WO2019124199A1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
WO2019124199A1
WO2019124199A1 PCT/JP2018/045803 JP2018045803W WO2019124199A1 WO 2019124199 A1 WO2019124199 A1 WO 2019124199A1 JP 2018045803 W JP2018045803 W JP 2018045803W WO 2019124199 A1 WO2019124199 A1 WO 2019124199A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
microcrystalline cellulose
thermoplastic resin
resin composition
fiber length
Prior art date
Application number
PCT/JP2018/045803
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 高橋
伸之 松永
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2019517994A priority Critical patent/JP6682044B2/en
Publication of WO2019124199A1 publication Critical patent/WO2019124199A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a fiber reinforced thermoplastic resin composition.
  • thermoplastic resin compositions various additives such as fillers are generally added to improve their performance.
  • fibrous fillers such as glass fibers are added for the purpose of improving mechanical strength.
  • organic substances tend to have lower specific gravities than inorganic substances, and thus for the purpose of weight reduction, organic fibers may be added instead of inorganic fibers such as glass fibers.
  • organic fibers cellulose fibers, polyester fibers, aramid fibers and the like are known. Among them, cellulose fibers are useful because they are derived from plants and thus the load on the environment is small.
  • This resin composition contains a specific modified polybutylene terephthalate resin (modified PBT resin) and cellulose fibers. Since cellulose fibers have insufficient heat resistance, the processing temperature can not be set to a temperature higher than the heat resistance temperature of cellulose fibers in a resin composition containing cellulose fibers. Therefore, it is compelled to use a thermoplastic resin having a low melting point so that the cellulose fiber is not degraded, but in Patent Document 1, the PBT resin is modified to lower the melting point and used.
  • modified PBT resin modified polybutylene terephthalate resin
  • weight reduction and mechanical strength improvement can be achieved by adding cellulose fiber.
  • cellulose fibers are organic, heat resistance is not sufficient, and the processing temperature can not be increased. Therefore, a thermoplastic resin composition having heat resistance of a certain level or more and excellent in mechanical strength while using cellulose fibers is desired.
  • the present invention has been made in view of the above-mentioned conventional problems, and a problem thereof is a thermoplastic resin composition having heat resistance of a certain level or more and excellent mechanical strength while using cellulose fibers. To provide.
  • thermoplastic resin composition comprising a thermoplastic resin and microcrystalline cellulose fibers which satisfy both (I) and (II) below.
  • (I) Extract the top 10% of particle groups based on the fiber length from 150 or more of the microcrystalline cellulose fibers contained in any part of the molded article made of the thermoplastic resin composition, and the particle groups The fiber length L and the fiber diameter of each of the microcrystalline cellulose fibers therein are measured, and the average value of the ratio A calculated by the fiber length L / the fiber diameter is 5 or more.
  • thermoplastic resin composition as described in said (1) whose thermal decomposition temperature shown by following (III) of microcrystalline cellulose fiber is 265 degreeC or more.
  • III A temperature at which a weight loss of 1% is observed with respect to the weight at 105 ° C. when the temperature of the microcrystalline cellulose fiber is raised from 30 ° C. to 600 ° C. at 10 ° C./min.
  • thermoplastic resin composition having heat resistance of a certain level or more and excellent in mechanical strength while using cellulose fibers.
  • thermoplastic resin (crystalline resin) whose melting
  • the thermoplastic resin include polyacetal resin, polybutylene terephthalate resin (hereinafter, also referred to as “PBT resin”), polyethylene terephthalate resin, polyamide resin, polycarbonate resin, polytrimethylene terephthalate resin, and the like. Although a PBT resin is mentioned and demonstrated below, it is not limited to this in this embodiment.
  • the PBT resin comprises a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as C1-6 alkyl ester or acid halide), an alkylene glycol having at least 4 carbon atoms (1,4-butanediol) or It is a resin obtained by polycondensing a glycol component containing the ester-forming derivative (such as an acetylated compound).
  • the PBT resin is not limited to homopolybutylene terephthalate, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of butylene terephthalate units.
  • the amount of terminal carboxyl groups of the PBT resin is not particularly limited as long as the effect of the thermoplastic resin composition of the present embodiment is not impaired.
  • the amount of terminal carboxyl groups of the PBT resin is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
  • the intrinsic viscosity (IV) of the PBT resin is preferably 0.65 to 1.20 dL / g.
  • a PBT resin having an intrinsic viscosity in this range is used, the resulting resin composition is particularly excellent in mechanical properties and fluidity.
  • the intrinsic viscosity is less than 0.65 dL / g, excellent mechanical properties can not be obtained, and when it exceeds 1.20 dL / g, excellent fluidity may not be obtained.
  • PBT resin with an intrinsic viscosity of the said range can also blend PBT resin which has a different intrinsic viscosity, and can adjust an intrinsic viscosity.
  • a PBT resin having an intrinsic viscosity of 0.8 dL / g can be prepared by blending a PBT resin having an intrinsic viscosity of 0.9 dL / g and a PBT resin having an intrinsic viscosity of 0.7 dL / g.
  • the intrinsic viscosity (IV) of the PBT resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • C8-14 aromatic dicarboxylic acids C4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid
  • C5-10 cycloalkanedicarboxylic acids such as cyclohexanedicarboxylic acid
  • Ester forming derivatives (such as C1-6 alkyl ester derivatives and acid halides) can be mentioned.
  • These dicarboxylic acid components can be used alone or in combination of two or more.
  • C8-12 aromatic dicarboxylic acids such as isophthalic acid and C6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid and sebacic acid are more preferable.
