WO2019124790A1 - 소결광 제조 장치 및 방법 - Google Patents

소결광 제조 장치 및 방법 Download PDF

Info

Publication number
WO2019124790A1
WO2019124790A1 PCT/KR2018/014765 KR2018014765W WO2019124790A1 WO 2019124790 A1 WO2019124790 A1 WO 2019124790A1 KR 2018014765 W KR2018014765 W KR 2018014765W WO 2019124790 A1 WO2019124790 A1 WO 2019124790A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
raw material
maximum current
sintering
measured
Prior art date
Application number
PCT/KR2018/014765
Other languages
English (en)
French (fr)
Inventor
정은호
박종인
조병국
유종우
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019124790A1 publication Critical patent/WO2019124790A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/02Sintering grates or tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0075Regulation of the charge quantity

Definitions

  • the present invention relates to an apparatus and a method for producing sintered ores.
  • fine iron ore is sintered and manufactured to a size suitable for use in a furnace.
  • mixing and humidity raw material weight ratio of about 7 ⁇ 8%
  • additives and solid fuel partial coke or anthracite
  • the sintered light thus produced is cooled in a cooler through a crusher of a light pipe, and the sintered light having a particle size that is easy to charge and react in the blast furnace is transferred to a blast furnace, It is classified into semi-light and used again as raw material for sinter.
  • the temperature distribution of the exhaust gas under the sintering furnace is as shown in Fig. 1, that is, after ignition of the solid fuel contained in the sintering raw material in the ignition furnace,
  • the sludge blanket operation is ideally performed to the exhaust gas temperature distribution target as shown in Fig. 1, since the bogie becomes thicker and the burning zone approaches the bottom, and the bogie speed is controlled so as to be the light distribution.
  • BTP Battery Though Point
  • the temperature distribution of the exhaust gas is measured through a thermometer provided in a plurality of windboxes at the rear end of the sintering machine to determine the position where the sintering is completed in the sintering vehicle, and a second or third polynomial regression equation After calculating the exhaust gas temperature curve, calculate the BTP position as the maximum temperature position. Also, if the current BTP and the target BTP are significantly different from each other, the bollard speed is controlled by calculating the increase / decrease amount of the sintered bogie to move the current BTP to the target BTP.
  • thermometer is installed in a plurality of windboxes arranged in the longitudinal direction of the sintering machine to determine the representative temperature.
  • the sintering width of large sintering machine is as wide as 4 ⁇ 5 m. Therefore, the distribution of combustion zone differs in width direction due to the loading deviation and wind box suction force variation, and the exhaust gas temperature distribution directly under the sintering station is also different. Particularly, even if a temperature deviation in the width direction is generated in the lower portion of the sintering machine, the wind box is measured in a manner similar to the state in which there is no deviation since the exhaust gas is mixed and the average temperature is measured.
  • the BTP since the BTP is calculated by the second- or third-order polynomial regression formula, the BTP changes sensitively to the temperature change in the vicinity of the BTP, and as the target BTP position moves to the rear end, As a result, there is a problem that it is difficult to automatically control the sintering bogie because the coherence of the BTP position is deteriorated.
  • an apparatus for producing sintered ores comprising: a plurality of sintered bogies moving along a moving path and charged with a raw material therein; An ignition means for spraying a flame on a raw material layer in the sintered bogie and disposed above the sintered bogie; A plurality of windboxes arranged along the movement path at a lower portion of the sintering carriage so as to draw air in a lower direction of the sintering carriage to sinter the raw materials; A charging part for storing a raw material charged in the sintering vehicle and charging the raw material into the sintering vehicle; A plurality of temperature sensors provided at a lower portion of the sintering carriage and spaced apart from each other in a width direction and a longitudinal direction and measuring the temperature of the raw material; And comparing the current firing temperature pattern of the raw material determined on the basis of the temperature of the raw material measured by the temperature sensor with the target firing temperature pattern of the preliminarily stored
  • the controller can calculate the correlation between the target firing temperature pattern and the current firing temperature pattern and adjust the moving speed of the sintering bogie and the amount of the raw material to be loaded so that the sintered bogie moves to the position having the greatest correlation.
  • R (x, y) is a correlation
  • T (i, j) is a target firing temperature pattern
  • T (i, j) is a target firing temperature pattern.
  • (i, j) may be the current firing temperature pattern.
  • the controller can calculate the correlation between the maximum target temperature among the target firing temperature patterns and the maximum current temperature at the point where the temperature of the raw material measured by the plurality of temperature sensors is the highest.
  • the controller calculates an estimated maximum current temperature calculated based on the temperature measured by the temperature sensor in which the maximum current temperature is measured and another temperature sensor adjacent to the temperature sensor and calculates a correlation between the estimated maximum current temperature and the maximum target temperature Can be calculated.
  • R0 is the maximum current temperature
  • R0 is the maximum current temperature
  • R- 1 and R + 1 may be the temperature measured at the temperature sensor adjacent to the temperature sensor at which the maximum current temperature is measured.
  • R0 is the maximum current temperature
  • R0 is the maximum current temperature
  • R- 1 and R + 1 may be the temperature measured at the temperature sensor adjacent to the temperature sensor at which the maximum current temperature is measured.
  • R0 is the maximum current temperature
  • R0 is the maximum current temperature
  • R- 1 and R + 1 may be the temperature measured at the temperature sensor adjacent to the temperature sensor at which the maximum current temperature is measured.
  • a method of producing sintered ores by measuring a current firing temperature pattern of a raw material charged into a sintering vehicle by a plurality of temperature sensors. Calculating a correlation between the current firing temperature pattern and a target firing temperature pattern by a controller; And controlling the movement speed of the sintered bogie and the amount of the raw material charged in the sintered bogie so that the sintered bogie moves to a position having the highest correlation by the controller.
  • T (i, j) is the target firing temperature pattern
  • T '(i, j) is the current firing temperature pattern
  • the correlation between the maximum target temperature among the target firing temperature patterns and the maximum current temperature at the point where the temperature of the raw material measured by the plurality of temperature sensors is the highest can be calculated.
  • a method of manufacturing an sintered ore comprising the steps of: calculating an estimated maximum current temperature calculated based on a temperature measured at a temperature sensor at which the maximum current temperature is measured and at a temperature sensor adjacent to the temperature sensor; And calculating a correlation between the estimated maximum current temperature and the maximum target temperature.
  • a current firing temperature pattern is determined from a plurality of temperature sensors that measure the temperature of a sintered bogie, The optimum sintering pattern can be maintained by adjusting the moving speed and the amount of the sintered bogie.
  • 1 is a view showing the cross-sectional shape of a sintered layer and the characteristics of an exhaust gas during a sintering process of a raw material.
  • FIG. 2 is a view showing a configuration of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • FIG 3 is a view showing a partial structure of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method for manufacturing sintered ores according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a method for producing sintered ores according to an embodiment of the present invention.
  • FIG. 1 The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
  • FIG. 2 is a view showing a configuration of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • 3 is a view showing a partial structure of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating the structure of an apparatus for producing sintered ores according to an embodiment of the present invention.
  • an apparatus 100 for producing sintered ores includes a plurality of sintered bogies 130 in which a raw material is charged, a flame is applied to a raw material layer in the sintered bogie 130,
  • the sintering bogie 130 is provided with an ignition path 110 disposed above the sintering bogie 130 to inject air into the sintering bogie 130.
  • the sintering bogie 130 sucks air in a lower direction of the sintering bogie 130, And a charging unit 120 for storing raw materials charged in the sintered bogie 130 and charging the raw materials to the sintered bogie 130.
  • the sintering carts 130 and 130 are arranged to rotate in an endless track manner and form a closed loop to form a traveling path on the upper side and a turning path on the lower side.
  • raw materials are charged into the sintering bogs 130 and 140 to sinter the raw materials, and the sintered bogs 130 and 130 having the sintered sintered light are moved in the return path, Return to the movement path.
  • the movement path extends in the longitudinal direction, and the sintering bogie 130 can move backward from the front of the movement path.
  • the moving path is located at the foremost position among the moving paths and is located in the rear of the charging section in which the charging section 120 is disposed, the charging section in which the combustion furnace 110 is disposed, and the ignition section in the rear of the ignition section And a sintering section in which the raw material is sintered. That is, the charging section is a section in which the raw material is charged or irradiated into the sintering bogie 130.
  • the ignition section is a section in which the raw material is ignited. In the sintering section, the ignited flame is moved to the lower side of the raw material, Section.
  • the sintering bogie 130 forms a space in which the raw materials are received, and a plurality of the sintering bogie 130 may be installed on the endless track in one direction to move the movement path and the turning path. Accordingly, the sintering bogie 130 can discharge the raw material to the inside and sinter it by discharging or distributing the raw material while moving the moving path and the turning path.
  • the charging part 120 is disposed on the upper part of the sintering bogie 130.
  • the charging part 120 may include a hopper for forming a space for storing a raw material therein and a charging chute for forming a moving path of the raw material. Accordingly, when the raw material is discharged from the hopper to the lower portion, the raw material can be guided into the sintered bogie 130 through the lower charging chute.
  • the ignition furnace 110 is disposed at the upper portion of the sintering bogie 130 and at the rear of the charging portion 120 so as to supply the flame to the upper surface of the raw material in the sintering bogie 130 to be ignited.
  • a plurality of windboxes 140 are disposed at the lower portion of the sintering carriage 130 along the movement path.
  • the wind box 140 sucks air in a downward direction of the sintered bogie 130. Accordingly, the air above the sintered bogie 130 passes through the raw material in the sintered bogie 130 and is sucked into the lower windbox 140. Therefore, the flame ignited on the upper surface of the raw material in the sintered bogie 130 moves to the lower surface of the raw material by the air sucked by the wind box 140, and the raw material can be sintered.
  • the discharge unit 150 is connected to the plurality of windboxes 140 to provide a suction force to the windbox 140 and to discharge the sucked air to the outside.
  • the discharge unit 150 includes a suction chamber 151 connected to a lower portion of the plurality of windboxes 140 to form a space in which air can be received and moved, a dust collector 152 provided in the suction chamber 151, A main blower 153 disposed behind the dust collector 152 on the basis of a path through which the air moves and a chimney 154 disposed behind the main blower 153.
  • the main blower 153 When the main blower 153 generates a suction force, air is sucked from the upper side to the lower side through the wind box 140, and the sucked air moves along the suction chamber 151 toward the main blower 153, 152, then filtered through the main blower 153 and discharged into the flue 154. That is, the main blower 153 forms a negative pressure inside the wind box 140, so that the air above the sintered bogie 130 can be sucked. At this time, the air can move from the front to the rear in the suction chamber 151.
  • a plurality of temperature sensors 131 are installed below the sintered bogie 130 and are spaced apart from each other in the width direction and the longitudinal direction of the sintered bogie 130 to measure the temperature of the raw material.
  • the temperature of the raw material measured by the temperature sensor 131 is transmitted to the controller 160.
  • the controller 160 determines the current firing temperature pattern of the raw material determined based on the temperature of the raw material measured by the temperature sensor 131 and compares the current firing temperature pattern of the raw material with the target firing temperature pattern of the previously stored raw material
  • the moving speed of the sintering bogie 130 and the amount of the raw material charged into the sintering bogie 130 through the charging part 120 are controlled.
  • the target firing temperature pattern is previously determined according to the characteristics of the sintering raw material and the sintering light quality at the end of the sintering process, and the determined target firing temperature pattern is stored in the controller 160 in advance.
  • controller 160 may be provided with one or more processors operated by the set program, and the set program is configured to perform each step of the method of manufacturing the sintered ores according to the embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method for manufacturing sintered ores according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a method for producing sintered ores according to an embodiment of the present invention.
  • the plurality of temperature sensors 131 measure the temperature of the raw material charged into the sintering bogie 130 (S10), and the measured temperature of the raw material is transmitted to the controller 160 .
  • the controller 160 determines the current firing temperature pattern of the raw material from the temperatures of the raw materials measured by the plurality of temperature sensors 131, and calculates the correlation between the current firing temperature pattern and the target firing temperature pattern (S20).
  • the correlation between the target firing temperature pattern and the current firing temperature pattern can be calculated by the following equation.
  • Equation 1 R (x, y) is a correlation, T (i, j) is a target firing temperature pattern, and T '(i, j) is a current firing temperature pattern.
  • the controller 160 can calculate the correlation between the maximum target temperature representing the highest temperature among the target firing temperature patterns and the maximum current temperature indicating the point where the temperature of the raw material is the highest among the temperatures measured by the plurality of temperature sensors 131 .
  • the control precision for controlling the moving speed and the loading amount of the sintered bogie 130 may be lowered.
  • the controller 160 calculates the correlation between the estimated maximum current temperature and the maximum target temperature, which are calculated based on the temperature measured by the temperature sensor 131 having the highest current temperature and the temperature sensor 131 adjacent to the measured temperature sensor 131 .
  • the estimated maximum current temperature can be calculated by correcting the temperature correction value to the measured maximum current temperature.
  • the temperature correction value can be calculated by the following equation.
  • R0 is a maximum current temperature
  • R-1 and R + 1 are temperatures measured at a temperature sensor 131 adjacent to the temperature sensor at which the highest current temperature is measured .
  • R + 1 may be the temperature measured at the temperature sensor 131 located in the positive direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131
  • R-1 May be a temperature measured at a temperature sensor 131 positioned in a negative direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131 to R0.
  • the temperature correction value can be calculated by the following equation.
  • R0 is the maximum current temperature
  • R-1 and R + 1 are the temperatures measured at the temperature sensor 131 adjacent to the temperature sensor at which the maximum current temperature is measured .
  • R + 1 may be the temperature measured at the temperature sensor 131 located in the positive direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131
  • R-1 May be a temperature measured at a temperature sensor 131 positioned in a negative direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131 to R0.
  • the temperature correction value can be calculated by the following equation.
  • R0 is a maximum current temperature
  • R-1 and R + 1 are temperatures measured at a temperature sensor 131 adjacent to the temperature sensor at which the maximum current temperature is measured .
  • R + 1 may be the temperature measured at the temperature sensor 131 located in the positive direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131
  • R-1 May be a temperature measured at a temperature sensor 131 positioned in a negative direction in the longitudinal direction in which the sintered bogie 130 moves from the measured temperature sensor 131 to R0.
  • the controller 160 adjusts the moving speed of the sintered bogie 130 and the amount of the raw material charged into the sintering bogie 130 so that the sintered bogie 130 moves to the position having the greatest correlation as previously measured at step S30.
  • the controller 160 may control the moving speed of the sintered bogie 130 by adjusting the rotational speed of the driving unit 170 (e.g., a driving motor).
  • the driving unit 170 e.g., a driving motor
  • the apparatus and method for producing sintered ores according to the embodiment of the present invention as described above, by comparing the target firing temperature pattern with the current firing temperature pattern and controlling the moving speed and the loading amount of the sintering bogie 130, The pattern can be maintained in an optimum state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

