WO2019126991A1 - 一种阵列超声换能器的激励方法、装置、设备及存储介质 - Google Patents

一种阵列超声换能器的激励方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019126991A1
WO2019126991A1 PCT/CN2017/118534 CN2017118534W WO2019126991A1 WO 2019126991 A1 WO2019126991 A1 WO 2019126991A1 CN 2017118534 W CN2017118534 W CN 2017118534W WO 2019126991 A1 WO2019126991 A1 WO 2019126991A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
array
ultrasonic
ultrasound
frequencies
Prior art date
Application number
PCT/CN2017/118534
Other languages
English (en)
French (fr)
Inventor
郑海荣
邱维宝
李锦成
周娟
Original Assignee
中科绿谷(深圳)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科绿谷(深圳)医疗科技有限公司 filed Critical 中科绿谷(深圳)医疗科技有限公司
Priority to PCT/CN2017/118534 priority Critical patent/WO2019126991A1/zh
Publication of WO2019126991A1 publication Critical patent/WO2019126991A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the invention belongs to the field of ultrasonic medical technology, and in particular relates to an excitation method, device, device and storage medium for an array ultrasonic transducer.
  • Ultrasound has been widely used in the medical field, especially in diseases such as nerves, tumors, and blood.
  • the role of ultrasound therapy is increasing.
  • research on ultrasound nerve stimulation and regulation, ultrasound ablation and other fields is getting deeper and deeper, and the effect of non-invasive ultrasound therapy is becoming more and more obvious.
  • Non-invasive ultrasound therapy is to achieve the purpose of treatment by using the thermal, mechanical and cavitation effects of ultrasound.
  • a large transducer excitation energy is required. It is difficult to achieve such high energy due to the use of a single-element transducer, even if the excitation energy reaches the requirement, it will be reduced.
  • the service life of the small transducer is also due to the small acoustic window, which causes greater thermal damage to the disease-free tissue in the ultrasonic channel after prolonged excitation. Therefore, the excitation energy is spread over multiple single-array elements.
  • the transducers are used on the transducers, so that the excitation energy of each array element can be reduced, and the heat in the ultrasonic channel can be prevented from being excessively concentrated to damage the disease-free tissue.
  • This method can achieve the effect of low frequency treatment while high frequency treatment, the sound window is larger when ultrasonic treatment, and the tissue attenuation is smaller in the ultrasound channel. That is, the energy at the focus is larger and the temperature rise effect is better, but such a system circuit, a transducer, and the like are complicated, which causes inconvenience such as focus, beam control, and operation.
  • the object of the present invention is to provide an excitation method, device, device and storage medium for an array ultrasonic transducer, which aims to solve the problem that the prior art leads to poor ultrasonic treatment effect and complicated ultrasonic treatment operation.
  • the invention provides an excitation method for an array ultrasonic transducer, the method comprising the steps of:
  • the array of ultrasonic transducers are simultaneously energized using multiple frequencies to generate ultrasound waves for ultrasonic treatment of the tissue to be treated.
  • the present invention provides an excitation device for an array ultrasonic transducer, the device comprising:
  • a request receiving unit for receiving a user-input request for ultrasound treatment of a tissue to be treated using a single array of ultrasound transducers
  • a transducer excitation unit for simultaneously energizing the array of ultrasonic transducers using multiple frequencies to generate ultrasonic waves for ultrasonic treatment of the tissue to be treated.
  • the present invention also provides an ultrasonic therapy apparatus including a memory, a processor, and a computer program stored in the memory and operable on the processor, the processor executing the computer program Implement the steps of the method as described above.
  • the present invention also provides a computer readable storage medium storing a computer program that, when executed by a processor, implements the steps of the method as previously described.
  • the present invention receives a user input request for ultrasound treatment of a tissue to be treated using a single array of ultrasound transducers, simultaneously energizing the array ultrasound transducers using multiple frequencies to generate ultrasound for ultrasound treatment of the tissue to be treated, thereby effectively
  • the acoustic window of the single array ultrasonic transducer is increased, the cavitation effect is enhanced, the heating efficiency of the tissue to be treated and the heat consistency are improved, and the thermal damage of the tissue in the ultrasonic channel is reduced, thereby improving the ultrasound.
  • the therapeutic effect is simultaneously controlled by the electronic device connected to the ultrasonic therapeutic apparatus using the excitation method, so that the ultrasonic treatment operation is simpler.
  • FIG. 1 is a flowchart showing an implementation of an excitation method of an array ultrasonic transducer according to Embodiment 1 of the present invention
  • step S102 is a flowchart showing an implementation of step S102 in an excitation method of an array ultrasonic transducer according to Embodiment 1 of the present invention
  • FIG. 3 is a diagram showing an example of a rectangular array ultrasonic transducer and a circular array ultrasonic transducer in an excitation method of an array ultrasonic transducer according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of an excitation device of an array ultrasonic transducer according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a preferred structure of an excitation device for an array ultrasonic transducer according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an ultrasonic treatment apparatus according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a flowchart showing an implementation of an excitation method of an array ultrasonic transducer according to Embodiment 1 of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • step S101 a user input request for ultrasound treatment of the tissue to be treated using a single array of ultrasound transducers is received.
  • Embodiments of the present invention are applicable to an ultrasonic therapy device including a control logic, a power amplifier circuit, an output matching circuit, and a transducer.
  • the ultrasonic treatment device is connectable to the personal electronic device to receive the ultrasonic therapy request input by the user, and the excitation focus change is flexibly controlled by the electronic device connected to the ultrasonic treatment device, thereby making the ultrasonic treatment operation easier.
  • the array ultrasonic transducer in the embodiment of the present invention is a multi-element array ultrasonic transducer, as an example, a rectangular array ultrasonic transducer as shown by 3a in FIG. 3, and a circular array shown in 3b.
  • the ultrasonic transducer makes the ultrasonic window larger when the ultrasonic wave is projected onto the body surface, effectively reducing the sound intensity of the ultrasonic wave in the tissue of the ultrasonic channel and avoiding unnecessary damage.
  • step S102 the array ultrasound transducer is simultaneously energized using multiple frequencies to generate ultrasound for ultrasound treatment of the tissue to be treated.
  • the array ultrasonic transducer is simultaneously excited using a plurality of excitation frequencies, thereby effectively increasing the acoustic window of the single array ultrasonic transducer, enhancing its cavitation effect, and improving the tissue to be treated.
  • the heating efficiency and the consistency of heat are reduced, and the thermal damage of the tissue in the ultrasonic channel is reduced, thereby improving the ultrasonic treatment effect.
  • step S102 can be implemented by the following steps:
  • step S201 according to the ultrasound treatment request, acquiring a plurality of excitation frequencies for exciting the array ultrasonic transducer, a focus position corresponding to the plurality of excitation frequencies, and different array element channels of the array ultrasonic transducer, the plurality of The excitation frequency contains two or more different frequencies.
  • the plurality of excitation frequencies of the array ultrasonic transducer, the focus position corresponding to the plurality of excitation frequencies, and the acquisition or setting of parameters such as different array element channels are related to the position, range, and degree of lesion of the tissue to be treated.
  • a plurality of excitation frequencies for exciting the array ultrasonic transducer and a focus position corresponding to the plurality of excitation frequencies are obtained, wherein the excitation frequency of the synchronization frequency can be applied to a focus position It can also be applied to different focus positions to ensure the effectiveness and accuracy of ultrasound therapy.
  • the ultrasound treatment requirement is determined according to the position, the range and the degree of the lesion of the thrombus, and the focus position requiring the ultrasonic stimulation is determined according to the requirement of the ultrasound treatment, which may be one or more focus positions.
  • a corresponding excitation frequency is set for each focus position, so that the focus position of the tissue to be treated is obtained by ultrasonic waves of different frequencies.
  • step S202 a plurality of excitation pulse signals corresponding to the plurality of excitation frequencies are generated according to the corresponding focus position and different array element channels.
  • each of the array element channels are independent of each other, and each array element channel is independently controlled by the logic controller according to the corresponding excitation frequency, thereby generating corresponding plurality of excitation pulse signals.
  • the distance between each array channel and the tissue to be treated is different.
  • the ultrasound beam needs to be focused, and therefore, preferably, multiple excitations are generated.
  • delay-control is performed on the corresponding excitation pulse signals of each array element channel according to the focus position, so as to synthesize and focus the ultrasonic beams formed by the excitation pulse signals, thereby improving the alignment elements.
  • step S203 a plurality of excitation pulse signals are controlled to simultaneously energize different array channel of the array ultrasound transducer to generate ultrasound for ultrasound treatment of the tissue to be treated.
  • the excitation pulse signals generated by the control are excited to different array element channels of the array ultrasonic transducer, so that the same frequency of the array element channels can be emitted.
  • the ultrasonic waves form a focus at the focus position, and ultrasonic waves of different frequencies form low frequency differential frequency ultrasonic waves at the focus position.
  • the array ultrasonic transducer of the embodiment of the present invention is a rectangular array ultrasonic transducer shown in FIG. 3a, and a sine wave with an excitation frequency of 1.0 MHz is modulated according to the ultrasonic treatment requirement of the tissue to be treated.
  • the array elements of the odd-numbered columns are excited and focused.
  • the sine wave with the excitation frequency of 1.1MHz is modulated and the array elements of the even-numbered columns are excited and focused.
  • the tissue to be treated will be treated by 1.0MHz and 1.1MHZ ultrasound simultaneously.
  • a 100KHZ difference frequency ultrasonic wave is formed in the confocal area.
  • the frequency of the difference frequency ultrasonic wave is low, which can greatly increase the cavitation effect, improve the temperature rise effect, and significantly enhance the therapeutic effect of thrombus ablation.
  • a user input request for ultrasonic treatment of a tissue to be treated using a single array ultrasonic transducer is received, and a plurality of excitation frequencies for exciting the array ultrasonic transducer are acquired according to the ultrasonic treatment request, and a focus position corresponding to the plurality of excitation frequencies and different array element channels of the array ultrasonic transducer, generating a plurality of excitation pulse signals corresponding to the plurality of excitation frequencies according to the corresponding focus position and different array element channels, and controlling the plurality of excitation pulses
  • the signal excites different array elements of the array ultrasound transducer to generate ultrasound for ultrasound treatment of the tissue to be treated, thereby effectively increasing the acoustic window of the single array ultrasound transducer and enhancing its cavitation effect , which improves the heating efficiency of the tissue to be treated and the consistency of heat, and reduces the thermal damage of the tissue in the ultrasonic channel, thereby improving the ultrasonic treatment effect, and at the same time being flexible by the electronic device connected
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a request receiving unit 41 configured to receive a user input request for ultrasonic treatment of a tissue to be treated using a single array of ultrasonic transducers
  • a transducer excitation unit 42 is operative to simultaneously energize the array ultrasound transducers using multiple frequencies to generate ultrasound for ultrasound treatment of the tissue to be treated.
  • the transducer excitation unit 42 comprises:
  • the excitation parameter acquisition unit 421 is configured to acquire, according to the ultrasound treatment request, a plurality of excitation frequencies for exciting the array ultrasonic transducer, a focus position corresponding to the plurality of excitation frequencies, and different array element channels of the array ultrasonic transducer Multiple excitation frequencies include two or more different frequencies;
  • the excitation signal generating unit 422 is configured to generate, according to the corresponding focus position and the different array element channels, a plurality of excitation pulse signals corresponding to the plurality of excitation frequencies;
  • the transducer excitation subunit 423 is configured to control the plurality of excitation pulse signals to simultaneously excite different array channel of the array ultrasound transducer to generate ultrasound for ultrasonic treatment of the tissue to be treated.
  • the excitation signal generating unit 422 includes:
  • the delay control unit 4221 is configured to perform delay control on the corresponding excitation pulse signal of each array element channel according to the focus position to synthesize and focus the ultrasonic beam formed by the excitation pulse signal.
  • each unit of the excitation device of the array ultrasonic transducer can be implemented by a corresponding hardware or software unit, and each unit can be an independent software and hardware unit, or can be integrated into a soft and hardware unit.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Fig. 6 shows the structure of an ultrasonic treatment apparatus according to a third embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the ultrasonic therapy device 6 of an embodiment of the present invention includes a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and operable on the processor 60.
  • the processor 60 when executing the computer program 62, implements the steps in the embodiment of the excitation method of the array ultrasonic transducer described above, such as steps S101 through S102 shown in FIG.
  • processor 60 when executing computer program 62, implements the functions of the various units of the various apparatus embodiments described above, such as the functions of units 31 through 32 shown in FIG.
  • a user input request for ultrasound treatment of a tissue to be treated using a single array of ultrasound transducers is received, and the array ultrasound transducer is simultaneously energized using multiple frequencies to generate ultrasound therapy for the tissue to be treated
  • the ultrasonic wave effectively increases the acoustic window of the single array ultrasonic transducer, enhances its cavitation effect, improves the heating efficiency of the tissue to be treated and the consistency of heat, and reduces the thermal damage of the tissue in the ultrasonic channel.
  • the ultrasonic treatment effect is improved, and the ultrasonic focus is more easily controlled by the electronic device connected to the ultrasonic treatment device using the excitation method.
  • the ultrasonic therapeutic apparatus of the embodiment of the present invention may be an ultrasonic therapeutic apparatus.
  • the processor 60 performs the computer program 62 in the ultrasonic processing device 6 to implement the excitation method of the array ultrasonic transducer, reference may be made to the description of the foregoing method embodiments, and details are not described herein.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement an excitation method method of the array ultrasonic transducer Steps, for example, steps S101 to S102 shown in FIG.
  • the computer program when executed by the processor, implements the functions of the various units in the various apparatus embodiments described above, such as the functions of units 31 through 32 shown in FIG.
  • a user input request for ultrasound treatment of a tissue to be treated using a single array of ultrasound transducers is received, and the array ultrasound transducer is simultaneously energized using multiple frequencies to generate ultrasound therapy for the tissue to be treated
  • the ultrasonic wave effectively increases the acoustic window of the single array ultrasonic transducer, enhances its cavitation effect, improves the heating efficiency of the tissue to be treated and the consistency of heat, and reduces the thermal damage of the tissue in the ultrasonic channel.
  • the ultrasonic treatment effect is improved, and the ultrasonic focus is more easily controlled by the electronic device connected to the ultrasonic treatment device using the excitation method.
  • the computer readable storage medium of the embodiments of the present invention may include any entity or device capable of carrying computer program code, a recording medium such as a ROM/RAM, a magnetic disk, an optical disk, a flash memory, or the like.

Abstract

一种阵列超声换能器的激励方法、装置、设备及存储介质,该方法包括:接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求(S101),使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波(S102),从而有效地增大单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果,同时通过与使用该激励方法的超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。

Description

一种阵列超声换能器的激励方法、装置、设备及存储介质 技术领域
本发明属于超声医疗技术领域,尤其涉及一种阵列超声换能器的激励方法、装置、设备及存储介质。
背景技术
超声在医疗领域已经获得了广泛的应用,尤其是在神经、肿瘤、血液等疾病中,超声治疗的作用越来越大。国内外对超声神经刺激和调控,超声消融等领域的研究越来越深入,无创超声治疗取得的效果也越来越明显。
无创超声治疗就是利用超声波的热效应、机械效应和空化效应等达到治疗的目的。要达到治疗所需的超声辐射力强度或温升效果,需要较大的换能器激励能量,由于使用单阵元换能器很难达到这么高的能量,即使激励能量达到要求,也会减小换能器的使用寿命,同时还会因为声窗较小,在长时间激励后对超声通道中的无病变组织造成较大的热损伤,因此,采用将激励能量均摊到多个单阵元换能器上或使用阵列换能器,从而可以减小每个阵元的激励能量,也能防止超声通道中的热量过于集中而对无病变组织造成损伤。
近年来国内外的研究表明,使用双频率或多频率超声聚焦,那么共焦区域的组织不仅受到多种频率的超声波作用,同时也受到多个频率超声波引起的差频波的作用,差频波为低频激励信号时将会大大增强空化的效果,提高温升效率,进而提高超声治疗的效率。此外,多频激励还能产生多个焦点,增大辐射中覆盖的组织面积,扩大加热范围,提高组织的受热一致性,进而提高治疗效果。
现有包括超声神经刺激、调控和超声消融在内的超声治疗系统中,常见的换能器的激励方法有两种:一种是使用单个换能器并用单个频率进行聚焦,该方法虽然装置简单,但是只有单个频率聚焦,在高频超声治疗特别是使用单阵元换能器过程中,声窗较小,超声穿透组织时的衰减较大,靶区的能量相对较小,辐射力强度、温升等治疗效果相对较差,而且在换能器激励能量加到一定值后,容易对超声通道中的组织造成热烫伤;另一种是使用两个或更多的换能器,每个换能器采用不同的频率同时对一个区域进行聚焦,该方法能够在高频治疗的同时,达到低频治疗的效果,超声治疗时的声窗更大,超声通道中组织衰减更小,靶区即焦点处能量更大、温升效果也更好,但是这样系统电路、换能器等装置复杂,造成对焦点、波束控制以及操作使用等不便。
技术问题
本发明的目的在于提供一种阵列超声换能器的激励方法、装置、设备及存储介质,旨在解决现有技术导致超声治疗效果差、超声治疗操作复杂的问题。
技术解决方案
一方面,本发明提供了一种阵列超声换能器的激励方法,所述方法包括下述步骤:
接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求;
使用多频率对所述阵列超声换能器同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
另一方面,本发明提供了一种阵列超声换能器的激励装置,所述装置包括:
请求接收单元,用于接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求;
换能器激励单元,用于使用多频率对所述阵列超声换能器同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
另一方面,本发明还提供了一种超声治疗设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如前所述方法的步骤。
另一方面,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如前所述方法的步骤。
有益效果
本发明接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求,使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波,从而有效地增大了单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果,同时通过与使用该激励方法的超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。
附图说明
图1是本发明实施例一提供的阵列超声换能器的激励方法的实现流程图;
图2是本发明实施例一提供的阵列超声换能器的激励方法中步骤S102的实现流程图;
图3是本发明实施例一提供的阵列超声换能器的激励方法中矩形阵列超声换能器、圆形阵列超声换能器的示例图;
图4是本发明实施例二提供的阵列超声换能器的激励装置的结构示意图;
图5是本发明实施例二提供的阵列超声换能器的激励装置的优选结构示意图;以及
图6是本发明实施例三提供的超声治疗设备的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一:
图1示出了本发明实施例一提供的阵列超声换能器的激励方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
在步骤S101中,接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求。
本发明实施例适用于超声治疗设备,该超声治疗设备包括控制逻辑器、功放电路、输出匹配电路以及换能器。优选地,该超声治疗设备能与个人电子设备相连接,以便于接收用户输入的超声治疗请求,通过与该超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。优选地,本发明实施例中的阵列超声换能器为多阵元阵列超声换能器,作为示例地,如图3中3a所示的矩形阵列超声换能器、3b所示的圆形阵列超声换能器,从而使得超声波投射到体表时的声窗较大,有效地降低了超声通道途径组织中超声波的声强,避免引起不必要的损伤。
在步骤S102中,使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波。
在发明实施例中,使用多个激励频率同时对阵列超声换能器进行激励,从而有效地增大了单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果。
优选地,如图2所示,步骤S102的具体过程可通过下述步骤实现:
在步骤S201中,根据超声治疗请求,获取用于对阵列超声换能器进行激励的多个激励频率、与多个激励频率对应的焦点位置以及阵列超声换能器的不同阵元通道,多个激励频率包含两种或两种以上不同频率。
本发明实施例中,阵列超声换能器的多个激励频率、与多个激励频率对应的焦点位置以及不同阵元通道等参数的获取或设置与待治疗组织的位置、范围以及病变程度相关。
优选地,在本发明实施例中,获取用于对阵列超声换能器进行激励的多个激励频率以及与多个激励频率对应的焦点位置,其中,同步频率的激励频率可以作用于一个焦点位置,也可以作用于不同的焦点位置,从而保证超声治疗的效果及准确性。
作为示例地,对患者的血栓进行超声血栓消融治疗时,根据血栓的位置、范围以及病变程度确定超声治疗需求,根据超声治疗需求,确定需要超声波刺激的焦点位置,可以是一个或多个焦点位置,对每个焦点位置设置相应的激励频率,以使待治疗组织的焦点位置获得不同的频率的超声波进行治疗。
在步骤S202中,根据对应的焦点位置以及不同阵元通道,产生与多个激励频率相应的多个激励脉冲信号。
在本发明实施例中,各阵元通道之间都是相互独立的,各阵元通道由逻辑控制器根据相应的激励频率进行独立控制,从而产生相应的多个激励脉冲信号。各阵元通道与待治疗组织的距离不一样,为保证各阵元辐射的超声波在待治疗组织的焦点位置进行能量增强,需要对超声波束进行聚焦,因此,优选地,在产生与多个激励频率相应的多个激励脉冲信号时,根据焦点位置对每个阵元通道的、相应的激励脉冲信号进行延时控制,以对激励脉冲信号形成的超声波束进行合成并聚焦,从而提高了对阵元通道发出的超声波波束进行聚焦的性能。
在步骤S203中,控制多个激励脉冲信号对阵列超声换能器的不同阵元通道同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波。
在本发明实施例中,由于不同阵元通道发出的超声波相位不同,因此,控制产生的激励脉冲信号对阵列超声换能器的不同阵元通道进行激励,可以使得阵元通道发出的同频率的超声波在焦点位置形成聚焦,不同频率的超声波在焦点位置形成低频的差频超声波。
作为示例地,本发明实施例的阵列超声换能器为图3中3a所示矩形阵列超声换能器,根据待治疗组织的超声治疗需求,将激励频率为1.0MHz的正弦波经调制后对奇数列的阵元进行激励和聚焦,同时将激励频率为1.1MHz的正弦波经调制后对偶数列的阵元进行激励和聚焦,待治疗组织将同时受到1.0MHz和1.1MHZ超声波的治疗作用,同时还在共焦区形成了100KHZ的差频超声波,该差频超声波频率较低,可以大大的增加空化效果,提高温升效果,对血栓消融等治疗效果有显著的增强。
在本发明实施例中,接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求,根据超声治疗请求,获取用于对阵列超声换能器进行激励的多个激励频率、与多个激励频率对应的焦点位置以及阵列超声换能器的不同阵元通道,根据对应的焦点位置以及不同阵元通道,产生与多个激励频率相应的多个激励脉冲信号,控制多个激励脉冲信号对阵列超声换能器的不同阵元通道进行激励,以产生用于对待治疗组织进行超声治疗的超声波,从而有效地增大了单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果,同时通过与使用该激励方法的超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。
实施例二:
图4示出了本发明实施例二提供的阵列超声换能器的激励装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:
请求接收单元41,用于接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求;以及
换能器激励单元42,用于使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波。
如图4所示,优选地,其中,换能器激励单元42包括:
激励参数获取单元421,用于根据超声治疗请求,获取用于对阵列超声换能器进行激励的多个激励频率、与多个激励频率对应的焦点位置以及阵列超声换能器的不同阵元通道,多个激励频率包含两种或两种以上不同频率;
激励信号产生单元422,用于根据对应的焦点位置以及不同阵元通道,产生与多个激励频率相应的多个激励脉冲信号;以及
换能器激励子单元423,用于控制多个激励脉冲信号对阵列超声换能器的不同阵元通道同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波。
激励信号产生单元422包括:
延时控制单元4221,用于根据焦点位置对每个阵元通道的、相应的激励脉冲信号进行延时控制,以对激励脉冲信号形成的超声波束进行合成并聚焦。
在本发明实施例中,阵列超声换能器的激励装置的各单元可由相应的硬件或软件单元实现,各单元可以为独立的软、硬件单元,也可以集成为一个软、硬件单元,在此不用以限制本发明,各单元的具体实施方式可参考实施例一的描述,在此不再赘述。
实施例三:
图6示出了本发明实施例三提供的超声治疗设备的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
本发明实施例的超声治疗设备6包括处理器60、存储器61以及存储在存储器61中并可在处理器60上运行的计算机程序62。该处理器60执行计算机程序62时实现上述阵列超声换能器的激励方法实施例中的步骤,例如图1所示的步骤S101至S102。或者,处理器60执行计算机程序62时实现上述各装置实施例中各单元的功能,例如图3所示单元31至32的功能。
在本发明实施例中,接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求,使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波,从而有效地增大了单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果,同时通过与使用该激励方法的超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。
本发明实施例的超声治疗设备可以为超声治疗仪。该超声治疗设备6中处理器60执行计算机程序62时实现阵列超声换能器的激励方法时实现的步骤可参考前述方法实施例的描述,在此不再赘述。
实施例四:
在本发明实施例中,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述阵列超声换能器的激励方法实施例中的步骤,例如,图1所示的步骤S101至S102。或者,该计算机程序被处理器执行时实现上述各装置实施例中各单元的功能,例如图3所示单元31至32的功能。
在本发明实施例中,接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求,使用多频率对阵列超声换能器同时进行激励,以产生用于对待治疗组织进行超声治疗的超声波,从而有效地增大了单个阵列超声换能器的声窗、增强了其空化效果,提高了待治疗组织的升温效率以及受热一致性,并减小了超声通道中组织的热损伤,进而提高了超声治疗效果,同时通过与使用该激励方法的超声治疗设备相连接的电子设备灵活控制激励焦点变化,使得超声治疗操作更简便。
本发明实施例的计算机可读存储介质可以包括能够携带计算机程序代码的任何实体或装置、记录介质,例如,ROM/RAM、磁盘、光盘、闪存等存储器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种阵列超声换能器的激励方法,其特征在于,所述方法包括下述步骤:
    接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求;
    使用多频率对所述阵列超声换能器同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
  2. 如权利要求2所述的方法,其特征在于,使用多频率激励所述阵列超声换能器的步骤,包括:
    根据所述超声治疗请求,获取用于对所述阵列超声换能器进行激励的多个激励频率、与所述多个激励频率对应的焦点位置以及所述阵列超声换能器的不同阵元通道,所述多个激励频率包含两种或两种以上不同频率;
    根据所述对应的焦点位置以及所述不同阵元通道,产生与所述多个激励频率相应的多个激励脉冲信号;
    控制所述多个激励脉冲信号对所述阵列超声换能器的所述不同阵元通道同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
  3. 如权利要求2所述的方法,其特征在于,所述激励频率对应的焦点位置包含但不限于同一个焦点位置。
  4. 如权利要求2所述的方法,其特征在于,根据所述对应的焦点位置以及所述不同阵元通道,产生与所述多个激励频率相应的多个激励脉冲信号的步骤,包括:
    根据所述焦点位置对每个阵元通道的、相应的激励脉冲信号进行延时控制,以对所述激励脉冲信号形成的超声波束进行合成并聚焦。
  5. 一种阵列超声换能器的激励装置,其特征在于,所述装置包括:
    请求接收单元,用于接收用户输入的使用单个阵列超声换能器对待治疗组织进行超声治疗的请求;
    换能器激励单元,用于使用多频率对所述阵列超声换能器同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
  6. 如权利要求5所述的装置,其特征在于,所述换能器激励单元包括:
    激励参数获取单元,用于根据所述超声治疗请求,获取用于对所述阵列超声换能器进行激励的多个激励频率、与所述多个激励频率对应的焦点位置以及所述阵列超声换能器的不同阵元通道,所述多个激励频率包含两种或两种以上不同频率;
    激励信号产生单元,用于根据所述对应的焦点位置以及所述不同阵元通道,产生与所述多个激励频率相应的多个激励脉冲信号;以及
    换能器激励子单元,用于控制所述多个激励脉冲信号对所述阵列超声换能器的所述不同阵元通道同时进行激励,以产生用于对所述待治疗组织进行超声治疗的超声波。
  7. 如权利要求6所述的装置,其特征在于,所述激励频率对应的焦点位置包含但不限于同一个焦点位置。
  8. 如权利要求6所述的装置,其特征在于,所述激励信号产生单元包括:
    延时控制单元,用于根据所述焦点位置对每个阵元通道的、相应的激励脉冲信号进行延时控制,以对所述激励脉冲信号形成的超声波束进行合成并聚焦。
  9. 一种超声治疗设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4任一项所述方法的步骤。
PCT/CN2017/118534 2017-12-26 2017-12-26 一种阵列超声换能器的激励方法、装置、设备及存储介质 WO2019126991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118534 WO2019126991A1 (zh) 2017-12-26 2017-12-26 一种阵列超声换能器的激励方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118534 WO2019126991A1 (zh) 2017-12-26 2017-12-26 一种阵列超声换能器的激励方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019126991A1 true WO2019126991A1 (zh) 2019-07-04

Family

ID=67062805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118534 WO2019126991A1 (zh) 2017-12-26 2017-12-26 一种阵列超声换能器的激励方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2019126991A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028200A (zh) * 2011-10-09 2013-04-10 北京汇福康医疗技术有限公司 超声治疗方法及装置