  • glycol components (comonomer components) other than 1,4-butanediol in PBT resin include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, C2-10 alkylene glycols such as 3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diols such as cyclohexanedimethanol and hydrogenated bisphenol A; bisphenol A, 4,4 Aromatic diols such as dihydroxybiphenyl and the like; bispheno such as an ethylene oxide 2 mole adduct of bisphenol A and a propylene oxide 3 mole adduct of bisphenol A Alkylene oxide adducts of C2-4 Le A; or ester-forming derivatives of these glycols (acetylated, etc.). These glycol components can be used
  • C2-6 alkylene glycols such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycols such as diethylene glycol
  • alicyclic diols such as cyclohexane dimethanol are more preferable.
  • comonomer component which can be used in addition to the dicarboxylic acid component and the glycol component, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4'-hydroxybiphenyl etc.
  • Aromatic hydroxycarboxylic acids Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (such as ⁇ -caprolactone); Ester formation of these comonomer components Derivatives (C1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.).
  • a microcrystalline cellulose fiber in the thermoplastic resin composition after being melt-kneaded in the thermoplastic resin, a microcrystalline cellulose fiber in which both of the following conditions (I) and (II) are satisfied is used.
  • (I) Extract the top 10% of particle groups based on the fiber length from 150 or more of the microcrystalline cellulose fibers contained in any part of a molded article made of a thermoplastic resin composition; The fiber length L and the fiber diameter of each of the microcrystalline cellulose fibers are measured, and the average value of the ratio A calculated using the fiber length L and the fiber diameter is 5 or more.
  • the temperature at that time is the temperature of the melting point of the thermoplastic resin + 20 ° C.
  • the pressure may be appropriately adjusted in consideration of the viscosity of the thermoplastic resin and the like so that it can be processed to the above thickness.
  • the thickness of a thin film 50 micrometers is a standard to the last, and it is not necessarily limited to this. That is, if the film is too thick and the microcrystalline cellulose fibers overlap and observation becomes difficult, the film may be thinner. Conversely, the film is too thin and the microcrystalline cellulose fibers are crushed and the original shape is measured. If you can not do it just make it thicker.
  • the mechanical strength of a resin composition can be improved because a microcrystalline cellulose fiber is what satisfy
  • the ratio A of the fiber length L to the fiber diameter under the condition (I) described above and the value of the constant b in the conversion equation under the condition (II) are each preferably 5.2 or more, and 5.5 or more (for example, 6 or more) Is more preferred.
  • the upper limit of the ratio A and the constant b is usually 15.
  • Such microcrystalline cellulose can be obtained by extracting a cellulose crystal part from a pulp raw material.
  • microcrystalline cellulose fibers have a higher heat resistance temperature than general cellulose fibers, they can be used by being added to a thermoplastic resin having a relatively high melting point (for example, 220 ° C. or more).
  • the method of measuring the ratio A and the constant b will be described more specifically.
  • the following description is a description of a method of measuring and calculating the ratio A and the constant b in a molded product obtained using the thermoplastic resin composition of the present embodiment.
  • a part of the molded product is collected, sandwiched between glass plates, and heated and pressurized at a temperature of + 20 ° C. of the melting point of the thermoplastic resin to prepare a thin film having a thickness of about 50 ⁇ m.
  • the produced thin film is observed with an optical microscope, and among the 150 or more cellulose particles (fibers), the top 10% of particle groups are extracted from the larger ones based on the fiber length.
  • the magnification of the optical microscope can be appropriately selected according to the size of the microcrystalline cellulose particles (fibers) of interest, and is usually 500 to 1200 times.
  • the fiber length L and the fiber diameter (diameter) of individual cellulose particles (fibers) in the extracted particle group are measured, and the ratio A of the fiber length L to the fiber diameter is calculated.
  • the constant b can be said to be the ratio A of the fiber length L ⁇ the fiber diameter when the fiber length L is extremely small.
  • the microcrystalline cellulose fiber is cut by melt-kneading with a thermoplastic resin or the like to change the fiber length L, so that the numerical values of ratio A and constant b differ before and after melt-kneading.
  • the constant b is a numerical value after melt-kneading, that is, after being cut.
  • the fiber diameter of the microcrystalline cellulose fiber according to the present embodiment is preferably 1 to 30 ⁇ m, and more preferably 5 to 25 ⁇ m.
  • the fiber diameter is the same as the measurement of the fiber length of the microcrystalline cellulose fiber described above. That is, first, a part of the molded product is collected, sandwiched between glass plates, and heated and pressed at a temperature of + 20 ° C. of the melting point of the thermoplastic resin to produce a thin film optical microscope (the magnification is the size of the target microcrystalline cellulose fiber The observation should be made according to the appropriate choice (usually 500 to 1200 times).
  • the diameters of the individual microcrystalline cellulose particles (fibers) having the top 10% extracted from the larger one based on the fiber length are measured, and the average value is the fiber diameter It is.
  • the maximum value thereof is taken as the value of the fiber diameter.
  • the fiber length of the microcrystalline cellulose fiber is not particularly limited as long as the above conditions (I) and (II) are satisfied.
  • the microcrystalline cellulose fiber which concerns on this embodiment does not contain a cellulose nanofiber and a cellulose nanocrystal.
  • the thermal decomposition temperature of the microcrystalline cellulose fiber is preferably 265 ° C. or more. It becomes possible to select the thing of about 250 degreeC high melting
  • the thermal decomposition temperature of the microcrystalline cellulose fiber is more preferably 270 ° C., and still more preferably 280 ° C. or more.
  • the thermal decomposition temperature is a weight decrease when the temperature is raised from 30 ° C. to 600 ° C.
  • the content of the microcrystalline cellulose fiber is preferably 3 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition, from the viewpoint of obtaining sufficient mechanical strength. 5 to 25 parts by mass is more preferable.
