WO2019125104A1 - Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno - Google Patents

Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno Download PDF

Info

Publication number
WO2019125104A1
WO2019125104A1 PCT/MX2017/000161 MX2017000161W WO2019125104A1 WO 2019125104 A1 WO2019125104 A1 WO 2019125104A1 MX 2017000161 W MX2017000161 W MX 2017000161W WO 2019125104 A1 WO2019125104 A1 WO 2019125104A1
Authority
WO
WIPO (PCT)
Prior art keywords
student
level
exercise
difficulty
skill
Prior art date
Application number
PCT/MX2017/000161
Other languages
English (en)
French (fr)
Inventor
Dino Alejandro PARDO GUZMÁN
Marcos Antonio SANCHEZ GONZALEZ
Original Assignee
Pardo Guzman Dino Alejandro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pardo Guzman Dino Alejandro filed Critical Pardo Guzman Dino Alejandro
Priority to PCT/MX2017/000161 priority Critical patent/WO2019125104A1/es
Publication of WO2019125104A1 publication Critical patent/WO2019125104A1/es

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers

Definitions

  • the present invention has its predominant field of application in the electronic teaching of mathematics specifically in the calculation of the level (students and exercises) for the allocation of suitable problems.
  • the curricular sequence of a subject such as mathematics involves the study of different concepts that form a structure of knowledge, where one or more concepts are the ancestors of others. That is, there is a succession of skills that must be approved to successfully continue the study of later skills. From this arises the importance and the need to implement a system for a correct and appropriate allocation of tasks or academic loads that allow the acquisition of knowledge.
  • the invention No. WO2013040111 A1 presents an organization design of micro skills, focused on the self-evaluation of a group.
  • the problem with this patent is that each group decides its own standards, which does not allow comparison between groups even when it has standardized tests of the competences to be achieved by the students.
  • the invention No. US20050244802 equal works with schools or groups generating a global indicator that describes the performance achieved.
  • patent No. US6606480 shows an individualized learning program and generates programs to address the weaknesses found, as well as invention No. US20120329029, the difference is that the latter does not report performance to teachers.
  • the invention No. US20100279265 describes a learning model focused on a longitudinal diagnosis of competences, but without entering into an analysis of required processes or skills.
  • the patent aims to provide information to the teacher to address specific weaknesses and improve the performance of their students in official exams. An important detail is that it does not offer mechanisms for deep diagnosis as a key element of the educational process.
  • the invention No. US20020034719 presents a module for generating and assigning standardized tests based on the expected performance of a student or individual in general.
  • the invention focuses more on the care and transmission of test results.
  • invention No. US20110307396 presents a different aspect to the previous patents, since it assigns tests of academic performance updating the profile of competencies of the student, according to the unit standards evaluated.
  • invention No. US20120308980 describes a method for finding sequences of learning, seeking to discover the version that most efficiently facilitates student learning. If the student has reached the desired competence, then they are allowed to enter the next level.
  • the problem with this patent is that it is not expected that a student with lags present little motivation to accelerate the process and maintain the pace required by the official education system. The system does not allow to identify the critical descriptors of the didactic material that worked best with the student.
  • the invention No. US20040024776 presents a system for the management of school documents, such as textbooks, teaching materials, manuals and guides.
  • the invention provides an interface to gather materials related to a specific topic and facilitates the assignment of standardized tests to identify areas that require attention.
  • the main objective of the present invention is to achieve the most appropriate and effective allocation of academic loads to students who have previously been evaluated by a diagnostic test according to their school level within a collegial system.
  • Figure 1 is a diagram of process of updating the skill of the student and the difficulty of an exercise of the present invention.
  • Figure 2 is a diagram of the calculation of the new skill level of the student.
  • Figure 3 is a diagram of the High Speed model, high stakes.
  • each student is assigned a provisional skill level (1 B), this value is the one that is changing in each assignment (1D) and iteration of the problem.
  • a calculation (1C) is generated for a new estimation of his skill (1F) and of the difficulty of the problem (1G).
  • K 0.0075 is the default value when there is no uncertainty, and are the weights for the evaluation of the uncertainty for
  • D is the number of days the student spends without entering the program. So we assume that the uncertainty is reduced to 0 after 40 entries on the same day or on consecutive days and increases to its maximum 1 after 30 days of not entering.
  • This model is the one that will be implemented in a startup.
  • One of the advantages of this model is that it is easy to make changes, for example it is intended in the future to adapt the model to take into account other characteristics of the student.
  • the first change that will be made once the model is installed adapts a function for the time limit d, in each problem instead of a fixed value.
  • E (Sij) (2E) of a student and a problem pi can be calculated by a function based on the student's ability ⁇ ,, the difficulty of the problem p, the time limit allowed for the exercise d , and the discrimination parameter a.
  • the function used for this effect has the following form:

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Un sistema de asignación de ejercicios de matemáticas a estudiante acorde al cálculo de sus niveles de habilidades (general y por concepto) y del nivel de dificultad del ejercicio basado en ciertos parámetros como el historial del alumno.

