WO2019125075A1 - High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof - Google Patents

High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof Download PDF

Info

Publication number
WO2019125075A1
WO2019125075A1 PCT/KR2018/016522 KR2018016522W WO2019125075A1 WO 2019125075 A1 WO2019125075 A1 WO 2019125075A1 KR 2018016522 W KR2018016522 W KR 2018016522W WO 2019125075 A1 WO2019125075 A1 WO 2019125075A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
toughness
less
affected zone
strength
Prior art date
Application number
PCT/KR2018/016522
Other languages
French (fr)
Korean (ko)
Inventor
채재용
강상덕
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/957,454 priority Critical patent/US20200325562A1/en
Priority to EP18891918.7A priority patent/EP3730644B1/en
Priority to CN201880084245.3A priority patent/CN111542632A/en
Publication of WO2019125075A1 publication Critical patent/WO2019125075A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a structural steel used as a material for a storage tank, a pressure vessel, an architectural structure, a ship structure, and the like. More particularly, the present invention relates to a high strength steel having excellent weld heat affected zone toughness and a method of manufacturing the same.
  • Patent Document 1 discloses a structural steel having a impact toughness of about 200 J (base material is about 300 J) at 0 ⁇ when a heat input of 100 J / cm 2 (maximum heating temperature of 1400 ⁇ ) is applied as a typical technique using a precipitate of TiN
  • the TiN precipitates having a TiN content of substantially 4-12 are deposited at a ratio of 5.8 ⁇ 10 3 / mm 2 to 8.1 ⁇ 10 4 / mm 2 with a TiN precipitate of 0.05 ⁇ m or less, and 0.03 to 0.2 ⁇ m, Is precipitated at 3.9 ⁇ 10 3 / mm 2 to 6.2 ⁇ 10 4 / mm 2 to make the ferrite finer to secure the toughness of the welded portion.
  • Patent Document 1 there is a problem that cracks are generated on the surface of the slab during performance by forming excess carbon and nitride.
  • a slab with many surface cracks is used to produce a heavy plate product.
  • defective products such as surface repair or the like can not be manufactured due to the occurrence of problems such as edo cracks.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 1999-140582
  • One aspect of the present invention is to provide a steel material having excellent strength and toughness of a base material and excellent welding heat affected zone (HAZ) after welding and stress annealing, and a method of manufacturing the steel material.
  • HZ welding heat affected zone
  • An aspect of the present invention relates to a method of manufacturing a semiconductor device, comprising: 0.16 to 0.20% of C, 1.0 to 1.5% of Mn, 0.3% or less of Si (excluding 0), 0.005 to 0.5% of Al, 0.01% or less, 0.005 to 0.02% of Ti, 0.01 to 0.1% of Nb, and 0.006 to 0.01% of N,
  • the microstructure is composed of a ferrite-pearlite composite structure
  • the microstructure After the welding and stress relieving heat treatment, the microstructure had a precipitate of 100 nm or less of 1.27 x 10 < 6 > And more than 900 of them are distributed in a single crystal grain.
  • a steel sheet comprising, by weight, 0.16 to 0.20% of C, 1.0 to 1.5% of Mn, 0.3% or less of Si (excluding 0), 0.005 to 0.5% of Al, S: 0.01% or less, Ti: 0.005 to 0.02%, Nb: 0.01 to 0.1%, and N: 0.006 to 0.01%
  • Preparing a steel slab containing impurities At least one selected from the group consisting of Ca: not more than 0.006%, V: not more than 0.03%, Ni: not more than 2.0%, Cu: not more than 1.0%, Cr: not more than 1.0%, and Mo: not more than 1.0%
  • the present invention it is possible to provide a steel material which does not deteriorate the strength and toughness of the base material even when subjected to the post-weld stress relieving heat treatment and is excellent in the weld heat affected zone toughness at the time of heat welding. Also, since the strength of the base material is maintained even by the stress relaxation heat treatment, it can be suitably used for storage tanks, pressure vessels, structures, and the like. In addition, since the steel material of the present invention has no defects such as surface cracking, it can be suitably applied as a structural steel material.
  • Example 2 is a TEM (transmission electron microscope) observation of the size and shape of the NbC precipitates observed in Example 1 of the present invention.
  • FIG. 3 is a TEM (transmission electron microscope) observation of the size and shape of Fe 3 C precipitates observed in Comparative Example 6 of the present invention.
  • the inventors of the present invention have conducted extensive research to fundamentally solve the problem of cracks and other defects on the surface of steel during the manufacture of a steel material for use in conventional structural steel. As a result, The present invention has been accomplished on the basis of confirming that it is possible to secure not only the toughness but also the weld heat affected zone having excellent toughness by controlling the microstructure of the weld heat affected zone at the time of welding.
  • the present invention can be suitably applied as structural steel.
  • the present invention a method for preventing a decrease in the strength of the base material, which may occur after the stress annealing process, which is generally performed for the purpose of stabilizing the material of the welded portion hardened structure in the production of the storage tank or the pressure vessel, It was confirmed that the strength after heat treatment can be ensured by the formation of fine precipitates when the alloy component is added, and the present invention has been accomplished. Therefore, the present invention can be suitably applied not only to conventional structural steel but also to storage tanks and pressure vessels.
  • the steel of the present invention is characterized in that the steel contains 0.16 to 0.20% by weight of carbon (C), 1.0 to 1.5% of manganese (Mn), 0.3% (S): 0.01% or less, titanium (Ti): 0.005 to 0.02%, niobium (Nb): 0.01 to 0.1%, nitrogen (N) : 0.006 to 0.01%
  • Ni not more than 1.0%
  • copper (Cu) not more than 1.0%
  • chromium (Cr) not more than 1.0%
  • molybdenum (Mo) 1.0% or less.
  • the content of C in the present invention is preferably 0.16 to 0.20%.
  • the Mn is an element which is effective for increasing the hardenability of the steel and securing the strength of the steel sheet.
  • HZ weld heat affected zone
  • Mn tends to be segregated at the center of the thickness of the steel sheet, although the toughness of the weld heat affected zone is not greatly deteriorated.
  • the Mn content is much higher than the average content in the region where Mn is segregated, There is a problem in that a brittle tissue that greatly damages the surface is easily generated.
  • the lower limit is preferably 1.0%.
  • the Si promotes the morphology of the martensite (MA) by increasing the strength of the steel sheet and suppressing the formation of cementite when the elements necessary for deoxidation of molten steel or the unstable austenite are decomposed, HAZ) is greatly deteriorated.
  • the content of Si in the present invention is preferably 0.3% or less, and if it exceeds 0.3%, a coarse Si oxide is formed and brittle fracture may occur starting from such inclusions.
  • the above-mentioned Al is an element capable of inexpensively deoxidizing molten steel, and is preferably added in an amount of 0.005% or more. However, if the content exceeds 0.5%, there is a problem that nozzle clogging occurs during continuous casting, and the solidified Al can form the martensite on the welded portion, which may result in deterioration of the toughness of the welded portion.
  • the content of Al is preferably 0.005 to 0.5%.
  • Phosphorus (P) not more than 0.02%
  • P is an element favoring strength improvement and corrosion resistance, but it is an element which greatly hinders impact toughness. Therefore, it is advantageous to keep P as low as possible, so that the upper limit is preferably 0.02%.
  • the upper limit is preferably 0.01%.
  • N nitrogen
  • the Ti content is 0.005% or more.
  • the upper limit is preferably 0.02%.
  • the Nb precipitates in the form of NbC or Nb (C, N), thereby greatly improving the strength of the base material and the welded portion.
  • Nb solidified at the time of reheating at a high temperature suppresses transformation of austenite and transformation of ferrite or bainite, thereby exhibiting an effect of making the structure finer. Therefore, in order to secure the strength of the base material even in the case of a post-weld stress relaxation heat treatment such as a storage container, it is preferable that the strength is 0.01% or more. However, when the content exceeds 0.1%, excessive brittle cracks may appear on the edge of the steel material, and the toughness of the welded heat affected zone is greatly lowered. Therefore, it is preferable that the content does not exceed 0.1%.
  • N bonds with the above-mentioned Ti to form a fine nitride, thereby alleviating the coarsening of crystal grains that may occur near the welding fusion wire, thereby preventing a decrease in toughness.
  • N should be contained in an amount of 0.006% or more.
  • the content is not more than 0.01%.
  • the steel sheet of the present invention may further contain, in addition to the above-described alloy composition, elements capable of ensuring favorable physical properties in the present invention.
  • elements capable of ensuring favorable physical properties in the present invention As a preferable example, it is preferable to use an alloy containing not more than 0.006% of Ca, not more than 0.03% of vanadium, not more than 2.0% of nickel, not more than 1.0% of copper, not more than 1.0% of chromium, (Mo): 1.0% or less, and the like.
  • Mo chromium
  • the Ca is mainly used as an element which controls the shape of the MnS inclusions and improves the low-temperature toughness.
  • excessive Ca addition causes formation of coarse inclusions due to formation and bonding of a large amount of CaO-CaS, thereby deteriorating the weldability of the steel as well as lowering the cleanliness of the steel. Therefore, Ca is preferably 0.006% or less.
  • V is low in the temperature to be employed as compared with other alloying elements and is excellent in the effect of precipitating on the weld heat affected zone (HAZ) to prevent the strength from lowering.
  • HZ weld heat affected zone
  • the content thereof is preferably 0.03% or less.
  • the Ni is an almost unique element capable of simultaneously improving the strength and toughness of the base material.
  • exceeding 2.0% is not only disadvantageous in terms of economy but also deteriorates the weldability. Therefore, it is preferable that the Ni content does not exceed 2.0%.
  • the Cu is an element capable of minimizing the toughness of the base material and improving the strength of the steel.
  • the content is 1.0% or less.
  • the Cr increases the hardenability and has a great effect on the strength improvement. However, if it is added too much, there is a problem that the weldability is significantly lowered. Therefore, it is preferable that the content does not exceed 1.0%.
  • the addition of only a small amount of Mo significantly improves the hardenability and has an effect of suppressing the formation of a ferrite phase and is an element capable of greatly improving the strength.
  • the content thereof is preferably not more than 1.0%.
  • the steel sheet of the present invention is an iron (Fe) component in addition to the above-mentioned alloying elements.
  • Fe iron
  • the impurities which are not intended from the raw material or the environment of caution can be inevitably incorporated in a normal manufacturing process, and therefore this can not be excluded. Since these impurities can be known to any ordinary technician, they do not fully exploit all of them.
  • the steel material of the present invention preferably has a surface crack sensitivity index (Cs) defined by the following relational expression 1 of not more than 0.3.
  • [C] means the weight% value of the content of C.
  • the surface crack sensitivity index (Cs) of the relational expression 1 exceeds 0.3. That is, when the slab is solidified, the solidification layer strength is large at the time of occurrence of the phase transformation, causing shrinkage, and forming a non-uniform solidification layer, thereby facilitating cracks on the surface of the slab. Therefore, in order to provide a steel material free from surface cracking, it is preferable that the surface crack sensitivity index (Cs) of the above-mentioned relational expression 1 is 0.3 or less.
  • the Cs value in the above-mentioned relational expression 1 is preferably as small as possible, but C is present in the shell, and therefore, the Cs value is preferably more than zero.
  • the steel of the present invention preferably has a value of Free-N defined by the following relational expression (1)
  • Free-N [N] - ⁇ ([Ti] /47.887) x 14.01 ⁇ - ⁇ ([B] /10.81) x 14.01 ⁇
  • [N], [Ti], and [B] refer to the weight percent values of N, Ti and B, respectively.
  • NbC and Nb (C) N type precipitates which are produced by adding Nb, play a major role in ensuring strength after stress relaxation heat treatment.
  • N may be combined with Ti, Al, B, and the like to preferentially form another type of precipitate such as TiN or BN, thereby negatively affecting securing the intended Nb precipitate.
  • free-N is less than 0, Ti and B, which do not sufficiently form a nitrogen-based precipitate, can bond with C to form a coarse precipitate. Therefore, the free- The value of N is preferably greater than zero.
  • the upper limit of the Free-N is not particularly limited, but is preferably 0.008148 or lower.
  • the steel material of the present invention preferably has a microstructure and a ferrite-pearlite composite structure as a main structure.
  • the second phase such as bainite or martensite is not generated as much as possible.
  • the ferrite-pearlite composite structure has an area fraction of 50 to 75% of pearlite and the remainder is ferrite.
  • Steel material of the present invention is 1.27 ⁇ 10 6 per precipitates having a size of stress after annealing heat treatment, the diameter or less 100nm performed after substituting hot welding 1mm2 And more than 900 precipitates are distributed in the single crystal grains. Through the distribution of the precipitates, the strength and toughness of the base material can be prevented from lowering even after the stress relaxation heat treatment.
  • the welded heat affected zone is rapidly heated to a high temperature close to the melting point and then quickly cooled down to room temperature depending on the degree of proximity from the welding point.
  • a low temperature phase such as bainite or martensite may be generated, Even if ferrite is produced, a kind of microstructure having a high stress is generated in the interior like needle-like ferrite.
  • the microstructure of the welded heat affected zone has a problem that brittleness is generated and it is easily broken in the processing and use environment of the steel.
  • Heat treatment is performed, which is intended to reduce the stress of the welded portion and the heat affected portion to reduce embrittlement, thereby lowering the possibility of fracture in a use environment.
  • the stress relieving heat treatment conditions vary depending on the welding conditions and the thickness of the steel material. For example, A516-70, a medium-temperature pressure vessel steel, is heat-treated at a temperature of 620 ° C for 120 minutes.
  • the stress relieving heat treatment may have a negative influence on the base material itself, not the welded portion or the heat affected portion. Ferrite, and pearlite, the formation and coarsening of precipitates including carbide can be actively performed by performing the stress relaxation heat treatment at a temperature of 400 to 800 ° C. Such a carbide is proportional to time So that the coarsening of the carbide occurs and the concentration of carbonization in the base structure is reduced, so that the overall strength can be lowered. Therefore, it is necessary to appropriately manage the formation of precipitates containing carbide in order to prevent the strength of the base material from lowering by the welding and stress annealing heat treatment.
  • the fine precipitate having a size of 100 nm or less obstructs the propagation of the fracture when the steel material is broken Thereby improving the strength and toughness of the steel material. Since the base structure of the steel material of the present invention has a ferrite-pearlite structure, the relatively soft ferrite structure is vulnerable to fracture, but in many cases, fracture progresses along the pearlite band. Therefore, the fine precipitates are uniformly distributed .
  • the precipitate of the present invention is preferably Nb-based carbide. More preferably, it is NbC.
  • the Nb-based carbide is mainly produced and grown at a relatively low temperature of 600 to 700 ° C (austenite-to-ferrite transformation point direct lower temperature zone), and in the process, it acts to suppress the strength and ferrite grain growth .
  • the steel material of the present invention is a steel material having improved sinterability compared to the conventional steel material, and a desired structure can be formed in the steel material without rapid water cooling or the like.
  • the hardness of the steel material is improved and the hard texture is easily formed, the low temperature toughness is often deteriorated.
  • the preferable structure of the steel material there is an effect of preventing deterioration of toughness characteristics.
  • the steel material of the present invention is excellent not only in tensile strength of the base material of 500 MPa or more and a Charpy impact energy at 0 ⁇ of 150 J or more even after a stress annealing process (for example, at 620 ⁇ for 120 minutes)
  • the microstructure of the welded heat affected zone (HAZ) has an impact martensite fraction of 3% or less and excellent impact toughness at a temperature of 0 ° C and a impact energy of 100 J or more.
  • the manufacturing method of the present invention includes preparing a steel slab satisfying the above-described alloy composition, heating, and hot rolling and cooling the steel slab. Hereinafter, each process will be described in detail.
  • a steel slab having the above-described alloy composition is prepared, and then the steel slab is heated. At this time, it is preferable to heat in a temperature range of 1050 to 1250 ⁇ .
  • the heating is preferably carried out at a temperature of 1050 DEG C or higher, in order to solidify Ti and / or Nb carbonitride formed during casting. That is, in order to sufficiently solidify the Ti and / or Nb carbonitride formed during the casting, it is necessary to heat at 1050 ° C or higher.
  • the austenite may be coarsened, and therefore, it is preferable to limit the reheating temperature to 1250 ° C or less.
  • the heated steel slab is hot-rolled.
  • the hot-rolled steel sheet is preferably subjected to rough rolling of the heated steel slab under normal conditions, and then hot-rolled at a predetermined temperature to produce a hot-rolled steel sheet.
  • the hot finish rolling is performed at 910 ⁇ ⁇ or lower.
  • the hot finish rolling is for transforming the austenite structure into a nonuniform microstructure.
  • the hot finish rolling temperature exceeds 910 ⁇ ⁇ , coarse texture is formed and the impact toughness is deteriorated. More preferably in a temperature range of 850 to 910 < 0 > C. If the rolling finish temperature is lowered to less than 850 ⁇ ⁇ , there is a problem that it becomes difficult to control the shape of the plate material.
  • the hot-rolled steel sheet obtained by the hot-rolling is cooled, and the cooling is preferably performed at a low-speed cooling lower than a normal air-cooling level. Particularly, it is preferable to cool at a cooling rate of 20 ° C / Hr or less in a temperature range of 800 to 435 ° C. This makes it possible to stably secure the optimum strength and toughness of the steel material of the present invention.
  • the temperature interval is a main temperature interval in which precipitates are generated and grown.
  • the cooling rate is preferably 1 ° C / Hr or more.
  • the minimum cooling power can be ensured through the cooling process in order to secure the target fraction and distribution of precipitates.
  • a method of implementing the slow cooling as described above there is a method of separately sending equipment, and a method of stacking steel plates of similar dimensions after completion of hot rolling without a separate warming equipment can be achieved.
  • the steel material thus produced was welded at 200 kJ / cm and subjected to a stress relaxation heat treatment in which the steel material was held at 620 ⁇ ⁇ for 120 minutes.
  • the microstructure of the base material, the distribution of precipitates of 100 nm or less and the number of precipitates present in the crystal grains were measured, and tensile strength and impact toughness were measured.
  • the results are shown in Table 3.
  • the impact toughness and the martensite fraction of the welded heat affected zone were measured, and the results are shown in Table 3.
  • the impact toughness was measured by Charpy V-notch impact test at 0 ⁇ .
  • the above-mentioned on-road martensite analysis was carried out by Le-Pera etching and then the position and relative area fraction estimated by using point-counting method were measured.
  • F means ferrite and P means pearlite.
  • FIG. 2 shows the size (nm) of the precipitate of the precipitate of Inventive Example 1 observed by TEM.
  • Inventive Example 1 of the present invention shows that NbC precipitates of 100 nm or less are uniformly formed.
  • FIG. 3 shows the precipitate of Comparative Example 6 observed by TEM and the size (nm) of the precipitate. In Comparative Example 6, coarse FeC precipitates were formed.
  • the steel material of the present invention can secure the toughness of the HAZ even when it is welded by large heat, and can produce a steel material free from defects such as surface cracks.
  • Comparative Examples 1 and 4 satisfied the alloy composition of the present invention, but the hot finish rolling temperature was too high to ensure sufficient toughness of the base material due to microstructure coarsening.
  • Figs. 1 (a) and 1 (b) are photographs showing the microstructure of the base material of Inventive Example 1 and Comparative Example 1, respectively. All of the ferrite and pearlite were the same, but in the case of Comparative Example 1, it was considered that the impact strength was affected by the coarsening of the particle size.
  • Comparative Examples 2 and 3 also satisfy the alloy composition of the present invention, but the slab heating temperature is outside the scope of the present invention, so that the elements inhibiting austenite grain growth at high temperatures such as Nb are not sufficiently dissolved, So that the strength and impact toughness of the base material are lowered.
  • Comparative Example 5 since the cooling rate of the steel after the hot rolling was out of the range proposed in the present invention, precipitates of the steel could not be secured and the strength in the present invention could not be obtained.
  • Comparative Examples 6 to 10 since the content of Nb in the steel material is not sufficient, C is deposited on the coarse cementite particles or MoC or the like, so that sufficient strength can not be ensured and the toughness of HAZ can not be secured.
  • Comparative Examples 11 to 13 the N content of the steel material did not fall within the range of the present invention, and coarse precipitates such as MoC, Fe 3 C and VC, etc., And the distribution of the precipitates is different from the present invention, so that the impact toughness of the HAZ is heated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to structural steel used as a material of storage tanks, pressure vessels, building structures, ship structures, etc. and, more particularly, to steel with excellent toughness of a welding heat affected zone and a manufacturing method thereof.