  • thermoplastic resins and thermosetting resins in addition to the above-described components, as long as the effects thereof are not impaired, that is, flash inhibitors, release agents, lubricants , Plasticizers, flame retardants, colorants such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, heat stabilizers, weather resistant stabilizers, corrosion inhibitors, hydrolysis resistance improvers, flow You may mix
  • thermoplastic resin composition of this embodiment is introduced into an extruder, melt-kneaded and pelletized, and the pellets are introduced into an injection molding machine equipped with a predetermined mold and injection molded to obtain a molded article. It can be made.
  • Examples 1 to 2 Comparative Examples 1 to 3, Reference Example
  • a 32 mm ⁇ twin-screw extruder TEX30 ⁇ , manufactured by Japan Steel Works, Ltd.
  • the raw material supply unit and the die tip are melt-kneaded and extruded at a cylinder temperature of 260 ° C. and a temperature of 200 ° C. to 260 ° C., discharge amount 15 kg / h, screw rotation speed 200 rpm, and PBT resin composition Pellets of (thermoplastic resin composition) were obtained.
  • talc was added as a particulate filler other than cellulose fibers, and pellets made of the PBT resin composition were obtained by the same melt-kneading. In the reference example, a pellet was obtained using PBT resin alone. Details of each component shown in Table 1 are shown below.
  • the cellulose fibers 1 to 3 are microcrystalline cellulose fibers.
  • the ratio A and the constant b were determined as described above. Therefore, the maximum and minimum of the fiber length shown in Table 2 are the maximum and the minimum of the top 10% extracted from those with the largest fiber length, and the average value is the average value of the extracted.
  • the weight loss rate of the foam molded article (the weight loss rate of the foam molded article with respect to the non-foamed molded article subjected to ordinary injection molding with a holding pressure of 60 MPa without injecting nitrogen gas) It adjusted by the change of P injection switching position, and it was made to be 10%. Thereafter, the foamed molded article was cut at a width of 13 mm from each of the gate-side end and the side opposite to the gate to obtain a strip-shaped test piece of 80 mm ⁇ 13 mm ⁇ 2 mm.
  • Example 1 From Table 1, in Examples 1 and 2, it can be seen that good results were obtained for the bending strength, the bending elastic modulus, the bending rupture strain and the variation in the bending strength of the foam molded article in the molded article. That is, it can be seen that there is no strength reduction even when melt-kneaded in a thermoplastic resin having a high processing temperature, and a resin composition having excellent heat resistance and mechanical properties is obtained. In addition, in Example 1, since microcrystalline cellulose having a particularly high thermal decomposition temperature is used, the lightness is also good. Further, in Example 2, in the foam molded article, a difference in bending strength between the gate side and the non-gate side is particularly small, and a variation in strength within the molded article is small.
  • Comparative Example 1 using a microcrystalline cellulose fiber having a ratio A and a constant b of less than 5 was good in lightness but inferior in mechanical properties. Further, in Comparative Example 2 using conventional cellulose fibers, the thermal decomposition temperature is low even if the ratio A and constant b are high, so discoloration and strength reduction when melt-kneaded in a thermoplastic resin with a high processing temperature, It was inferior to mechanical characteristics and lightness.
  • Examples 3 to 6, Comparative Example 4 In each example and comparative example, pellets were obtained in the same manner as in Example 1 using PBT resin and microcrystalline cellulose fiber and / or glass fiber as raw materials at the ratio (% by mass) shown in Table 3.
  • the PBT resin and microcrystalline cellulose fiber (cellulose fiber 1 or 2) are the same as those described in Examples 1 and 2.
  • glass fiber is as follows. Glass fiber: ECS03T-187 (average fiber diameter 13 ⁇ m, average fiber length 3 mm) manufactured by Nippon Electric Glass Co., Ltd.
  • Examples 3 and 4 and the reference example all have a maximum applied voltage of 600 V, and from the comparison of these examples, cellulose fibers 1 and 2, ie, microcrystalline cellulose fibers, are used for the tracking resistance of the resin composition. It turns out that it does not make it worse.
  • Comparative Example 4 in which glass fibers are used instead of microcrystalline cellulose fibers, the tracking resistance is deteriorated.
  • the amount of glass fiber added in Comparative Example 4 is the same and the cellulose fibers 2 (microcrystalline cellulose fibers) are added, the tracking resistance is improved as compared with Comparative Example 4. From the above, it is understood that the tracking resistance of the resin composition can be improved by adding microcrystalline cellulose fiber.

Abstract

This thermoplastic resin composition includes: a thermoplastic resin; and a micro-crystalline cellulose fiber in which both the ratio A of a fiber length L to a fiber diameter obtained after being melted and mixed in the thermoplastic resin and the integer b obtained by regression analysis of A=a×L+b are 5 or more. The thermal decomposition temperature of the micro-crystalline cellulose fiber is preferably 265°C or more.

Description

熱可塑性樹脂組成物Thermoplastic resin composition
 本発明は、繊維強化された熱可塑性樹脂組成物に関する。 The present invention relates to a fiber reinforced thermoplastic resin composition.
 熱可塑性樹脂組成物においては、その性能の向上を図るために充填材など各種添加剤が添加されることが一般的である。例えば、機械的強度の向上を目的としてガラス繊維などの繊維状充填材が添加される。一方、有機物は無機物よりも低比重の傾向にあることから、軽量化を目的として、ガラス繊維などの無機繊維に代わり、有機繊維が添加されることがある。有機繊維としては、セルロース繊維、ポリエステル繊維、アラミド繊維などが知られており、中でも、セルロース繊維は植物由来であることから環境への負荷が少なく有用である。 In thermoplastic resin compositions, various additives such as fillers are generally added to improve their performance. For example, fibrous fillers such as glass fibers are added for the purpose of improving mechanical strength. On the other hand, organic substances tend to have lower specific gravities than inorganic substances, and thus for the purpose of weight reduction, organic fibers may be added instead of inorganic fibers such as glass fibers. As the organic fibers, cellulose fibers, polyester fibers, aramid fibers and the like are known. Among them, cellulose fibers are useful because they are derived from plants and thus the load on the environment is small.