Description

MÉTODO DE ASIGNACION DE NIVEL DE PROBLEMAS MATEMATICOS BASADO EN HABILIDADES DEL ALUMNO
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención tiene su campo de aplicación preponderante en la enseñanza electrónica de matemáticas específicamente en el cálculo del nivel (estudiantes y ejercicios) para la asignación de problemas adecuados.
ANTECEDENTES DE LA INVENCIÓN
Tradicionalmente las tareas escolares han sido consideradas como un medio para reforzar los conocimientos adquiridos en la escuela y tienen como objetivo motivar el aprendizaje del niño, especialmente en materias como las matemáticas. Sin embargo, la asignación apropiada de tareas es un proceso que debería de incluir aquellos factores que determinan las características académicas de los alumnos, como puede ser el historial de aprendizaje, es decir, los resultados obtenidos en exámenes y tareas durante su vida académica deberían de determinar una asignación personalizada de tareas.
La secuencia currícular de una materia como las matemáticas implica el estudio de diferentes conceptos que forman una estructura de conocimiento, donde uno o más conceptos son antecesores de otros. Es decir, existe una sucesión de habilidades que deben de ser aprobadas para continuar con éxito el estudio de habilidades posteriores. De aquí surge la importancia y la necesidad de implementar un sistema para una correcta y apropiada asignación de tareas o cargas académicas que permitan la adquisición de conocimiento.
Existen diversas invenciones que muestran sistemas de evaluación de habilidades, algunas cuentan con generadores de paquetes de aprendizaje pero no presentan la característica de tomar en cuenta factores como la premura para la obtención de una habilidad.
A continuación se presenta una relación de invenciones relacionadas con el tema. La invención No. WO2013040111 A1 presenta un diseño de organización de micro habilidades, enfocado en la autoevaluación de un grupo. El problema con esta patente es que cada grupo decide sus propios estándares, lo que no permite la comparación entre grupos aun cuando cuente con pruebas estandarizadas de las competencias a lograr por los alumnos. La invención No. US20050244802 igual trabaja con escuelas o grupos generando un indicador global que describe el desempeño logrado.
Por medio de un examen diagnóstico de habilidades previas, la patente No. US6606480 muestra un programa de aprendizaje individualizado y genera programas de atención a las debilidades encontradas, al igual que la invención No. US20120329029, la diferencia es que ésta última no entrega reporte de desempeño a docentes.
Por otro lado, la invención No. US20100279265, describe un modelo de aprendizaje enfocado en un diagnóstico longitudinal de competencias, pero sin entrar en un análisis de procesos o habilidades requeridas. La patente pretende proporcionar información al docente para atender debilidades específicas y mejorar el desempeño de sus estudiantes en exámenes oficiales. Un detalle importante es que no ofrece mecanismos para el diagnóstico profundo como elemento clave del proceso educativo.
La invención No. US20060099563, al igual que las anteriores realiza diagnósticos, con atención inmediata a debilidades, mediante tutoriales o explicaciones rápidas, así como material de reforzamiento apropiado. La patente adolece al no contar con un balance entre la necesidad inmediata y futura de habilidades.
Existe otro sistema establecido en la invención No. US20100062411, el cual elabora rutas críticas para mejorar el desempeño de los estudiantes. Atiende áreas prioritarias correlacionadas con habilidades requeridas para el aprendizaje de conceptos futuros.
Mediante una serie de tres exámenes la invención No. US20100190145 detecta cuales son las fortalezas significativas de un estudiante. No se menciona si el sistema asigna material educativo para una mejora constante.
La invención No. US20020034719 presenta un módulo de generación y asignación de pruebas estandarizadas en función del desempeño esperado de un estudiante o individuo en general. La invención se enfoca más en el cuidado y transmisión de resultados de la prueba.
La invención No. US20110307396 presenta un aspecto diferente a las patentes anteriores, ya que asigna pruebas de desempeño académico actualizando el perfil de competencias del estudiante, de acuerdo a los estándares unitarios evaluados. En cuanto al estilo y forma de los estudiantes se tiene la invención No. US20120308980 que describe un método para encontrar secuencias de aprendizaje, buscando descubrir la versión que más eficientemente facilite el aprendizaje del estudiante. Si el estudiante alcanzó la competencia deseada entonces se permite su ingreso al siguiente nivel. El problema con ésta patente es que no se prevé que un estudiante con rezagos presente poca motivación que permita acelerar el proceso y mantener el ritmo requerido por el sistema educativo oficial. El sistema no permite identificar los descriptores críticos del material didáctico que mejor funcionaron con el estudiante.
Existen diferentes patentes de sistemas que conservan el historial académico de un alumno, como las invenciones No. US20040093346, No. WO2013039922A1 y No. US20040219503, las cuales adolecen de poseer métodos efectivos para implementar el concepto.
