WO2019124660A1 - Spray coating material and spray coating made of same spray coating material - Google Patents

Spray coating material and spray coating made of same spray coating material Download PDF

Info

Publication number
WO2019124660A1
WO2019124660A1 PCT/KR2018/008078 KR2018008078W WO2019124660A1 WO 2019124660 A1 WO2019124660 A1 WO 2019124660A1 KR 2018008078 W KR2018008078 W KR 2018008078W WO 2019124660 A1 WO2019124660 A1 WO 2019124660A1
Authority
WO
WIPO (PCT)
Prior art keywords
yttrium
plasma
thermal
coating
spray coating
Prior art date
Application number
PCT/KR2018/008078
Other languages
French (fr)
Korean (ko)
Inventor
이성환
김여울
정채종
고현철
Original Assignee
(주)코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코미코 filed Critical (주)코미코
Publication of WO2019124660A1 publication Critical patent/WO2019124660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a method for producing a spray material and a thermal spray coating.
  • the importance of the plasma dry etching process is becoming more and more important to perform fine processing for high integration of substrate circuits such as silicon wafers.
  • thermal spraying method in which a thermal sprayed coating is formed by spraying thermal sprayed particles made of a material such as ceramics, for example, on the surface of a substrate in a softened or melted state by combustion or electric energy.
  • a spray coating is performed by heating and melting fine powders and spraying molten powders toward the coated side of the base material.
  • the injected molten powder is quenched and the molten powder solidifies and is laminated on the surface to be coated mainly by mechanical bonding force.
  • Plasma spray coating for melting the powders using the high-temperature plasma flame of the thermal spray coating is essentially used for the coating of metals and ceramics such as tungsten or molybdenum with a high melting point.
  • the thermal spray coating is advantageous for producing a high-performance material that utilizes the material properties of the base material to exhibit characteristics of abrasion, corrosion, heat resistance and thermal barrier, hardness, oxidation resistance, insulation, friction characteristics, heat radiation, However, it is possible to coat objects with a large area in a short period of time in comparison with other coating methods such as chemical vapor deposition and physical vapor deposition.
  • microfabrication is generally carried out on the surface of a semiconductor substrate by dry etching using plasma of a halogen-based gas such as fluorine, chlorine or bromine.
  • a halogen-based gas such as fluorine, chlorine or bromine.
  • the interior of the chamber (vacuum container) from which the semiconductor substrate is taken out is cleaned using oxygen gas plasma.
  • oxygen gas plasma there is a possibility that the member exposed to the highly reactive oxygen gas plasma or the halogen gas plasma is corroded in the chamber.
  • the corrosion (erosion) portion from the member falls into the particulate form, such a particle can be a foreign matter adhering to the semiconductor substrate and causing a defect in the circuit (hereinafter, the foreign matter is referred to as a particle).
  • a ceramic thermal spraying film having plasma corrosion resistance is provided on a member exposed to a plasma such as an oxygen gas or a halogen gas for the purpose of reducing the generation of particles.
  • the cause of the particle generation is deterioration of the chamber by using a halogen gas plasma or an oxygen gas plasma in addition to the exfoliation of reaction products adhered to the vacuum chamber. Further, according to a study by the present inventors, it has been confirmed that the number and size of particles generated from the thermal sprayed coating under a dry-etched environment are greatly affected by the composition of the thermal sprayed coating.
  • the parts that come into contact with the halogen-based gas plasma of the etching apparatus employ yttrium oxide or yttrium fluoride which is excellent in corrosion resistance to metallic aluminum or aluminum oxide ceramics as a coating film.
  • yttrium reacts with the fluorine-based gas at the uppermost surface of the initial stage of the process to change the concentration of the plasma in the apparatus, thereby causing an unstable etching process condition (process shift).
  • the yttrium fluoride thermal spray coating has a low reactivity with the fluorine-based gas, but has a surface cracking and a low hardness compared with yttrium oxide, so that the etching rate is high and the replacement cycle of the member is shortened.
  • Patent Documents 1 to 5 there have been disclosed techniques capable of forming a spray coating having high corrosion resistance to plasma by using yttrium oxyfluoride particles prepared by mixing yttrium oxide and yttrium fluoride as a solvent for use.
  • Korean Patent Laid-Open No. 10-2017-0078842 discloses a film-forming powder containing oxyfluoride (Ln-OF) of a rare earth element, and has an average particle size (D50) is not more than 10 ⁇ m, and the volume of pores of less than diameter 10 ⁇ m measured by mercury porosimetry 0.1 cm over 3 / g 0.5 cm 3 / g or less, the corrosion resistance against the chlorine-containing plasma is described for high-used material for .
  • Korean Patent Laid-Open No. 10-2016-0131916 includes rare earth element RE, oxygen O and halogen element X as constituent elements and rare earth element oxyhalide RE- OX) is contained in a proportion of 77 mass% or more.
  • Patent Documents 2 and 3 disclose a method of reducing the amount of rare earth element fluoride which can be transformed into rare earth element oxide by spraying with a rare earth element oxide which generates particles due to the amorphous nature and to provide a rare earth element oxyhalogen The physical properties of the sprayed material were improved by increasing the amount of the cargo.
  • the use material disclosed in Korean Patent Laid-Open No. 10-2016-0131918 has a rare earth element oxyhalide including rare earth element (RE), oxygen (O) and halogen element (X) (RE-OX), and the molar ratio (X / RE) of the halogen element to the rare-earth element is 1.1 or more, thereby improving plasma resistance and excellent properties such as porosity and hardness.
  • RE rare earth element
  • O oxygen
  • X halogen element
  • molar ratio (X / RE) of the halogen element to the rare-earth element is 1.1 or more, thereby improving plasma resistance and excellent properties such as porosity and hardness.
  • Korean Patent Laid-Open No. 10-2017-0015236 discloses a yttrium-type thermal sprayed coating film having a thickness of 10 to 500 ⁇ ⁇ containing one or more of yttrium oxide, yttrium fluoride and yttrium oxyfluoride , And the surface of the coating film is washed with a specific solvent so that the number of particles having a particle diameter of 300 nm or less present on the surface is 1 mm 2
  • a technique for manufacturing a yttrium-based thermal spray coating that can reduce the number of particles to less than 5 per particle to prevent the phenomenon of particle desorption.
  • yttrium oxyfluoride and yttrium fluoride have been mixed to produce yttrium oxyfluoride which improves physical properties such as plasma erosion resistance, porosity and hardness Techniques for manufacturing sprayed materials have been proposed.
  • one embodiment of the present invention is characterized in that the specific gravity of yttrium fluoride (YF 3 ) is 30 to 70% by mass and the residue is mixed with alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) , Assembling, and firing to produce a YOF-Al multicomponent thermal spraying material.
  • YF 3 yttrium fluoride
  • Al 2 O 3 alumina
  • YAG yttrium aluminum garnet
  • the average particle diameter of the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) particles may be 0.01 ⁇ m or more and 7 ⁇ m or less.
  • the firing temperature may be 500 ° C to 1100 ° C.
  • Another embodiment of the present invention provides a Y-O-F-Al multicomponent thermal sprayed material prepared by the above-described method for producing a Y-O-F-Al multicomponent thermal spraying material and having an average particle diameter of 5 m or more and 100 m or less.
  • Another embodiment of the present invention provides a method for producing a Y-O-F-Al multi-component thermal spray coating that forms a coating on a substrate by spraying the Y-O-F-Al multicomponent thermal spraying material.
  • the spray may be a plasma spray.
  • Another embodiment of the present invention provides a Y-O-F-Al multicomponent thermal sprayed coating formed by the method of producing the Y-O-F-Al multicomponent thermal sprayed coating and having a thickness of 50 ⁇ to 400 ⁇ .
  • Another embodiment of the present invention is a method of manufacturing a semiconductor device, comprising the steps of: preparing a semiconductor substrate including yttrium (Y), oxygen (O), fluorine (F), and aluminum (Al) F) of 0.025 to 0.25 is provided.
  • Y yttrium
  • O oxygen
  • F fluorine
  • Al aluminum
  • the weight ratio (F / Y) of aluminum element to fluorine relative to yttrium may be 0.7 to 1.3.
  • the YOF-Al multicomponent thermal spraying material according to the present invention does not cause a change in the composition of the oxygen component and the fluorine component contained in the thermal sprayed coating during the spray manufacturing process, and suppresses the formation of cracks and pores which have occurred in the conventional coating layer It is possible to form a thermal spray coating more densely than a conventional coating layer.
  • the YOF-Al multicomponent thermal sprayed coating of the present invention has an increased hardness and lower porosity than yttrium fluoride and yttrium oxide of the prior art, and improved plasma plasma characteristics, The cycle can be extended.
  • Example 1 is a scanning electron micrograph (SEM) photograph of a side surface of a thermal sprayed coating according to Comparative Examples (Comparative Examples 7, 8 and 9) and Example (Example 1) according to the present invention.
  • Example 2 is a scanning electron micrograph (SEM) photograph of the surface of the thermal sprayed coating according to the comparative examples (Comparative Examples 7 and 8) and Example (Example 1) according to the present invention.
  • a gate etcher In the semiconductor manufacturing process, a gate etcher, an insulating film etcher, a resist film etcher, a sputtering apparatus, a CVD apparatus, and the like are used.
  • an etcher device for forming a thin film transistor is used.
  • a plasma generating mechanism is provided for the purpose of high integration by micromachining.
  • halogen-based corrosion gases such as fluorine-based and chlorine-based gases have been used in the above-mentioned apparatus due to their high reactivity.
  • fluorine-based gas include SF 6 , CF 4 , CHF 3 , ClF 3 , HF and NF 3.
  • chlorine-based gas include Cl 2 , BCl 3 , HCl, CCl 4 and SiCl 4 .
  • the present invention relates to a plasma- YOF-Al multi-component thermal spraying material and a method for producing a thermal spray coating.
  • yttrium fluoride has a specific gravity of 30 to 70% by mass and the balance is mixed with alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) Thereby providing a method for manufacturing a sprayed material.
  • yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ), and yttrium aluminum garnet (YAG) materials, which are primary materials, as unstructured powders or slurries containing ungrafted powders
  • YAG yttrium aluminum garnet
  • the sprayed material as the assembled powder is filled up to the inside. This is because it is stable and does not break when handling the powder, and if there is a void portion, it is easy to contain an undesirable gas component in the void portion, It is necessary in that it can do.
  • the sintering auxiliary agent and the dispersion medium are added to the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG), followed by pulverization and mixing, followed by dehydration and drying.
  • the granulated particles may be further mixed with a binder to prepare a slurry droplet, followed by granulation and firing.
  • organic compounds are preferable, and organic compounds composed of carbon, hydrogen and oxygen, or carbon, hydrogen, oxygen and nitrogen, such as carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and the like.
  • a spray drying apparatus can be used as the assembling apparatus. In the spray drying apparatus, a droplet of a slurry containing a plurality of pulverized particles is dropped in a hot air stream, whereby the droplet is solidified and the intermediate particles including a plurality of particles are assembled.
  • the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) particles have an average particle diameter of 0.01 ⁇ m or more and 7 ⁇ m or less.
  • the diameter of the particles is less than about 0.01 ⁇ , the average diameter of the powder for spray coating having the granulation structure containing the yttrium oxide particles may be small, and it is difficult to control the particles, and spherical granules are difficult to form.
  • the diameter of the particles exceeds about 7 ⁇ , the average diameter of the granulated particles formed by the granulation is too large, so that it is difficult to form a uniform thermal spray coating.
  • the granulated particles are subjected to a sintering step, and the sintering temperature is preferably 500 ° C to 1100 ° C.
  • the sintering temperature is preferably 500 ° C to 1100 ° C.
  • the firing temperature is 800 Deg.] C to 1000 [deg.] C is effective in improving the plasma resistance of the multi-component thermal sprayed coating. Concretely, when the firing temperature is less than 800 ° C, the hardness of the thermal sprayed coating is not sufficient, and the plasma resistance of the thermal sprayed material is lowered.
  • the firing time was set to be 2 Hour to 8 hours or less is preferable . Within this range, sufficient YOF-Al multicomponent compounds are produced and energy consumption is minimized.
  • An oxygen-containing atmosphere such as an atmospheric atmosphere can be used as the firing atmosphere, but an inert gas atmosphere such as argon gas or a vacuum atmosphere is preferable.
  • the average particle diameter of the sprayed material produced by mixing, assembling and firing is preferably 5 ⁇ or more and 100 ⁇ or less in terms of improving the quality of the sprayed coating. If the average particle diameter is less than 5 ⁇ , the flowability of the powder during the spray coating is low, so that a uniform film can not be realized. The powder is not oxidized or transferred to the frame center before the powder is delivered to the frame, It is difficult to satisfy such a requirement that a film having a high porosity or a low hardness is formed. If the average particle diameter is more than 100 ⁇ ⁇ , the powder is not completely melted when injected into the plasma, resulting in an unmelted portion in the coating film, which makes it difficult to satisfy the quality of the thermal spraying film required in the present invention.
  • the aspect ratio of the spraying material powder of the present invention is expressed by the ratio of the long diameter to the short diameter of the particles, and 1.0 or more and 5.0 or less is preferable from the viewpoint of forming a dense and uniform film, and the aspect ratio is 1.0 More preferably 4.0 or less, and particularly preferably 1.0 or more and 1.5 or less.
  • the spraying material powder is formed into a spherical shape, which is an important factor of the quality of the sprayed film. Otherwise, when the sprayed coating is formed, a certain amount of powder is not transferred to the frame, I can not.
  • the plasma spraying method generally includes a coating method in which a spraying material is obtained by charging a material to be used for the plasma jet, and heating and accelerating the material to deposit on the substrate.
  • the plasma spraying method can be applied to atmospheric plasma spraying (APS) in air, low pressure plasma spraying (LPS) spraying at a pressure lower than atmospheric pressure, plasma spraying in a pressure vessel higher than atmospheric pressure, Such as high pressure plasma spraying or the like.
  • APS atmospheric plasma spraying
  • LPS low pressure plasma spraying
  • plasma spraying in a pressure vessel higher than atmospheric pressure
  • This plasma spraying for example, by spraying and accelerating the sprayed material by a plasma jet of about 10000 K to 15000 K, the sprayed particles are collided with the substrate at a speed of about 300 m / s to 1000 m / s So that it can be deposited.
  • the spraying of the substrate of the present invention can be performed by atmospheric pressure plasma spraying.
  • the plasma gas is not particularly limited and may be appropriately selected.
  • nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen and the like can be used. .
  • the spraying in the case of argon / hydrogen plasma spraying, atmospheric plasma spraying using a mixed gas of argon and hydrogen in an air atmosphere can be mentioned.
  • Conditions for spraying such as spraying distance, current value, voltage value, argon gas supply amount, hydrogen gas supply amount, etc. are set according to the use of the sprayed member.
  • a predetermined amount of the spray material is charged into the powder feeder, and the powder is supplied to the tip of the plasma event by the carrier gas (argon) using the powder hose.
  • the carrier gas argon
  • a Y-O-F-Al multi-component film forming component can be manufactured by forming a Y-O-F-Al multi-component thermal spray coating within a predetermined coating range on a substrate while moving the frame left and right and up and down.
  • the substrate coated with the thermal sprayed coating is not particularly limited.
  • the material, the shape, and the like are not particularly limited as long as it is a substrate including a material capable of providing desired resistance to the spraying of such a material for use.
  • the material constituting such a sprayed substrate include at least one of aluminum, nickel, chromium, zinc and their alloys, alumina, aluminum nitride, silicon nitride, silicon carbide and quartz glass constituting members for semiconductor manufacturing apparatuses It is preferable to select one or more combinations.
  • Such a substrate may be, for example, a member constituting a semiconductor device manufacturing apparatus and exposed to a highly reactive oxygen gas plasma or a halogen gas plasma.
  • the surface of the substrate is treated in accordance with the ceramics spraying working standard prescribed in JIS H 9302 before plasma spraying. For example, after removing rust, grease, and the like on the surface of the substrate, grinding particles such as Al 2 O 3 and SiC are sprayed to roughen the surface, and the pre-treatment is performed so that the fluoride sprayed particles are easily adhered.
  • the method for producing the thermal spray coating can be formed by providing the thermal spraying material disclosed herein to a thermal spraying apparatus based on a known thermal spraying method.
  • the spraying method for appropriately spraying the material for use include a spraying method such as a high-speed frame spraying method, a frame spraying method, and an explosive spraying method.
  • the characteristics of the sprayed coating may depend to some extent on the spraying method and the spraying conditions. However, even when any spraying method and spraying condition are employed, it is possible to form a sprayed coating excellent in plasma erosion resistance as compared with the case of using other spraying materials by using the spraying materials disclosed herein.
  • the Y-O-F-Al multicomponent thermal sprayed coating is preferably formed to a thickness of 50 mu m to 400 mu m.
  • the thickness is less than 50 ⁇ ⁇ , sufficient corrosion resistance may not be obtained, and there is also a possibility that the surface of the substrate is partially exposed by the cleaning operation.
  • it is thicker than 400 ⁇ , the effect of improving the corrosion resistance can not be expected in particular, but the cost is high.
  • Conventional YF 3 and YOF sprayed films are crystalline films, and when the powder is melted and solidified, it transforms from amorphous to crystalline and forms cracks and pores in the coating layer.
  • a part of the Al 2 O 3 component is added to the powder, and the material has an amorphous property when forming a sprayed film. Powder containing such a substance is transformed from amorphous to crystalline by melt-solidification by plasma, but some Al 2 O 3 materials remain as amorphous to inhibit the formation of cracks and pores in the conventional coating layer Is predicted. As a result, cracks occurring in grain boundaries and the number of particles caused thereby are remarkably reduced.
  • the multi-component thermal spray coating is composed of yttrium (Y), oxygen (O), fluorine (F) and aluminum (Al), and the weight ratio [Al / (Y + F)] of the aluminum element to yttrium and fluorine is 0.025 To 0.25.
  • the weight ratio of aluminum element to yttrium and fluorine [Al / (Y + F)] is less than 0.025 in the thermal sprayed coating, the Al 2 O 3 amorphous portion is insufficient and the hardness of the thermal sprayed coating is low, The effect of improvement can not be achieved.
  • a weight ratio (F / Y) of fluorine to yttrium among the constituents of the thermal sprayed coating is 0.7 to 1.3.
  • the weight ratio (F / Y) of fluorine to yttrium is more than 1.3, the hardness of the thermal sprayed coating is lowered due to the high fluorine concentration, and the etching rate is increased.
  • the YOF-Al multi-component thermal sprayed film produced by atmospheric plasma has superior hardness and porosity level compared with the yttrium fluoride yttrium and yttrium fluoride yttrium coating and is superior to the yttrium oxide thermal spray coating used in semiconductor chambers used in the conventional etching process .
  • thermo sprayed film according to the composition it is easy to control the physical properties of the thermal sprayed film according to the composition, by utilizing the fact that the Y-O-F-Al component confirmed in the mixed, assembled, and sintered thermal spraying materials is also detected in the thermal sprayed coating produced by the atmospheric plasma method.
  • Yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ), and yttrium aluminum garnet (YAG) were appropriately mixed, assembled, and fired to obtain a powdery thermal sprayed material.
  • the composition ratio of the primary material consisting of 30 to 70 mass% of YF 3 and (Al 2 O 3 + YAG) remnant was changed to prepare a sprayed material.
  • a binder powder was mixed with yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) powders, followed by spray drying to obtain granulated powders.
  • the granulated powder was degreased and then sintered to obtain a sintered powder.
  • the plasma is generated at a power of 40 to 50 kW while flowing the argon and hydrogen gas using a heat source gas by using the thermal spray material and the plasma gun prepared in the step (1), and the material powder is melted using the generated plasma
  • a coating film was formed on the base material.
  • the thickness of the coating film was set to be 150 to 200 ⁇ , and the proportions of components of the obtained thermal spray coating were as shown in Table 1 below.
  • the raw materials were blended so as to produce a thermal spray coating having the composition ratios of the primary materials shown in Table 1 below, and the thermal spraying temperatures of the sprayed materials were as shown in Table 1 below. Thereafter, the sprayed coating was formed under the same conditions as in Example 1 using the obtained sprayed material.
  • thermal sprayed coatings prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were analyzed to obtain experimental data showing composition ratios of the respective elements as shown in Table 1.
  • Table 1 The thermal sprayed coatings prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were analyzed to obtain experimental data showing composition ratios of the respective elements as shown in Table 1.
  • the following tests were conducted and the physical properties obtained therefrom are summarized in Table 1 below.
  • physical properties of the thermal sprayed coatings used in the past are also shown in Comparative Examples 7 to 9.
  • Y-O, F, and Al components are detected during X-ray spectroscopy (EDS) analysis of YOF-Al multi-component spray coatings by electron microscopy (SEM).
  • SEM electron microscopy
  • XRD X-ray diffraction
  • the component content was determined by cutting the sprayed coating to a plane orthogonal to the surface of the substrate, polishing the obtained cross-section by resin embedding and polishing, and then measuring the EDS of the cross-sectional image using an electron microscope (JEOL, JS-6010) The CPS value was confirmed as a sample with a value of more than 100,000 counts for 1 min.
  • Example 1 is an electron micrograph (SEM) photograph of a side surface of a thermal sprayed coating according to Comparative Examples 7, 8 and 9 and Example 1 of the present invention, SEM photographs showed that the area of the pores of the multi-component thermal sprayed coating prepared in Example 1 was smaller than that of the thermal sprayed coatings prepared in Comparative Examples 7, 8, and 9.
  • the porosity obtained through the area of the pores shown in cross sections of the thermal sprayed coatings prepared in the comparative examples (Comparative Examples 7, 8, 9) and Example (Example 1) is shown in Table 1.
  • the porosity was measured in the following manner. That is, the thermal sprayed coating was cut into a surface orthogonal to the surface of the substrate, and the obtained cross-section was resin buried and polished, and then the cross-sectional image was taken using an electron microscope (JEOL, JS-6010) (FIG. The image was analyzed by using image analysis software (MEDIA CYBERNETICS, Image Pro) to determine the area of the pore portion in the cross-sectional image and calculating the ratio of the area of the pore portion to the cross-section.
  • image analysis software MEDIA CYBERNETICS, Image Pro
  • the porosity of the thermal sprayed coating prepared in Comparative Example 8 and Comparative Example 9 was 3% to 4%, and the porosity of the thermal sprayed YF 3 coating formed in Comparative Example 7 was 2% to 3% %.
  • Examples 1 and 2 show values of porosity of 1% to 2%, indicating that the density of the multi-component thermal spray coating according to the present invention is higher than that of conventionally used thermal spray coatings.
  • Example 2 is a scanning electron micrograph (SEM) photograph of the surface of the thermal sprayed coating according to the comparative examples (Comparative Examples 7 and 8) and Example (Example 1) according to the present invention. 2, the number of cracks appearing on the surface of the thermal sprayed coating prepared by Comparative Examples 7 and 8 was remarkably reduced on the surface of the multi-component thermal sprayed coating produced by Example 1 through the scanning electron microscope (SEM) photograph of the surface of the thermal sprayed coating Respectively.
  • SEM scanning electron micrograph
  • the column of " Hardness " in Table 1 shows the measurement results of the Vickers hardness of the respective thermal sprayed coatings.
  • the Vickers hardness was measured using a microhardness tester (company name, model name), and the Vickers hardness (Hv 0.2) obtained when a test force of 294.2 mN was applied by a diamond indenter having a face angle of 136 degrees.
  • the yttrium-based thermal sprayed coatings of Comparative Examples 7 to 9 exhibited a hardness of 300 to 400 Hv, whereas the YOF-Al multicomponent thermal sprayed coatings of Examples 1 and 2 exhibited 450 to 500 Hv hardness
  • the present invention has improved mechanical properties over conventional yttrium spray coatings.
  • the column of "Plasma Etch Rate" in Table 1 shows the result of evaluating the etching rate when each thermal sprayed film is exposed to plasma under the following conditions. That is, first, the members having the thermal sprayed coatings of Comparative Examples 7 to 9 and Examples 1 and 2 were provided on the member in contact with the upper electrode in the chamber of the parallel plate type semiconductor device manufacturing apparatus. Then, a silicon wafer was placed on the stage in the chamber, and a dummy run was performed for 2 hours to perform the plasma dry etching.
  • the plasma in the etching treatment was generated by applying a high frequency power of 700 W at the top and 250 W at the bottom for 2 hours while maintaining the pressure in the chamber at 0.1 torr and supplying an argon gas containing carbon tetrafluoride.
  • the etch rate of the sprayed coating was obtained by three-dimensional analysis (KEYENCE, VK-X150K 3D analysis) of the members that were installed in the chamber of the semiconductor device manufacturing apparatus after the plasma etching process.
  • Comparative Examples 7 to 9 showed etch rates in the range of 3.12 ⁇ m / h to 3.99 ⁇ m / h, whereas Examples 1 and 2 showed an etch rate in the range of 2.88 ⁇ m / h to 3.01 ⁇ m / h The etch rate shows that the plasma etch of the present invention is reduced.