Description

용접열영향부 인성이 우수한 고강도 강재 및 그 제조방법High Strength Steel with Excellent Toughness of Welded Heat Affected Zone and Its Manufacturing Method
본 발명은 저장탱크, 압력용기, 건축 구조물, 선박 구조물 등의 소재로 사용되는 구조용 강재에 관한 것으로서, 보다 상세하게는 용접열영향부 인성이 우수한 고강도 강재와 이를 제조하는 방법에 관한 것이다.The present invention relates to a structural steel used as a material for a storage tank, a pressure vessel, an architectural structure, a ship structure, and the like. More particularly, the present invention relates to a high strength steel having excellent weld heat affected zone toughness and a method of manufacturing the same.
구조용 강재를 이용하여 저장탱크, 압력용기, 건축 구조몰, 선박 구조물 등의 구조물을 제작할 때, 다량의 용접을 수반하게 된다. 이 때문에 모재의 성능뿐만 아니라, 용접의 능률 및 용접 구조물의 안정성 또한 확보되어야 한다. 이를 위해서는 용접열영향부(Heat Affected Zone, HAZ)의 오스테나이트 결정립 성장을 최대한 억제하여 최종 변태 조직을 미세하게 유지할 필요가 있다.When constructing structures such as storage tank, pressure vessel, building structure mall, and ship structure using structural steel, it involves a lot of welding. Therefore, not only the performance of the base material but also the efficiency of welding and the stability of the welded structure should be secured. To this end, it is necessary to keep the austenite grain growth of the heat affected zone (HAZ) as much as possible and to keep the final transformed structure finely.
이를 해결하기 위한 수단으로 고온에서 안정한 Ti계 탄·질화물 등을 강재에 적절히 분포시켜 용접시 용접열영향부의 결정립 성장을 지연시키고자 하는 기술 등이 제시되고 있다.As a means for solving this problem, there is proposed a technique of appropriately distributing a Ti-based carbonitride or the like, which is stable at a high temperature, on a steel material to delay the growth of grain growth in the weld heat affected zone during welding.
일예로, 특허문헌 1은 TiN의 석출물을 이용하는 대표적인 기술로 100J/cm의 입열량(최고가열온도 1400℃)이 적용될 때 0℃에서 충격인성이 200J 정도(모재는 300J 정도)인 구조용 강재에 관한 것으로서, 위 기술에서는 Ti/N을 실질적으로 4-12로 관리하여 0.05㎛이하인 TiN 석출물은 5.8×103개/mm2~8.1×104개/mm2, 이와 함께 0.03~0.2㎛인 TiN 석출물은 3.9×103개/mm2~6.2×104개/mm2로 석출시켜 페라이트를 미세화하여 용접부의 인성을 확보하고 있다.For example, Patent Document 1 discloses a structural steel having a impact toughness of about 200 J (base material is about 300 J) at 0 캜 when a heat input of 100 J / cm 2 (maximum heating temperature of 1400 캜) is applied as a typical technique using a precipitate of TiN In the above technique, the TiN precipitates having a TiN content of substantially 4-12 are deposited at a ratio of 5.8 × 10 3 / mm 2 to 8.1 × 10 4 / mm 2 with a TiN precipitate of 0.05 μm or less, and 0.03 to 0.2 μm, Is precipitated at 3.9 × 10 3 / mm 2 to 6.2 × 10 4 / mm 2 to make the ferrite finer to secure the toughness of the welded portion.
그러나 상기 특허문헌 1은 과도한 탄·질화물을 형성함으로써 연주시 슬라브 표면에 크랙 발생이 심해지는 문제가 있으며, 이와 같이 다수의 표면 크랙이 발생된 슬라브를 이용하여 후판 제품을 생산하게 되면 최종 제품의 표면에도 크랙 등의 문제가 발생하여 표면 보수 등의 문제나 보수 불가에 따른 불량품이 제조될 가능성이 큰 문제가 있다.However, in Patent Document 1, there is a problem that cracks are generated on the surface of the slab during performance by forming excess carbon and nitride. When a slab with many surface cracks is used to produce a heavy plate product, There is a problem in that there is a possibility that defective products such as surface repair or the like can not be manufactured due to the occurrence of problems such as edo cracks.
(특허문헌 1) 일본 공개특허공보 제1999-140582호(Patent Document 1) Japanese Laid-Open Patent Publication No. 1999-140582
본 발명의 일측면은 용접 및 응력 풀림 열처리 후에도 모재의 강도 및 인성이 우수함과 동시에, 우수한 용접열영향부(HAZ)를 확보할 수 있는 강재와 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel material having excellent strength and toughness of a base material and excellent welding heat affected zone (HAZ) after welding and stress annealing, and a method of manufacturing the steel material.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above-mentioned matters. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention.
본 발명의 일측면은 중량%로, C: 0.16~0.20%, Mn: 1.0~1.5%, Si: 0.3% 이하(0은 제외), Al: 0.005~0.5%, P: 0.02% 이하, S: 0.01% 이하, Ti: 0.005~0.02%, Nb: 0.01~0.1%, N: 0.006~0.01%를 포함하며, An aspect of the present invention relates to a method of manufacturing a semiconductor device, comprising: 0.16 to 0.20% of C, 1.0 to 1.5% of Mn, 0.3% or less of Si (excluding 0), 0.005 to 0.5% of Al, 0.01% or less, 0.005 to 0.02% of Ti, 0.01 to 0.1% of Nb, and 0.006 to 0.01% of N,
Ca: 0.006% 이하, V: 0.03% 이하, Ni: 2.0% 이하, Cu: 1.0% 이하, Cr: 1.0% 이하 및 Mo: 1.0% 이하로 구성되는 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하고, At least one selected from the group consisting of Ca: not more than 0.006%, V: not more than 0.03%, Ni: not more than 2.0%, Cu: not more than 1.0%, Cr: not more than 1.0%, and Mo: not more than 1.0% Containing impurities,
미세조직은 페라이트-펄라이트 복합조직으로 이루어지고, The microstructure is composed of a ferrite-pearlite composite structure,
용접 및 응력 풀림 열처리 후, 상기 미세조직은 100㎚ 이하의 석출물이 1㎟당 1.27×106 개 이상 존재하고, 단일 결정립 내에서 900개 이상 분포하는 용접열영향부 인성이 우수한 고강도 강재에 관한 것이다.After the welding and stress relieving heat treatment, the microstructure had a precipitate of 100 nm or less of 1.27 x 10 < 6 > And more than 900 of them are distributed in a single crystal grain.
본 발명의 또다른 일측면은 중량%로, C: 0.16~0.20%, Mn: 1.0~1.5%, Si: 0.3% 이하(0은 제외), Al: 0.005~0.5%, P: 0.02% 이하, S: 0.01% 이하, Ti: 0.005~0.02%, Nb: 0.01~0.1%, N: 0.006~0.01%를 포함하며, In another aspect of the present invention, there is provided a steel sheet comprising, by weight, 0.16 to 0.20% of C, 1.0 to 1.5% of Mn, 0.3% or less of Si (excluding 0), 0.005 to 0.5% of Al, S: 0.01% or less, Ti: 0.005 to 0.02%, Nb: 0.01 to 0.1%, and N: 0.006 to 0.01%
Ca: 0.006% 이하, V: 0.03% 이하, Ni: 2.0% 이하, Cu: 1.0% 이하, Cr: 1.0% 이하 및 Mo: 1.0% 이하로 구성되는 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 준비하는 단계; At least one selected from the group consisting of Ca: not more than 0.006%, V: not more than 0.03%, Ni: not more than 2.0%, Cu: not more than 1.0%, Cr: not more than 1.0%, and Mo: not more than 1.0% Preparing a steel slab containing impurities;
상기 강 슬라브를 1050~1250℃의 온도범위에서 가열하는 단계;Heating the steel slab in a temperature range of 1050 to 1250 占 폚;
상기 가열된 강 슬라브를 열간 마무리 압연 온도 910℃ 이하에서 열간 압연하는 단계; 및Hot rolling the heated steel slab at a hot finish rolling temperature of 910 占 폚 or lower; And
상기 열연 압연 후 20℃/Hr 이하의 냉각속도로 냉각하는 단계를 포함하는 용접열영향부 인성이 우수한 고강도 강재의 제조방법에 관한 것이다.And cooling the steel sheet at a cooling rate of 20 ° C / Hr or less after the hot rolling, to a method of manufacturing a high strength steel having excellent weld heat affected zone toughness.
본 발명에 의하면, 용접 후 응력 풀림 열처리를 하여도, 모재의 강도 및 인성이 저하되지 않고, 대입열 용접시 용접열영향부 인성이 우수한 강재를 제공할 수 있다. 그리고 응력 풀림 열처리를 실시하여도 모재의 강도가 유지되므로 저장탱크, 압력용기, 구조물 등에 적합하게 사용될 수 있다. 또한, 상기 본 발명의 강재는 표면 크랙 발생 등의 결함이 없으므로, 구조용 강재로서 적합하게 적용할 수 있다.According to the present invention, it is possible to provide a steel material which does not deteriorate the strength and toughness of the base material even when subjected to the post-weld stress relieving heat treatment and is excellent in the weld heat affected zone toughness at the time of heat welding. Also, since the strength of the base material is maintained even by the stress relaxation heat treatment, it can be suitably used for storage tanks, pressure vessels, structures, and the like. In addition, since the steel material of the present invention has no defects such as surface cracking, it can be suitably applied as a structural steel material.
도 1은 본 발명의 실시예 중 발명예 1과 비교예 1의 미세조직을 관찰한 사진이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photograph of microstructure observed in Inventive Example 1 and Comparative Example 1 of the present invention. Fig.
도 2는 본 발명의 실시예 중 발명예 1에서 관찰되는 NbC 석출물의 크기와 형태를 TEM(Transmission electron microscope)으로 관찰한 것이다.2 is a TEM (transmission electron microscope) observation of the size and shape of the NbC precipitates observed in Example 1 of the present invention.
도 3은 본 발명의 실시예 중 비교예 6에서 관찰되는 Fe3C 석출물의 크기와 형태를 TEM(Transmission electron microscope)으로 관찰한 것이다.FIG. 3 is a TEM (transmission electron microscope) observation of the size and shape of Fe 3 C precipitates observed in Comparative Example 6 of the present invention.
본 발명자들은 기존 구조용 강재로 사용하기 위한 후물 강재의 제조시 강 표면에 크랙 등의 결함이 발생하는 문제점을 근본적으로 해결하기 위하여 깊이 연구한 결과, 강 성분조성 및 제조조건을 최적화하는 경우 모재 강도 및 인성뿐만 아니라 용접시 용접열영향부 미세조직의 제어로 인성이 우수한 용접열영향부를 확보할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다. The inventors of the present invention have conducted extensive research to fundamentally solve the problem of cracks and other defects on the surface of steel during the manufacture of a steel material for use in conventional structural steel. As a result, The present invention has been accomplished on the basis of confirming that it is possible to secure not only the toughness but also the weld heat affected zone having excellent toughness by controlling the microstructure of the weld heat affected zone at the time of welding.
특히, 본 발명은 서브머지드 아크 용접과 같은 대입열 용접시 용접열영향부(HAZ)의 인성을 우수하게 확보할 수 있으므로, 구조용 강재로서 적합하게 적용할 수 있는 효과가 있다.Particularly, since the toughness of the weld heat affected zone (HAZ) can be ensured well during the large heat welding such as submerged arc welding, the present invention can be suitably applied as structural steel.
한편, 저장탱크나 압력용기 등의 제작시에 용접부 경화 조직의 재질을 안정화하기 위한 목적으로 일반적으로 실시되는 응력 풀림 열처리 후에 발생할 수 있는 모재의 강도 저하를 방지할 수 있는 방법을 강구한 결과, 일부 합금 성분의 첨가시 미세 석출물의 생성으로 열처리 후 강도를 확보할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다. 그로 인해 기존 구조용 강재뿐만 아니라 저장탱크나 압력용기 등의 용도로도 적합하게 적용할 수 있는 효과가 있다. On the other hand, as a result of the inventors of the present invention, a method for preventing a decrease in the strength of the base material, which may occur after the stress annealing process, which is generally performed for the purpose of stabilizing the material of the welded portion hardened structure in the production of the storage tank or the pressure vessel, It was confirmed that the strength after heat treatment can be ensured by the formation of fine precipitates when the alloy component is added, and the present invention has been accomplished. Therefore, the present invention can be suitably applied not only to conventional structural steel but also to storage tanks and pressure vessels.
이하, 본 발명에 대해서 상세히 설명한다. Hereinafter, the present invention will be described in detail.
먼저, 본 발명 강재의 합금조성에 대해서 상세히 설명한다. 본 발명의 강재는 중량%로(이하, %), 탄소(C): 0.16~0.20%, 망간(Mn): 1.0~1.5%, 실리콘(Si): 0.3% 이하(0은 제외), 알루미늄(Al): 0.005~0.5%, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 티타늄(Ti): 0.005~0.02%, 니오븀(Nb): 0.01~0.1%, 질소(N): 0.006~0.01%를 포함하고, First, the alloy composition of the steel of the present invention will be described in detail. The steel of the present invention is characterized in that the steel contains 0.16 to 0.20% by weight of carbon (C), 1.0 to 1.5% of manganese (Mn), 0.3% (S): 0.01% or less, titanium (Ti): 0.005 to 0.02%, niobium (Nb): 0.01 to 0.1%, nitrogen (N) : 0.006 to 0.01%
필요에 따라, 칼슘(Ca): 0.006% 이하, 바나듐(V): 0.03% 이하, 니켈(Ni): 2.0% 이하, 구리(Cu): 1.0% 이하, 크롬(Cr): 1.0% 이하 및 몰리브덴(Mo): 1.0% 이하로 구성되는 그룹에서 선택된 1종 이상을 포함할 수 있다. (Ni): not more than 1.0%, copper (Cu): not more than 1.0%, chromium (Cr): not more than 1.0%, and molybdenum (Mo): 1.0% or less.
탄소(C): 0.16~0.20%Carbon (C): 0.16 to 0.20%
상기 C는 슬라브 응고 거동에 가장 큰 영향을 미치는 원소이므로 적절한 범위 내에서 강 중에 함유될 필요가 있다. 상기 C의 함량이 0.16% 미만이면 슬라브 응고시 상변태 발생 시점에 응고층 강도가 커져 수축을 유발하고 불균일 응고층을 형성하여 슬라브 표면에 크랙발생을 용이하게 하는 문제가 있으며, 반면 그 함량이 0.20%를 초과하게 되면 탄소 당량이 너무 커져서 용접부의 경화능이 크게 증가함에 따라 용접부 인성이 저하되는 문제가 있다. 따라서, 본 발명에서 C의 함량은 0.16~0.20%인 것이 바람직하다.Since C is the element having the greatest influence on the slab solidification behavior, it is necessary to be contained in the steel within an appropriate range. If the content of C is less than 0.16%, there is a problem that the solidification layer strength becomes large at the time of phase transformation at the time of solidification of the slab, causing shrinkage and forming a heterogeneous solidification layer to facilitate cracking on the slab surface, , There is a problem that the carbon equivalent is too large and the hardenability of the welded portion is greatly increased, thereby deteriorating the toughness of the welded portion. Therefore, the content of C in the present invention is preferably 0.16 to 0.20%.
망간(Mn): 1.0~1.5%Manganese (Mn): 1.0 to 1.5%
상기 Mn은 강의 경화능을 높여 강판의 강도를 확보하는데 유용한 원소이나, 본 발명에서는 용접열영향부(HAZ) 인성을 확보하기 위한 측면에 그 함량을 적절하게 제한할 필요가 있다. 일반적으로 Mn은 용접열영향부의 인성을 크게 해치지 아니하나, 강판의 두께 중심부에 편석이 되는 경향이 있고, 이와 같이 Mn이 편석된 부위는 Mn 함량이 평균 함량에 비해 매우 높아지므로 용접열영향부 인성을 크게 해치는 취성 조직을 쉽게 생성시키는 문제가 있다. 이를 고려하여, 본 발명에서는 1.5% 이하고 Mn을 포함하는 것이 바람직하다. 다만, 그 함량이 너무 낮으면 강재의 강도 확보가 곤란해지는 문제가 있으므로, 그 하한을 1.0%로 하는 것이 바람직하다.The Mn is an element which is effective for increasing the hardenability of the steel and securing the strength of the steel sheet. In the present invention, however, it is necessary to appropriately limit the content of the Mn to the side for securing toughness of the weld heat affected zone (HAZ). In general, Mn tends to be segregated at the center of the thickness of the steel sheet, although the toughness of the weld heat affected zone is not greatly deteriorated. Since the Mn content is much higher than the average content in the region where Mn is segregated, There is a problem in that a brittle tissue that greatly damages the surface is easily generated. In consideration of this, in the present invention, it is preferable to contain 1.5% or less of high Mn. However, if the content is too low, there is a problem that it becomes difficult to secure the strength of the steel material. Therefore, the lower limit is preferably 1.0%.
실리콘(Si): 0.3% 이하(0은 제외)Silicon (Si): 0.3% or less (excluding 0)
상기 Si은 강판의 강도를 높이고 용강의 탈산을 위해 필요한 원소이나, 불안정한 오스테나이트가 분해될 때 세멘타이트가 형성되는 것을 억제하기 때문에 도상 마르텐사이트(MA) 조직을 촉진시키며, 이는 용접열영향부(HAZ)의 인성을 크게 저하시키는 문제가 있다. 이를 고려하면, 본 발명에서 Si의 함량은 0.3% 이하인 것이 바람직하며, 만일 0.3%를 초과하게 되면 조대한 Si 산화물이 형성되고, 이러한 개재물을 기점으로 취성 파괴가 발생할 우려가 있으므로 바람직하지 못하다.The Si promotes the morphology of the martensite (MA) by increasing the strength of the steel sheet and suppressing the formation of cementite when the elements necessary for deoxidation of molten steel or the unstable austenite are decomposed, HAZ) is greatly deteriorated. In consideration of this, the content of Si in the present invention is preferably 0.3% or less, and if it exceeds 0.3%, a coarse Si oxide is formed and brittle fracture may occur starting from such inclusions.
알루미늄(Al)): 0.005~0.5%Aluminum (Al)): 0.005 to 0.5%
상기 Al은 용강을 저렴하게 탈산할 수 있는 원소로서, 이를 위해서는 0.005% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 0.5%를 초과하게 되면 연속주조시 노즐막힘을 야기하는 문제가 있으며, 고용된 Al은 용접부에 도상 마르텐사이트를 형성시킬 수 있어 용접부 인성 저하의 결과를 초래할 수 있으므로, 본 발명에서 상기 Al의 함량은 0.005~0.5%인 것이 바람직하다.The above-mentioned Al is an element capable of inexpensively deoxidizing molten steel, and is preferably added in an amount of 0.005% or more. However, if the content exceeds 0.5%, there is a problem that nozzle clogging occurs during continuous casting, and the solidified Al can form the martensite on the welded portion, which may result in deterioration of the toughness of the welded portion. The content of Al is preferably 0.005 to 0.5%.
인(P): 0.02% 이하Phosphorus (P): not more than 0.02%
상기 P는 강도 향상 및 내식성에 유리한 원소이지만, 충격인성을 크게 저해하는 원소이므로, 가능한 낮게 관리하는 것이 유리하므로, 그 상한을 0.02%로 하는 것이 바람직하다.P is an element favoring strength improvement and corrosion resistance, but it is an element which greatly hinders impact toughness. Therefore, it is advantageous to keep P as low as possible, so that the upper limit is preferably 0.02%.
황(S): 0.01% 이하Sulfur (S): not more than 0.01%
상기 S는 MnS 등을 형성하여 충격인성을 크게 저해하는 원소이므로 가능한 낮게 관리하는 것이 유리하므로, 그 상한을 0.01%로 하는 것이 바람직하다.Since S is an element that significantly inhibits impact toughness by forming MnS or the like, it is advantageous to keep it as low as possible, and therefore, the upper limit is preferably 0.01%.
티타늄(Ti): 0.005~0.02%Titanium (Ti): 0.005 to 0.02%
상기 Ti는 질소(N)와 결합하여 미세한 질화물을 형성하여 용접 용융선 근처에서 발생할 수 있는 결정립 조대화를 완화하여 인성의 저하를 억제하는 효과가 있다. 이때 Ti의 함량이 너무 낮으면, Ti 질화물의 수가 부족하여 조대화 억제 효과가 충분히 발휘되지 않으므로, 0.005% 이상 포한느 것이 바람직하다. 그러나 그 함량이 너무 과도하게 되면 조대한 Ti 질화물의 생성으로 인해 결정립계 고착 효과가 떨어지는 문제가 있으므로, 그 상한은 0.02%로 하는 것이 바람직하다.The Ti bonds with nitrogen (N) to form fine nitrides, thereby alleviating the coarsening of crystal grains that may occur in the vicinity of the welding fusion wire, thereby suppressing the deterioration of toughness. At this time, if the content of Ti is too low, the effect of suppressing the coarsening can not be sufficiently exerted due to the insufficient number of the Ti nitrides. Therefore, it is preferable that the Ti content is 0.005% or more. However, if the content is excessively large, there is a problem that the effect of the grain boundary fixing is deteriorated due to the formation of a coarse Ti nitride. Therefore, the upper limit is preferably 0.02%.
니오븀(Nb): 0.01~0.1%Niobium (Nb): 0.01 to 0.1%
상기 Nb는 NbC 또는 Nb(C,N)의 형태로 석출하여 모재 및 용접부의 강도를 크게 향상시킨다. 또한, 고온에서 재가열시에 고용된 Nb는 오스테나이트의 재결정 및 페라이트 또는 베이나이트의 변태를 억제하여 조직이 미세화되는 효과를 나타낸다. 따라서, 저장용기 등과 같이 용접 후 응력 풀림 열처리를 거치는 경우에도 모재의강도를 확보하려면 0.01% 이상 포함되는 것이 바람직하다. 그러나 그 함량이 0.1%를 초과하여 과다하게 투입될 경우에는 강재 모서리에 취성 크랙이 나타날 수 있으며 용접열영향부의 인성을 크게 떨어뜨리므로, 0.1%는 넘지 않는 것이 바람직하다.The Nb precipitates in the form of NbC or Nb (C, N), thereby greatly improving the strength of the base material and the welded portion. In addition, Nb solidified at the time of reheating at a high temperature suppresses transformation of austenite and transformation of ferrite or bainite, thereby exhibiting an effect of making the structure finer. Therefore, in order to secure the strength of the base material even in the case of a post-weld stress relaxation heat treatment such as a storage container, it is preferable that the strength is 0.01% or more. However, when the content exceeds 0.1%, excessive brittle cracks may appear on the edge of the steel material, and the toughness of the welded heat affected zone is greatly lowered. Therefore, it is preferable that the content does not exceed 0.1%.
질소(N): 0.006~0.01%Nitrogen (N): 0.006 to 0.01%
상기 N은 상술한 Ti과 결합하여 미세한 질화물을 형성하여 용접 용융선 근처에서 발생할 수 있는 결정립 조대화를 완화하여 인성의 저하를 막는다. 위와 같은 효과를 얻기 위해서는 0.006% 이상으로 N을 함유할 필요가 있다. 그러나 그 함량이 너무 과다하면 인성을 크게 감소시키는 문제가 있으므로, 0.01%는 넘지 않는 것이 바람직하다.The N bonds with the above-mentioned Ti to form a fine nitride, thereby alleviating the coarsening of crystal grains that may occur near the welding fusion wire, thereby preventing a decrease in toughness. In order to obtain the above effect, N should be contained in an amount of 0.006% or more. However, if the content is excessively large, there is a problem that the toughness is greatly reduced. Therefore, it is preferable that the content is not more than 0.01%.
본 발명의 강판은 전술한 합금조성이외에도, 본 발명에서 유리한 물성을 확보할 수 있는 원소들을 더 포함할 수 있다. 바람직한 일예로서, 칼슘(Ca): 0.006% 이하, 바나듐(V): 0.03% 이하, 니켈(Ni): 2.0% 이하, 구리(Cu): 1.0% 이하, 크롬(Cr): 1.0% 이하 및 몰리브덴(Mo): 1.0% 이하 등을 더 포함할 수 있다. 이하, 이들에 대해, 상세히 설명한다. The steel sheet of the present invention may further contain, in addition to the above-described alloy composition, elements capable of ensuring favorable physical properties in the present invention. As a preferable example, it is preferable to use an alloy containing not more than 0.006% of Ca, not more than 0.03% of vanadium, not more than 2.0% of nickel, not more than 1.0% of copper, not more than 1.0% of chromium, (Mo): 1.0% or less, and the like. Hereinafter, these will be described in detail.
칼슘(Ca): 0.006% 이하Calcium (Ca): Not more than 0.006%
상기 Ca는 주로 MnS 개재물의 형상을 제어하고 저온 인성을 향상시키는 원소로 사용된다. 그러나 과도한 Ca 첨가는 다량의 CaO-CaS가 형성 및 결합하여 조대한 개재물을 형성하므로 강의 청정도 저하는 물론 현장 용접성을 해친다. 따라서, 상기 Ca는 0.006% 이하인 것이 바람직하다.The Ca is mainly used as an element which controls the shape of the MnS inclusions and improves the low-temperature toughness. However, excessive Ca addition causes formation of coarse inclusions due to formation and bonding of a large amount of CaO-CaS, thereby deteriorating the weldability of the steel as well as lowering the cleanliness of the steel. Therefore, Ca is preferably 0.006% or less.
바나듐(V): 0.03% 이하Vanadium (V): not more than 0.03%
상기 V는 다른 합금원소에 비해 고용되는 온도가 낮으며, 용접열영향부(HAZ)에 석출하여 강도의 저하를 방지하는 효과가 우수하나, 그 함량이 너무 과다하면 오히려 인성의 저하를 초래하는 문제가 있으므로, 그 함량을 0.03% 이하로 하는 것이 바람직하다.The above V is low in the temperature to be employed as compared with other alloying elements and is excellent in the effect of precipitating on the weld heat affected zone (HAZ) to prevent the strength from lowering. However, if V is too high, , The content thereof is preferably 0.03% or less.
니켈(Ni): 2.0% 이하Nickel (Ni): not more than 2.0%
상기 Ni은 모재의 강도와 인성을 동시에 향상시킬 수 있는 거의 유일한 원소이지만, 고가의 원소이므로 2.0%를 초과하는 것은 경제적인 측면에서 매우 불리할 뿐만 아니라, 용접성도 열화되는 문제가 있다. 따라서, 상기 Ni 첨가시 2.0%를 넘지 않는 것이 바람직하다.The Ni is an almost unique element capable of simultaneously improving the strength and toughness of the base material. However, since it is an expensive element, exceeding 2.0% is not only disadvantageous in terms of economy but also deteriorates the weldability. Therefore, it is preferable that the Ni content does not exceed 2.0%.
구리(Cu): 1.0% 이하Copper (Cu): not more than 1.0%
상기 Cu는 모재의 인성 저하를 최소화하는 동시에, 강의 강도를 향상시킬 수 있는 원소이다. 그러나 너무 과도하게 첨가될 경우에는 제품의 표면 품질을 크게 저하시키는 문제가 있으므로, 1.0% 이하로 포함하는 것이 바람직하다.The Cu is an element capable of minimizing the toughness of the base material and improving the strength of the steel. However, when it is added too much, there is a problem that the surface quality of the product is significantly lowered, so it is preferable that the content is 1.0% or less.
크롬(Cr): 1.0% 이하Cr (Cr): Not more than 1.0%
상기 Cr은 경화능을 증가시켜 강도 향상에 큰 효과가 있다. 그러나 너무 과도하게 첨가하게 되면 용접성을 크게 저하시키는 문제가 있으므로, 그 함량이 1.0%를 넘지 않는 것이 바람직하다.The Cr increases the hardenability and has a great effect on the strength improvement. However, if it is added too much, there is a problem that the weldability is significantly lowered. Therefore, it is preferable that the content does not exceed 1.0%.
몰리브덴(Mo): 1.0% 이하Molybdenum (Mo): not more than 1.0%
상기 Mo은 소량의 첨가만으로도 경화능을 크게 향상시켜 페라이트 상의 형성을 억제하는 효과가 있으며, 강도를 크게 향상시킬 수 있는 원소이다. 그러나 너무 과도하게 첨가될 경우에는 용접부의 경도를 크게 증가시키고 인성을 저해하는 문제가 있으므로, 그 함량은 1.0%를 넘지 않는 것이 바람직하다.The addition of only a small amount of Mo significantly improves the hardenability and has an effect of suppressing the formation of a ferrite phase and is an element capable of greatly improving the strength. However, if it is added too much, there is a problem that the hardness of the welded portion is greatly increased and the toughness is deteriorated. Therefore, the content thereof is preferably not more than 1.0%.
본 발명의 강판은 상기 언급된 합금원소 이외에 나머지는 철(Fe) 성분이다. 다만, 통상의 제조과정에서는 원료 또는 주의 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수 없다. 이들 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 상세히 업근하지 않는다.The steel sheet of the present invention is an iron (Fe) component in addition to the above-mentioned alloying elements. However, the impurities which are not intended from the raw material or the environment of caution can be inevitably incorporated in a normal manufacturing process, and therefore this can not be excluded. Since these impurities can be known to any ordinary technician, they do not fully exploit all of them.
본 발명의 강재는 하기 관계식 1로 정의되는 표면 크랙 민감도 지수(Cs)가 0.3 이하인 것이 바람직하다.The steel material of the present invention preferably has a surface crack sensitivity index (Cs) defined by the following relational expression 1 of not more than 0.3.
[관계식 1][Relation 1]
Cs = (71.4×[C]2) - (30.3×[C]) + 3.32 Cs = (71.4 x [C] 2 ) - (30.3 x [C]) + 3.32
여기서, [C]는 상기 C의 함량인 중량% 값을 의미한다.Here, [C] means the weight% value of the content of C.
앞서 언급한 바와 같이, C는 슬라브 응고 거동에 가장 큰 영향을 미치는 원소로서, 본 발명에서 상기 C 함량이 0.16% 미만이면 상기 관계식 1의 표면 크랙 민감도 지수(Cs)가 0.3을 초과하게 된다. 즉, 슬라브 응고시 상변태 발생 시점에 응고층 강도가 커서 수축을 유발하고, 불균일 응고층을 형성하여 슬라브 표면에 크랙 발생을 용이하게 하는 문제가 있다. 따라서, 표면 크랙 발생이 없는 강재의 제공을 위해서는, 상기 관계식 1의 표면 크랙 민감도 지수(Cs)가 0.3 이하인 것이 바람직하다. 상기 관계식 1의 Cs값은 가능한 작은 것이 바람직하나, 강내에 C이 존재하므로, 상기 Cs 값은 0 초과인 것이 바람직하다.As mentioned above, C has the greatest influence on the slab solidification behavior. In the present invention, when the C content is less than 0.16%, the surface crack sensitivity index (Cs) of the relational expression 1 exceeds 0.3. That is, when the slab is solidified, the solidification layer strength is large at the time of occurrence of the phase transformation, causing shrinkage, and forming a non-uniform solidification layer, thereby facilitating cracks on the surface of the slab. Therefore, in order to provide a steel material free from surface cracking, it is preferable that the surface crack sensitivity index (Cs) of the above-mentioned relational expression 1 is 0.3 or less. The Cs value in the above-mentioned relational expression 1 is preferably as small as possible, but C is present in the shell, and therefore, the Cs value is preferably more than zero.
한편, 본 발명의 강재는 하기 관계식 1로 정의되는 Free-N의 값이 0 초과인 것이 바람직하다.On the other hand, the steel of the present invention preferably has a value of Free-N defined by the following relational expression (1)
[관계식 2][Relation 2]
Free-N = [N] - {([Ti]/47.887)×14.01} - {([B]/10.81)×14.01}Free-N = [N] - {([Ti] /47.887) x 14.01} - {([B] /10.81) x 14.01}
여기서, 상기 [N], [Ti], [B]는 각 N, Ti 및 B의 함량 중량% 값을 의미한다.Here, [N], [Ti], and [B] refer to the weight percent values of N, Ti and B, respectively.
본 발명에서 Nb 첨가로 인해 생성되는 Nb 석출물 일예로, NbC, Nb(C)N 형태의 석출물 등은 응력 풀림 열처리 후 강도를 확보하는데 주요한 역할을 하게 된다. 이때 N은 Ti, Al, B 등과 결합하여, TiN, BN 등의 또다른 형태의 석출물을 우선적으로 형성하여 의도하는 Nb 석출물을 확보하는데 부정적인 영향을 끼칠 수 있다. 이에 상기 Free-N이 0 이하의 수준으로 적을 경우, 충분히 질소계 석출물을 행성하지 못한 Ti와 B 등이 C와 결합하여 조대한 형태의 석출물을 형성할 수 있으므로, 상기 관계식 2로 정의되는 Free-N의 값은 0 초과인 것이 바람직하다. 상기 Free-N의 상한은 특별히 한정하지 않으나, 0.008148 이하인 것이 바람직하다.In the present invention, for example, NbC and Nb (C) N type precipitates, which are produced by adding Nb, play a major role in ensuring strength after stress relaxation heat treatment. At this time, N may be combined with Ti, Al, B, and the like to preferentially form another type of precipitate such as TiN or BN, thereby negatively affecting securing the intended Nb precipitate. When free-N is less than 0, Ti and B, which do not sufficiently form a nitrogen-based precipitate, can bond with C to form a coarse precipitate. Therefore, the free- The value of N is preferably greater than zero. The upper limit of the Free-N is not particularly limited, but is preferably 0.008148 or lower.
본 발명의 강재는 미세조직으로 페라이트-펄라이트 복합조직을 주조직으로 갖는 것이 바람직하다. 상기 페라이트와 펄라이트 복합조직 이외에 베이나이트, 마르텐사이트 등의 제2상은 가급적 생성되지 않는 것이 바람직하다. 상기 베이나이트나 마르텐사이트 조직이 형성되는 경우에 물리적 성질이나 용접 열영향부 물성 등이 전혀 달라지게 되어, 본 발명에서 의도하는 강재 특성을 구현하기 어렵다. 상기 페라이트-펄라이트 복합조직은 면적분율로 펄라이트가 50~75%이고, 나머지는 페라이트인 것이 바람직하다.The steel material of the present invention preferably has a microstructure and a ferrite-pearlite composite structure as a main structure. In addition to the ferrite and pearlite composite structure, it is preferable that the second phase such as bainite or martensite is not generated as much as possible. When the bainite or martensite structure is formed, the physical properties, the physical properties of the weld heat affected zone, and the like are completely different, and it is difficult to realize the steel properties intended in the present invention. It is preferable that the ferrite-pearlite composite structure has an area fraction of 50 to 75% of pearlite and the remainder is ferrite.
본 발명의 강재는 대입열 용접 후 행해지는 응력 풀림 열처리 후, 지름 100㎚ 이하의 크기를 갖는 석출물이 1㎟ 당 1.27×106 개 이상, 단일 결정립 내에 900개 이상의 석출물이 분포하는 것이 바람직하다. 상기 석출물의 분포를 통해, 응력 풀림 열처리 후에도 모재의 강도와 인성의 저하를 방지할 수 있다. Steel material of the present invention is 1.27 × 10 6 per precipitates having a size of stress after annealing heat treatment, the diameter or less 100㎚ performed after substituting hot welding 1㎟ And more than 900 precipitates are distributed in the single crystal grains. Through the distribution of the precipitates, the strength and toughness of the base material can be prevented from lowering even after the stress relaxation heat treatment.
대입열 용접시 용접 열영향부는 용접점으로부터 인접한 정도에 따라 최고 인접부는 용융점에 가까운 고온까지 급속으로 가열되었다가 빠르게 상온으로 냉각이되게 되는데, 이때 베이나이트나 마르텐사이트와 같은 저온상이 생성되기도 하고, 페라이트가 생성되더라도 침상 페라이트와 같이 내부에 응력이 높은 종류의 미세조직이 생성되게 된다. 이러한 용접 열영향부의 미세조직은 취성이 발생하여 강재의 가공이나 사용환경에서 쉽게 파단이 발생하는 문제가 있다, 그래서, 저장탱크, 압력용기, 건축 구조물, 선박 구조물 등의 제조 공정에서 용접부의 응력 풀림 열처리가 행해지고, 이는 용접부 및 열영향부의 응력을 완화시켜 취성(embrittlement)을 줄여 사용환경에서 발생할 수 있는 파단의 가능성을 낮추고자 하는 것이다. 상기 응력 풀림 열처리 조건은 용접 조건 및 강재의 두께에 따라 다양하다. 일예로 중상온용 압력용기 강재인 A516-70의 경우 620℃의 온도에서 120분 동안 열처리 한다.The welded heat affected zone is rapidly heated to a high temperature close to the melting point and then quickly cooled down to room temperature depending on the degree of proximity from the welding point. In this case, a low temperature phase such as bainite or martensite may be generated, Even if ferrite is produced, a kind of microstructure having a high stress is generated in the interior like needle-like ferrite. The microstructure of the welded heat affected zone has a problem that brittleness is generated and it is easily broken in the processing and use environment of the steel. Therefore, in the manufacturing process of the storage tank, the pressure vessel, the building structure and the ship structure, Heat treatment is performed, which is intended to reduce the stress of the welded portion and the heat affected portion to reduce embrittlement, thereby lowering the possibility of fracture in a use environment. The stress relieving heat treatment conditions vary depending on the welding conditions and the thickness of the steel material. For example, A516-70, a medium-temperature pressure vessel steel, is heat-treated at a temperature of 620 ° C for 120 minutes.