La invención No. US20040024776, presenta un sistema para el manejo de documentos escolares, como libros de texto, materiales didácticos de soporte, manuales y guías. La invención provee una interfaz para reunir materiales relacionados a un tema específico y facilita la asignación de pruebas estandarizadas para identificar área que requieren atención.
El objetivo principal de la presente invención es lograr la asignación más apropiada y efectiva de cargas académicas a estudiantes que previamente hayan sido evaluados por un examen diagnóstico de acuerdo a su nivel escolar dentro de un sistema colegial.
DESCRIPCION DETALLADA DE LA INVENCIÓN
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención.
Breve descripción de las figuras:
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención.
La figura 1 es un diagrama de proceso de actualización de habilidad del alumno y de la dificultad de un ejercicio, de la presente invención.
La figura 2 es un diagrama del cálculo del nuevo grado de habilidad del alumno. La figura 3 es un diagrama del modelo Alta velocidad, apuestas altas.
Como se ilustra en la figura 1 , en un inicio (1 A), cada alumno se ve asignado un nivel provisional de habilidad (1 B), este valor es el que está cambiando en cada asignación (1D) e iteración del problema. Después de cada problema resuelto por el alumno (1 E), se genera un cálculo (1C) para una nueva estimación de su habilidad (1F) y de la dificultad del problema (1G).
Como se ilustra en la figura 2, En un inicio, cada alumno se ve asignado un nivel provisional de habilidad Θ, este valor es el que vamos a estar cambiando en cada iteración del problema. Después de cada problema resuelto por el alumno, se genera una nueva estimación de su habilidad y de la dificultad del problema (2G) mediante las siguientes funciones:
Figure imgf000006_0001
donde βί es la estimación de dificultad del problema, Sij es el resultado obtenido por el alumno y E(Sij) es la probabilidad esperada que un alumno j de una buena respuesta al problema i. El factor K es una función (2D) de evaluación de incertidumbre U tanto para el alumno como para el problema. Las funciones Ki y Kj están dadas por:
Figure imgf000007_0001
Donde K = 0.0075 es el valor predeterminado cuando no hay incertidumbre, y son los pesos para la evaluación de la incertidumbre para
Figure imgf000007_0004
una persona j y un problema i. Estos valores determinan la tasa de cambio de Θ y β dependiendo de la respuesta al problema. Estos valores han sido determinados después de extensivas simulaciones. La incertidumbre U depende tanto de lo "reciente" de la última conexión como de la frecuencia de conexión en un cierto día. La siguiente ecuación combina los efectos opuestos de la incertidumbre (2C). La misma ecuación se va a aplicar a los alumnos como a los problemas, con incertidumbre provisional
Figure imgf000007_0003
Figure imgf000007_0002
Donde D es el número de días que pasa el alumno sin entrar al programa. Por lo que asumimos que la incertidumbre se reduce a 0 después de 40 entradas en el mismo día o en días seguidos y aumenta a su máximo 1 después de 30 días de no entrar.
Se toma en cuenta la velocidad de respuesta del alumno. La manera en que se implementa eso es utilizando una técnica llamada Alta velocidad, Altas apuestas (2E). En modelo más básico se toma S» = {0, 1}, esto es S, = 1 si la respuesta es correcta y S¡¡ = 0 si la respuesta es errónea. Aquí tomaremos S, como una función que depende de la velocidad de respuesta del alumno. El alumno j tiene que contestar el ejercicio x en un tiempo U más corto que el tiempo límite di establecido para el ejercicio i. La fórmula que proponen utiliza un parámetro de discriminación a y la formula está dada por Sij = (2x¡ - 1)(a,d- a,t,). Una manera de definir este parámetro en un inicio es tomando a. = 1 /di, pensando que en un futuro
Figure imgf000008_0001
Calculo para un nuevo ejercicio (2H) con el valor j& utilizando la fórmula:
Figure imgf000008_0002
Donde el valor de P es seleccionado aleatoriamente de una distribución normal N (0.75, 0.1) restringida a
Figure imgf000008_0006
. Luego seleccionamos el nuevo ejercicio propuesto al alumno tomando: mini
Figure imgf000008_0005
Nota: Este modelo es el que se implementara en un inicio. Una de las ventajas de este modelo es que es fácil hacer cambios, por ejemplo se pretende en un futuro ir adaptando el modelo para tomar en cuenta otras características del alumno. El primer cambio que se hará una vez instalado el modelo adapta una función para el tiempo límite d¡ en cada problema en vez de un valor fijo. Para el cálculo del score esperado E(Sij) (2E)de un alumno j a un problema pi se puede calcular mediante una función basada en la habilidad del alumno θ,, la dificultad del problema p¡, el tiempo límite permitido para el ejercicio d, y el parámetro de discriminación a. La función utilizada para este efecto tiene la forma siguiente:
Figure imgf000008_0003
Como se ilustra en la figura 3, Se toma en cuenta la velocidad de respuesta del alumno. La manera en que se implementa eso es utilizando una técnica llamada Alta velocidad, Altas apuestas. Así que en un inicio nuestra formula se puede expresar como:
Figure imgf000008_0004

