US9811178B2 (en) Stylus signal detection and demodulation architecture
US20130033442A1 (en) Control circuit and method for sensing electrode array and touch control sensing system using the same
CN102788910B (zh) 互电容触摸屏的噪声检测、扫描及频率跳转方法
CN104571686A (zh) 消除公共噪声的方法以及检测触摸信息的方法
CN104021377A (zh) 一种互电容式掌纹识别方法、装置和触摸屏
CN104360769B (zh) 一种触控面板抗干扰的方法、触控面板及显示器
US9823774B2 (en) Noise reduction in a digitizer system
WO2022188325A1 (zh) 用于触控屏中多个通道触控检测的方法和装置
US11086446B2 (en) Touch detection method, touch chip and electronic device
CN110554791B (zh) 触控面板信号检测方法及装置
CN108227977B (zh) 对触摸屏控制器中的不同采样率的并行分析
CN105117127A (zh) 一种基于不同人群切换输入法的方法
CN105678140B (zh) 一种操作方法及系统
AU2015258278B2 (en) Channel aggregation for optimal stylus detection
KR20190137269A (ko) 스타일러스 펜을 이용하는 터치 시스템 및 이를 이용한 터치 검출 방법
CN102981663A (zh) 驻极体输入装置及其操作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017935050

Country of ref document: EP

Effective date: 20190628

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE