WO2019126993A1 - Dna导电薄膜的制备方法及其产品和应用 - Google Patents

Dna导电薄膜的制备方法及其产品和应用 Download PDF

Info

Publication number
WO2019126993A1
WO2019126993A1 PCT/CN2017/118548 CN2017118548W WO2019126993A1 WO 2019126993 A1 WO2019126993 A1 WO 2019126993A1 CN 2017118548 W CN2017118548 W CN 2017118548W WO 2019126993 A1 WO2019126993 A1 WO 2019126993A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
conductive film
solution
origami
film
Prior art date
Application number
PCT/CN2017/118548
Other languages
English (en)
French (fr)
Inventor
何丹农
王萍
陈益
徐艳
朱君
金彩虹
Original Assignee
上海纳米技术及应用国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海纳米技术及应用国家工程研究中心有限公司 filed Critical 上海纳米技术及应用国家工程研究中心有限公司
Priority to PCT/CN2017/118548 priority Critical patent/WO2019126993A1/zh
Publication of WO2019126993A1 publication Critical patent/WO2019126993A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate

Definitions

  • the invention provides a preparation method of a DNA conductive film, a product thereof and an application thereof, and can be applied to the fields of medical electronics and photonics equipment in the future.
  • the thinner the conductive film tends to be unstable and discontinuous, especially for conductive films that are only a few nanometers thick.
  • research has proven to be an insurmountable obstacle to metal conductive devices, and there is no conductor. Or the semiconductor shows any significant field effect.
  • the graphene 2D structure is an exceptionally preferred material, but DNA has the potential to be a more desirable material due to its unique biocompatibility and medical application prospects.
  • DNA is the most abundant organic material in nature, and it is a transparent electrolyte comparable to silica. DNA single strands are not conductive, but DNA duplexes have been shown to be electrically conductive.
  • the Barton team worked with Columbia chemist Colin Nuckolls to create a transistor with DNA as two carbon nanotube wires. These nanotubes are connected to separate electrodes to achieve a conductivity of 34 nm.
  • researchers at Yonsei University in Seoul, Korea used DNA composite conductive polymers to make organic thin films for cancer treatment and health monitoring. The particles are bonded to the DNA double-strand, and the nanowires are connected to the electrodes by electron beam lithography to detect current conduction.
  • the transmission distance is too short, effective use cannot be achieved.
  • the present invention aims to provide a method for preparing a DNA conductive film.
  • the object of the present invention is achieved by the following method: a method for preparing a DNA conductive film, constructing a DNA conductive film by using a DNA origami material, selecting a DNA triangular origami structure, and controlling the concentration of the solution to make the DNA film have electrical conductivity, including the following steps:
  • the DNA of the sequence No. 1-208 was short-chained into a staple chain, and was equally dissolved into MilliQ water so that the final concentration of each strand was 200 nM, and the M13mp18 single-stranded DNA (100 nM) was mixed with a concentration of 200 nM.
  • the 208 short chains are mixed in a molar ratio of 1:10 in a 1 ⁇ TAE-Mg 2+ solution, and the TAE-Mg 2+ solution is: Tris, 40 mM; acetic acid, 20 Mm; Ethylenediaminetetraacetic acid (EDTA), 2Mm; magnesium acetate, 12.5mM; pH 8.0; the final concentration of M13mp18 single-stranded DNA is 5nM, the final concentration of short-chain is 50nM, and the mixed solution is placed in the PCR instrument.
  • the reaction degree was 95 ° C for 3 minutes, and then slowly lowered to 4 ° C according to the cooling rate of 0.2 ° C / 10 s to obtain a DNA triangular origami structure solution;
  • the above prepared DNA triangular origami structure solution is dropped on a mica plate or a silicon wafer, and then dried to obtain a DNA conductive film.
  • a portion of the conductive film is coated with a conductive silver paste to communicate with the iron piece.
  • the probe serves as the other pole of the electrode, and is observed under an atomic force microscope and its conductivity is measured.
  • the prepared DNA triangle origami structure is subjected to ultrafiltration purification, and the excess staple chain is removed by centrifugation, and the purified DNA triangle origami solution is dropped on the mica plate or the silicon wafer, and then dried. The solution was dried, and the mica plate was stuck on an iron piece to obtain a DNA conductive film.
  • the DNA triangular origami structure may also be one of DNAs having a double-stranded structure such as a DNA rectangular structure, a smiley structure, or a star structure, and the corresponding DNA constituent sequences are described in the literature Paul WKRothemund, Folding DNA to create nanoscale shapes and Patterns, Nature, 2006, 440, 297-302.
  • the drying, boring machine is operated at a low speed for 0.1-2 hours, and the film is adjusted by the film speed; or directly, the ear ball is blown dry.
  • the test method for the conductivity of the conductive film is: coating a conductive silver paste on a portion of the conductive film to communicate with the iron piece, as an electrode, using a biological probe as another electrode, and observing and measuring under an atomic force microscope Its electrical conductivity.
  • the present invention provides a DNA conductive film which is prepared according to any of the methods described above.
  • the present invention provides a DNA conductive film for use in medical electronics and photonics devices.
  • a DNA conductive film is constructed using a DNA origami material, and the thickness includes only a few layers of DNA molecules. Although only a few nanometers thick, it can achieve long-distance current transmission. It not only has the functionality of all silicon-based devices, it is also more compatible with living tissue. In the field of organic optoelectronic devices, this is a material that scientists have been dreaming of. As a material that exists in the life world, it is harmless to the ecological environment, flexible, and easy to manufacture. The future can be applied to fields such as medical electronics and photonics equipment.
  • the conductive film of DNA can realize conduction of a long distance of 500 ⁇ m;
  • DNA materials have good biocompatibility, and have particular application prospects in medical and health fields compared with inorganic materials;
  • the DNA origami structure is relatively stable, and the general complex environment, such as temperature and humidity, will not cause damage.
  • Figure 1 is an atomic force microscope image of a DNA triangle
  • Figure 2 is a real-time photograph of conductivity measured by atomic force microscopy of a DNA conductive film
  • Figure 3 is an atomic force microscope image of a DNA conductive film
  • Figure 4 is a current-voltage curve of a DNA conductive film.
  • the TAE-Mg 2+ solution was: Tris, 40 mM; acetic acid, 20 Mm; Diaminetetraacetic acid (EDTA), 2Mm; magnesium acetate, 12.5mM; pH 8.0; the final concentration of M13mp18 single-stranded DNA is 5nM, the final concentration of short-chain is 50nM, the mixed solution is placed in the PCR instrument, set The degree of reaction was 95 ° C for 3 minutes, and then, the temperature was lowered to 0.2 ° C / 10 s and the temperature was slowly lowered to 4 ° C to prepare a DNA triangular origami structure material.
  • Figure 1 is an atomic force microscope image of a DNA triangle.
  • the prepared DNA triangle origami structure was purified by ultrafiltration, and the excess staple chain was removed by centrifugation to make the final concentration of the DNA triangle solution 3 nM (nmol/L); 3 ⁇ l of the purified DNA triangle origami solution was dropped on the mica sheet. Then, it is placed on a laminating machine at a low speed for 10 minutes; after the solution is dried, the mica sheet is stuck on the iron piece, and a conductive silver paste is applied to one half of the conductive film to communicate with the iron piece as an electrode, and then placed The conductivity was observed and measured under an atomic force microscope.
  • Conductivity Figure 2 shows the atomic force microscopy image of the DNA conductive film shown by the Atomic Force Microscopy of the DNA Conductive Film and the 3D micrometer (length and width of 3 ⁇ m) DNA conductive film shown in Figure 3.
  • the prepared DNA triangle origami structure was purified by ultrafiltration, and the excess staple chain was removed by centrifugation to make the final concentration of the DNA triangle solution 3 nM; 5 ⁇ l of the purified DNA triangle origami solution was dropped on the mica plate, and then dried at room temperature. Minutes; wash the ear ball to blow off the unsaturated part of the solution, stick the mica sheet on the iron piece, apply conductive silver glue to one half of the conductive film to connect it with the iron piece, as an electrode, and then observe it under an atomic force microscope. And measure its conductivity.
  • the difference from Example 1 is that the drying method in the preparation of the conductive film is different.
  • the above prepared DNA triangular origami structure was not required to be ultrafiltered, and 5 ⁇ l of the solution was directly dropped on the mica plate, followed by drying at room temperature for 10 minutes. Wash the ear ball to blow off the unsaturated part of the solution, stick the mica sheet on the iron piece, apply conductive silver glue to one half of the conductive film to communicate with the iron piece, as an electrode, and then observe and measure it under an atomic force microscope. Its electrical conductivity. Compared to Examples 1 and 2, there was no ultrafiltration, but there was still conductivity. Comparative example
  • Blank group The above 208 staple chains and M13mp18 chain were matched in a 10:1 molar ratio without PCR annealing, wherein the final concentration of M13mp18 single-stranded DNA was 5 nM, and the final concentration of staple short chain It is 50 nM, as a blank group, compared with a DNA triangular origami structure conductive film.
  • Comparative Example and Example 3 changing the position of the AFM probe, measuring the conductivity of the AFM probe to the conductive silver paste at different distances: 40, 100, 350, 500 um DNA conductive film, see Figure 4.
  • the blank group current varies with voltage, and the current is basically 0; from 40um to 500um, the influence of voltage on current becomes smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

一种DNA导电薄膜的制备方法及其产品和应用,采用DNA折纸材料构建DNA导电薄膜,选取DNA三角形折纸结构,通过控制其溶液浓度,使得DNA薄膜具有导电能力,包括DNA三角形折纸结构的制备和DNA导电薄膜的制备。可实现较长距离的DNA导电。

Description

DNA导电薄膜的制备方法及其产品和应用 技术领域
本发明提出一种DNA导电薄膜的制备方法及其产品和应用,未来可应用于医疗电子和光子学设备等领域。
背景技术
由于以硅为主导的半导体技术已经接近其物理极限,因此,对于新技术、新材料的探索从未停止。测定一种材料导电性能的主要方法通常是施加外加电压。在许多情况下,电场效应通过改变半导体中载流子的浓度来改变其中的电流强度。近年来的有机导体和碳纳米管技术引起了众多的研究兴趣,并被致力于开发其在半导体领域的应用,如尺寸更小的晶体管,耗能更少频率更高的电子器件等。科技的发展要求导电薄膜越薄越好,但是即使很短距离(<1nm)的断点也会使得电流传输中断,而且在表界面处的载流子相比于体积较大的导体中的载流子要少,电流传输也更加困难。因此,越薄的导电薄膜越会趋于不稳定、不连续,尤其是对于只有几纳米厚的导电薄膜,截止目前的研究,被证明是金属导电器件不可逾越的障碍,同时也没有哪种导体或半导体显示出任何显著的场效应。石墨烯2D结构可算是一种例外的较为理想的材料,但是DNA由于其独特的生物相容性和医学应用前景使得它有可能成为一种更为理想的材料。
DNA在自然界是最丰富的有机材料,而且是一种可以和二氧化硅相媲美的透明电解质。DNA单链无法导电,但DNA双链被证明具有导电性。在2008年的一项研究中,Barton团队与哥伦比亚化学家Colin Nuckolls展开合作,制造了以DNA为两个碳纳米管连接线的晶体管。这些纳米管分别与分离电极相连实现了34纳米距离的导电;近期,韩国首尔延世大学研究人员采用DNA复合导电聚合物制造出有机薄膜,用于癌症治疗和健康监测;还有研究者将金属纳米颗粒键合到DNA双链上,再用电子束光刻技术将纳米线与电极相连,可以检测到电流传导,但由于传输距离太短,无法实现有效的利用。
发明内容
为克服现有技术的不足,本发明目的在于提供一种DNA导电薄膜的制备方法。
本发明的再一目的在于:提供一种上述方法制备的DNA导电薄膜产品。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种DNA导电薄膜的制备方法,采用DNA折纸材料构建DNA导电薄膜,选取DNA三角形折纸结构,通过控制其溶液浓度,使得DNA薄膜具有导电能力,包括以下步骤:
(1)DNA三角形折纸结构的制备
将序列NO.1-208的DNA短链为订书钉链,等量地溶解到MilliQ水中,使每条链的最终浓度为200nM,将M13mp18单链DNA(100nM)与混好的浓度为200nM的208条短链以摩尔浓度比1:10的比例混合在1×TAE-Mg 2+溶液中,TAE-Mg 2+溶液为:三羟甲基氨基甲烷(Tris),40mM;醋酸,20Mm;乙二胺四乙酸(EDTA),2Mm;醋酸镁,12.5mM;pH 8.0;其中M13mp18单链DNA的最终浓度为5nM,短链最终浓度为50nM,将混好的溶液放入PCR仪中,设定反应程度95℃持续3分钟,然后,按降温速率为0.2℃/10s缓慢降温至4℃,得DNA三角形折纸结构溶液;
(2)DNA导电薄膜的制备
将上述制备好的DNA三角形折纸结构溶液滴在云母片或硅片上,然后,干燥,得到DNA导电薄膜。在该导电膜的部份涂上导电银胶使其与铁片联通,作为一个电极,探针作为电极的另一极,放在原子力显微镜下观察并测量其导电性。
在上述方案基础上,将上述制备好的DNA三角形折纸结构进行超滤纯化,离心除去多余的订书钉链,将纯化后的DNA三角形折纸溶液滴在云母片或硅片上,然后干燥,待溶液干透,将此云母片粘在铁片上,得到DNA导电薄膜。
所述的DNA三角折纸结构也可以是DNA长方形结构、笑脸结构、或星型结构等含双链结构DNA中的一种,相应的DNA构成序列参见文献Paul W.K.Rothemund,Folding DNA to create nanoscale shapes and patterns,Nature,2006,440,297-302。
在上述方案基础上,所述的干燥,甩膜机上低速运行0.1-2小时,通过甩膜速率调整成膜;或者,直接洗耳球吹干。
所述的导电膜导电性的测试方法:在导电膜的部份涂上导电银胶,使其与铁片联通,作为一个电极,用生物探针作为另一电极,在原子力显微镜下观察并测量其导电性。
本发明提供一种DNA导电薄膜,根据上述任一所述方法制备得到。
本发明提供一种DNA导电薄膜用于医疗电子和光子学设备的应用。
在本发明采用DNA折纸材料构建了一种DNA导电薄膜,厚度仅包含几层DNA分子。尽管只有几纳米厚,但是却可以实现较长距离的电流传输。它不仅具有所有硅基设备的功能,还与活体组织更加兼容。在有机光电设备领域,这是一种科学家们梦寐以求的材料。作为一种存在于生命世界的材料,它本身对生态环境无害,具有柔性,也便于制造。未来可应用于医疗电子和光子学设备等领域。
本发明的优点在于:
(1)DNA导电薄膜可实现较长距离500微米的导电;
(2)DNA材料生物相容性好,相比无机材料,在医疗健康领域尤其具有应用前景;
(3)DNA折纸结构相对稳定,一般复杂环境,如温度、湿度,不会对其产生破坏。
附图说明
图1为DNA三角形的原子力显微镜成像图;
图2为DNA导电薄膜原子力显微镜测量导电性实时照片;
图3为DNA导电薄膜的原子力显微镜成像图;
图4为DNA导电薄膜的电流-电压曲线。
具体实施方式
以下通过具体的实施例对本发明的技术方案作进一步描述。以下的实施例是对本发明的进一步说明,而不限制本发明的范围。
DNA三角形折纸结构材料准备:
将序列NO.1-208的DNA短链为订书钉链,等量地溶解到MilliQ水中,使每条链的最终浓度为200nM,将M13mp18单链DNA(100nM)与混好的208条短链(200nM)以摩尔浓度比1:10的比例混合在1×TAE-Mg 2+溶液中,TAE-Mg 2+溶液为:三羟甲基氨基甲烷(Tris),40mM;醋酸,20Mm;乙二胺四乙酸(EDTA),2Mm;醋酸镁,12.5mM;pH 8.0;其中M13mp18单链DNA的最终浓度为5nM,短链最终浓度为50nM,将混好的溶液放入PCR仪中,设定反应程度95℃持续3分钟,然后,以降温速率为0.2℃/10s缓慢降温至4℃,制备DNA三角形折纸结构材料。图1为DNA三角形的原子力显微镜成像图。
实施例1
将上述制备好的DNA三角形折纸结构进行超滤纯化,离心除去多余的订书 钉链,使得DNA三角溶液终浓度为3nM(nmol/L);将纯化后的DNA三角形折纸溶液3μl滴在云母片上,然后置于甩膜机上低速运行10分钟;待溶液干透,将此云母片粘在铁片上,在导电膜的一半涂上导电银胶使其与铁片联通,作为一个电极,然后放在原子力显微镜下观察并测量其导电性。具有导电性图2为DNA导电薄膜原子力显微镜测量导电性实时照片所示和如图3为比例尺3微米(长、宽为3微米)DNA导电薄膜的原子力显微镜成像图所示。
实施例2
将上述制备好的DNA三角形折纸结构进行超滤纯化,离心除去多余的订书钉链,使得DNA三角溶液终浓度为3nM;将纯化后的DNA三角形折纸溶液5μl滴在云母片上,然后室温干燥10分钟;洗耳球吹掉未干的部分溶液,将此云母片粘在铁片上,在导电膜的一半涂上导电银胶使其与铁片联通,作为一个电极,然后放在原子力显微镜下观察并测量其导电性。与实施例1的区别是导电膜制备中的干燥方式不同。
实施例3
将上述制备好的DNA三角形折纸结构不必超滤,直接将溶液5μl滴在云母片上,然后室温干燥10分钟。洗耳球吹掉未干的部分溶液,将此云母片粘在铁片上,在导电膜的一半涂上导电银胶使其与铁片联通,作为一个电极,然后放在原子力显微镜下观察并测量其导电性。与实施例1和2比较,没有超滤,但仍有导电性。对比例
空白组:将上述208条订书钉链和M13mp18链按照10:1的摩尔比配好,不经过PCR退火的过程,其中,M13mp18单链DNA的最终浓度为5nM,订书钉短链最终浓度为50nM,作为空白组,与DNA三角折纸结构导电薄膜对比。
将该空白溶液3μl滴在云母片上,然后,置于甩膜机上低速运行10分钟,待溶液干透,将此云母片粘在铁片上,在导电膜的一半涂上导电银胶使其与铁片联通,作为一个电极,然后放在原子力显微镜下观察并测量其导电性。
对比例及实施例3,改变AFM探针的位置,测量AFM探针到导电银胶不同距离:40、100、350、500um之DNA导电薄膜的导电性,见图4。空白组电流随电压变化,电流基本为0;从40um至500um,电压对电流的影响变小。

Claims (7)

  1. 一种DNA导电薄膜的制备方法,其特征在于,采用DNA折纸材料构建DNA导电薄膜,选取DNA三角形折纸结构,通过控制其溶液浓度及甩膜速率调整成膜,使得DNA薄膜具有导电能力,包括以下步骤:
    (1)DNA三角形折纸结构的制备
    将序列NO.1-208的DNA短链为订书钉链,等量地溶解到MilliQ水中,使每条链的最终浓度为200nM,将M13mp18单链DNA(100nM)与混好的浓度为200nM的208条短链以摩尔浓度比1:10的比例混合在1×TAE-Mg 2+溶液中,TAE-Mg 2+溶液为:三羟甲基氨基甲烷(Tris),40mM;醋酸,20Mm;乙二胺四乙酸(EDTA),2Mm;醋酸镁,12.5mM;pH8.0;其中M13mp18单链DNA的最终浓度为5nM,短链最终浓度为50nM,将混好的溶液放入PCR仪中,设定反应程度95℃持续3分钟,然后,按降温速率为0.2℃/10s缓慢降温至4℃,得DNA三角形折纸结构溶液;
    (2)DNA导电薄膜的制备
    将上述制备好的DNA三角形折纸结构溶液滴在云母片或硅片上,然后,干燥,得到DNA导电薄膜。在该导电膜的部份涂上导电银胶使其与铁片联通,作为一个电极,探针作为电极的另一极,放在原子力显微镜下观察并测量其导电性。
  2. 根据权利要求1所述DNA导电薄膜的制备方法,其特征在于,将上述制备好的DNA三角形折纸结构进行超滤纯化,离心除去多余的订书钉链,将纯化后的DNA三角形折纸溶液滴在云母片或硅片上,然后干燥,待溶液干透,将此云母片粘在铁片上,得到DNA导电薄膜。
  3. 根据权利要求1或2所述DNA导电薄膜的制备方法,其特征在于,所述的DNA三角折纸结构改为DNA长方形结构、笑脸结构、或星型结构中的一种,相应的DNA构成序列参见文献Paul W.K.Rothemund,Folding DNA to create nanoscale shapes and patterns,Nature,2006,440,297-302。
  4. 根据权利要求1或2所述DNA导电薄膜的制备方法,其特征在于,所述的干燥,甩膜机上低速运行0.1-2小时,或者,洗耳球吹干。
  5. 根据权利要求1或2所述DNA导电薄膜的制备方法,其特征在于,所述的导电膜导电性的测试方法:在导电膜的部份涂上导电银胶,使其与铁片联通,作为一 个电极,用生物探针作为另一电极,在原子力显微镜下观察并测量其导电性。
  6. 一种DNA导电薄膜,其特征在于根据权利要求1至4之任一所述方法制备得到。
  7. 一种根据权利要求6所述DNA导电薄膜在医疗电子和光子学设备中的应用。
PCT/CN2017/118548 2017-12-26 2017-12-26 Dna导电薄膜的制备方法及其产品和应用 WO2019126993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118548 WO2019126993A1 (zh) 2017-12-26 2017-12-26 Dna导电薄膜的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118548 WO2019126993A1 (zh) 2017-12-26 2017-12-26 Dna导电薄膜的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
WO2019126993A1 true WO2019126993A1 (zh) 2019-07-04