 そこで、無機繊維に代え、セルロース繊維を添加して機械的強度(剛性)の向上を図った樹脂組成物が提案されている(例えば、特許文献1参照)。この樹脂組成物は、特定の変性ポリブチレンテレフタレート樹脂(変性PBT樹脂)と、セルロース繊維とを含む。セルロース繊維は耐熱性が不十分であることから、セルロース繊維を含む樹脂組成物においては、加工温度をセルロース繊維の耐熱温度以上の温度に設定することができない。そのため、セルロース繊維が劣化しないように、融点が低い熱可塑性樹脂を用いることを余儀なくされるが、特許文献1においては、PBT樹脂を変性して低融点化して用いている。 Therefore, a resin composition has been proposed in which the mechanical strength (rigidity) is improved by adding a cellulose fiber instead of the inorganic fiber (see, for example, Patent Document 1). This resin composition contains a specific modified polybutylene terephthalate resin (modified PBT resin) and cellulose fibers. Since cellulose fibers have insufficient heat resistance, the processing temperature can not be set to a temperature higher than the heat resistance temperature of cellulose fibers in a resin composition containing cellulose fibers. Therefore, it is compelled to use a thermoplastic resin having a low melting point so that the cellulose fiber is not degraded, but in Patent Document 1, the PBT resin is modified to lower the melting point and used.
特開2011-6530号公報JP, 2011-6530, A
 上記のように、セルロース繊維を添加することにより、軽量化や機械的強度の向上を図ることができる。しかしながら、上記の通り、セルロース繊維は有機物であるが故に耐熱性が十分とは言えず、加工温度を高くすることができない。そこで、セルロース繊維を用いながらも、一定以上の耐熱性を有し、機械的強度に優れた熱可塑性樹脂組成物が望まれる。 As described above, weight reduction and mechanical strength improvement can be achieved by adding cellulose fiber. However, as described above, since cellulose fibers are organic, heat resistance is not sufficient, and the processing temperature can not be increased. Therefore, a thermoplastic resin composition having heat resistance of a certain level or more and excellent in mechanical strength while using cellulose fibers is desired.
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、セルロース繊維を用いながらも、一定以上の耐熱性を有し、かつ、機械的強度に優れた熱可塑性樹脂組成物を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and a problem thereof is a thermoplastic resin composition having heat resistance of a certain level or more and excellent mechanical strength while using cellulose fibers. To provide.
 前記課題を解決する本発明の一態様は以下の通りである。
(1)熱可塑性樹脂と、下記(I)及び(II)をともに満たす微結晶セルロース繊維とを含む熱可塑性樹脂組成物。
(I)前記熱可塑性樹脂組成物からなる成形品の、任意の箇所に含まれる150個以上の前記微結晶セルロース繊維から、繊維長を基準に上位10%の粒子群を抽出し、当該粒子群中の個々の前記微結晶セルロース繊維の繊維長L及び繊維径を測定し、繊維長L÷繊維径にて算出した比Aの平均値が5以上である。
(II)a及びbを定数として、前記粒子群中の個々の前記微結晶セルロース繊維の繊維長L、及び繊維長L÷繊維径の比Aをもとに、式「A=a×L+b」にて前記粒子群を回帰分析して得られる換算式における定数bの値が5以上である。
One aspect of the present invention for solving the above-mentioned problems is as follows.
(1) A thermoplastic resin composition comprising a thermoplastic resin and microcrystalline cellulose fibers which satisfy both (I) and (II) below.
(I) Extract the top 10% of particle groups based on the fiber length from 150 or more of the microcrystalline cellulose fibers contained in any part of the molded article made of the thermoplastic resin composition, and the particle groups The fiber length L and the fiber diameter of each of the microcrystalline cellulose fibers therein are measured, and the average value of the ratio A calculated by the fiber length L / the fiber diameter is 5 or more.
(II) Formula “A = a × L + b” based on the ratio A of the fiber length L of the individual microcrystalline cellulose fibers in the particle group and the fiber length L ÷ fiber diameter, with a and b as constants. The value of the constant b in the conversion equation obtained by regression analysis of the particle group is 5 or more.
(2)微結晶セルロース繊維の下記(III)で示される熱分解温度が265℃以上である前記(1)に記載の熱可塑性樹脂組成物。
(III)前記微結晶セルロース繊維を、30℃から600℃まで10℃/minで昇温した際に、105℃における重量に対し1%の重量減少が見られる温度。
(2) The thermoplastic resin composition as described in said (1) whose thermal decomposition temperature shown by following (III) of microcrystalline cellulose fiber is 265 degreeC or more.
(III) A temperature at which a weight loss of 1% is observed with respect to the weight at 105 ° C. when the temperature of the microcrystalline cellulose fiber is raised from 30 ° C. to 600 ° C. at 10 ° C./min.
 本発明によれば、セルロース繊維を用いながらも、一定以上の耐熱性を有し、かつ、機械的強度に優れた熱可塑性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a thermoplastic resin composition having heat resistance of a certain level or more and excellent in mechanical strength while using cellulose fibers.
 本実施形態の熱可塑性樹脂組成物は、熱可塑性樹脂と、熱可塑性樹脂中に溶融混練された後の繊維長L÷繊維径の比A及び、A=a×L+bの回帰分析により得られる定数bがともに5以上の微結晶セルロース繊維とを含むことを特徴としている。
 以下に、本実施形態の熱可塑性樹脂組成物中の各成分について説明する。
The thermoplastic resin composition of this embodiment is a thermoplastic resin and a constant A obtained by regression analysis of a fiber length L / a fiber diameter after melt-kneading in a thermoplastic resin and A = a × L + b. It is characterized in that b contains 5 or more of microcrystalline cellulose fibers.