상기 응력 풀림 열처리는 상기 용접부나 열영향부가 아닌 모재 자체에는 부정적인 영향을 끼칠 수 있다. 페라이트, 펄라이트 등의 미세조직으로 구성되는 강재의 경우 400~800℃ 수준의 응력 풀림 열처리를 행하게 되면, 탄화물을 포함하는 석출물의 생성 및 조대화가 활발하게 일어날 수 있게 되는데, 이러한 탄화물은 시간에 비례하여 탄화물의 조대화가 발생 및 기지 조직 내의 탄화 농도의 감소가 발생하여 전체적인 강도의 저하가 발샐할 수 있다. 따라서, 용접 및 응력 풀림 열처리에 의해 강도가 모재 강도 저하를 방지하기 위해 탄화물을 포함하는 석출물의 형성을 적절히 관리하는 것이 필요하다.The stress relieving heat treatment may have a negative influence on the base material itself, not the welded portion or the heat affected portion. Ferrite, and pearlite, the formation and coarsening of precipitates including carbide can be actively performed by performing the stress relaxation heat treatment at a temperature of 400 to 800 ° C. Such a carbide is proportional to time So that the coarsening of the carbide occurs and the concentration of carbonization in the base structure is reduced, so that the overall strength can be lowered. Therefore, it is necessary to appropriately manage the formation of precipitates containing carbide in order to prevent the strength of the base material from lowering by the welding and stress annealing heat treatment.
한편, 강재에 파단이 발생하면 통상 입계나 연질상(phase) 또는 편석대를 따라 전파가 진행되는데, 상기 100㎚ 이하의 크기를 갖는 미세 석출물은 강재의 파단이 발생할 때 파단의 전파를 방해하는 역할을 하여 강재의 강도와 인성을 향상시키는 효과가 있다. 본 발명의 강재의 기지조직은 페라이트-펄라이트를 가지므로, 상대적으로 연질인 페라이트 조직이 파단에 취약하지만, 많은 경우 펄라이트 밴드를 따라 파단이 진행되기도 하므로, 상기 미세 석출물은 기지 조직과 관계없이 고르게 분포 되어 있는 것이 바람직하다. On the other hand, when the steel material is broken, propagation generally proceeds along the grain boundary, the soft phase, or the segregation zone. The fine precipitate having a size of 100 nm or less obstructs the propagation of the fracture when the steel material is broken Thereby improving the strength and toughness of the steel material. Since the base structure of the steel material of the present invention has a ferrite-pearlite structure, the relatively soft ferrite structure is vulnerable to fracture, but in many cases, fracture progresses along the pearlite band. Therefore, the fine precipitates are uniformly distributed .
그러나 석출물이 Fe3C, VC, MoC, Ce23C6 등과 같이 조대한 형태로 생성되거나, 미세한 크기로 형성되더라도 석출물의 조대화가 발생하는 경우에는 파단 전파 방해의 역랄에 큰 기여를 하지 못할 뿐만 아니라, 오히려 파단의 시작점으로 작용하여 강도와 인성을 저하시키는 역할을 할 수 있으므로, 상기 석출물의 크기가 미세하고, 적절하게 분포되는 것이 중요하다.However, even if precipitates are formed in a coarse form such as Fe 3 C, VC, MoC, and Ce 23 C 6 or formed into a fine size, coarsening of the precipitates may not contribute to the bad effect of the breaking interference Rather, it acts as a starting point of fracture to reduce strength and toughness, so it is important that the size of the precipitate is fine and appropriately distributed.
특히, 단일 페라이트 또는 펄라이트 내의 특정 위치에 집중되어 있는 것보다, 단일 결정립 내에 900개 이상으로 고르게 분포되는 것이 강도와 충격 인성의 향상에 바람직하다. Particularly, it is preferable to distribute evenly more than 900 pieces in a single crystal grain, rather than being concentrated at a specific position in a single ferrite or a pearlite, in order to improve strength and impact toughness.
본 발명의 상기 석출물은 Nb계 탄화물인 것이 바람직하다. 보다 바람직하게는 NbC이다. 상기 Nb계 탄화물은 상대적으로 저온인 600~700℃ 온도대(오스테나이트에서 페라이트 변태점 직하 온도대)에서 주로 생성 및 성장이 이루어지며, 그 과정에서 강도의 저하 및 페라이트 입성장을 억제하는 역할을 한다. The precipitate of the present invention is preferably Nb-based carbide. More preferably, it is NbC. The Nb-based carbide is mainly produced and grown at a relatively low temperature of 600 to 700 ° C (austenite-to-ferrite transformation point direct lower temperature zone), and in the process, it acts to suppress the strength and ferrite grain growth .
한편, 본 발명의 강재는 종래의 강재보다 소입성이 향상된 강재로서, 급격한 수냉 등을 실시하지 않더라도 목적하는 조직을 강재 내부에 형성시킬 수 있다. 다만, 강재의 소입성이 향상되어 내부에 경질조직이 용이하게 형성될 경우에는 저온인성이 악화되는 경우가 대부분인데, 본 발명에서는 상기 강재의 바람직한 조직형태를 규정함으로써 강재의 소입성이 향상되더라도 저온인성 특성이 악화되는 것을 방지하는 효과가 있다.On the other hand, the steel material of the present invention is a steel material having improved sinterability compared to the conventional steel material, and a desired structure can be formed in the steel material without rapid water cooling or the like. However, when the hardness of the steel material is improved and the hard texture is easily formed, the low temperature toughness is often deteriorated. In the present invention, by specifying the preferable structure of the steel material, There is an effect of preventing deterioration of toughness characteristics.
본 발명의 강재는 용접 구조물 제작 이후에 응력 풀림 열처리(예를 들어, 620℃에서 120분)를 실시한 후에도 모재의 인장강도 500MPa 이상, 0℃에서의 샤르피 충격에너지가 150J 이상으로 우수할 뿐만 아니라, 용접열영향부(HAZ)의 미세조직 중 도상 마르텐사이트 분율이 3% 이하로서 0℃ 샤르피 충격에너지가 100J 이상의 우수한 충격인성을 갖는다.The steel material of the present invention is excellent not only in tensile strength of the base material of 500 MPa or more and a Charpy impact energy at 0 캜 of 150 J or more even after a stress annealing process (for example, at 620 캜 for 120 minutes) The microstructure of the welded heat affected zone (HAZ) has an impact martensite fraction of 3% or less and excellent impact toughness at a temperature of 0 ° C and a impact energy of 100 J or more.
이하에서는, 본 발명에 따른 강재를 제조하는 방법에 대하여 상세히 설명한다. 하기의 제조방법은 본 발명의 강판을 제조할 수 있는 바람직한 일 예를 나타낸 것이며, 이에 한정되는 것은 아니다.Hereinafter, a method of manufacturing a steel material according to the present invention will be described in detail. The following production method is a preferred example for producing the steel sheet of the present invention, but the present invention is not limited thereto.
본 발명의 제조방법은 전술한 합금 조성을 만족하는 강 슬라브를 준비하여, 가열하고, 열간압연 및 냉각공정을 포함한다. 이하, 각 과정에 대해서 상세히 설명한다. The manufacturing method of the present invention includes preparing a steel slab satisfying the above-described alloy composition, heating, and hot rolling and cooling the steel slab. Hereinafter, each process will be described in detail.
먼저, 전술한 합금 조성을 갖는 강 슬라브를 준비한 후, 상기 강 슬라브를 가열한다. 이때 1050~1250℃의 온도범위에서 가열하는 것이 바람직하다. 상기 가열은 1050℃ 이상에서 실시함이 바람직한데, 이는 주조 중에 형성된 Ti 및/또는 Nb 탄·질화물을 고용시키기 위함이다. 즉, 주조 중에 형성된 Ti 및/또는 Nb 탄·질화물을 충분히 고용시키기 위해서는 1050℃ 이상에서 가열할 필요가 있다. 다만, 너무 과다하게 높은 온도로 가열할 경우에는 오스테나이트가 조대화 될 수 있으므로, 이를 고려하여 상기 재가열 온도를 1250℃ 이하로 제한하는 것이 바람직하다.First, a steel slab having the above-described alloy composition is prepared, and then the steel slab is heated. At this time, it is preferable to heat in a temperature range of 1050 to 1250 캜. The heating is preferably carried out at a temperature of 1050 DEG C or higher, in order to solidify Ti and / or Nb carbonitride formed during casting. That is, in order to sufficiently solidify the Ti and / or Nb carbonitride formed during the casting, it is necessary to heat at 1050 ° C or higher. However, in case of heating to an excessively high temperature, the austenite may be coarsened, and therefore, it is preferable to limit the reheating temperature to 1250 ° C or less.
상기 가열된 강 슬라브를 열간 압연한다. 열간 압연은 상기 가열된 강 슬라브를 통상의 조건으로 조압연한 후 일정 온도에서 열간 마무리 압연하여 열간압연된 강판을 제조하는 것이 바람직하다. 이때 열간 마무리 압연은 910℃ 이하에서 행한다. 상기 열간 마무리 압연은 오스테나이트 조직을 불균일 미세조직으로 변태시키기 위한 것으로서, 상기 열간 마무리 압연 온도가 910℃를 초과하게 되면 조대한 조직이 형성되어 충격인성이 악화되는 문제가 있다. 보다 유리하게는 850~910℃의 온도범위에서 실시함이 보다 바람직하다. 압연 종료 온도가 850℃ 미만으로 낮아지면 판재의 형상을 제어하기가 어려워지는 문제가 있다.The heated steel slab is hot-rolled. The hot-rolled steel sheet is preferably subjected to rough rolling of the heated steel slab under normal conditions, and then hot-rolled at a predetermined temperature to produce a hot-rolled steel sheet. At this time, the hot finish rolling is performed at 910 占 폚 or lower. The hot finish rolling is for transforming the austenite structure into a nonuniform microstructure. When the hot finish rolling temperature exceeds 910 占 폚, coarse texture is formed and the impact toughness is deteriorated. More preferably in a temperature range of 850 to 910 < 0 > C. If the rolling finish temperature is lowered to less than 850 占 폚, there is a problem that it becomes difficult to control the shape of the plate material.
상기 열간 마무리 압연하여 얻은 열연 강판을 냉각함이 바람직한데, 이때 냉각은 통상의 공냉 수준보다 더 낮은 저속 냉각을 행하는 것이 바람직하다. 특히, 800~435℃의 온도구간에서 20℃/Hr 이하의 냉각속도로 냉각하는 것이 바람직하다. 이는 본 발명 강재의 최적 강도와 인성을 안정적으로 확보할 수 있다. 상기 온도구간은 석출물들이 생성되어 성장하는 주요 온도구간이다. 상기 냉각속도는 1℃/Hr 이상인 것이 바람직하다. 본 발명의 강재가 응력 풀림 열처리 전후의 강도와 인성을 확보하기 위해 석출물의 목표 분율과 분포를 확보하기 위하서는 최소한의 열학적인 구동력을 상기 냉각 과정을 통해 확보할 수 있다. 상기와 같은 서냉을 구현하는 방법으로는 별도의 보낸 설비를 행하는 방법도 있고, 별도의 보온 설비 없이 열간 압연을 마친 유사한 치수의 강판을 다단으로 적치하는 방법으로도 달성할 수 있다. Preferably, the hot-rolled steel sheet obtained by the hot-rolling is cooled, and the cooling is preferably performed at a low-speed cooling lower than a normal air-cooling level. Particularly, it is preferable to cool at a cooling rate of 20 ° C / Hr or less in a temperature range of 800 to 435 ° C. This makes it possible to stably secure the optimum strength and toughness of the steel material of the present invention. The temperature interval is a main temperature interval in which precipitates are generated and grown. The cooling rate is preferably 1 ° C / Hr or more. In order to ensure the strength and toughness of the steel material before and after the stress relaxation annealing process, the minimum cooling power can be ensured through the cooling process in order to secure the target fraction and distribution of precipitates. As a method of implementing the slow cooling as described above, there is a method of separately sending equipment, and a method of stacking steel plates of similar dimensions after completion of hot rolling without a separate warming equipment can be achieved.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail by way of examples. It should be noted, however, that the embodiments described below are for illustrating and embodying the present invention, and not for limiting the scope of the present invention. And the scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.