CN104225810A (zh) * 2014-09-09 2014-12-24 西安交通大学 基于双频共焦超声分时激励的超声力学毁损和热凝固装置及方法
US20150209602A1 (en) * 2009-11-24 2015-07-30 Guided Therapy Systems, Llc Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy
KR20170104176A (ko) * 2016-03-07 2017-09-15 원텍 주식회사 고강도 집속 초음파 생성 방법 및 장치
CN107913477A (zh) * 2017-12-26 2018-04-17 深圳先进技术研究院 一种阵列超声换能器的激励方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150209602A1 (en) * 2009-11-24 2015-07-30 Guided Therapy Systems, Llc Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy
CN103028200A (zh) * 2011-10-09 2013-04-10 北京汇福康医疗技术有限公司 超声治疗方法及装置
CN104225810A (zh) * 2014-09-09 2014-12-24 西安交通大学 基于双频共焦超声分时激励的超声力学毁损和热凝固装置及方法
KR20170104176A (ko) * 2016-03-07 2017-09-15 원텍 주식회사 고강도 집속 초음파 생성 방법 및 장치
CN107913477A (zh) * 2017-12-26 2018-04-17 深圳先进技术研究院 一种阵列超声换能器的激励方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN107913477B (zh) 一种阵列超声换能器的激励方法、装置、设备及存储介质
JP7119089B2 (ja) 動的に変化する媒体内での超音波集束
US20200222728A1 (en) Boiling Histotripsy Methods and Systems for Uniform Volumetric Ablation of an Object by High-Intensity Focused Ultrasound Waves with Shocks
US20110319793A1 (en) Thermal therapy apparatus and method using focused ultrasonic sound fields
US20220219019A1 (en) Histotripsy therapy systems and methods for the treatment of brain tissue
US20140058293A1 (en) Multi-Frequency Ultrasound Device and Method of Operation
US10806952B2 (en) Therapeutic ultrasound apparatus and method
RU2462997C2 (ru) Устройство для ультразвуковой трехмерной визуализации и терапии
WO2016134581A1 (zh) 双倍频共焦叠加聚焦超声球面分裂阵及分裂焦点控制方法
US20060030798A1 (en) Method for therapeutic action with a ultrasonic field to biological tissues and a device for this purpose
JPH07184907A (ja) 超音波治療装置
KR102111453B1 (ko) 체외 충격파 치료 장치
KR102148677B1 (ko) 초음파 제공 장치 및 방법
US11896853B2 (en) Transrectal ultrasound probe for boiling histotripsy ablation of prostate, and associated systems and methods
US7645235B2 (en) Method for effecting local increases in temperature inside materials, particularly body tissue
CN103990233A (zh) 高强度超声经颅聚焦的相控方法
Lu et al. Enhanced-cavitation heating protocols in focused ultrasound surgery with broadband split-focus approach
WO2019126991A1 (zh) 一种阵列超声换能器的激励方法、装置、设备及存储介质
Rybyanets New dynamical focusing method for HIFU therapeutic applications
JP3644644B2 (ja) 超音波治療装置
JP4406107B2 (ja) 超音波治療装置
KR101971997B1 (ko) 초음파 제공 장치 및 방법
Lu et al. Enhanced cavitation activities from axial split foci using second/third-harmonic superimposition for focused ultrasound surgery
Rybyanets et al. Theoretical Modeling and Experimental Study of High Intensity Focused Ultrasound Transducers
JPH0852150A (ja) 超音波治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935840

Country of ref document: EP

Kind code of ref document: A1