Family

ID=67064263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118548 WO2019126993A1 (zh) 2017-12-26 2017-12-26 Dna导电薄膜的制备方法及其产品和应用

Country Status (1)

Country Link
WO (1) WO2019126993A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028275A (ja) * 2003-07-11 2005-02-03 Seiko Epson Corp 膜形成方法、デバイス製造方法、電気光学装置、並びに電子機器
WO2011087913A1 (en) * 2010-01-14 2011-07-21 The Regents Of The University Of California A universal solution for growing thin films of electrically conductive nanostructures
CN103594626A (zh) * 2013-11-20 2014-02-19 上海大学 有机薄膜晶体管及其制备方法
CN106771375A (zh) * 2016-12-27 2017-05-31 上海纳米技术及应用国家工程研究中心有限公司 一种界面处dna形貌随温度变化的检测方法
CN106834388A (zh) * 2016-12-20 2017-06-13 上海纳米技术及应用国家工程研究中心有限公司 一种离子浓度响应的dna结构元件及制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028275A (ja) * 2003-07-11 2005-02-03 Seiko Epson Corp 膜形成方法、デバイス製造方法、電気光学装置、並びに電子機器
WO2011087913A1 (en) * 2010-01-14 2011-07-21 The Regents Of The University Of California A universal solution for growing thin films of electrically conductive nanostructures
CN103594626A (zh) * 2013-11-20 2014-02-19 上海大学 有机薄膜晶体管及其制备方法
CN106834388A (zh) * 2016-12-20 2017-06-13 上海纳米技术及应用国家工程研究中心有限公司 一种离子浓度响应的dna结构元件及制备和应用
CN106771375A (zh) * 2016-12-27 2017-05-31 上海纳米技术及应用国家工程研究中心有限公司 一种界面处dna形貌随温度变化的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAONING ZHANG ET AL.: "DNA origami deposition on native and passivated mo- lybdenum disulfide substrates", BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 5, 22 April 2014 (2014-04-22), pages 501 - 506, XP055623391 *

Similar Documents

Publication Publication Date Title
Sotiropoulou et al. Biotemplated nanostructured materials
Xiao et al. Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface
Mao et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine
Goldberger et al. Inorganic nanotubes: a novel platform for nanofluidics
Liu et al. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation
Bardhan et al. Enhanced cell capture on functionalized graphene oxide nanosheets through oxygen clustering
Nguyen et al. Preparation of nucleic acid functionalized carbon nanotube arrays
Lee et al. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing
He et al. Transparent, flexible, all-reduced graphene oxide thin film transistors
Wang et al. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling
Chen et al. Electronic detection of bacteria using holey reduced graphene oxide
Cao Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase
Tao et al. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly
Lu et al. Protein-decorated reduced oxide graphene composite and its application to SERS
Zheng et al. Facile method toward hierarchical fullerene architectures with enhanced hydrophobicity and photoluminescence
CN105883838B (zh) 单层云母片及其纳米孔电子器件的制备方法和应用
Uz et al. Fabrication of high-resolution graphene-based flexible electronics via polymer casting
Bahri et al. Tungsten disulfide nanosheet-based field-effect transistor biosensor for DNA hybridization detection
KR20100077475A (ko) 기재 상에 나노 구조체로 이루어진 망상 필름의 제조 방법 및 그에 따라 제조된 나노 구조체 망상 필름이 구비된 기재
Noy et al. Bionanoelectronics with 1D materials
Kim et al. Transparent conducting films based on reduced graphene oxide multilayers for biocompatible neuronal interfaces
Tegtmeier et al. Residual rubber shielded multi walled carbon nanotube electrodes for neural interfacing in active medical implants
Aykaç et al. Sensitive PH measurement using EGFET PH-microsensor based on ZnO nanowire functionalized carbon-fibers
Zhang et al. DNA molecules site-specific immobilization and their applications
Lu et al. DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935841

Country of ref document: EP

Kind code of ref document: A1