(실시예)(Example)
하기 표 1에 나타낸 성분조성을 갖는 강 슬라브를 준비한 후, 하기 표 2의 조건으로 조건으로 각각의 강 슬라브를 압연한 후 냉각하여 열연강판을 제조하였다.Steel slabs having the composition shown in the following Table 1 were prepared, and then each steel slab was rolled under the conditions shown in Table 2 below and then cooled to produce a hot-rolled steel sheet.
구분division CC MnMn SiSi AlAl PP SS TiTi NbNb NN NiNi CuCu CrCr MoMo VV CaCa 식(1)Equation (1) 식(2)Equation (2)
강종 ASteel A 0.1660.166 1.411.41 0.180.18 0.0210.021 0.0110.011 0.0010.001 0.0160.016 0.0140.014 0.00770.0077 -- -- -- -- 0.01450.0145 0.00190.0019 0.260.26 0.00300.0030
강종 BGrade B 0.1850.185 1.381.38 0.140.14 0.0380.038 0.0090.009 0.0020.002 0.0180.018 0.0160.016 0.00790.0079 -- -- -- -- -- -- 0.160.16 0.00260.0026
강종 CGrade C 0.1710.171 1.381.38 0.1670.167 0.0240.024 0.010.01 0.0020.002 0.0180.018 0.0140.014 0.00650.0065 -- -- -- -- 0.0160.016 -- 0.230.23 0.00120.0012
강종 DGrade D 0.170.17 1.31.3 0.150.15 0.0350.035 0.0130.013 0.0020.002 0.0170.017 0.0070.007 0.00750.0075 0.40.4 -- 0.30.3 -- -- -- 0.230.23 0.00250.0025
강종 ESteel E 0.190.19 1.451.45 0.170.17 0.0130.013 0.0120.012 0.0020.002 0.020.02 0.0040.004 0.0080.008 0.30.3 0.20.2 -- 0.10.1 -- -- 0.140.14 0.00210.0021
강종 FGrade F 0.180.18 1.421.42 0.260.26 0.0310.031 0.0050.005 0.00040.0004 0.0120.012 0.0260.026 0.00270.0027 0.230.23 0.170.17 0.0520.052 0.0890.089 0.0150.015 0.00170.0017 0.180.18 -0.0008-0.0008
강종 GGrade G 0.1720.172 1.31.3 0.40.4 0.0240.024 0.0130.013 0.0050.005 0.0150.015 0.040.04 0.0070.007 -- -- 0.50.5 -- -- -- 0.220.22 0.00260.0026
(상기 표 1의 성분은 중량%이며, 나머지는 Fe와 불가피한 불순물로 이루어진다. 한편, 표 1에서 식(1) 및 (2)는 각각 관계식 1과 2를 의미한다.)(The components in Table 1 are% by weight, and the remainder is composed of Fe and unavoidable impurities.) In Table 1, the expressions (1) and (2) mean relational expressions 1 and 2, respectively.
강종Steel grade 슬라브 가열온도(℃)Slab heating temperature (℃) 열간 마무리 압연 온도(℃)Hot finish rolling temperature (℃) 냉각 속도(℃/Hr)Cooling rate (° C / Hr) 비고Remarks
강종 ASteel A 11371137 905905 2020 발명예 1Inventory 1
11421142 895895 2020 발명예 2Inventory 2
11461146 931931 2020 비교예 1Comparative Example 1
강종 BGrade B 11801180 890890 2020 발명예 3Inventory 3
10241024 889889 2020 비교예 2Comparative Example 2
12701270 893893 2020 비교예 3Comparative Example 3
강종 CGrade C 11801180 867867 2020 발명예 4Honorable 4
11621162 920920 2020 비교예 4Comparative Example 4
11541154 880880 6060 비교예 5Comparative Example 5
강종 DGrade D 11701170 952952 2020 비교예 6Comparative Example 6
11751175 909909 2020 비교예 7Comparative Example 7
11401140 873873 2020 비교예 8Comparative Example 8
강종 ESteel E 11001100 873873 2020 비교예 9Comparative Example 9
11851185 884884 2020 비교예 10Comparative Example 10
강종 FGrade F 11461146 878878 2020 비교예 11Comparative Example 11
11521152 875875 2020 비교예 12Comparative Example 12
11371137 867867 2020 비교예 13Comparative Example 13
강종 GGrade G 11701170 880880 2020 비교예 14Comparative Example 14
11571157 878878 2020 비교예 15Comparative Example 15
상기와 같이 제조된 강재에 대해서 200kJ/㎝로 용접을 실시한 후, 620℃에서 120분간 유지하는 응력 풀림 열처리를 실시하였다.The steel material thus produced was welded at 200 kJ / cm and subjected to a stress relaxation heat treatment in which the steel material was held at 620 占 폚 for 120 minutes.
상기 열처리 후, 모재의 미세조직 및 100nm 이하의 석출물 분포와 결정립 내 존재하는 석출물 개수를 측정하고, 인장강도와 충격인성을 측정하여 그 결과를 표 3에 나타내었다. 또한, 용접열영향부의 충격인성과 도상 마르텐사이트 분율을 측정하여 그 결과를 표 3에 함께 나타내었다. 한편, 상기 충격인성은 0℃에서 샤르피 V-노치(Charpy V-notch) 충격시험을 실시하여 측정하였다. 상기 도상 마르텐사이트 분석은 Le-Pera 에칭을 실시한 후 Point-counting 방법을 활용하여 도상 마르텐사이트로 추정되는 위치와 상대 면적 분율을 측정하였다.After the heat treatment, the microstructure of the base material, the distribution of precipitates of 100 nm or less and the number of precipitates present in the crystal grains were measured, and tensile strength and impact toughness were measured. The results are shown in Table 3. The impact toughness and the martensite fraction of the welded heat affected zone were measured, and the results are shown in Table 3. The impact toughness was measured by Charpy V-notch impact test at 0 캜. The above-mentioned on-road martensite analysis was carried out by Le-Pera etching and then the position and relative area fraction estimated by using point-counting method were measured.
Figure PCTKR2018016522-appb-T000001
Figure PCTKR2018016522-appb-T000001
상기 표 3에서 F는 페라이트를, P는 펄라이트를 의미한다.In Table 3, F means ferrite and P means pearlite.
한편, 도 2는 상기 발명예 1의 석출물을 TEM으로 관찰하고, 석출물의 사이즈(nm)를 나타낸 것이다. 도 2에 나타난 바와 같이, 본 발명의 발명예 1은 100㎚ 이하의 NbC 석출물이 고르게 형성되는 것을 알 수 있다. 반면, 도 3은 상기 비교예 6의 석출물을 TEM으로 관찰하고, 석출물의 사이즈(nm)를 나타낸 것으로, 비교예 6은 조대한 FeC 석출물이 형성된 것을 알 수 있다.On the other hand, Fig. 2 shows the size (nm) of the precipitate of the precipitate of Inventive Example 1 observed by TEM. As shown in FIG. 2, Inventive Example 1 of the present invention shows that NbC precipitates of 100 nm or less are uniformly formed. On the other hand, FIG. 3 shows the precipitate of Comparative Example 6 observed by TEM and the size (nm) of the precipitate. In Comparative Example 6, coarse FeC precipitates were formed.
상기 표 3의 결과에서 발명예의 경우에는 용접 후 응력 풀림 열처리 후에도모재가 높은 강도와 충격인성을 확보할 뿐만 아니라, 용접열영향부(HAZ)도 높은 충격인성을 확보할 수 있음을 알 수 있다. 즉, 본 발명의 강재는 대입열 용접시에도 HAZ의 인성을 우수하게 확보할 수 있으며, 표면 크랙 등의 결함이 없는 강재를 제조할 수 있다.From the results of Table 3, it can be seen that not only the base material secures high strength and impact toughness but also high impact toughness of the weld heat affected zone (HAZ) even after the stress relaxation heat treatment after welding in the case of the invention example. That is, the steel material of the present invention can secure the toughness of the HAZ even when it is welded by large heat, and can produce a steel material free from defects such as surface cracks.
비교예 1 및 4는 본 발명의 합금 조성을 충족하지만, 열간 마무리 압연 온도가 너무 높게 형성되어, 미세조직의 조대화로 인해 모재의 충분한 인성을 확보하지 못하였다. 도 1의 (a) 및 (b)는 각각 상기 발명예 1과 비교예 1의 모재 미세조직을 관찰한 사진이다. 모두 페라이트와 펄라이트로 이루어진 것은 동일하지만 비교예 1의 경우에는 입도가 조대하여 충격인성 하락에 영향을 끼친 것으로 생각된다.Comparative Examples 1 and 4 satisfied the alloy composition of the present invention, but the hot finish rolling temperature was too high to ensure sufficient toughness of the base material due to microstructure coarsening. Figs. 1 (a) and 1 (b) are photographs showing the microstructure of the base material of Inventive Example 1 and Comparative Example 1, respectively. All of the ferrite and pearlite were the same, but in the case of Comparative Example 1, it was considered that the impact strength was affected by the coarsening of the particle size.
비교예 2 및 3도 본 발명의 합금 조성을 충족되지만, 슬라브 가열 온도가 본 발명의 범위를 벗어나서, Nb 등의 고온에서 오스테나이트 입도 성장을 억제하는 원소가 충분히 고용되지 않거나, 높은 온도로 인해 오스테나이트의 입도가 과도하게 조대화되어 모재의 강도와 충격인성을 떨어뜨리는 결과가 발생하였다. 비교예 5의 경우는 열간 압연 후 강재의 냉각속도가 본 발명에서 제안된 범위를 벗어나서 냉각되면서, 강재의 석출물이 확보되지 못하여 본 발명에서의 강도를 얻지 못하였다.Comparative Examples 2 and 3 also satisfy the alloy composition of the present invention, but the slab heating temperature is outside the scope of the present invention, so that the elements inhibiting austenite grain growth at high temperatures such as Nb are not sufficiently dissolved, So that the strength and impact toughness of the base material are lowered. In the case of Comparative Example 5, since the cooling rate of the steel after the hot rolling was out of the range proposed in the present invention, precipitates of the steel could not be secured and the strength in the present invention could not be obtained.
한편, 비교예 6 내지 10은 강재에서 Nb의 함량이 충분하지 못하여, C이 조대한 시멘타이트 입자나 MoC 등으로 석출됨으로써, 충분한 강도를 확보하지 못하고, HAZ의 인성도 확보하지 못하는 것을 알 수 있다. 비교예 11 내지 13은 강재의 N 함량이 본 발명의 범위에 미치지 않는 동시에, 관계식 2로 정의되는 Free-N이 본 발명의 조건을 충족하지 못하면서, MoC, Fe3C, VC 등의 조대한 석출물이 형성되고, 석출물의 분포가 본 발명과 상이하여 HAZ의 충격인성이 열위한 것을 알 수 있다. 비교예 14 및 15는 Si의 함량이 본 발명의 범위를 초과하여, 모재의 물성은 본 발명에서 의도하는 범위와 일치하나, HAZ의 도상 마르텐사이트의 분율이 과도하여 HAZ의 충격 인성이 열위해지는 결과를 얻었다.On the other hand, in Comparative Examples 6 to 10, since the content of Nb in the steel material is not sufficient, C is deposited on the coarse cementite particles or MoC or the like, so that sufficient strength can not be ensured and the toughness of HAZ can not be secured. In Comparative Examples 11 to 13, the N content of the steel material did not fall within the range of the present invention, and coarse precipitates such as MoC, Fe 3 C and VC, etc., And the distribution of the precipitates is different from the present invention, so that the impact toughness of the HAZ is heated. In Comparative Examples 14 and 15, the Si content exceeded the range of the present invention, and the physical properties of the base material were consistent with the intended range of the present invention, but the fraction of the martensite on the surface of the HAZ was excessive and the impact toughness of the HAZ was weakened .