Abstract

The present invention relates to a yttrium aluminum oxyfluoride spray coating material and, more particularly, to a spray coating material with excellent plasma resistance that is produced by mixing, assembling, and baking 30-70% by mass of yttrium fluoride (YF3) and a balance of alumina (Al2O3) and yttrium aluminum garnet (YAG), and to a spray coating.

Description

용사 재료 및 그 용사 재료로 제조된 용사 피막A sprayed coating made of a sprayed material and a sprayed material thereof
본 발명은 용사 재료 및 용사 피막을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a spray material and a thermal spray coating.
반도체 제조 공정에서 실리콘 웨이퍼 등의 기판 회로의 고집적화를 위한 미세 가공을 하기 위해 플라즈마 건식 식각 공정의 중요성은 갈수록 중요해지는 추세이다.In the semiconductor manufacturing process, the importance of the plasma dry etching process is becoming more and more important to perform fine processing for high integration of substrate circuits such as silicon wafers.
이러한 환경에서 사용되기 위해 플라즈마 저항성이 우수한 소재들이 챔버 부재로 이용되거나 부재의 표면을 내플라즈마성이 우수한 물질로 피막을 형성하여 부재의 수명을 높이는 방안들이 제안되었다.In order to be used in such an environment, methods have been proposed in which materials having excellent plasma resistance are used as chamber members or coatings are formed of materials having excellent plasma resistance on the surface of members.
이 중 기재의 표면을 각종 재료로 피복함으로써 새로운 기능성을 부여하는 기술은, 종래부터 여러 분야에서 이용되고 있다. 이 표면 피복 기술의 하나로서, 예를 들어, 기재의 표면에 세라믹스 등의 재료로 이루어지는 용사 입자를, 연소 또는 전기 에너지에 의해 연화 또는 용융 상태로 분사함으로써 이루어지는 용사 피막을 형성하는 용사법이 알려져 있다.Of these, techniques for imparting new functionality by coating the surface of a substrate with various materials have been used in various fields in the past. As one of such surface coating techniques, there is known a thermal spraying method in which a thermal sprayed coating is formed by spraying thermal sprayed particles made of a material such as ceramics, for example, on the surface of a substrate in a softened or melted state by combustion or electric energy.
일반적으로, 용사 코팅은 미세한 분말들을 가열하여 용융시키고, 용융된 분말들을 모재의 피코팅면을 향해 분사시킴으로써 수행된다. 상기 분사된 용융 분말이 급냉되어 용융 분말이 응고되어 주로 기계적 결합력으로 상기 코팅 대상면에 적층된다.Generally, a spray coating is performed by heating and melting fine powders and spraying molten powders toward the coated side of the base material. The injected molten powder is quenched and the molten powder solidifies and is laminated on the surface to be coated mainly by mechanical bonding force.
상기 용사 코팅 중 고온의 플라즈마 불꽃을 이용하여 상기 분말들을 용융하는 플라즈마 용사 코팅은 고용융점의 텅스텐이나 몰리브덴과 같은 금속과 세라믹의 코팅에는 필수적으로 사용된다. 상기 용사 코팅은 모재의 재질적 특성을 살려 내마모, 내부식, 내열 및 열장벽, 초경, 내산화, 절연, 마찰특성, 방열, 생체기능 내방사성의 특성을 나타내는 고기능성 소재를 생산하는데 유리할 뿐만 아니라, 화학기상증착이나 물리기상증착 등의 다른 코팅 방법에 비해 넓은 면적의 대상물을 빠른 시간 내에 코팅할 수 있다.Plasma spray coating for melting the powders using the high-temperature plasma flame of the thermal spray coating is essentially used for the coating of metals and ceramics such as tungsten or molybdenum with a high melting point. The thermal spray coating is advantageous for producing a high-performance material that utilizes the material properties of the base material to exhibit characteristics of abrasion, corrosion, heat resistance and thermal barrier, hardness, oxidation resistance, insulation, friction characteristics, heat radiation, However, it is possible to coat objects with a large area in a short period of time in comparison with other coating methods such as chemical vapor deposition and physical vapor deposition.
그리고 반도체 디바이스 등의 제조 분야에 있어서는, 일반적으로, 불소, 염소, 브롬 등의 할로겐계 가스의 플라즈마를 사용한 건식 에처에 의해 반도체 기판의 표면에 미세 가공을 실시하는 것이 행하여지고 있다. 또한, 건식 에처 후에는 반도체 기판을 취출한 챔버(진공 용기)의 내부를 산소 가스 플라즈마를 사용하여 클리닝하고 있다. 이때, 챔버 내에 있어서는 반응성이 높은 산소 가스 플라즈마나 할로겐 가스 플라즈마에 노출되는 부재가 부식될 가능성이 있다. 그리고 당해 부재로부터 부식(침식) 부분이 입자상으로 탈락하면, 이러한 입자는 반도체 기판에 부착되어서 회로에 결함을 초래하는 이물(이하, 당해 이물을 파티클이라고 한다)이 될 수 있다.In the field of manufacturing semiconductor devices and the like, microfabrication is generally carried out on the surface of a semiconductor substrate by dry etching using plasma of a halogen-based gas such as fluorine, chlorine or bromine. After the dry etcher, the interior of the chamber (vacuum container) from which the semiconductor substrate is taken out is cleaned using oxygen gas plasma. At this time, there is a possibility that the member exposed to the highly reactive oxygen gas plasma or the halogen gas plasma is corroded in the chamber. Then, when the corrosion (erosion) portion from the member falls into the particulate form, such a particle can be a foreign matter adhering to the semiconductor substrate and causing a defect in the circuit (hereinafter, the foreign matter is referred to as a particle).
따라서, 종래부터 반도체 디바이스 제조 장치에 있어서는 파티클의 발생을 저감시킬 목적으로 산소 가스나 할로겐 가스 등의 플라즈마에 노출되는 부재에 내플라즈마 침식성을 구비하는 세라믹의 용사 피막을 설치하는 것이 행하여지고 있다. Therefore, conventionally, in a semiconductor device manufacturing apparatus, a ceramic thermal spraying film having plasma corrosion resistance is provided on a member exposed to a plasma such as an oxygen gas or a halogen gas for the purpose of reducing the generation of particles.
이 파티클 발생 요인으로서는 진공 챔버 내에 부착된 반응 생성물의 박리 이외에 할로겐 가스 플라즈마나 산소 가스 플라즈마를 사용하는 것에 의한 챔버의 열화를 들 수 있다. 또한, 본 발명자들의 검토에 의하면, 건식 에처 환경하에서 용사 피막으로부터 발생하는 파티클의 수나 크기는 용사 피막의 조성에 크게 영향받는 것이 확인되어 있다.The cause of the particle generation is deterioration of the chamber by using a halogen gas plasma or an oxygen gas plasma in addition to the exfoliation of reaction products adhered to the vacuum chamber. Further, according to a study by the present inventors, it has been confirmed that the number and size of particles generated from the thermal sprayed coating under a dry-etched environment are greatly affected by the composition of the thermal sprayed coating.
구체적으로 에처 장치의 할로겐계 가스 플라즈마에 접촉하는 부품은 금속 알루미늄 또는 산화알루미늄 세라믹스에 내부식성이 우수한 산화 이트륨 또는 산화 불화 이트륨을 피막으로 채용한다. 하지만, 산화 이트륨은 프로세스 초기 최상단 표면에서 불소계 가스와 반응하여 장치 내 플라즈마 농도를 변화시켜 에처 공정 조건이 불안해지는 문제점이 있다(프로세스 시프트). 또한, 불화 이트륨 용사 피막은 불소계 가스와 반응성은 적지만, 표면 균열이 많고 산화 이트륨에 비해 경도가 낮기 때문에 식각 속도가 빨라 부재의 교체 주기가 짧아진다.Particularly, the parts that come into contact with the halogen-based gas plasma of the etching apparatus employ yttrium oxide or yttrium fluoride which is excellent in corrosion resistance to metallic aluminum or aluminum oxide ceramics as a coating film. However, yttrium reacts with the fluorine-based gas at the uppermost surface of the initial stage of the process to change the concentration of the plasma in the apparatus, thereby causing an unstable etching process condition (process shift). In addition, the yttrium fluoride thermal spray coating has a low reactivity with the fluorine-based gas, but has a surface cracking and a low hardness compared with yttrium oxide, so that the etching rate is high and the replacement cycle of the member is shortened.
따라서, 최근에는 산화 이트륨과 불화 이트륨를 혼합하여 제조한 이트륨 옥시불화물 입자를 용사용 재료로 사용함으로써 플라즈마에 대한 내식성이 높은 용사 피막을 형성할 수 있는 기술들에 대해 개시되어 있다. (특허문헌 1 내지 5)Therefore, recently, there have been disclosed techniques capable of forming a spray coating having high corrosion resistance to plasma by using yttrium oxyfluoride particles prepared by mixing yttrium oxide and yttrium fluoride as a solvent for use. (Patent Documents 1 to 5)
먼저, 한국공개특허 제10-2017-0078842호(2017.07.07.)는 희토류 원소의 옥시불화물(Ln-O-F)을 함유하는 성막용 분말에 관한 것으로서, 분말의 평균 입자경(D50)이 0.1 ㎛ 이상 10 ㎛ 이하이고, 수은 압입법에 의해 측정한 직경 10 ㎛ 이하의 세공의 용적이 0.1 cm3/g 이상 0.5 cm3/g 이하이고, 염소계 플라즈마에 대한 내식성이 높은 용사용 재료에 대하여 기재되어 있다. 또한, 한국공개특허 제10-2016-0131916호(2016.11.16.)는 구성 원소로서 희토류 원소(RE), 산소(O) 및 할로겐 원소(X)를 포함하고, 희토류 원소 옥시할로겐화물(RE-O-X)이 77 질량% 이상의 비율로 포함되어 있는 용사용 재료에 대하여 기재되어 있다.Korean Patent Laid-Open No. 10-2017-0078842 (Jul.07.07, 2017) discloses a film-forming powder containing oxyfluoride (Ln-OF) of a rare earth element, and has an average particle size (D50) is not more than 10 ㎛, and the volume of pores of less than diameter 10 ㎛ measured by mercury porosimetry 0.1 cm over 3 / g 0.5 cm 3 / g or less, the corrosion resistance against the chlorine-containing plasma is described for high-used material for . Korean Patent Laid-Open No. 10-2016-0131916 (Nov. 16, 2016) includes rare earth element RE, oxygen O and halogen element X as constituent elements and rare earth element oxyhalide RE- OX) is contained in a proportion of 77 mass% or more.
또한, 한국공개특허 제10-2016-0131917호(2016.11.16.)는, 용사용 재료의 X선 회절 패턴에 있어서, 희토류 원소 옥시할로겐화물의 메인 피크의 피크 강도 IA에 대한, 희토류 원소 산화물의 메인 피크의 피크 강도 IB와 희토류 원소 할로겐화물의 메인 피크의 피크 강도 IC의 합계의 강도비[(IB+IC)/IA]가 0.02 미만인 희토류 원소 옥시할로겐화물 용사용 재료에 관한 것이다.Also, Korea Patent Publication No. 10-2016-0131917 No. (2016.11.16.), In the X-ray diffraction pattern of the material for use, to the peak intensity I A of the main peak of the rare earth element oxy halide, a rare earth element oxide (I B + I C ) / I A ) of the sum of the peak intensity I B of the main peak of the rare earth element halide and the peak intensity I C of the main peak of the rare earth element halide is less than 0.02 is used as the material for the rare earth element oxyhalide .
상기 특허문헌 2,3은 비정질 특성으로 인하여 파티클을 발생시키는 희토류 원소 산화물과 용사에 의해 희토류 원소 산화물로 변질될 수 있는 희토류 원소 불화물의 양을 감소시키고, 보다 향상된 내플라즈마성을 가지는 희토류 원소 옥시할로겐화물의 양을 증가시킴으로써 용사 재료의 물성을 개선하였다.The above Patent Documents 2 and 3 disclose a method of reducing the amount of rare earth element fluoride which can be transformed into rare earth element oxide by spraying with a rare earth element oxide which generates particles due to the amorphous nature and to provide a rare earth element oxyhalogen The physical properties of the sprayed material were improved by increasing the amount of the cargo.
또한, 한국공개특허 제10-2016-0131918호(2016.11.16.)에 개시된 용사용 재료는 구성 원소로서 희토류 원소(RE), 산소(O) 및 할로겐 원소(X)를 포함하는 희토류 원소 옥시할로겐화물(RE-O-X)을 포함하며, 희토류 원소에 대한 할로겐 원소의 몰비(X/RE)가 1.1 이상이고, 이로 인해 내플라즈마성이 향상되고 기공률이나 경도 등의 특성이 우수하다.The use material disclosed in Korean Patent Laid-Open No. 10-2016-0131918 (Nov. 16, 2016) has a rare earth element oxyhalide including rare earth element (RE), oxygen (O) and halogen element (X) (RE-OX), and the molar ratio (X / RE) of the halogen element to the rare-earth element is 1.1 or more, thereby improving plasma resistance and excellent properties such as porosity and hardness.