소결광 제조 장치 및 방법에 개시된다. 본 발명의 실시예에 따른 소결광 제조 장치는 이동 경로를 따라 이동하고 내부에 원료가 장입되는 복수의 소결대차; 상기 소결대차 내의 원료층에 화염을 분사하고 상기 소결대차 상부에 배치되는 점화로; 상기 소결대차의 하부방향으로 공기를 흡입하여 상기 원료를 소결시키도록 상기 소결대차의 하부에 상기 이동경로를 따라 복수개가 배치되는 윈드박스; 상기 소결대차에 장입되는 원료가 저장되고 상기 소결대차에 원료를 장입하는 장입부; 상기 소결대차의 하부에 폭 방향 및 길이 방향으로 설정된 간격 이격되어 설치되고 원료의 온도를 측정하는 복수의 온도 센서; 및 미리 저장된 원료의 목표소성온도패턴과 상기 온도 센서에서 측정된 원료의 온도에 기초하여 결정되는 원료의 현재소성온도패턴을 비교하여, 상기 소결대차의 이동속도와 상기 장입부를 통해 상기 소결대차에 장입되는 원료의 장입량을 조절하는 제어기;를 포함할 수 있다.

Description

소결광 제조 장치 및 방법
본 발명은 소결광 제조 장치 및 방법에 관한 것이다.
소결광 제조 공정은 미립의 분철광석을 소결하여 고로 사용에 적합한 크기로 제조한다. 이러한 소결 공정에서는 분철광석, 부원료 및 고체 연료(분코크스, 또는 무연탄) 등을 드럼 믹서에 넣어 혼합 및 조습(원료중량비 약 7~8%)을 실시하여 소결 원료를 의사 입자화시켜 소결대차에 일정 높이로 장입하고, 점화로에 의해 표면 점화 후 하방에서 공기를 강제 흡인하면서 소결 원료의 소성이 진행되면 소결광이 제조된다.
이와 같이, 제조된 소결광은 배광부의 파쇄기(crusher)를 거쳐 냉각기(cooler)에서 냉각되고, 고로 내 장입 및 반응에 용이한 입도를 갖는 소결광은 고로로 이송되며, 작은 크기를 갖는 소결광인 분광은 반광으로 분류되어 소결 원료로 다시 사용된다.
일반적으로, 소결기 하부의 배가스의 온도 분포는 도 1에 도시된 바와 같이, 즉, 점화로에서 소결원료에 포함된 고체연료를 착화시킨 후, 하부의 흡인력에 의해 연소대가 아래로 이동하기 때문에 연소대가 점점 두꺼워지고, 연소대가 거의 바닥으로 닿은 이후 배광이 되도록 대차속도를 조절하기 때문에 이상적으로는 도 1과 같은 배가스 온도분포 목표로 소결대차 운전이 이루어진다.
배가스 온도분포곡선에서 가장 온도가 높은 위치를 BTP(Burn Though Point)라고 하며, BTP가 소결기 끝단에 가깝게 위치하도록 소결대차 속도를 조절해야 생산성을 최대로 유지할 수 있다.
종래에는 소결대차 내에서 소성이 완료되는 위치를 확인하기 위해 소결기 후단의 복수의 윈드박스에 설치된 온도계를 통해 배가스의 온도분포를 측정하고, BTP 위츠를 찾기 위해 2차 또는 3차 다항 회귀식으로 배가스 온도 곡선을 구한 후, 최고온도 위치인 BTP 위치를 산출한다. 또한, 현재 BTP와 목표 BTP가 현격히 다른 경우, 현재 BTP를 목표 BTP로 이동시키기 위해 소결대차 속도 증감량을 계산하여 대차속도를 제어하였다.
그러나 상기한 바와 같은 종래 기술에 의하면, 소결기의 길이 방향으로 배치된 복수개의 윈드박스 내부에 하나의 온도계를 설치하여 대표온도로 판단하였다. 일반적으로 대형 소결기의 소결대차의 폭은 4~5 m 정도로 넓기 때문에 폭방향으로 장입편차 및 윈드박스의 흡인력 편차로 인해 연소대 분포가 다르며, 소결대차 직하부의 배가스 온도분포 또한 다르다. 특히, 소결기 직하부에서 폭방향 온도편차가 발생하더라도 윈드박스에서는 배가스가 혼합되어 평균온도가 측정되기 때문에 편차가 없는 상태와 유사하게 측정된다.
이와 같은 종래 기술에 의하면, 2차 또는 3차 다항 회귀식으로 BTP를 산출하기 때문에, BTP 부근의 온도의 변화에 민감하게 BTP가 변하고, 목표 BTP위치를 후단으로 옮길수록 다항회귀에 필요한 데이터가 적어져 BTP 위치의 정합성이 떨어지기 때문에, 소결대차 자동제어를 하기 어려운 문제가 발생하였다.
또한, 목표 BTP 위치를 조업자의 경험에 의해 선정하기 때문에, 조업자별로 소결 생산성 및 소결광 품질 편차가 크게 발생하는 문제가 발생하였다.
이 배경기술 부분에 기재된 사항은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 소결대차에 장입되는 원료의 소성패턴이 최적 상태를 유지할 수 있는 소결광 제조 장치 및 방법을 제공하는 것을 목적으로 한다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 소결광 제조 장치는 이동 경로를 따라 이동하고 내부에 원료가 장입되는 복수의 소결대차; 상기 소결대차 내의 원료층에 화염을 분사하고 상기 소결대차 상부에 배치되는 점화로; 상기 소결대차의 하부방향으로 공기를 흡입하여 상기 원료를 소결시키도록 상기 소결대차의 하부에 상기 이동경로를 따라 복수개가 배치되는 윈드박스; 상기 소결대차에 장입되는 원료가 저장되고 상기 소결대차에 원료를 장입하는 장입부; 상기 소결대차의 하부에 폭 방향 및 길이 방향으로 설정된 간격 이격되어 설치되고 원료의 온도를 측정하는 복수의 온도 센서; 및 미리 저장된 원료의 목표소성온도패턴과 상기 온도 센서에서 측정된 원료의 온도에 기초하여 결정되는 원료의 현재소성온도패턴을 비교하여, 상기 소결대차의 이동속도와 상기 장입부를 통해 상기 소결대차에 장입되는 원료의 장입량을 조절하는 제어기;를 포함할 수 있다.