Below, each component in the thermoplastic resin composition of this embodiment is demonstrated.
[熱可塑性樹脂]
 本実施形態に係る熱可塑性樹脂は、併用する微結晶セルロース繊維の熱分解温度よりも融点が低い熱可塑性樹脂(結晶性樹脂)が用いられる。微結晶セルロース繊維の熱分解温度よりも融点が高い樹脂を用いると、加工温度が微結晶セルロースの耐熱温度を超え、微結晶セルロースが劣化、変色するといった問題が生じるからである。当該熱可塑性樹脂としては、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂(以下、「PBT樹脂」とも呼ぶ。)、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリトリメチレンテレフタレート樹脂などが挙げられる。以下に、PBT樹脂を挙げて説明するが、本実施形態においてはそれに限定されるものではない。
[Thermoplastic resin]
The thermoplastic resin (crystalline resin) whose melting | fusing point is lower than the thermal decomposition temperature of the microcrystalline cellulose fiber used together is used for the thermoplastic resin which concerns on this embodiment. If a resin having a melting point higher than the thermal decomposition temperature of microcrystalline cellulose fiber is used, the processing temperature exceeds the heat resistance temperature of microcrystalline cellulose, and the microcrystalline cellulose is deteriorated or discolored. Examples of the thermoplastic resin include polyacetal resin, polybutylene terephthalate resin (hereinafter, also referred to as “PBT resin”), polyethylene terephthalate resin, polyamide resin, polycarbonate resin, polytrimethylene terephthalate resin, and the like. Although a PBT resin is mentioned and demonstrated below, it is not limited to this in this embodiment.
(ポリブチレンテレフタレート樹脂)
 PBT樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られる樹脂である。PBT樹脂は、ホモポリブチレンテレフタレートに限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
(Polybutylene terephthalate resin)
The PBT resin comprises a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as C1-6 alkyl ester or acid halide), an alkylene glycol having at least 4 carbon atoms (1,4-butanediol) or It is a resin obtained by polycondensing a glycol component containing the ester-forming derivative (such as an acetylated compound). The PBT resin is not limited to homopolybutylene terephthalate, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of butylene terephthalate units.
 PBT樹脂の末端カルボキシル基量は、本実施形態の熱可塑性樹脂組成物の効果を阻害しない限り特に限定されない。PBT樹脂の末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。 The amount of terminal carboxyl groups of the PBT resin is not particularly limited as long as the effect of the thermoplastic resin composition of the present embodiment is not impaired. The amount of terminal carboxyl groups of the PBT resin is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
 PBT樹脂の固有粘度(IV)は、0.65~1.20dL/gであることが好ましい。かかる範囲の固有粘度のPBT樹脂を用いる場合には、得られる樹脂組成物が特に機械的特性と流動性に優れたものとなる。逆に固有粘度0.65dL/g未満では優れた機械的特性が得られず、1.20dL/gを超えると優れた流動性が得られないことがある。
 また、固有粘度が上記範囲のPBT樹脂は、異なる固有粘度を有するPBT樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度0.9dL/gのPBT樹脂と固有粘度0.7dL/gのPBT樹脂とをブレンドすることにより、固有粘度0.8dL/gのPBT樹脂を調製することができる。PBT樹脂の固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
The intrinsic viscosity (IV) of the PBT resin is preferably 0.65 to 1.20 dL / g. When a PBT resin having an intrinsic viscosity in this range is used, the resulting resin composition is particularly excellent in mechanical properties and fluidity. On the contrary, when the intrinsic viscosity is less than 0.65 dL / g, excellent mechanical properties can not be obtained, and when it exceeds 1.20 dL / g, excellent fluidity may not be obtained.
Moreover, PBT resin with an intrinsic viscosity of the said range can also blend PBT resin which has a different intrinsic viscosity, and can adjust an intrinsic viscosity. For example, a PBT resin having an intrinsic viscosity of 0.8 dL / g can be prepared by blending a PBT resin having an intrinsic viscosity of 0.9 dL / g and a PBT resin having an intrinsic viscosity of 0.7 dL / g. The intrinsic viscosity (IV) of the PBT resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
 PBT樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。 Examples of dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivative in PBT resin include, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-dicarboxydiphenyl ether, etc. C8-14 aromatic dicarboxylic acids; C4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C5-10 cycloalkanedicarboxylic acids such as cyclohexanedicarboxylic acid; Ester forming derivatives (such as C1-6 alkyl ester derivatives and acid halides) can be mentioned. These dicarboxylic acid components can be used alone or in combination of two or more.
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。 Among these dicarboxylic acid components, C8-12 aromatic dicarboxylic acids such as isophthalic acid and C6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid and sebacic acid are more preferable.
 PBT樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。 Examples of glycol components (comonomer components) other than 1,4-butanediol in PBT resin include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, C2-10 alkylene glycols such as 3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diols such as cyclohexanedimethanol and hydrogenated bisphenol A; bisphenol A, 4,4 Aromatic diols such as dihydroxybiphenyl and the like; bispheno such as an ethylene oxide 2 mole adduct of bisphenol A and a propylene oxide 3 mole adduct of bisphenol A Alkylene oxide adducts of C2-4 Le A; or ester-forming derivatives of these glycols (acetylated, etc.). These glycol components can be used alone or in combination of two or more.
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。 Among these glycol components, C2-6 alkylene glycols such as ethylene glycol and trimethylene glycol, polyoxyalkylene glycols such as diethylene glycol, and alicyclic diols such as cyclohexane dimethanol are more preferable.
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。 As a comonomer component which can be used in addition to the dicarboxylic acid component and the glycol component, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4'-hydroxybiphenyl etc. Aromatic hydroxycarboxylic acids; Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (such as ε-caprolactone); Ester formation of these comonomer components Derivatives (C1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.).