또한, 한국공개특허 제10-2017-0015236호(2017.02.08.)는 내산화이트륨, 불화이트륨 및 옥시불화이트륨의 1종 또는 2종 이상을 포함하는 두께 10 내지 500 ㎛의 이트륨계 용사 피막에 관한 것이며, 특정 용매로 해당 피막 표면을 세척함으로써 표면에 존재하는 입경 300 nm 이하의 입자의 수가 1 mm2 당 5개 이하로 줄어들어 파티클 탈리 현상을 방지할 수 있는 이트륨계 용사 피막 제조 기술에 대해 기재되어 있다.In addition, Korean Patent Laid-Open No. 10-2017-0015236 (Feb. 27, 2017) discloses a yttrium-type thermal sprayed coating film having a thickness of 10 to 500 占 퐉 containing one or more of yttrium oxide, yttrium fluoride and yttrium oxyfluoride , And the surface of the coating film is washed with a specific solvent so that the number of particles having a particle diameter of 300 nm or less present on the surface is 1 mm 2 A technique for manufacturing a yttrium-based thermal spray coating that can reduce the number of particles to less than 5 per particle to prevent the phenomenon of particle desorption.
상기에 기술된 바와 같이, 종래에 이르기까지 산화 이트륨 또는 불화 이트륨 용사 재료의 물성 한계를 극복하기 위해, 산화 이트륨 및 불화 이트륨를 혼합, 제조하여 플라즈마 침식성, 기공률, 경도 등의 물성을 향상시킨 이트륨 옥시불화물 용사재료를 제조하는 기술들이 제안되었다.As described above, in order to overcome the physical limitations of yttrium oxide or yttrium fluoride thermal spraying materials until now, yttrium oxyfluoride and yttrium fluoride have been mixed to produce yttrium oxyfluoride which improves physical properties such as plasma erosion resistance, porosity and hardness Techniques for manufacturing sprayed materials have been proposed.
하지만, 이트륨의 옥시불화물 용사 피막을 제조함에 있어서 고온 반응 조건에 의해 용사 피막의 불소 성분이 일부 감소하고 산소로 치환되어 용사 피막의 조성의 차이가 발생해 균일한 조성의 용사 피막을 성막하기 어려운 문제점 등이 여전히 존재하며, 상기 선행문헌들에서 기재된 이트륨 옥시불화물 용사 피막의 내플라즈마 특성 향상에 대한 요구가 산업적인 측면에서 지속적으로 요구되고 있는 실정이다.However, in the preparation of the oxyfluoride thermal sprayed coating of yttrium, the fluorine component of the thermal sprayed coating is partially reduced and replaced with oxygen due to the high-temperature reaction conditions, resulting in a difference in the composition of the thermal sprayed coating and difficulty in forming a uniform thermal sprayed coating And there is a continuing demand for the improvement of the plasma plasma characteristics of the yttrium oxyfluoride coating film described in the above prior arts.
본 발명의 목적은 이트륨 옥시불화물 용사 재료 및 용사 피막의 내플라즈마 특성을 개선하는 방법을 제공하는데에 있다.It is an object of the present invention to provide a method for improving the plasma plasma characteristics of a yttrium oxyfluoride thermal spraying material and a thermal spray coating.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는, 불화이트륨(YF3)의 비중이 30 내지 70% 질량과 잔분이 알루미나(Al2O3), 이트륨알루미늄가넷(YAG)을 혼합, 조립, 소성하여 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법을 제공한다.In order to achieve the above object, one embodiment of the present invention is characterized in that the specific gravity of yttrium fluoride (YF 3 ) is 30 to 70% by mass and the residue is mixed with alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) , Assembling, and firing to produce a YOF-Al multicomponent thermal spraying material.
본 발명의 바람직한 일 구현예에서, 상기 불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG) 입자들의 평균 입자 직경이 0.01 ㎛ 이상 7 ㎛ 이하일 수 있다.In a preferred embodiment of the present invention, the average particle diameter of the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) particles may be 0.01 μm or more and 7 μm or less.
본 발명의 바람직한 일 구현예에서, 상기 소성하는 온도가 500 ℃ 내지 1100 ℃일 수 있다.In a preferred embodiment of the present invention, the firing temperature may be 500 ° C to 1100 ° C.
본 발명의 또 다른 구현예는, 상기 Y-O-F-Al 다성분계 용사 재료의 제조 방법으로 제조되며, 평균 입자 직경이 5 ㎛ 이상 100 ㎛ 이하인 Y-O-F-Al 다성분계 용사 재료를 제공한다.Another embodiment of the present invention provides a Y-O-F-Al multicomponent thermal sprayed material prepared by the above-described method for producing a Y-O-F-Al multicomponent thermal spraying material and having an average particle diameter of 5 m or more and 100 m or less.
본 발명의 또 다른 구현예는, 상기 Y-O-F-Al 다성분계 용사 재료를 용사하여, 기재상에 피막을 형성하는 Y-O-F-Al 다성분계 용사 피막을 제조하는 방법을 제공한다.Another embodiment of the present invention provides a method for producing a Y-O-F-Al multi-component thermal spray coating that forms a coating on a substrate by spraying the Y-O-F-Al multicomponent thermal spraying material.
본 발명의 바람직한 일 구현예에서, 상기 용사가 플라즈마 용사일 수 있다.In a preferred embodiment of the present invention, the spray may be a plasma spray.
본 발명의 또 다른 구현예는, 상기 Y-O-F-Al 다성분계 용사 피막의 제조하는 방법으로 형성되며, 두께가 50 ㎛ 내지 400 ㎛인 Y-O-F-Al 다성분계 용사 피막을 제공한다.Another embodiment of the present invention provides a Y-O-F-Al multicomponent thermal sprayed coating formed by the method of producing the Y-O-F-Al multicomponent thermal sprayed coating and having a thickness of 50 탆 to 400 탆.
본 발명의 또 다른 구현예는, 구성 원소로서 이트륨(Y), 산소(O), 불소(F) 및 알루미늄(Al)을 포함하며, 상기 이트륨과 불소에 대한 알루미늄 원소의 무게비(Al/Y+F)가 0.025 내지 0.25인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 피막을 제공한다.Another embodiment of the present invention is a method of manufacturing a semiconductor device, comprising the steps of: preparing a semiconductor substrate including yttrium (Y), oxygen (O), fluorine (F), and aluminum (Al) F) of 0.025 to 0.25 is provided.
본 발명의 바람직한 일 구현예에서, 상기 이트륨에 대한 불소에 대한 알루미늄 원소의 무게비(F/Y)는 0.7 내지 1.3일 수 있다.In a preferred embodiment of the present invention, the weight ratio (F / Y) of aluminum element to fluorine relative to yttrium may be 0.7 to 1.3.
본 발명에 따른 Y-O-F-Al 다성분계 용사 재료는 용사 제조 공정시 용사 피막에 포함되는 산소 성분 및 불소 성분의 조성 변화가 발생하지 않으며, 종래의 코팅층내 발생되었던 크랙과 기공의 형성을 억제해 주었기 때문에 종래의 코팅층보다 치밀한 용사 피막을 형성 시킬수 있다. The YOF-Al multicomponent thermal spraying material according to the present invention does not cause a change in the composition of the oxygen component and the fluorine component contained in the thermal sprayed coating during the spray manufacturing process, and suppresses the formation of cracks and pores which have occurred in the conventional coating layer It is possible to form a thermal spray coating more densely than a conventional coating layer.
이로 인하며, 본 발명의 Y-O-F-Al 다성분계 용사 피막은 종래의 불화이트륨 및 산화이트륨에 비해 경도가 증가하며 낮은 기공률을 가지고 있으며, 내플라즈마 특성이 향상되어 Y-O-F-Al 다성분계 용사 피막 부재의 교체 주기를 연장할 수 있다.The YOF-Al multicomponent thermal sprayed coating of the present invention has an increased hardness and lower porosity than yttrium fluoride and yttrium oxide of the prior art, and improved plasma plasma characteristics, The cycle can be extended.
도 1은 본 발명에 따른 비교예(비교예7, 8, 9) 및 실시예(실시예1)에 따른 용사 피막의 측면의 전자주사현미경(SEM) 사진이다.1 is a scanning electron micrograph (SEM) photograph of a side surface of a thermal sprayed coating according to Comparative Examples (Comparative Examples 7, 8 and 9) and Example (Example 1) according to the present invention.
도 2는 본 발명에 따른 비교예(비교예7, 8) 및 실시예(실시예1)에 따른 용사 피막의 표면의 전자주사현미경(SEM) 사진이다.2 is a scanning electron micrograph (SEM) photograph of the surface of the thermal sprayed coating according to the comparative examples (Comparative Examples 7 and 8) and Example (Example 1) according to the present invention.
다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when an element is referred to as "including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.
반도체의 제조 공정에서는 게이트 에처 장치, 절연막 에처 장치, 레지스트막 에처 장치, 스퍼터링 장치, CVD 장치 등이 이용되고 있다. 한편, 액정의 제조 공정에서는 박막 트랜지스터를 형성하기 위한 에처 장치 등이 이용되고 있다. 또한, 이들 제조 장치에서는 미세 가공에 의한 고집적화 등을 목적으로 플라즈마 발생 기구를 구비한 구성을 취하고 있다.In the semiconductor manufacturing process, a gate etcher, an insulating film etcher, a resist film etcher, a sputtering apparatus, a CVD apparatus, and the like are used. On the other hand, in the liquid crystal manufacturing process, an etcher device for forming a thin film transistor is used. In these manufacturing apparatuses, a plasma generating mechanism is provided for the purpose of high integration by micromachining.
이들 제조 공정에서 처리 가스로서는 불소계, 염소계 등의 할로겐계 부식 가스가 이들의 높은 반응성으로 인해 상술한 장치에 이용되고 있다. 불소계 가스로서는 SF6, CF4, CHF3, ClF3, HF, NF3 등을, 염소계 가스로서는 Cl2, BCl3, HCl, CCl4, SiCl4 등을 들 수 있으며, 이들 가스가 도입된 분위기에 마이크로파나 고주파 등을 도입하면 이들 가스는 플라즈마화된다. 이들 할로겐계 가스 또는 그의 플라즈마에 노출되는 장치 부재에는 표면에 재료 성분 이외의 금속이 매우 적고, 또한 높은 내식성을 가질 것이 요구됨에 따라서, 본 발명은 플라즈마 에처 장치용 부재를 피막하는 내 플라즈마성이 우수한 Y-O-F-Al 다성분계 용사 재료 및 용사 피막의 제조방법을 제공하는 것을 목적으로 한다.As the process gas in these manufacturing processes, halogen-based corrosion gases such as fluorine-based and chlorine-based gases have been used in the above-mentioned apparatus due to their high reactivity. Examples of the fluorine-based gas include SF 6 , CF 4 , CHF 3 , ClF 3 , HF and NF 3. Examples of the chlorine-based gas include Cl 2 , BCl 3 , HCl, CCl 4 and SiCl 4 . When a microwave or a high frequency wave is introduced into the plasma, these gases are converted into plasma. Since the apparatus members exposed to these halogen-based gases or plasma thereof are required to have very few metals other than material components on their surfaces and to have high corrosion resistance, the present invention relates to a plasma- YOF-Al multi-component thermal spraying material and a method for producing a thermal spray coating.
하기에서 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법에 대하여 하기에 자세히 설명하도록 한다. Hereinafter, a method for producing a Y-O-F-Al multicomponent thermal sprayed material will be described in detail.
본 발명의 일 관점에서, 불화이트륨(YF3)의 비중이 30 내지 70% 질량과 잔분이 알루미나(Al2O3), 이트륨알루미늄가넷(YAG)을 혼합, 조립, 소성하여 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법을 제공한다.In one aspect of the present invention, yttrium fluoride (YF 3 ) has a specific gravity of 30 to 70% by mass and the balance is mixed with alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) Thereby providing a method for manufacturing a sprayed material.