Claims (10)

  1. 중량%로, C: 0.16~0.20%, Mn: 1.0~1.5%, Si: 0.3% 이하(0은 제외), Al: 0.005~0.5%, P: 0.02% 이하, S: 0.01% 이하, Ti: 0.005~0.02%, Nb: 0.01~0.1%, N: 0.006~0.01%를 포함하며, Al: 0.005-0.5%, P: 0.02% or less, S: 0.01% or less, Ti: 0.1 to 0.20%, C: 0.16 to 0.20%, Mn: 1.0 to 1.5% 0.005 to 0.02%, Nb: 0.01 to 0.1%, and N: 0.006 to 0.01%
    Ca: 0.006% 이하, V: 0.03% 이하, Ni: 2.0% 이하, Cu: 1.0% 이하, Cr: 1.0% 이하 및 Mo: 1.0% 이하로 구성되는 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하고, At least one selected from the group consisting of Ca: not more than 0.006%, V: not more than 0.03%, Ni: not more than 2.0%, Cu: not more than 1.0%, Cr: not more than 1.0%, and Mo: not more than 1.0% Containing impurities,
    미세조직은 페라이트-펄라이트 복합조직으로 이루어지고, The microstructure is composed of a ferrite-pearlite composite structure,
    용접 및 응력 풀림 열처리 후, 상기 미세조직은 100㎚ 이하의 석출물이 1㎟당 1.27×106 개 이상 존재하고, 단일 결정립 내에서 900개 이상 분포하는 용접열영향부 인성이 우수한 고강도 강재.After the welding and stress relieving heat treatment, the microstructure had a precipitate of 100 nm or less of 1.27 x 10 < 6 > And more than 900 in a single grain. Welded heat affected zone High strength steel excellent in toughness.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 석출물은 Nb계 탄화물인 용접열영향부 인성이 우수한 고강도 강재.The precipitates are Nb-based carbides, and are excellent in toughness at the weld heat affected zone.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 강재는 하기 관계식 1로 정의되는 표면 크랙 민감도 지수(Cs)가 0.3 이하인 용접열영향부 인성이 우수한 고강도 강재.Wherein the steel material has a surface crack sensitivity index (Cs) of 0.3 or less as defined by the following relational expression 1:
    [관계식 1][Relation 1]
    Cs = (71.4×[C]2) - (30.3×[C]) + 3.32 Cs = (71.4 x [C] 2 ) - (30.3 x [C]) + 3.32
    (상기 [C]는 해당 성분의 중량% 함량임)([C] is the weight% content of the component)
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 강재는 하기 관계식 2로 정의되는 Free-N이 0을 초과하는 용접열영향부 인성이 우수한 고강도 강재.The steel material is excellent in toughness of weld heat affected zone where Free-N exceeding 0, which is defined by the following relational expression 2, is high strength steel.
    [관계식 2][Relation 2]
    Free-N = [N] - {([Ti]/47.887)×14.01} - {([B]/10.81)×14.01}Free-N = [N] - {([Ti] /47.887) x 14.01} - {([B] /10.81) x 14.01}
    (상기 [N], [Ti], [B]는 해당 성분의 중량% 함량임)([N], [Ti], and [B] are weight% contents of the corresponding components)
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 강재는 응력 풀림 열처리 후에도 인장강도 500MPa 이상, 0℃에서의 샤르피 충격흡수에너지가 150J 이상인 용접열영향부 인성이 우수한 고강도 강재.The steel material has a tensile strength of 500 MPa or more and a Charpy impact absorption energy of 150 J or more at 0 캜 even after the stress relaxation heat treatment.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 강재의 용접열영향부는 도상 마르텐사이트(MA)가 면적분율로 3% 이하인 용접열영향부 인성이 우수한 고강도 고강도 강재.The high-strength and high-strength steel material excellent in weld heat-affected portion toughness having an area fraction of martensite (MA) of not more than 3% as a weld heat affected portion of the steel.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 강재는 대입열 용접 후 용접열영향부가 0℃에서의 샤르피 충격흡수에너지가 100J 이상인 용접열영향부 인성이 우수한 고강도 강재.The steel material has a Charpy impact absorption energy of 100 J or more at 0 ° C after welding heat welding, and a welded heat-affected part has excellent toughness at weld heat-affected zone.
  8. 중량%로, C: 0.16~0.20%, Mn: 1.0~1.5%, Si: 0.3% 이하(0은 제외), Al: 0.005~0.5%, P: 0.02% 이하, S: 0.01% 이하, Ti: 0.005~0.02%, Nb: 0.01~0.1%, N: 0.006~0.01%를 포함하며, Al: 0.005-0.5%, P: 0.02% or less, S: 0.01% or less, Ti: 0.1 to 0.20%, C: 0.16 to 0.20%, Mn: 1.0 to 1.5% 0.005 to 0.02%, Nb: 0.01 to 0.1%, and N: 0.006 to 0.01%
    Ca: 0.006% 이하, V: 0.03% 이하, Ni: 2.0% 이하, Cu: 1.0% 이하, Cr: 1.0% 이하 및 Mo: 1.0% 이하로 구성되는 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 준비하는 단계; At least one selected from the group consisting of Ca: not more than 0.006%, V: not more than 0.03%, Ni: not more than 2.0%, Cu: not more than 1.0%, Cr: not more than 1.0%, and Mo: not more than 1.0% Preparing a steel slab containing impurities;
    상기 강 슬라브를 1050~1250℃의 온도범위에서 가열하는 단계;Heating the steel slab in a temperature range of 1050 to 1250 占 폚;
    상기 가열된 강 슬라브를 열간 마무리 압연 온도 910℃ 이하에서 열간 압연하는 단계; 및Hot rolling the heated steel slab at a hot finish rolling temperature of 910 占 폚 or lower; And
    상기 열연 압연 후 20℃/Hr 이하의 냉각속도로 냉각하는 단계After the hot rolling, cooling is performed at a cooling rate of 20 DEG C / Hr or less
    를 포함하는 용접열영향부 인성이 우수한 고강도 강재의 제조방법.Wherein the welded heat affected zone toughness is excellent.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 열간 마무리 압연은 850~910℃의 온도범위에 행하는 용접열영향부 인성이 우수한 고강도 강재의 제조방법.Wherein the hot rolling is performed in a temperature range of 850 to 910 占 폚.
  10. 청구항 8에 있어서,The method of claim 8,
    상기 냉각은 800~435℃의 온도구간에서 20℃/Hr 이하의 냉각속도로 행하는 용접열영향부 인성이 우수한 고강도 강재의 제조방법.Wherein the cooling is performed at a cooling rate of 20 ° C / Hr or less in a temperature range of 800 to 435 ° C.
PCT/KR2018/016522 2017-12-24 2018-12-21 High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof WO2019125075A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/957,454 US20200325562A1 (en) 2017-12-24 2018-12-21 High-strength steel with excellent toughness of heat-affected zone and manufacturing method thereof
EP18891918.7A EP3730644B1 (en) 2017-12-24 2018-12-21 High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof
CN201880084245.3A CN111542632A (en) 2017-12-24 2018-12-21 High-strength steel material having excellent toughness in weld heat-affected zone and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178934A KR101999016B1 (en) 2017-12-24 2017-12-24 High strength steel having excellent heat affected zone toughness and method for manufacturing the same
KR10-2017-0178934 2017-12-24