[微結晶セルロース繊維]
 本実施形態においては、熱可塑性樹脂中に溶融混練された後の熱可塑性樹脂組成物において、下記の条件(I)及び(II)をともに満たす状態となる微結晶セルロース繊維を用いる。
(I)熱可塑性樹脂組成物からなる成形品の、任意の箇所に含まれる150個以上の前記微結晶セルロース繊維から、繊維長を基準に上位10%の粒子群を抽出し、当該粒子群中の個々の前記微結晶セルロース繊維の繊維長L及び繊維径を測定し、繊維長L÷繊維径にて算出した比Aの平均値が5以上である。
(II)a及びbを定数として、前記粒子群中の個々の前記微結晶セルロース繊維の繊維長L、及び繊維長L÷繊維径の比Aをもとに、式「A=a×L+b」にて前記粒子群を回帰分析して得られる換算式における定数bの値が5以上である。
 なお、条件(I)において、成形品に含まれる微結晶セルロース繊維を抽出する際には、成形品の任意の箇所を切削して採取した小片状の試料を加熱加圧して、例えば厚さ50μm程度の薄膜フィルムにした状態で顕微鏡を用いて観察する。そのときの温度は熱可塑性樹脂の融点+20℃の温度であり、圧力は上記の厚さに加工できるよう、熱可塑性樹脂の粘度等を考慮して適宜調節すればよい。なお、薄膜フィルムの厚さについても、50μmはあくまで目安であり、これに限定される訳ではない。すなわち、フィルムが厚すぎて微結晶セルロース繊維が重なり合い、観察が困難になってしまうような場合はより薄くすればよく、反対にフィルムが薄すぎて微結晶セルロース繊維が潰れて本来の形状が測定できないような場合はより厚くすればよい。
[Microcrystalline cellulose fiber]
In this embodiment, in the thermoplastic resin composition after being melt-kneaded in the thermoplastic resin, a microcrystalline cellulose fiber in which both of the following conditions (I) and (II) are satisfied is used.
(I) Extract the top 10% of particle groups based on the fiber length from 150 or more of the microcrystalline cellulose fibers contained in any part of a molded article made of a thermoplastic resin composition; The fiber length L and the fiber diameter of each of the microcrystalline cellulose fibers are measured, and the average value of the ratio A calculated using the fiber length L and the fiber diameter is 5 or more.
(II) Formula “A = a × L + b” based on the ratio A of the fiber length L of the individual microcrystalline cellulose fibers in the particle group and the fiber length L ÷ fiber diameter, with a and b as constants. The value of the constant b in the conversion equation obtained by regression analysis of the particle group is 5 or more.
When extracting the microcrystalline cellulose fiber contained in the molded product under the condition (I), a small piece of sample collected by cutting any part of the molded product is heated and pressed, for example, the thickness It observes using a microscope in the state made into a thin film of about 50 micrometers. The temperature at that time is the temperature of the melting point of the thermoplastic resin + 20 ° C., and the pressure may be appropriately adjusted in consideration of the viscosity of the thermoplastic resin and the like so that it can be processed to the above thickness. In addition, also about the thickness of a thin film, 50 micrometers is a standard to the last, and it is not necessarily limited to this. That is, if the film is too thick and the microcrystalline cellulose fibers overlap and observation becomes difficult, the film may be thinner. Conversely, the film is too thin and the microcrystalline cellulose fibers are crushed and the original shape is measured. If you can not do it just make it thicker.
 微結晶セルロース繊維が当該条件を満たすものであることで、樹脂組成物の機械的強度を向上させることができる。逆に、当該条件を満たさないものであると樹脂組成物の機械的強度に劣る。さらに、上記微結晶セルロース繊維により、樹脂組成物の耐トラッキング性の向上を図ることもできる。
 上述の条件(I)における繊維長L÷繊維径の比A、及び条件(II)における換算式中の定数bの値はいずれも5.2以上が好ましく、5.5以上(例えば6以上)がより好ましい。当該比A及び定数bの上限は、通常15である。このような微結晶セルロースは、パルプ原料から、セルロース結晶部を取り出して得ることができる。
 また、微結晶セルロース繊維は、一般的なセルロース繊維よりも耐熱温度が高いため、比較的融点が高い(例えば220℃以上の)熱可塑性樹脂に添加して用いることができる。
The mechanical strength of a resin composition can be improved because a microcrystalline cellulose fiber is what satisfy | fills the said conditions. On the contrary, if it does not satisfy the said conditions, it will be inferior to the mechanical strength of a resin composition. Furthermore, the microcrystalline cellulose fiber can also improve the tracking resistance of the resin composition.
The ratio A of the fiber length L to the fiber diameter under the condition (I) described above and the value of the constant b in the conversion equation under the condition (II) are each preferably 5.2 or more, and 5.5 or more (for example, 6 or more) Is more preferred. The upper limit of the ratio A and the constant b is usually 15. Such microcrystalline cellulose can be obtained by extracting a cellulose crystal part from a pulp raw material.
In addition, since microcrystalline cellulose fibers have a higher heat resistance temperature than general cellulose fibers, they can be used by being added to a thermoplastic resin having a relatively high melting point (for example, 220 ° C. or more).