1차 재료인 상기 불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG) 재료들는 조립되지 않은 분말로의 사용이나, 조립되지 않은 분말을 포함하는 슬러리로의 사용도 검토되고 있지만, 재료의 흐름성이 용사에 필요한 수준에 미치지 못하여 구형의 형태로 제조하는 혼합, 조립 및 소성 공정을 거쳐 조립 입자를 구성하는 것이 바람직하다.The use of yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ), and yttrium aluminum garnet (YAG) materials, which are primary materials, as unstructured powders or slurries containing ungrafted powders However, it is preferable to form the granulated particles through mixing, granulation, and firing processes in which the flowability of the material does not reach the level required for thermal spraying and is manufactured in a spherical shape.
조립한 분말인 용사 재료가 내부까지 충전되어 있는 것이 바람직하며, 이는 분말을 취급하는데 있어서 깨지거나 하지 않고 안정되어 있으며, 공극부가 존재하면 그 공극부에 바람직하지 않은 가스 성분을 함유하기 쉬우므로 그것을 회피할 수 있다는 점에서 필요한 것이다.It is preferable that the sprayed material as the assembled powder is filled up to the inside. This is because it is stable and does not break when handling the powder, and if there is a void portion, it is easy to contain an undesirable gas component in the void portion, It is necessary in that it can do.
상기 혼합 및 조립 공정에 있어서, 상기 불화이트륨(YF3), 알루미나(Al2O3), 이트륨알루미늄가넷(YAG)에 소결조제 및 분산매를 첨가하여 분쇄·혼합한 후 탈수와 건조 과정을 거친다. 필요에 따라 추가로 결합제와 함께 혼합하여 슬러리 액적을 제조한 후, 조립, 소성함으로써 조립 입자를 제조할 수 있다. 결합제로서는 유기화합물이 바람직하고, 탄소, 수소 및 산소, 또는 탄소, 수소, 산소 및 질소로 구성되는 유기 화합물, 예를 들어 카르복시메틸셀룰로오스(CMC), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP) 등을 들 수 있다.In the mixing and granulating process, the sintering auxiliary agent and the dispersion medium are added to the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG), followed by pulverization and mixing, followed by dehydration and drying. If necessary, the granulated particles may be further mixed with a binder to prepare a slurry droplet, followed by granulation and firing. As the binder, organic compounds are preferable, and organic compounds composed of carbon, hydrogen and oxygen, or carbon, hydrogen, oxygen and nitrogen, such as carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and the like.
상기 불화이트륨(YF3), 알루미나(Al2O3), 이트륨알루미늄가넷(YAG) 입자들은 조립 과정을 거치게 된다. 조립 장치로서는, 예컨대 분무 건조(spray drying) 장치를 이용할 수 있다. 분무 건조 장치에서는 분쇄된 복수의 입자를 포함하는 슬러리의 액적이 열풍 중에 적하되고, 이에 의해 액적이 고체화되어 복수의 입자를 포함하는 중간 입자가 조립된다.The yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ), and yttrium aluminum garnet (YAG) particles undergo the assembly process. As the assembling apparatus, for example, a spray drying apparatus can be used. In the spray drying apparatus, a droplet of a slurry containing a plurality of pulverized particles is dropped in a hot air stream, whereby the droplet is solidified and the intermediate particles including a plurality of particles are assembled.
조립 공정의 측면에서 상기 불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG) 입자들은 평균 입자 직경이 0.01 ㎛ 이상 7 ㎛ 이하인 것이 바람직하다. 상기 입자들의 지름이 약 0.01 ㎛ 미만일 경우에는 상기 산화이트륨 입자들을 포함하는 조립 구조를 갖는 용사 코팅용 분말의 평균 지름이 작아질 수 있으며, 상기 입자들의 제어가 어려워 구형의 조립 입자를 형성하기 어렵다. 상기 입자들의 지름이 약 7 ㎛를 초과할 경우, 상기 입자들이 뭉쳐 형성된 조립 입자들의 평균 지름이 너무 커져 균일한 용사 피막의 형성이 어려울 수 있다.In terms of the assembly process, it is preferable that the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) particles have an average particle diameter of 0.01 μm or more and 7 μm or less. When the diameter of the particles is less than about 0.01 탆, the average diameter of the powder for spray coating having the granulation structure containing the yttrium oxide particles may be small, and it is difficult to control the particles, and spherical granules are difficult to form. When the diameter of the particles exceeds about 7 탆, the average diameter of the granulated particles formed by the granulation is too large, so that it is difficult to form a uniform thermal spray coating.
이후, 상기 조립 입자들은 소성 단계를 거치게 되는데, 소성하는 온도가 500 ℃ 내지 1100 ℃인 것이 바람직하다. 이 온도 범위에서 소성함으로써 옥시 불화이트륨과 알루미늄 화합물이 충분히 반응한다. 소성 온도가 500 ℃ 미만일 경우 혼합 반응이 불충분하여 불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG)의 일부가 잔류할 가능성이 있다. 더욱 바람직하게는, 상기 소성하는 온도가 800 ℃ 내지 1000 ℃인 것이 다성분계 용사 피막의 내플라즈마성을 향상시키는 측면에서 효과적이다. 구체적으로, 상기 소성온도가 800 ℃ 미만일 때, 용사피막의 경도가 충분하지 않으며, 이로 인하여 용사 재료의 내플라즈마성이 저하된다.Thereafter, the granulated particles are subjected to a sintering step, and the sintering temperature is preferably 500 ° C to 1100 ° C. By firing in this temperature range, yttrium oxyfluoride and aluminum compound react sufficiently. If the sintering temperature is less than 500 ° C, the mixing reaction is insufficient and a part of yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) may remain. More preferably, the firing temperature is 800 Deg.] C to 1000 [deg.] C is effective in improving the plasma resistance of the multi-component thermal sprayed coating. Concretely, when the firing temperature is less than 800 ° C, the hardness of the thermal sprayed coating is not sufficient, and the plasma resistance of the thermal sprayed material is lowered.
소성 시간은 소성 온도가 상기 범위인 조건으로, 2 시간 이상 8 시간 이하가 바람직하다. 이 범위이면, Y-O-F-Al 다성분계 화합물이 충분히 생성되고, 에너지 소비도 최소화된다. The firing time was set to be 2 Hour to 8 hours or less is preferable . Within this range, sufficient YOF-Al multicomponent compounds are produced and energy consumption is minimized.
소성 분위기는 대기 분위기 등의 산소 함유 분위기를 사용할 수 있지만, 아르곤 가스 등의 불활성 가스 분위기 또는 진공 분위기가 바람직하다. An oxygen-containing atmosphere such as an atmospheric atmosphere can be used as the firing atmosphere, but an inert gas atmosphere such as argon gas or a vacuum atmosphere is preferable.
혼합, 조립, 소성하여 제조된 용사 재료의 평균 입자 직경이 5 ㎛ 이상 100 ㎛ 이하인 것이 용사 피막의 품질을 높이는 측면에서 바람직하다. 평균 입자 직경이 5 ㎛ 미만이면 용사 코팅시 분말의 흐름성이 낮아서 균일한 막을 구현할 수 없고, 프레임에 분말이 전달되기 전에 산화되거나 프레임 중심에 전달되지 않아 치밀한 막을 형성하기 위한 액적 비상 속도 및 열량을 충족시키기 어려워 기공이 높거나 경도가 낮은 막을 형성하게 된다. 평균 입자 직경이 100 ㎛ 초과이면 분말이 플라즈마 내로 주입될 때 완전 용융이 되지 않아 코팅 막질 내 미용융 부분이 발생 되어 본 발명에서 요구하는 용사 피막의 품질을 만족시키기 어렵다.The average particle diameter of the sprayed material produced by mixing, assembling and firing is preferably 5 탆 or more and 100 탆 or less in terms of improving the quality of the sprayed coating. If the average particle diameter is less than 5 탆, the flowability of the powder during the spray coating is low, so that a uniform film can not be realized. The powder is not oxidized or transferred to the frame center before the powder is delivered to the frame, It is difficult to satisfy such a requirement that a film having a high porosity or a low hardness is formed. If the average particle diameter is more than 100 占 퐉, the powder is not completely melted when injected into the plasma, resulting in an unmelted portion in the coating film, which makes it difficult to satisfy the quality of the thermal spraying film required in the present invention.
본 발명의 용사 재료 분말의 애스펙트비(aspect ratio)는 입자의 긴 직경과 짧은 직경의 비로 표시되며, 1.0 이상 5.0 이하인 것이 치밀하고 균일한 막을 형성하는 관점에서 바람직하며, 이 관점에서 애스펙트비는 1.0 이상 4.0 이하인 것이 보다 바람직하고, 1.0 이상 1.5 이하인 것이 특히 바람직하다.The aspect ratio of the spraying material powder of the present invention is expressed by the ratio of the long diameter to the short diameter of the particles, and 1.0 or more and 5.0 or less is preferable from the viewpoint of forming a dense and uniform film, and the aspect ratio is 1.0 More preferably 4.0 or less, and particularly preferably 1.0 or more and 1.5 or less.
용사 재료 분말은 흐름성이 용사 막의 품질의 중요한 요소로 구형으로 제작이 되는 것이 가장 바람직하며, 그렇지 않을 경우 용사 피막 제조시 프레임에 일정한 양의 분말이 전달되지 않아 우리가 요구하는 수준의 막을 형성할 수 없다. It is most preferable that the spraying material powder is formed into a spherical shape, which is an important factor of the quality of the sprayed film. Otherwise, when the sprayed coating is formed, a certain amount of powder is not transferred to the frame, I can not.
또한, 상기 Y-O-F-Al 다성분계 용사 재료를 플라즈마 용사하여, 기재상에 알루미늄 옥시불화이트륨 성막을 형성하는 Y-O-F-Al 다성분계 용사 피막의 제조 방법을 하기에 설명하도록 한다.Further, a method for producing a Y-O-F-Al multi-component thermal spray coating film in which the Y-O-F-Al multi-component thermal spraying material is plasma-sprayed to form an aluminum oxyfluoride film on the substrate will be described below.
상기 플라즈마 용사법은 이 플라즈마 제트에 용사용 재료를 투입하고, 가열, 가속해서 기재에 퇴적시킴으로써 용사 피막을 얻는 코팅 방법 일반을 포함한다. 또한, 플라즈마 용사법은, 대기 중에서 행하는 대기 플라즈마 용사(APS: atmospheric plasma spraying)나, 대기압보다도 낮은 기압에서 용사를 행하는 감압 플라즈마 용사(LPS: low pressure plasma spraying), 대기압보다 높은 가압 용기 내에서 플라즈마 용사를 행하는 가압 플라즈마 용사(high pressure plasma spraying) 등의 형태일 수 있다. 이러한 플라즈마 용사에 의하면, 예를 들어 일례로서, 용사 재료를 10000 K 내지 15000 K 정도의 플라즈마 제트에 의해 용융 및 가속시킴으로써, 용사 입자를 300 m/s 내지 1000 m/s 정도의 속도로 기재에 충돌시켜서 퇴적시킬 수 있다.The plasma spraying method generally includes a coating method in which a spraying material is obtained by charging a material to be used for the plasma jet, and heating and accelerating the material to deposit on the substrate. The plasma spraying method can be applied to atmospheric plasma spraying (APS) in air, low pressure plasma spraying (LPS) spraying at a pressure lower than atmospheric pressure, plasma spraying in a pressure vessel higher than atmospheric pressure, Such as high pressure plasma spraying or the like. According to this plasma spraying, for example, by spraying and accelerating the sprayed material by a plasma jet of about 10000 K to 15000 K, the sprayed particles are collided with the substrate at a speed of about 300 m / s to 1000 m / s So that it can be deposited.
본 발명의 기재에의 용사는 대기압 플라즈마 용사에 의해 행할 수 있다. 이 경우, 플라즈마 가스로서는, 특별히 한정되는 것이 아니고 적절히 선택할 수 있고, 예를 들어 질소/수소, 아르곤/수소, 아르곤/헬륨, 아르곤/질소 등을 사용할 수 있으며, 본 발명에는 아르곤/수소가 용사되는 것이 바람직하다. The spraying of the substrate of the present invention can be performed by atmospheric pressure plasma spraying. In this case, the plasma gas is not particularly limited and may be appropriately selected. For example, nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen and the like can be used. .