Publications (1)

Publication Number Publication Date
WO2019125075A1 true WO2019125075A1 (en) 2019-06-27

Family

ID=66993742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016522 WO2019125075A1 (en) 2017-12-24 2018-12-21 High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20200325562A1 (en)
EP (1) EP3730644B1 (en)
KR (1) KR101999016B1 (en)
CN (1) CN111542632A (en)
WO (1) WO2019125075A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140582A (en) 1997-11-11 1999-05-25 Kawasaki Steel Corp High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2004091860A (en) * 2002-08-30 2004-03-25 Kobe Steel Ltd Weld metal for low-alloy heat-resisting steel
JP2005171326A (en) * 2003-12-11 2005-06-30 Nippon Steel Corp High-carbon steel rail superior in surface damage resistance and interior-fatigue-damage resistance
KR20100061601A (en) * 2008-11-29 2010-06-08 주식회사 포스코 High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same
KR20120014413A (en) * 2010-08-09 2012-02-17 주식회사 포스코 High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR20160130312A (en) * 2014-04-17 2016-11-10 가부시키가이샤 고베 세이코쇼 Welded metal having excellent strength, toughness and sr cracking resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368242B1 (en) * 2000-08-02 2003-02-06 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR20160078772A (en) * 2014-12-24 2016-07-05 주식회사 포스코 The steel sheet having excellent heat affected zone toughness and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140582A (en) 1997-11-11 1999-05-25 Kawasaki Steel Corp High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2004091860A (en) * 2002-08-30 2004-03-25 Kobe Steel Ltd Weld metal for low-alloy heat-resisting steel
JP2005171326A (en) * 2003-12-11 2005-06-30 Nippon Steel Corp High-carbon steel rail superior in surface damage resistance and interior-fatigue-damage resistance
KR20100061601A (en) * 2008-11-29 2010-06-08 주식회사 포스코 High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same
KR20120014413A (en) * 2010-08-09 2012-02-17 주식회사 포스코 High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR20160130312A (en) * 2014-04-17 2016-11-10 가부시키가이샤 고베 세이코쇼 Welded metal having excellent strength, toughness and sr cracking resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730644A4

Also Published As

Publication number Publication date
EP3730644A4 (en) 2020-10-28
EP3730644B1 (en) 2024-06-26
KR101999016B1 (en) 2019-07-10
KR20190077186A (en) 2019-07-03
EP3730644A1 (en) 2020-10-28
CN111542632A (en) 2020-08-14
US20200325562A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2017111526A1 (en) Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
WO2017105107A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
WO2019132478A1 (en) Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2019107700A1 (en) High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2019124945A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2016105002A1 (en) Low-temperature steel sheet with excellent surface processing quality and method for manufacturing same
WO2018088761A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2020111874A2 (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2017105109A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2020111628A1 (en) Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2019124814A1 (en) Steel sheet having excellent hydrogen induced cracking resistance and longitudinal strength uniformity, and manufacturing method therefor
WO2019132262A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
WO2017111443A1 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
WO2020130436A2 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2020032493A1 (en) Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
WO2023121179A1 (en) Ultrathick steel materials for flange having excellent strength and low temperature impact toughness, and manufacturing method therefor
WO2019125075A1 (en) High-strength steel with excellent toughness of welding heat affected zone and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891918

Country of ref document: EP

Effective date: 20200724