 ここで、前記比Aと定数bの測定方法についてより具体的に説明する。以下の説明は、本実施形態の熱可塑性樹脂組成物を用いて得られた成形品における比A及び定数bの測定・算出方法についての説明である。まず、成形品の一部を採取してガラス板に挟み、熱可塑性樹脂の融点+20℃の温度で加熱加圧し、厚さ50μm程度の薄膜フィルムを作製する。作製した薄膜フィルムを光学顕微鏡で観察し、150個以上のセルロース粒子(繊維)のうち、繊維長を基準に大きいものから上位10%の粒子群を抽出する。なお、光学顕微鏡の倍率は対象の微結晶セルロース粒子(繊維)のサイズに応じ適宜選択可能であり、通常500~1200倍である。抽出した粒子群中の個々のセルロース粒子(繊維)の繊維長L及び繊維径(直径)を測定し、繊維長L÷繊維径の比Aを算出する。次いで、定数a及びbと、上記の比A及び繊維長Lによる式「A=a×L+b」にて上記粒子群を回帰分析して換算式を得て、定数bの値を求める。この式は比Aと繊維長Lの一次式であることから、定数bは、繊維長Lが限りなく小さい場合における繊維長L÷繊維径の比Aということができる。
 なお、微結晶セルロース繊維は、熱可塑性樹脂との溶融混練などにより切断されて繊維長Lが変化するため、溶融混練前後で比Aや定数bの数値が異なるが、本実施形態における比Aや定数bは、溶融混練後、つまり切断された後における数値である。
Here, the method of measuring the ratio A and the constant b will be described more specifically. The following description is a description of a method of measuring and calculating the ratio A and the constant b in a molded product obtained using the thermoplastic resin composition of the present embodiment. First, a part of the molded product is collected, sandwiched between glass plates, and heated and pressurized at a temperature of + 20 ° C. of the melting point of the thermoplastic resin to prepare a thin film having a thickness of about 50 μm. The produced thin film is observed with an optical microscope, and among the 150 or more cellulose particles (fibers), the top 10% of particle groups are extracted from the larger ones based on the fiber length. The magnification of the optical microscope can be appropriately selected according to the size of the microcrystalline cellulose particles (fibers) of interest, and is usually 500 to 1200 times. The fiber length L and the fiber diameter (diameter) of individual cellulose particles (fibers) in the extracted particle group are measured, and the ratio A of the fiber length L to the fiber diameter is calculated. Next, the particle group is subjected to regression analysis using constants a and b, and the equation “A = a × L + b” based on the above ratio A and fiber length L to obtain a conversion equation, and the value of constant b is determined. Since this equation is a linear equation of the ratio A and the fiber length L, the constant b can be said to be the ratio A of the fiber length L ÷ the fiber diameter when the fiber length L is extremely small.
The microcrystalline cellulose fiber is cut by melt-kneading with a thermoplastic resin or the like to change the fiber length L, so that the numerical values of ratio A and constant b differ before and after melt-kneading. The constant b is a numerical value after melt-kneading, that is, after being cut.
 本実施形態に係る微結晶セルロース繊維の繊維径は1~30μmであることが好ましく、5~25μmであることがより好ましい。この繊維径とは、上述の微結晶セルロース繊維の繊維長の測定と同様である。すなわち、まず、成形品の一部を採取してガラス板に挟み、熱可塑性樹脂の融点+20℃の温度で加熱加圧して作製した薄膜フィルムを光学顕微鏡(倍率は対象の微結晶セルロース繊維のサイズに応じ適宜選択、通常500~1200倍)で観察する。次いで、150個以上の微結晶セルロース繊維のうち、繊維長を基準に大きいものから上位10%を抽出した個々の微結晶セルロース粒子(繊維)の直径を測定し、それを平均した値が繊維径である。ここで、微結晶セルロース繊維の断面が真円でない場合や、1個の繊維の中で直径が均一でなく場所による違いがある場合は、それらの最大値を繊維径の値とする。これは上述の繊維長L÷繊維径の比Aの算出における繊維径の測定においても同様である。また、微結晶セルロース繊維の繊維長は、上述の条件(I)及び(II)を満たすものである限り特に制限はない。なお、本実施形態に係る微結晶セルロース繊維は、繊維径の下限が1μmであることから、セルロースナノファイバーやセルロースナノクリスタルは含まない。 The fiber diameter of the microcrystalline cellulose fiber according to the present embodiment is preferably 1 to 30 μm, and more preferably 5 to 25 μm. The fiber diameter is the same as the measurement of the fiber length of the microcrystalline cellulose fiber described above. That is, first, a part of the molded product is collected, sandwiched between glass plates, and heated and pressed at a temperature of + 20 ° C. of the melting point of the thermoplastic resin to produce a thin film optical microscope (the magnification is the size of the target microcrystalline cellulose fiber The observation should be made according to the appropriate choice (usually 500 to 1200 times). Next, among the 150 or more microcrystalline cellulose fibers, the diameters of the individual microcrystalline cellulose particles (fibers) having the top 10% extracted from the larger one based on the fiber length are measured, and the average value is the fiber diameter It is. Here, in the case where the cross section of the microcrystalline cellulose fiber is not a perfect circle, or in the case where the diameter of one fiber is not uniform and there is a difference depending on the place, the maximum value thereof is taken as the value of the fiber diameter. The same applies to the measurement of the fiber diameter in the calculation of the ratio A of the fiber length L to the fiber diameter described above. In addition, the fiber length of the microcrystalline cellulose fiber is not particularly limited as long as the above conditions (I) and (II) are satisfied. In addition, since the lower limit of a fiber diameter is 1 micrometer, the microcrystalline cellulose fiber which concerns on this embodiment does not contain a cellulose nanofiber and a cellulose nanocrystal.