용사의 구체예로서, 아르곤/수소 플라즈마 용사의 경우, 대기 분위기에서 아르곤과 수소의 혼합가스를 사용한 대기압 플라즈마 용사를 들 수 있다. 용사 거리나 전류값, 전압값, 아르곤 가스 공급량, 수소가스 공급량 등의 용사 조건은, 용사 부재의 용도 등에 따라 조건 설정을 행한다. 분말 공급 장치에 용사 재료를 소정량 충전하고 파우더 호스를 사용하여, 캐리어 가스(아르곤)에 의하여 플라즈마 용사건 선단부까지 파우더를 공급한다. 플라즈마 불꽃 중에 파우더를 연속 공급함으로써 용사 재료가 용융되어 액화되고, 플라즈마 제트의 힘으로 액상 프레임화된다. 기판 상에 액상 프레임이 닿음으로써, 용융된 파우더가 부착, 고화되고 퇴적된다. 이 원리로 프레임을 좌우, 상하로 움직이면서 기판상의 소정의 코팅 범위 내에 Y-O-F-Al 다성분계 용사 피막을 형성함으로써, Y-O-F-Al 다성분계 성막 부품(용사 부재)을 제조할 수 있다.As a specific example of the spraying, in the case of argon / hydrogen plasma spraying, atmospheric plasma spraying using a mixed gas of argon and hydrogen in an air atmosphere can be mentioned. Conditions for spraying such as spraying distance, current value, voltage value, argon gas supply amount, hydrogen gas supply amount, etc. are set according to the use of the sprayed member. A predetermined amount of the spray material is charged into the powder feeder, and the powder is supplied to the tip of the plasma event by the carrier gas (argon) using the powder hose. By continuously supplying the powder during the plasma flame, the sprayed material is melted and liquefied, and is liquid-phase framed by the force of the plasma jet. The molten powder adheres, solidifies, and deposits by touching the liquid phase frame on the substrate. By this principle, a Y-O-F-Al multi-component film forming component (sprayed member) can be manufactured by forming a Y-O-F-Al multi-component thermal spray coating within a predetermined coating range on a substrate while moving the frame left and right and up and down.
본 말명에 있어서 용사 피막을 피복하는 기재는 특별히 한정되지 않는다. 예를 들어, 이러한 용사용 재료의 용사에 제공하여 원하는 내성을 구비할 수 있는 재료를 포함하는 기재라면, 그 재질이나 형상 등은 특별히 제한되지 않는다. 이러한 용사되는 기재를 구성하는 재료로서는, 예를 들어, 반도체 제조 장치용 부재 등을 구성하는 알루미늄, 니켈, 크롬, 아연 및 이들의 합금, 알루미나, 질화알루미늄, 질화 규소, 탄화규소 및 석영 유리 중에서 적어도 한가지 이상의 조합에서 선택하는 것이 바람직하다.In the present invention, the substrate coated with the thermal sprayed coating is not particularly limited. For example, the material, the shape, and the like are not particularly limited as long as it is a substrate including a material capable of providing desired resistance to the spraying of such a material for use. Examples of the material constituting such a sprayed substrate include at least one of aluminum, nickel, chromium, zinc and their alloys, alumina, aluminum nitride, silicon nitride, silicon carbide and quartz glass constituting members for semiconductor manufacturing apparatuses It is preferable to select one or more combinations.
이러한 기재는, 예를 들어, 반도체 디바이스 제조 장치를 구성하는 부재이며, 반응성이 높은 산소 가스 플라즈마나 할로겐 가스 플라즈마에 노출되는 부재여도 된다.Such a substrate may be, for example, a member constituting a semiconductor device manufacturing apparatus and exposed to a highly reactive oxygen gas plasma or a halogen gas plasma.
상기 기재 표면은 플라즈마 용사 전에, JIS H 9302 에 규정되어 있는 세라믹스 용사 작업 표준에 준거하여 처리하는 것이 바람직하다. 예를 들어, 그 기재 표면의 녹이나 유지류 등을 제거한 후, Al2O3, SiC 등의 연삭 입자를 분사하여 조면화하고, 불화물 용사 입자가 부착되기 쉬운 상태로 전처리한다. It is preferable that the surface of the substrate is treated in accordance with the ceramics spraying working standard prescribed in JIS H 9302 before plasma spraying. For example, after removing rust, grease, and the like on the surface of the substrate, grinding particles such as Al 2 O 3 and SiC are sprayed to roughen the surface, and the pre-treatment is performed so that the fluoride sprayed particles are easily adhered.
또한, 상기 용사 피막의 제조 방법은 플라즈마 용사 이외에, 여기에 개시되는 용사 재료를 공지된 용사 방법에 기초하는 용사 장치에 제공함으로써 형성할 수 있다. 이 용사용 재료를 적절하게 용사하는 용사 방법은 고속 프레임 용사법, 프레임 용사법, 폭발 용사법 등의 용사 방법을 채용하는 것이 예시된다. In addition to the plasma spraying, the method for producing the thermal spray coating can be formed by providing the thermal spraying material disclosed herein to a thermal spraying apparatus based on a known thermal spraying method. Examples of the spraying method for appropriately spraying the material for use include a spraying method such as a high-speed frame spraying method, a frame spraying method, and an explosive spraying method.
용사 피막의 특성은 용사 방법 및 그 용사 조건에 어느 정도 의존하는 경우가 있을 수 있다. 그러나 어느 용사 방법 및 용사 조건을 채용한 경우에도 여기에 개시되는 용사용 재료를 사용함으로써 기타의 용사 재료를 사용한 경우와 비교하여 내플라즈마 침식성이 우수한 용사 피막을 형성하는 것이 가능해진다.The characteristics of the sprayed coating may depend to some extent on the spraying method and the spraying conditions. However, even when any spraying method and spraying condition are employed, it is possible to form a sprayed coating excellent in plasma erosion resistance as compared with the case of using other spraying materials by using the spraying materials disclosed herein.
상기 Y-O-F-Al 다성분계 용사 피막은 50 ㎛ ~ 400 ㎛의 두께로 형성하는 것이 바람직하다. 이 경우, 두께가 50 ㎛ 미만이면 충분한 내부식성을 얻지 못하는 경우가 있고, 또한 세정 조작에 의해 부분적으로 기재 표면이 노출되어 버릴 가능성도 있다. 한편 400 ㎛를 초과해서 두껍게 하더라도, 특히 내부식성의 향상 효과는 기대할 수 없고 단지 고비용을 초래하게 된다. The Y-O-F-Al multicomponent thermal sprayed coating is preferably formed to a thickness of 50 mu m to 400 mu m. In this case, if the thickness is less than 50 占 퐉, sufficient corrosion resistance may not be obtained, and there is also a possibility that the surface of the substrate is partially exposed by the cleaning operation. On the other hand, even if it is thicker than 400 탆, the effect of improving the corrosion resistance can not be expected in particular, but the cost is high.
종래의 YF3, YOF 용사 막은 결정질의 막으로 분말이 용융 응고시 비정질에서 결정질로 바뀌면서 코팅층 내 크랙(Crack) 및 기공을 형성하게 된다. 본 발명에서는 분말 내 일부 Al2O3 성분이 첨가되었으며 해당 물질은 용사 막을 형성 시 비정질의 특성을 가진다. 이런 특성을 가진 물질을 포함한 분말은 플라즈마에 의해 용융 응고시 대부분의 비정질에서 결정질로 바뀌지만 일부 Al2O3 물질이 비정질로 남아 있어 종래의 코팅층내 발생되었던 크랙과 기공의 형성을 억제해 주는 것으로 예측된다. 결과적으로, 결정립 경계(grain boundary) 내에 발생하는 크랙(crack) 및 이로 인해 발생하는 파티클(particle)의 수가 현저하게 감소하는 효과가 나타났다.Conventional YF 3 and YOF sprayed films are crystalline films, and when the powder is melted and solidified, it transforms from amorphous to crystalline and forms cracks and pores in the coating layer. In the present invention, a part of the Al 2 O 3 component is added to the powder, and the material has an amorphous property when forming a sprayed film. Powder containing such a substance is transformed from amorphous to crystalline by melt-solidification by plasma, but some Al 2 O 3 materials remain as amorphous to inhibit the formation of cracks and pores in the conventional coating layer Is predicted. As a result, cracks occurring in grain boundaries and the number of particles caused thereby are remarkably reduced.
상기 다성분계 용사 피막은 이트륨(Y), 산소(O), 불소(F) 및 알루미늄(Al)으로 구성되며, 상기 이트륨과 불소에 대한 알루미늄 원소의 무게비[Al/(Y+F)]가 0.025 내지 0.25인 것이 바람직하다. 용사 피막 내에서, 이트륨과 불소에 대한 알루미늄 원소의 무게비[Al/(Y+F)]가 0.025 미만인 경우, Al2O3 비정질 부분이 충분하지 않아, 용사 피막의 경도가 낮으며, 내플라즈마성 향상의 효과를 달성할 수 없다. Wherein the multi-component thermal spray coating is composed of yttrium (Y), oxygen (O), fluorine (F) and aluminum (Al), and the weight ratio [Al / (Y + F)] of the aluminum element to yttrium and fluorine is 0.025 To 0.25. When the weight ratio of aluminum element to yttrium and fluorine [Al / (Y + F)] is less than 0.025 in the thermal sprayed coating, the Al 2 O 3 amorphous portion is insufficient and the hardness of the thermal sprayed coating is low, The effect of improvement can not be achieved.
상기 용사 피막의 구성 성분 중, 이트륨에 대한 불소의 무게비(F/Y)가 0.7 내지 1.3인 것이 바람직하다. 상기 이트륨에 대한 불소의 무게비(F/Y)가 1.3 초과인 경우에는, 높은 불소 농도로 인하여 용사 피막의 경도 떨어지고, 에칭속도의 증가가 초래된다.It is preferable that a weight ratio (F / Y) of fluorine to yttrium among the constituents of the thermal sprayed coating is 0.7 to 1.3. When the weight ratio (F / Y) of fluorine to yttrium is more than 1.3, the hardness of the thermal sprayed coating is lowered due to the high fluorine concentration, and the etching rate is increased.
따라서, 대기 플라즈마에 의해 생성된 Y-O-F-Al 다성분계 용사 막은 기존 불화물이트륨 및 옥시불화물이트륨 용사 피막 대비 경도 및 기공률 수준이 우수하며 기존 에처 공정에 사용되는 반도체 챔버에 적용되고 있는 이트륨옥사이드 용사 피막 보다 우수한 수준을 가진다.Therefore, the YOF-Al multi-component thermal sprayed film produced by atmospheric plasma has superior hardness and porosity level compared with the yttrium fluoride yttrium and yttrium fluoride yttrium coating and is superior to the yttrium oxide thermal spray coating used in semiconductor chambers used in the conventional etching process .
또한, 상기 혼합, 조립, 소성된 용사 재료에서 확인된 Y-O-F-Al 성분이 대기 플라즈마 방식에 의해 생성된 용사 피막에도 동일하게 검출되는 점을 이용하여 조성에 따른 용사 피막의 물성을 제어하는데 용이하다.Also, it is easy to control the physical properties of the thermal sprayed film according to the composition, by utilizing the fact that the Y-O-F-Al component confirmed in the mixed, assembled, and sintered thermal spraying materials is also detected in the thermal sprayed coating produced by the atmospheric plasma method.
이하, 본 발명을 실시예를 통해 더욱 상세히 설명하고자 한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
<실시예><Examples>
불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG)를 적절히 혼합, 조립, 소성하여, 분말 상태 용사 재료를 얻었다. YF3 30내지 70 질량 %, (Al2O3+YAG) 잔분으로 이루어진 1차 재료의 성분비를 변경하여 용사 재료를 제조하였다.Yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ), and yttrium aluminum garnet (YAG) were appropriately mixed, assembled, and fired to obtain a powdery thermal sprayed material. The composition ratio of the primary material consisting of 30 to 70 mass% of YF 3 and (Al 2 O 3 + YAG) remnant was changed to prepare a sprayed material.
<실시예 1>&Lt; Example 1 >
(1) 용사 재료의 제조 과정(1) Manufacturing process of spraying material
불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG) 분말에 바인더를 혼합한 후 스프레이 드라이어에 의하여 조립 분말을 얻었다. 상기 조립 분말을 탈지한 후 소결하여 소결 분말을 얻었다.A binder powder was mixed with yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) powders, followed by spray drying to obtain granulated powders. The granulated powder was degreased and then sintered to obtain a sintered powder.
(2) 용사 피막의 제조 과정(2) Manufacturing process of spray coating