상기 제어기는 상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성을 계산하고, 상기 소결대차가 상관성이 가장 큰 위치로 이동하도록 상기 소결대차의 이동속도와 원료의 장입량을 조절할 수 있다.
상기 제어기는
Figure PCTKR2018014765-appb-I000001
의 수학식을 통해 상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성을 계산하고, 여기서, R(x, y)는 상관성이고, T(i,j)는 목표소성온도패턴이고, T'(i,j)는 현재소성온도패턴일 수 있다.
상기 제어기는 상기 목표소성온도패턴 중에서 최고목표온도와 상기 복수의 온도 센서에서 측정된 원료의 온도가 가장 높은 지점의 최고현재온도와의 상관성을 계산할 수 있다.
상기 제어기는 상기 최고현재온도가 측정된 온도 센서와 서로 인접한 다른 온도 센서에서 측정된 온도에 기초하여 계산되는 추정된 최고현재온도를 계산하고, 상기 추정된 최고현재온도와 상기 최고목표온도와의 상관성을 계산할 수 있다.
상기 제어기는
Figure PCTKR2018014765-appb-I000002
의 수학식으로부터 온도 보정값을 계산하고, 상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도일 수 있다.
상기 제어기는
Figure PCTKR2018014765-appb-I000003
의 수학식으로부터 온도 보정값을 계산하고, 상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도일 수 있다.
상기 제어기는
Figure PCTKR2018014765-appb-I000004
의 수학식으로부터 온도 보정값을 계산하고, 상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도일 수 있다.
본 발명의 다른 실시 예에 따른 소결광 제조 방법은 복수의 온도 센서에 의해, 소결대차에 장입된 원료의 현재소성온도패턴을 측정하는 단계; 제어기에 의해, 상기 현재소성온도패턴과 목표소성온도패턴과의 상관성을 계산하는 단계; 상기 제어기에 의해, 상기 소결대차가 상관성이 가장 큰 위치로 이동하도록 상기 소결대차의 이동속도와 상기 소결대차로 장입되는 원료의 장입량을 조절하는 단계;를 포함할 수 있다.
상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성은
Figure PCTKR2018014765-appb-I000005
의 수학식을 통해 계산되고, 여기서, R(x, y)는 상관성이고, T(i,j)는 목표소성온도패턴이고, T'(i,j)는 현재소성온도패턴일 수 있다.
상기 목표소성온도패턴 중에서 최고목표온도와 상기 복수의 온도 센서에서 측정된 원료의 온도가 가장 높은 지점의 최고현재온도와의 상관성을 계산할 수 있다.
본 발명의 다른 실시 예에 따른 소결광 제조 방법은 상기 최고현재온도가 측정된 온도 센서와 서로 인접한 다른 온도 센서에서 측정된 온도에 기초하여 계산되는 추정된 최고현재온도를 계산하는 단계; 및 상기 추정된 최고현재온도와 상기 최고목표온도와의 상관성을 계산하는 단계;를 더 포함할 수 있다.
상기한 바와 같은 본 발명의 실시예에 의한 소결광 제조 장치 및 방법에 의하면, 소결대차의 온도를 측정하는 복수의 온도 센서로부터 현재소성온도패턴을 결정하고, 현재소성온도패턴이 미리 결정된 목표소성온도패턴과 일치하도록 소결대차의 이동 속도와 장입량을 조절하여 최적의 소성패턴을 유지할 수 있다.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니된다.
도 1은 원료의 소결 공정 중 소결층의 단면 형상 및 배가스의 특성을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 소결광 제조 장치의 구성을 도시한 도면이다.
도 3은 본 발명의 실시예에 따른 소결광 제조 장치의 일부 구성을 도시한 도면이다.
도 4는 본 발명의 실시 예에 따른 소결광 제조 장치의 구성을 도시한 블록도이다.
도 5는 본 발명의 실시예에 따른 소결광 제조 방법을 도시한 순서도이다.
도 6은 본 발명의 실시예에 따른 소결광 제조 방법을 설명하기 위한 도면이다.
첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않으며, 여러 부분 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다.
이하에서는 본 발명의 실시예에 의한 소결광 제조 장치에 대하여 첨부된 도면을 참조하여 상세하게 설명한다.
도 2는 본 발명의 실시예에 따른 소결광 제조 장치의 구성을 도시한 도면이다. 도 3은 본 발명의 실시예에 따른 소결광 제조 장치의 일부 구성을 도시한 도면이다. 그리고 도 4는 본 발명의 실시 예에 따른 소결광 제조 장치의 구성을 도시한 블록도이다.
도 2 내지 도 4 도시된 바와 같이, 본 발명의 실시예에 의한 소결광 제조 장치(100)는 내부에 원료가 장입되는 복수의 소결대차(130), 상기 소결대차(130) 내의 원료층에 화염을 분사하도록 상기 소결대차(130)의 상부에 배치되는 점화로(110), 상기 소결대차(130)의 하부방향으로 공기를 흡입하여 상기 원료를 소결시키도록 상기 소결대차(130)의 하부에 이동경로를 따라 복수 개가 배치되는 윈드박스(140), 및 상기 소결대차(130)에 장입되는 원료가 저장되고 상기 소결대차(130)에 원료를 장입하는 장입부(120)를 포함한다.
소결대차(130)(130)는 무한궤도방식으로 회전하도록 배치되고, 폐루프를 형성하여 상부측의 이동경로와 하부측의 회차경로를 형성할 수 있다. 이동경로에서는 소결대차(130)(140) 내부에 원료를 장입하여 원료를 소결시키고, 회차경로에서는 소결이 완료된 소결광을 배광한 빈 소결대차(130)(130)를 이동시켜 소결공정을 위해 상측의 이동경로로 회차시킨다.
이동경로는 길이방향으로 연장형성되고, 소결대차(130)가 이동경로의 전방에서 후방으로 이동할 수 있다. 또한, 이동경로는, 이동경로 중 최전방의 위치하고 상기 장입부(120)가 배치되는 장입구간, 장입구간의 후방에 위치되고 상기 점화로(110)가 배치되는 점화구간, 및 점화구간의 후방에 위치하고 상기 원료가 소결되는 소결구간을 포함할 수 있다. 즉, 장입구간은 원료가 소결대차(130) 내로 장입 또는 급광되는 구간이고, 점화구간은 원료가 점화되는 구간이고, 소결구간은 원료의 상부면에 점화된 화염을 하부로 이동시켜 원료를 소결시키는 구간이다.
소결대차(130)는 내부에 원료가 수용되는 공간을 형성하고, 복수개가 일방향으로 무한궤도에 설치되어 이동경로 및 회차경로를 이동할 수 있다. 이에, 소결대차(130)는 이동경로 및 회차경로를 이동하면서 원료를 내부로 장입시킨 후 소결시켜 배출 또는 배광할 수 있다.
장입부(120)는 소결대차(130)의 상부에 배치되고, 내부에 원료가 저장되는 공간을 형성하는 호퍼 및 원료의 이동경로를 형성하고 경사면을 장입슈트를 포함할 수 있다. 이에, 호퍼에서 하부로 원료를 배출하면, 원료가 하측의 장입슈트를 통해 소결대차(130)의 내부로 안내될 수 있다.
점화로(110)는 소결대차(130)(130)의 상부 및 장입부(120)의 후방에 배치되어, 소결대차(130) 내의 원료 상부면으로 화염을 공급하여 착화시킨다.
윈드박스(140)는 복수개가 이동경로를 따라 소결대차(130)의 하부에 배치된다.
윈드박스(140)는 소결대차(130)의 하부방향으로 공기를 흡입한다. 이에 따라, 소결대차(130) 상부의 공기가 소결대차(130) 내부의 원료를 통과하여 하부의 윈드박스(140)로 흡입된다. 따라서, 윈드박스(140)에 의해 흡입되는 공기에 의해 소결대차(130) 내 원료의 상부면에 착화된 화염이 원료의 하부면으로 이동하여 원료가 소결될 수 있다.
배출부(150)는 복수의 윈드박스(140)에 연결되어 윈드박스(140)에 흡입력을 제공하고, 흡입된 공기를 외부로 배출하는 역할을 한다. 배출부(150)는 복수의 윈드박스(140)의 하부에 연결되고, 내부에 공기가 수용되며 이동할 수 있는 공간을 형성하는 흡입챔버(151), 흡입챔버(151)에 구비되는 집진기(152), 공기가 이동하는 경로를 기준으로 집진기(152)의 후방에 배치되는 메인블로어(153), 및 메인블로어(153) 후방에 배치되는 굴뚝(154)을 포함한다. 이에, 메인블로어(153)가 흡입력을 발생시키면, 윈드박스(140)를 통해 상측에서 하측으로 공기가 흡입되고, 흡입된 공기는 흡입챔버(151)를 따라 메인블로어(153) 측으로 이동하면서 집진기(152)를 통과하여 여과된 후 메인블로어(153)를 지나 굴뚝(154)으로 배출된다. 즉, 메인블로어(153)가 윈드박스(140) 내부에 부압을 형성함으로써 소결대차(130) 상부의 공기를 흡입할 수 있다. 이때, 공기는 흡입챔버(151) 내에서 전방에서 후방으로 이동할 수 있다.
한편, 상기 소결대차(130)의 하부에는 원료의 온도를 측정하기 위해 상기 소결대차(130)의 폭 방향 및 길이 방향으로 설정된 간격 이격되어 복수의 온도 센서(131)가 설치된다. 상기 온도 센서(131)에서 측정된 원료의 온도는 제어기(160)로 전송된다.
제어기(160)는 상기 온도 센서(131)에서 측정된 원료의 온도에 기초하여 결정되는 원료의 현재소성온도패턴을 결정하고, 미리 저장된 원료의 목표소성온도패턴과 원료의 현재소성온도패턴을 비교하여 소결대차(130)의 이동속도와 상기 장입부(120)를 통해 상기 소결대차(130)에 장입되는 원료의 장입량을 조절한다. 목표소성온도패턴은 소결 원료의 특성과 소결 공정 후단의 소결광 품질에 따라 미리 결정되고, 결정된 목표소성온도패턴은 제어기(160)에 미리 저장된다.
이를 위해, 제어기(160)는 설정된 프로그램에 의하여 작동하는 하나 이상의 프로세서로 구비될 수 있으며, 상기 설정된 프로그램은 본 발명의 실시예에 따른 소결광 제조 방법의 각 단계를 수행하도록 되어 있다.
이하에서는, 상기한 바와 같은 본 발명의 실시 예에 따른 소결광 제조 장치를 이용한 소결광 제조 방법에 대하여 첨부된 도면을 참조하여 상세하게 설명한다.
도 5는 본 발명의 실시예에 따른 소결광 제조 방법을 도시한 순서도이다. 그리고 도 6은 본 발명의 실시예에 따른 소결광 제조 방법을 설명하기 위한 도면이다.
도 5 및 도 6에 도시된 바와 같이, 복수의 온도 센서(131)는 소결대차(130)에 장입된 원료의 온도를 측정(S10)하고, 측정된 원료의 온도는 제어기(160)로 전송된다.
제어기(160)는 복수의 온도 센서(131)에서 측정된 원료의 온도로부터 원료의 현재소성온도패턴을 결정하고, 현재소성온도패턴과 목표소성온도패턴과의 상관성을 계산한다(S20).
목표소성온도패턴과 현재소성온도패턴과의 상관성은 아래의 수학식을 통해 계산될 수 있다.
[수학식 1]
Figure PCTKR2018014765-appb-I000006
수학식 1에서, R(x, y)는 상관성이고, T(i,j)는 목표소성온도패턴이고, T'(i,j)는 현재소성온도패턴일 수 있다.
제어기(160)는 목표소성온도패턴 중에서 가장 높은 온도를 나타내는 최고 목표온도와 복수의 온도 센서(131)에서 측정된 온도 중에서 원료의 온도가 가장 높은 지점을 나타내는 최고현재온도와의 상관성을 계산할 수 있다.
이때, 최고현재온도를 계산할 때, 복수의 온도 센서(131)에서 측정된 온도만을 사용하는 경우, 소결대차(130)의 이동 속도와 장입량를 제어하기 위한 제어 정밀도가 낮아질 수 있다.
따라서, 제어기(160)는 최고현재온도가 측정된 온도 센서(131)와 서로 인접한 다른 온도 센서(131)에서 측정된 온도에 기초하여 계산되는 추정된 최고현재온도와 최고목표온도와의 상관성을 계산하는 것이 바람직하다.
추정된 최고현재온도는 온도 보정값을 측정된 최고현재온도에 보정하여 계산될 수 있다.
온도 보정값은 아래의 수학식을 통해 계산될 수 있다.
[수학식 2]
Figure PCTKR2018014765-appb-I000007
수학식 2에서, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서(131)에서 측정된 온도이다. 예를 들어, R+1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 양의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있고, R-1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 음의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있다.
또는, 온도 보정값은 아래의 수학식을 통해 계산될 수 있다.
[수학식 3]
Figure PCTKR2018014765-appb-I000008
수학식 3에서, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서(131)에서 측정된 온도이다. 예를 들어, R+1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 양의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있고, R-1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 음의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있다.
또는, 온도 보정값은 아래의 수학식을 통해 계산될 수 있다.
[수학식 4]
Figure PCTKR2018014765-appb-I000009
수학식 4에서, ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서(131)에서 측정된 온도이다. 예를 들어, R+1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 양의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있고, R-1은 R0가 측정된 온도 센서(131)로부터 소결대차(130)가 이동하는 길이 방향으로 음의 방향에 위치한 온도 센서(131)에서 측정된 온도일 수 있다.
제어기(160)는 앞에서 측정한 상관성이 가장 큰 위치로 소결대차(130)가 이동하도록 소결대차(130)의 이동 속도와 소결대차(130)로 장입되는 원료의 장입량을 조절한다(S30).
소결대차(130)의 이동 속도를 조절함으로써, 소결대차(130)에 장입되는 원료의 길이 방향이 소성패턴을 조절할 수 있다. 이때, 제어기(160)는 구동부(170)(예를 들어, 구동 모터)의 회전 속도를 조절하여 소결대차(130)의 이동 속도를 조절할 수 있다.
그리고 소결대차(130)에 장입되는 원료의 장입량을 조절하면, 원료의 밀도가 변화하고, 원료의 통기성이 변화하며, 원료의 연소 속도가 변화하게 되어 소결대차(130)에 장입되는 원료의 폭 방향의 소성패턴을 조절할 수 있다.
이상에서 설명한 바와 같은 본 발명의 실시 예에 따른 소결광 제조 장치 및 방법에 의하면, 목표소성온도패턴과 현재소성온도패턴을 비교하여, 소결대차(130)의 이동속도와 장입량을 조절함으로써, 원료의 소성패턴을 최적의 상태로 유지할 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
(부호의 설명)
100: 소결광 제조 장치
110: 점화로
120: 장입부
130: 소결대차
131: 온도 센서
140: 윈드박스
150: 배출부
151: 흡입챔버
152: 집진기
153: 메인블로어
154: 굴뚝
160: 제어기

Claims (15)

  1. 이동 경로를 따라 이동하고 내부에 원료가 장입되는 복수의 소결대차;
    상기 소결대차 내의 원료층에 화염을 분사하고 상기 소결대차 상부에 배치되는 점화로;
    상기 소결대차의 하부방향으로 공기를 흡입하여 상기 원료를 소결시키도록 상기 소결대차의 하부에 상기 이동경로를 따라 복수개가 배치되는 윈드박스;
    상기 소결대차에 장입되는 원료가 저장되고 상기 소결대차에 원료를 장입하는 장입부;
    상기 소결대차의 하부에 폭 방향 및 길이 방향으로 설정된 간격 이격되어 설치되고 원료의 온도를 측정하는 복수의 온도 센서; 및
    미리 저장된 원료의 목표소성온도패턴과 상기 복수의 온도 센서에서 측정된 원료의 온도에 기초하여 결정되는 원료의 현재소성온도패턴을 비교하여, 상기 소결대차의 이동속도와 상기 장입부를 통해 상기 소결대차에 장입되는 원료의 장입량을 조절하는 제어기;
    를 포함하는 소결광 제조 장치.
  2. 제1항에 있어서,
    상기 제어기는
    상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성을 계산하고, 상기 소결대차가 상관성이 가장 큰 위치로 이동하도록 상기 소결대차의 이동속도와 원료의 장입량을 조절하는 소결광 제조 장치.
  3. 제2항에 있어서,
    상기 제어기는
    Figure PCTKR2018014765-appb-I000010
    의 수학식을 통해 상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성을 계산하고,
    여기서, R(x, y)는 상관성이고, T(i,j)는 목표소성온도패턴이고, T'(i,j)는 현재소성온도패턴인 소결광 제조 장치.
  4. 제2항에 있어서,
    상기 제어기는
    상기 목표소성온도패턴 중에서 최고목표온도와 상기 복수의 온도 센서에서 측정된 원료의 온도가 가장 높은 지점의 최고현재온도와의 상관성을 계산하는 소결광 제조 장치.
  5. 제4항에 있어서,
    상기 제어기는
    상기 최고현재온도가 측정된 온도 센서와 서로 인접한 다른 온도 센서에서 측정된 온도에 기초하여 계산되는 추정된 최고현재온도를 계산하고,
    상기 추정된 최고현재온도와 상기 최고목표온도와의 상관성을 계산하는 소결광 제조 장치.
  6. 제5항에 있어서,
    상기 제어기는
    Figure PCTKR2018014765-appb-I000011
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 장치.
  7. 제5항에 있어서,
    상기 제어기는
    Figure PCTKR2018014765-appb-I000012
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 장치.
  8. 제5항에 있어서,
    상기 제어기는
    Figure PCTKR2018014765-appb-I000013
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 장치.
  9. 복수의 온도 센서에 의해, 소결대차에 장입된 원료의 현재소성온도패턴을 측정하는 단계;
    제어기에 의해, 상기 현재소성온도패턴과 목표소성온도패턴과의 상관성을 계산하는 단계;
    상기 제어기에 의해, 상기 소결대차가 상관성이 가장 큰 위치로 이동하도록 상기 소결대차의 이동속도와 상기 소결대차로 장입되는 원료의 장입량을 조절하는 단계;
    를 포함하는 소결광 제조 방법.
  10. 제9항에 있어서,
    상기 목표소성온도패턴과 상기 현재소성온도패턴과의 상관성은
    Figure PCTKR2018014765-appb-I000014
    의 수학식을 통해 계산되고,
    여기서, R(x, y)는 상관성이고, T(i,j)는 목표소성온도패턴이고, T'(i,j)는 현재소성온도패턴인 소결광 제조 방법.
  11. 제9항에 있어서,
    상기 목표소성온도패턴 중에서 최고목표온도와 상기 복수의 온도 센서에서 측정된 원료의 온도가 가장 높은 지점의 최고현재온도와의 상관성을 계산하는 소결광 제조 방법.
  12. 제11항에 있어서,
    상기 최고현재온도가 측정된 온도 센서와 서로 인접한 다른 온도 센서에서 측정된 온도에 기초하여 계산되는 추정된 최고현재온도를 계산하는 단계; 및
    상기 추정된 최고현재온도와 상기 최고목표온도와의 상관성을 계산하는 단계;
    를 더 포함하는 소결광 제조 방법.
  13. 제11항에 있어서,
    상기 추정된 최고현재온도는
    Figure PCTKR2018014765-appb-I000015
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 방법.
  14. 제11항에 있어서,
    상기 추정된 최고현재온도는
    Figure PCTKR2018014765-appb-I000016
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 방법.
  15. 제11항에 있어서,
    상기 추정된 최고현재온도는
    Figure PCTKR2018014765-appb-I000017
    의 수학식으로부터 온도 보정값을 계산하고,
    상기 온도 보정값을 상기 최고현재온도에 보정하여 상기 추정된 최고현재온도를 계산하며,
    ε은 온도 보정값이고, R0는 최고현재온도이고, 및 R-1과 R+1은 상기 최고현재온도가 측정된 온도센서와 서로 인접한 온도 센서에서 측정된 온도인 소결광 제조 방법.
PCT/KR2018/014765 2017-12-22 2018-11-28 소결광 제조 장치 및 방법 WO2019124790A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178666A KR102010932B1 (ko) 2017-12-22 2017-12-22 소결광 제조 장치 및 방법
KR10-2017-0178666 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124790A1 true WO2019124790A1 (ko) 2019-06-27

Family

ID=66993731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014765 WO2019124790A1 (ko) 2017-12-22 2018-11-28 소결광 제조 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102010932B1 (ko)
WO (1) WO2019124790A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170880A (ja) * 1994-12-16 1996-07-02 Sumitomo Metal Ind Ltd 焼結鉱の焼成方法
JPH0931555A (ja) * 1995-07-18 1997-02-04 Nippon Steel Corp 焼結温度パターンの制御方法とその装置
KR20140001555A (ko) * 2012-06-27 2014-01-07 주식회사 포스코 소결원료 장입장치 및 장입방법
KR101462548B1 (ko) * 2013-08-23 2014-11-18 주식회사 포스코 소결광 제조 설비 및 이를 이용한 소결광 제조 방법
KR101658180B1 (ko) * 2014-09-22 2016-09-20 주식회사 포스코 소결광 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170880A (ja) * 1994-12-16 1996-07-02 Sumitomo Metal Ind Ltd 焼結鉱の焼成方法
JPH0931555A (ja) * 1995-07-18 1997-02-04 Nippon Steel Corp 焼結温度パターンの制御方法とその装置
KR20140001555A (ko) * 2012-06-27 2014-01-07 주식회사 포스코 소결원료 장입장치 및 장입방법
KR101462548B1 (ko) * 2013-08-23 2014-11-18 주식회사 포스코 소결광 제조 설비 및 이를 이용한 소결광 제조 방법
KR101658180B1 (ko) * 2014-09-22 2016-09-20 주식회사 포스코 소결광 제조 방법

Also Published As

Publication number Publication date
KR20190076675A (ko) 2019-07-02
KR102010932B1 (ko) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2016099010A1 (ko) 소결기 및 소결방법
WO2016080650A1 (ko) 소결장치 및 소결방법
WO2019124768A1 (ko) 소결 조업 제어 장치 및 그 방법
JP6257779B2 (ja) 燒結鉱の製造設備及びこれを用いた燒結鉱の製造方法
WO2017159962A1 (ko) 소결장치 및 소결방법
WO2017061664A1 (ko) 소결광 제조장치 및 제조방법
JP2009280837A (ja) 焼結鉱の品質制御方法
WO2018101645A1 (ko) 통기성 측정기 및 소결 장치
JP3916450B2 (ja) ごみ焼却炉の燃焼制御方法および装置
WO2017086534A1 (ko) 원료 처리 설비 및 이를 이용한 원료 처리 방법
WO2019124790A1 (ko) 소결광 제조 장치 및 방법
JP2001323326A (ja) 焼結機の操業方法
WO2018021634A1 (ko) 소결 장치 및 이를 이용한 소결광 제조 방법
JPH11325740A (ja) グレートキルン方式鉄鉱石ペレット焼成装置
KR20170047503A (ko) 소결장치 및 소결방법
KR101719518B1 (ko) 소결장치 및 소결방법
WO2017078429A1 (ko) 원료 장입 장치 및 방법
WO2018074783A1 (ko) 배가스 처리장치 및 처리방법
WO2019027107A1 (ko) 소결 장치 및 이를 이용한 소결 방법
KR101462548B1 (ko) 소결광 제조 설비 및 이를 이용한 소결광 제조 방법
KR100977792B1 (ko) 소결기의 공기유량 조절장치
KR20180047213A (ko) 소결 장치 및 이를 이용한 소결광 제조 방법
KR101998754B1 (ko) 소결 장치
KR19990055427A (ko) 소결광 장치 및 소결광 제조 방법
KR20090030518A (ko) 소결기용 핫 크러셔의 가이드 블록 조절장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892133

Country of ref document: EP

Kind code of ref document: A1