Claims

REIVINDICACIONES
1. Un método de asignación de ejercicios de matemáticas a estudiante acorde al cálculo de sus niveles de habilidades (general y por concepto) y del nivel de dificultad del ejercicio basado en ciertos parámetros como el historial del alumno. El sistema está compuesto de los siguientes elementos:
i) Una base de datos del registro de una estructura currícular que contenga al menos la información siguiente: a) el tiempo límite (d¿) de cada uno de los problemas propuestos en la plataforma calculado en base a los tiempos registrados que los alumnos necesitaron para resolver los ejercicios, b) La fecha de la última conexión del alumno para calcular el tiempo transcurrido (D ) sin que el alumno haya realizado actividades en la plataforma, c) el nivel de habilidad del alumno (0¡), d) el nivel de dificultad del problema (/?,·), e) el grado del alumno.
ii) Captura y registro del grado escolar para la asignación de un examen diagnóstico.
iii) Un algoritmo para calcular los nuevos niveles de habilidad del alumno (general y por concepto).
iv) Un algoritmo para calcular el nivel de dificultad de los ejercicios.
v) Un algoritmo para seleccionar un ejercicio adecuado para el alumno.
2. Un sistema de conformidad con la reivindicación n°1 , donde la base de datos que se utilizará para el almacenamiento de la estructura currícular que tiene una arquitectura escalable.
3. Un sistema de conformidad con la reivindicación n°1, donde el concepto de tiempo límite es un valor variable que puede calcularse por percentiles o mediana según la estrategia adoptada y que va cambiando cada vez que un estudiante realiza una tarea dentro de la plataforma.
4. Un sistema de conformidad con la reivindicación n°1 , donde la habilidad del alumno es un valor numérico el cual está sujeto a los resultados previos del estudiante y está dividido en tres partes que son la habilidad por concepto, la habilidad por grado y la habilidad general del alumno en matemáticas.
5. Un sistema de conformidad con la reivindicación n°4, donde la habilidad del alumno se calcula mediante un algoritmo que involucra la habilidad anterior del alumno, la dificultad del ejercicio, el tiempo que tardo el estudiante en contestar el ejercicio, el tiempo límite asignado al ejercicio y el número de días que estuvo el alumno sin entrar a la plataforma.
6. Un sistema de conformidad con la reivindicación n°1 , donde cada ejercicio está clasificado por niveles de dificultad: nivel de dificultad general, nivel de dificultad del concepto y nivel de dificultad del ejercicio.
7. Un sistema de conformidad con la reivindicación n°1 , donde el nivel de dificultad de un ejercicio en el sistema se calculó mediante un algoritmo que involucra todas las sesiones en que diferentes estudiantes contestaron el ejercicio y sus respectivos niveles de habilidad.
8. Un sistema de conformidad con la reivindicación n°1 , donde el nuevo nivel de dificultad de un ejercicio se calcula según el nivel de habilidad del último estudiante que contesto el ejercicio, el tiempo en que lo resolvió, el tiempo que paso sin que ningún estudiante haya contestado el ejercicio y el nivel de dificultad previo del ejercicio.
9. Un sistema de conformidad con la reivindicación n°1 , donde al registrarse un nuevo estudiante se almacena su información básica (edad, grado, fecha de ingreso y escuela);
10. Un sistema de conformidad con la reivindicación n°9, donde según el grado registrado el sistema selecciona un examen diagnóstico adecuado.
11. Un sistema de conformidad con la reivindicación n°10 donde el examen diagnostico aborda varios conceptos diferentes con el fin de detectar las habilidades y rezagos del estudiante.
12. Un sistema de conformidad con la reivindicación n°11 , donde el examen es aplicado al alumno y se guarda los resultados.
13. Un sistema de conformidad con la reivindicación n°12, donde se selecciona los ejercicios más adecuados según las respuestas al examen diagnóstico.
14. Un sistema de conformidad con la reivindicación n°1 , donde el sistema utilizado es dinámico y donde se actualiza los datos mediante algoritmos cada vez que un estudiante realiza una actividad.
15. Un sistema de conformidad con la reivindicación n°1 , donde cada vez que un estudiante realiza una actividad se le asigna un nuevo nivel de dificultad al ejercicio según: la calificación que obtuvo el estudiante, el nivel de habilidad anterior del estudiante y el nivel de dificultad del problema.
PCT/MX2017/000161 2017-12-19 2017-12-19 Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno WO2019125104A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000161 WO2019125104A1 (es) 2017-12-19 2017-12-19 Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000161 WO2019125104A1 (es) 2017-12-19 2017-12-19 Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno

Publications (1)

Publication Number Publication Date
WO2019125104A1 true WO2019125104A1 (es) 2019-06-27

Family

ID=66992622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000161 WO2019125104A1 (es) 2017-12-19 2017-12-19 Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno

Country Status (1)

Country Link
WO (1) WO2019125104A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110307396A1 (en) * 2010-06-15 2011-12-15 Masteryconnect Llc Education Tool for Assessing Students
US20120308980A1 (en) * 2011-06-03 2012-12-06 Leonard Krauss Individualized learning system
WO2013040111A1 (en) * 2011-09-13 2013-03-21 Monk Akarshala Design Private Limited Ability banks in a modular learning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110307396A1 (en) * 2010-06-15 2011-12-15 Masteryconnect Llc Education Tool for Assessing Students
US20120308980A1 (en) * 2011-06-03 2012-12-06 Leonard Krauss Individualized learning system
WO2013040111A1 (en) * 2011-09-13 2013-03-21 Monk Akarshala Design Private Limited Ability banks in a modular learning system

Similar Documents

Publication Publication Date Title
Böckers et al. Does learning in clinical context in anatomical sciences improve examination results, learning motivation, or learning orientation?
Abanikannda Influence of problem-based learning in chemistry on academic achievement of high school students in osun state, Nigeria
Mazerolle et al. Defining the engaging learning experience from the athletic training student perspective
Chase et al. School engagement, academic achievement, and positive youth development
Kusumawati et al. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II
Grundy Pathways to fitness for practice: National Vocational Qualifications as a foundation of competence in nurse education
Marshall et al. Developing a STEM+ M identity in underrepresented minority youth through biomechanics and sports-based education
Riano et al. Improving resident's skills in the management of circulatory shock with a knowledge-based e-learning tool
Mahmud et al. How has problem based learning fared in Pakistan
WO2019125104A1 (es) Método de asignación de nivel de problemas matemáticos basado en habilidades del alumno
Arthur et al. Connecting mathematics to real life problem using instructor quality and availability, mathematics facility and teacher motivation for prediction
Mahboob et al. Key steps for managing changes in the curriculum
Zheng et al. Multistage testing, on-the-fly multistage testing, and beyond
Arzhanik et al. Differentiated approach to learning in higher education
Barnett et al. Decision-making validity in response to intervention
Peters et al. The teacher observation form: Revisions and updates
WO2019125109A1 (es) Sistema de asignación de recompensas de aprendizaje de matemáticas para motivar a alumnos a seguir trayectorias de aprendizaje
KR20100004580A (ko) 자기주도 학습시스템에서 다중 지식을 이용한 평가 문항난이도 자동 조정 방법 및 장치
Akinoglu Effects of concept maps on students critical thinking skills in science education
Carlile Teaching within the operating theater
Vlasova et al. The Technology of Teacher Training Contents Projection and Implementation on the Basis of Information Streams Integration.
Tacke et al. Behavioral changes in teachers as a function of student feedback: A case for the achievement motivation theory?
KR102304681B1 (ko) 학업성취도 산출 및 클래스 결정 시스템
Herrity A theory for preparing students to maintain integration of Christian faith and business while starting careers
Leppink et al. How to measure effects of self-regulated learning with checklists on the acquisition of task selection skills

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935380

Country of ref document: EP

Kind code of ref document: A1