(1) 단계에서 마련한 용사 재료 및 플라즈마 건을 이용하여 열원 가스로 아르곤과 수소 가스를 흘려 용사건을 이동시키면서 40~50 kW의 파워에서 플라즈마를 생성하여 생성된 플라즈마를 이용하여 원료 분말을 용융시켜 모재에 코팅막을 형성했다. 상기 코팅막의 두께는 150~200 ㎛로 가지도록 형성하였으며, 수득된 용사 피막의 성분 비율은 하기 표1에서 기재한 바와 같다.The plasma is generated at a power of 40 to 50 kW while flowing the argon and hydrogen gas using a heat source gas by using the thermal spray material and the plasma gun prepared in the step (1), and the material powder is melted using the generated plasma A coating film was formed on the base material. The thickness of the coating film was set to be 150 to 200 탆, and the proportions of components of the obtained thermal spray coating were as shown in Table 1 below.
<실시예 2내지 6 및 비교예 1 내지 6>&Lt; Examples 2 to 6 and Comparative Examples 1 to 6 >
1차 재료의 배합 비율이 하기 표 1에 기재된 성분비율을 가진 용사 피막이 제조 되도록 원재료를 배합하여 용사 재료를 조립하였으며, 조립된 용사 재료의 열처리 온도는 하기 표 1에서 기재한 바와 같다. 이 후, 수득된 용사 재료를 이용하여 실시예 1과 동일한 조건에서 용사 피막의 형성을 실시하였다.The raw materials were blended so as to produce a thermal spray coating having the composition ratios of the primary materials shown in Table 1 below, and the thermal spraying temperatures of the sprayed materials were as shown in Table 1 below. Thereafter, the sprayed coating was formed under the same conditions as in Example 1 using the obtained sprayed material.
실시예 1 내지 6 및 비교예 1 내지 6에 의해 제조된 용사 피막을 분석해 보니 표 1과 같이 각 원소의 성분비를 나타내는 실험 데이터를 얻었다. 각각 실시예의 용사 피막의 물성을 측정하기 위해서 하기와 같은 실험을 진행하였고, 이로부터 얻어진 물성치를 하기 표 1에 요약하여 나타내었다. 또한, 참고를 위해서, 종래에 사용되어진 용사 피막의 물성을 비교예 7 내지 9에 아울러 나타냈다. Y-O-F-Al 다성분계 용사 피막은 전자주사현미경(SEM)으로 x-선분광분석법(EDS) 분석 진행 시 Y, O, F, Al 성분이 검출되며 x-선회절분석법(XRD) 분석시 결정질 특성을 갖는다.The thermal sprayed coatings prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were analyzed to obtain experimental data showing composition ratios of the respective elements as shown in Table 1. In order to measure the physical properties of the thermal sprayed coatings of the examples, the following tests were conducted and the physical properties obtained therefrom are summarized in Table 1 below. For reference, physical properties of the thermal sprayed coatings used in the past are also shown in Comparative Examples 7 to 9. Y-O, F, and Al components are detected during X-ray spectroscopy (EDS) analysis of YOF-Al multi-component spray coatings by electron microscopy (SEM). X-ray diffraction (XRD) .
[표 1][Table 1]
Figure PCTKR2018008078-appb-I000001
Figure PCTKR2018008078-appb-I000001
<실험예1 - 용사 피막의 성분 농도 측정>Experimental Example 1 - Measurement of component concentration of sprayed coating [
상기 실시예 1 내지 실시예 6과 비교예 1 내지 실시예 9에서 제조된 용사 피막내 Y, O, F 및 Al 성분 함량 변화를 분석하기 위하여, EDS 분석을 실시하고, 그 결과를 표 1에 나타내었다. In order to analyze the changes in Y, O, F and Al component contents in the thermal sprayed coatings prepared in Examples 1 to 6 and Comparative Examples 1 to 9, an EDS analysis was carried out and the results are shown in Table 1 .
성분 함량 분석은 용사 피막을 기재의 표면에 직교하는 면으로 절단하고, 얻어진 단면을 수지 매립 연마한 후, 전자 현미경(JEOL, JS-6010)을 사용하여 그 단면 화상을 EDS 측정 진행하였다, EDS 측정시 CPS 수치가 1 min 동안 100,000 Count 이상 확인된 수치의 표본으로 성분 확인하였다.The component content was determined by cutting the sprayed coating to a plane orthogonal to the surface of the substrate, polishing the obtained cross-section by resin embedding and polishing, and then measuring the EDS of the cross-sectional image using an electron microscope (JEOL, JS-6010) The CPS value was confirmed as a sample with a value of more than 100,000 counts for 1 min.
<실험예2 - 용사 피막의 관찰>Experimental Example 2 - Observation of sprayed coating &gt;
도 1은 본 발명에 따른 비교예(비교예 7, 8, 9) 및 실시예(실시예 1)에 따른 용사 피막의 측면의 전자주사현미경(SEM) 사진이며, 도 1의 용사 피막 측면의 전자주사현미경(SEM) 사진을 통해서 실시예 1에 의해 제조된 다성분계 용사 피막의 기공의 면적이 비교예 7, 8, 9에 의해서 제조된 용사 피막에 비하여 작다는 것을 확인하였다.1 is an electron micrograph (SEM) photograph of a side surface of a thermal sprayed coating according to Comparative Examples 7, 8 and 9 and Example 1 of the present invention, SEM photographs showed that the area of the pores of the multi-component thermal sprayed coating prepared in Example 1 was smaller than that of the thermal sprayed coatings prepared in Comparative Examples 7, 8, and 9.
또한, 비교예(비교예 7, 8, 9) 및 실시예(실시예 1)에서 제조된 용사 피막의 단면에 나타난 기공의 면적을 통해 얻은 기공률(porosity)를 표 1 중에 나타내었다. 기공률의 측정은 이하와 같이 하여 행하였다. 즉, 용사 피막을 기재의 표면에 직교하는 면으로 절단하고, 얻어진 단면을 수지 매립 연마한 후, 전자 현미경(JEOL, JS-6010)을 사용하여 그 단면 화상을 촬영하였다(도 1). 이 화상을 화상 해석 소프트(MEDIA CYBERNETICS, Image Pro)를 사용하여 해석함으로써, 단면 화상 중의 기공 부분의 면적을 특정하고, 이러한 기공 부분의 면적이 전단면에 차지하는 비율을 산출함으로써 구하였다.The porosity obtained through the area of the pores shown in cross sections of the thermal sprayed coatings prepared in the comparative examples (Comparative Examples 7, 8, 9) and Example (Example 1) is shown in Table 1. The porosity was measured in the following manner. That is, the thermal sprayed coating was cut into a surface orthogonal to the surface of the substrate, and the obtained cross-section was resin buried and polished, and then the cross-sectional image was taken using an electron microscope (JEOL, JS-6010) (FIG. The image was analyzed by using image analysis software (MEDIA CYBERNETICS, Image Pro) to determine the area of the pore portion in the cross-sectional image and calculating the ratio of the area of the pore portion to the cross-section.
비교예 8 및 비교예 9에서 제조된 용사 피막의 기공률(prosity)은 3 % 내지 4 %의 값을 나타내었으며, 비교예 7에 의해 형성된 불화이트륨(YF3) 용사 피막의 기공률은 2 % 내지 3%를 나타내었다. 그러나 실시예 1, 2는 기공률 1 % 내지 2 %의 값을 보여주어 본 발명에 의한 다성분계 용사 피막의 치밀도가 종래에 이용된 조성의 용사 피막에 비하여 증가하였다는 것을 나타낸다. The porosity of the thermal sprayed coating prepared in Comparative Example 8 and Comparative Example 9 was 3% to 4%, and the porosity of the thermal sprayed YF 3 coating formed in Comparative Example 7 was 2% to 3% %. However, Examples 1 and 2 show values of porosity of 1% to 2%, indicating that the density of the multi-component thermal spray coating according to the present invention is higher than that of conventionally used thermal spray coatings.
도 2는 본 발명에 따른 비교예(비교예 7, 8) 및 실시예(실시예 1)에 따른 용사 피막의 표면의 전자주사현미경(SEM) 사진이다. 도 2의 용사 피막 표면의 전자주사현미경(SEM) 사진을 통해서 비교예 7, 8에 의해서 제조된 용사 피막 표면에 나타나는 크랙의 수가 실시예 1에 의해 제조된 다성분계 용사 피막 표면에서 현저히 줄어드는 것을 관찰하였다.2 is a scanning electron micrograph (SEM) photograph of the surface of the thermal sprayed coating according to the comparative examples (Comparative Examples 7 and 8) and Example (Example 1) according to the present invention. 2, the number of cracks appearing on the surface of the thermal sprayed coating prepared by Comparative Examples 7 and 8 was remarkably reduced on the surface of the multi-component thermal sprayed coating produced by Example 1 through the scanning electron microscope (SEM) photograph of the surface of the thermal sprayed coating Respectively.
<실험예3 - 경도 측정><Experimental Example 3 - Hardness Measurement>
표 1 중의 「Hardness」의 란은, 각 용사 피막의 비커스 경도의 측정 결과를 나타내고 있다. 비커스 경도의 측정은, 미소 경도 측정기(회사명, 모델명)를 사용하고, 대면각 136 °의 다이아몬드 압자에 의해 시험력 294.2 mN을 부하했을 때에 구해지는 비커스 경도(Hv 0.2)이다. The column of &quot; Hardness &quot; in Table 1 shows the measurement results of the Vickers hardness of the respective thermal sprayed coatings. The Vickers hardness was measured using a microhardness tester (company name, model name), and the Vickers hardness (Hv 0.2) obtained when a test force of 294.2 mN was applied by a diamond indenter having a face angle of 136 degrees.
표 1에서 나타난 바와 같이, 비교예 7 내지 9의 이트륨계 용사 피막은 300 내지 400 Hv 경도를 나타내지만, 실시예 1, 2에서 Y-O-F-Al 다성분계 용사 피막은 450 Hv 내지 500 Hv 경도를 나타냄으로써 본 발명은 종래의 이트륨 용사 피막보다 향상된 기계적 물성을 가진다.As shown in Table 1, the yttrium-based thermal sprayed coatings of Comparative Examples 7 to 9 exhibited a hardness of 300 to 400 Hv, whereas the YOF-Al multicomponent thermal sprayed coatings of Examples 1 and 2 exhibited 450 to 500 Hv hardness The present invention has improved mechanical properties over conventional yttrium spray coatings.
<실험예4 - 식각 속도 측정>Experimental Example 4 - Measurement of etching rate [
표 1 중의 「Plasma Etch Rate」의 란은, 이하의 조건으로 각 용사 피막을 플라즈마에 노출시켰을 때에 식각 속도를 평가한 결과를 나타내고 있다. 즉, 먼저, 비교예 7 내지 9와 실시예 1, 2의 용사 피막이 부착된 부재를, 평행 평판형의 반도체 디바이스 제조 장치의 챔버 내의 상부 전극에 접하는 부재에 설치하였다. 그리고, 챔버 내의 스테이지에 실리콘 웨이퍼를 설치하고, 플라즈마 건식 에처를 실시하는 더미 런을 2시간 실시하였다. 에처 처리에 있어서의 플라즈마는, 챔버 내의 압력을 0.1 torr로 유지하고, 사불화탄소를 포함하는 에처 가스를 공급하면서, 2시간 동안 상부에서 700 W, 하부에서 250 W의 고주파 전력을 인가함으로써 발생시켰다.The column of "Plasma Etch Rate" in Table 1 shows the result of evaluating the etching rate when each thermal sprayed film is exposed to plasma under the following conditions. That is, first, the members having the thermal sprayed coatings of Comparative Examples 7 to 9 and Examples 1 and 2 were provided on the member in contact with the upper electrode in the chamber of the parallel plate type semiconductor device manufacturing apparatus. Then, a silicon wafer was placed on the stage in the chamber, and a dummy run was performed for 2 hours to perform the plasma dry etching. The plasma in the etching treatment was generated by applying a high frequency power of 700 W at the top and 250 W at the bottom for 2 hours while maintaining the pressure in the chamber at 0.1 torr and supplying an argon gas containing carbon tetrafluoride.
상기 플라즈마 에처 공정 이후 반도체 디바이스 제조 장치의 챔버 내에 설치되었던 부재를 3차원 분석(KEYENCE, VK-X150K 3D analysis)함으로써 용사 피막의 에처 속도를 얻었다.The etch rate of the sprayed coating was obtained by three-dimensional analysis (KEYENCE, VK-X150K 3D analysis) of the members that were installed in the chamber of the semiconductor device manufacturing apparatus after the plasma etching process.
표 1에서 나타난 바와 같이, 비교예 7 내지 9는 3.12 μm/h ~ 3.99 μm/h 범위의 에처 속도(etch rate) 나타낸 반면, 실시예 1, 2는 2.88 μm/h ~ 3.01 μm/h 범위의 에처 속도는 나타내어 본 발명의 플라즈마 식각도가 감소하였다는 것을 나타낸다.As shown in Table 1, Comparative Examples 7 to 9 showed etch rates in the range of 3.12 μm / h to 3.99 μm / h, whereas Examples 1 and 2 showed an etch rate in the range of 2.88 μm / h to 3.01 μm / h The etch rate shows that the plasma etch of the present invention is reduced.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적은 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

  1. 불화이트륨(YF3)의 비중이 30 내지 70% 질량과 잔분이 알루미나(Al2O3), 이트륨알루미늄가넷(YAG)을 혼합, 조립, 소성하여 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법.A method for producing a YOF-Al multicomponent thermal sprayed material by mixing 30 to 70% by mass of yttrium fluoride (YF 3 ) and the balance of alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG).
  2. 제1항에 있어서,The method according to claim 1,
    상기 불화이트륨(YF3), 알루미나(Al2O3) 및 이트륨알루미늄가넷(YAG) 입자들의 평균 입자 직경이 0.01 ㎛ 이상 7 ㎛ 이하인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법.Wherein the average particle diameter of the yttrium fluoride (YF 3 ), alumina (Al 2 O 3 ) and yttrium aluminum garnet (YAG) particles is 0.01 μm or more and 7 μm or less.
  3. 제1항에 있어서,The method according to claim 1,
    상기 소성하는 온도가 500 ℃ 내지 1100 ℃인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 재료를 제조하는 방법.Wherein the calcining temperature is in the range of 500 ° C to 1100 ° C.
  4. 제1항 내지 제3항 중 어느 하나의 방법으로 제조되며, 평균 입자 직경이 5 ㎛ 이상 100 ㎛ 이하인 Y-O-F-Al 다성분계 용사 재료.A Y-O-F-Al multicomponent thermal sprayed material produced by the method of any one of claims 1 to 3, wherein the Y-O-F-Al multicomponent thermal spraying material has an average particle diameter of 5 mu m or more and 100 mu m or less.
  5. 제4항의 Y-O-F-Al 다성분계 용사 재료를 용사하여, 기재 상에 피막을 형성하는 Y-O-F-Al 다성분계 용사 피막을 제조하는 방법.A method for producing a Y-O-F-Al multicomponent thermal sprayed coating, wherein the Y-O-F-Al multicomponent thermal spraying material of claim 4 is sprayed to form a coating on a substrate.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 용사가 플라즈마 용사인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 피막을 제조하는 방법.Wherein the spray is a plasma spray. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
  7. 제5항의 Y-O-F-Al 다성분계 용사 피막의 제조하는 방법으로 형성되며, 두께가 50 ㎛ 내지 400 ㎛인 Y-O-F-Al 다성분계 용사 피막.A Y-O-F-Al multicomponent thermal sprayed coating formed by the method for producing a Y-O-F-Al multicomponent thermal spray coating according to claim 5 and having a thickness of 50 탆 to 400 탆.
  8. 제6항의 Y-O-F-Al 다성분계 용사 피막의 제조하는 방법으로 형성되며, 두께가 50 ㎛ 내지 400 ㎛인 Y-O-F-Al 다성분계 용사 피막.A Y-O-F-Al multicomponent thermal sprayed coating formed by a method for producing a Y-O-F-Al multicomponent thermal spray coating of claim 6 and having a thickness of 50 탆 to 400 탆.
  9. 다성분계 용사 피막에 있어서, In the multi-component thermal spray coating,
    구성 원소로서 이트륨(Y), 산소(O), 불소(F) 및 알루미늄(Al)을 포함하며, 상기 이트륨과 불소에 대한 알루미늄 원소의 무게비(Al/Y+F)가 0.025 내지 0.25인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 피막.(Al / Y + F) of 0.025 to 0.25 in terms of yttrium (Y), oxygen (O), fluorine (F) and aluminum YOF-Al multi-component thermal spray coating.
  10. 제9항에 있어서, 10. The method of claim 9,
    상기 이트륨에 대한 불소의 무게비(F/Y)가 0.7 내지 1.3인 것을 특징으로 하는 Y-O-F-Al 다성분계 용사 피막.Wherein the weight ratio (F / Y) of fluorine to yttrium is 0.7 to 1.3.
PCT/KR2018/008078 2017-12-19 2018-07-17 Spray coating material and spray coating made of same spray coating material WO2019124660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170174942A KR102395660B1 (en) 2017-12-19 2017-12-19 Powder for thermal spray and thermal spray coating using the same
KR10-2017-0174942 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124660A1 true WO2019124660A1 (en) 2019-06-27

Family

ID=66992748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008078 WO2019124660A1 (en) 2017-12-19 2018-07-17 Spray coating material and spray coating made of same spray coating material

Country Status (3)

Country Link
KR (1) KR102395660B1 (en)
TW (1) TWI779071B (en)
WO (1) WO2019124660A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115582B2 (en) * 2020-04-30 2022-08-09 Toto株式会社 COMPOSITE STRUCTURES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT WITH COMPOSITE STRUCTURES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089130A (en) * 2007-03-30 2008-10-06 가부시키가이샤 히다치 하이테크놀로지즈 Plazma etching apparatus
KR20090082149A (en) * 2008-01-24 2009-07-29 신에쓰 가가꾸 고교 가부시끼가이샤 Ceramic flame spray coating member, method for producing the same and polishing media for ceramic flame spray coating member
JP2010156009A (en) * 2008-12-26 2010-07-15 Hitachi High-Technologies Corp Method for forming thermal spray coating in plasma etching apparatus
US20130288037A1 (en) * 2012-04-27 2013-10-31 Applied Materials, Inc. Plasma spray coating process enhancement for critical chamber components
KR101721232B1 (en) * 2015-10-02 2017-03-29 주식회사 싸이노스 Method for forming plasma resistant coating layer
KR20170048177A (en) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 Yttrium fluoride spray powder and yttrium oxyfluoride film-forming component, and method for preparing them

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277973B2 (en) * 2001-07-19 2009-06-10 日本碍子株式会社 Yttria-alumina composite oxide film production method, yttria-alumina composite oxide film, and corrosion-resistant member
US20090214825A1 (en) * 2008-02-26 2009-08-27 Applied Materials, Inc. Ceramic coating comprising yttrium which is resistant to a reducing plasma
JP5670862B2 (en) * 2011-11-02 2015-02-18 トーカロ株式会社 Method for forming densified layer in thermal spray coating
CN107109611B (en) 2015-02-10 2019-07-26 日本钇股份有限公司 Film forming powder and film-forming material
US10138167B2 (en) 2015-05-08 2018-11-27 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
US10106466B2 (en) 2015-05-08 2018-10-23 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
TWI751106B (en) 2015-05-08 2022-01-01 日商東京威力科創股份有限公司 Thermal spray material, thermal spray coating and thermal spray coated article
JP6500681B2 (en) 2015-07-31 2019-04-17 信越化学工業株式会社 Yttrium-based thermal spray coating and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089130A (en) * 2007-03-30 2008-10-06 가부시키가이샤 히다치 하이테크놀로지즈 Plazma etching apparatus
KR20090082149A (en) * 2008-01-24 2009-07-29 신에쓰 가가꾸 고교 가부시끼가이샤 Ceramic flame spray coating member, method for producing the same and polishing media for ceramic flame spray coating member
JP2010156009A (en) * 2008-12-26 2010-07-15 Hitachi High-Technologies Corp Method for forming thermal spray coating in plasma etching apparatus
US20130288037A1 (en) * 2012-04-27 2013-10-31 Applied Materials, Inc. Plasma spray coating process enhancement for critical chamber components
KR101721232B1 (en) * 2015-10-02 2017-03-29 주식회사 싸이노스 Method for forming plasma resistant coating layer
KR20170048177A (en) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 Yttrium fluoride spray powder and yttrium oxyfluoride film-forming component, and method for preparing them

Also Published As

Publication number Publication date
TW201927724A (en) 2019-07-16
TWI779071B (en) 2022-10-01
KR20190073790A (en) 2019-06-27
KR102395660B1 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
US20210079509A1 (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
TWI427188B (en) Thermal spray powder, method for forming thermal spray coating, and plasma resistant member
JP3672833B2 (en) Thermal spray powder and thermal spray coating
US20090080136A1 (en) Electrostatic chuck member
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
TW202140816A (en) Sprayed coating, method for manufacturing sprayed coating, sprayed member and spraying material
KR102266656B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
TWI786884B (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP6926096B2 (en) Material for thermal spraying
JP6926095B2 (en) Material for thermal spraying
WO2019124660A1 (en) Spray coating material and spray coating made of same spray coating material
TWI405743B (en) Multi-component thermal spray coating material for semiconductor processing equipment, and manufacturing and coating method thereof
US7504164B2 (en) Corrosion-resistant member and process of producing the same
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2007081218A (en) Member for vacuum device
WO2021225258A1 (en) Slurry composition for suspension plasma thermal spray, preparation method therefor, and suspension plasma thermal spray coating film
JP2023097873A (en) Halogen-resistant glass material, glass coating film, and production methods thereof
JP2001019549A (en) Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same
JP2001206764A (en) Corrosion-resistant ceramics and its manufacturing method
JP2012129549A (en) Electrostatic chuck member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892010

Country of ref document: EP

Kind code of ref document: A1