 本実施形態において、微結晶セルロース繊維の熱分解温度は265℃以上であることが好ましい。当該熱分解温度が265℃以上であると、併用する熱可塑性樹脂として、例えば250℃程度の高い融点のものを選択することが可能となる。そして、この場合、加工温度を270℃程度とすることができる。微結晶セルロース繊維の熱分解温度は270℃であることがより好ましく、280℃以上であることがさらに好ましい。この熱分解温度は、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製TG/DTA6200)を用い、窒素雰囲気下で、30℃から600℃まで、10℃/minで昇温した際の重量減少を測定することで求めることができる。なお、100℃近傍から水分の乾燥による重量減少が生じるため、105℃での重量(水分が抜けた後の重量)から1%の重量が減少した温度を熱分解温度とした。 In the present embodiment, the thermal decomposition temperature of the microcrystalline cellulose fiber is preferably 265 ° C. or more. It becomes possible to select the thing of about 250 degreeC high melting | fusing point as a thermoplastic resin to be used together as the said thermal decomposition temperature is 265 degreeC or more. And in this case, processing temperature can be made into about 270 degreeC. The thermal decomposition temperature of the microcrystalline cellulose fiber is more preferably 270 ° C., and still more preferably 280 ° C. or more. The thermal decomposition temperature is a weight decrease when the temperature is raised from 30 ° C. to 600 ° C. at 10 ° C./min under a nitrogen atmosphere using a differential thermal thermal mass simultaneous measurement device (TG / DTA 6200 manufactured by Hitachi High-Tech Science Co., Ltd.) It can be determined by measuring In addition, since a weight loss due to drying of water occurs from around 100 ° C., the temperature at which the weight at 1% decreased from the weight at 105 ° C. (weight after the water was removed) was taken as the thermal decomposition temperature.
 本実施形態の熱可塑性樹脂組成物において、微結晶セルロース繊維の含有量は、十分な機械的強度を得る観点から、熱可塑性樹脂組成物100質量部に対して、3~50質量部が好ましく、5~25質量部がより好ましい。 In the thermoplastic resin composition of the present embodiment, the content of the microcrystalline cellulose fiber is preferably 3 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition, from the viewpoint of obtaining sufficient mechanical strength. 5 to 25 parts by mass is more preferable.
[他の成分]
 本実施形態においては、その効果を害さない範囲で、上記各成分の他、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ち、バリ抑制剤、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤、耐加水分解性向上剤、流動性改良剤、靱性改良剤等を配合してもよい。
[Other ingredients]
In the present embodiment, well-known additives generally added to thermoplastic resins and thermosetting resins in addition to the above-described components, as long as the effects thereof are not impaired, that is, flash inhibitors, release agents, lubricants , Plasticizers, flame retardants, colorants such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, heat stabilizers, weather resistant stabilizers, corrosion inhibitors, hydrolysis resistance improvers, flow You may mix | blend a quality improving agent, a toughness improving agent, etc.
 本実施形態の熱可塑性樹脂組成物を用いて成形品を得る方法としては特に限定はなく、公知の方法を採用することができる。例えば、本実施形態の熱可塑性樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで成形品を作製することができる。 There is no limitation in particular as a method of obtaining a molded article using the thermoplastic resin composition of this embodiment, A well-known method is employable. For example, the thermoplastic resin composition of the present embodiment is introduced into an extruder, melt-kneaded and pelletized, and the pellets are introduced into an injection molding machine equipped with a predetermined mold and injection molded to obtain a molded article. It can be made.
 以下に、実施例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。 Hereinafter, the present embodiment will be more specifically described by way of examples. However, the present embodiment is not limited to the following examples.
[実施例1~2、比較例1~3、参考例]
 各実施例・比較例において、表1に示す比率(質量%)で、PBT樹脂と、微結晶セルロース繊維とを原料とし、32mmφの2軸押出機((株)日本製鋼所製、TEX30α)を用いて、押出しペレットを得た。具体的には、原料供給部とダイ先端部をシリンダ温度260℃、その間を200~260℃とし、吐出量15kg/h、スクリュ回転数200rpmで上記原料を溶融混練して押出し、PBT樹脂組成物(熱可塑性樹脂組成物)からなるペレットを得た。また、比較例3ではセルロース繊維以外の微粒子状フィラーとして、タルクを添加して、同様の溶融混練によりPBT樹脂組成物からなるペレットを得た。参考例においては、PBT樹脂を単独で用いてペレットを得た。表1に示す各成分の詳細を以下に示す。なお、セルロース繊維1~3は微結晶セルロース繊維である。
 PBT樹脂:ウィンテックポリマー(株)製、固有粘度0.8dl/g、CEG=28meq/kgのポリブチレンテレフタレート樹脂
 セルロース繊維1:JRS Pharma製、VIVAPUR 105
 セルロース繊維2:旭化成(株)製、CEOLUS ST-100
 セルロース繊維3:JRS Pharma製、HEWETEN 101
 セルロース繊維4:日本製紙(株)製、KCフロック W-50GK
 タルク:松村産業(株)製、クラウンタルクPP
[Examples 1 to 2, Comparative Examples 1 to 3, Reference Example]
In each of the Examples and Comparative Examples, using a PBT resin and microcrystalline cellulose fibers as raw materials at a ratio (mass%) shown in Table 1, a 32 mmφ twin-screw extruder (TEX30α, manufactured by Japan Steel Works, Ltd.) Used to obtain extruded pellets. Specifically, the raw material supply unit and the die tip are melt-kneaded and extruded at a cylinder temperature of 260 ° C. and a temperature of 200 ° C. to 260 ° C., discharge amount 15 kg / h, screw rotation speed 200 rpm, and PBT resin composition Pellets of (thermoplastic resin composition) were obtained. Further, in Comparative Example 3, talc was added as a particulate filler other than cellulose fibers, and pellets made of the PBT resin composition were obtained by the same melt-kneading. In the reference example, a pellet was obtained using PBT resin alone. Details of each component shown in Table 1 are shown below. The cellulose fibers 1 to 3 are microcrystalline cellulose fibers.
PBT resin: manufactured by Wintech Polymer Co., Ltd., polybutylene terephthalate resin having an intrinsic viscosity of 0.8 dl / g and CEG = 28 meq / kg cellulose fiber 1: manufactured by JRS Pharma, VIVAPUR 105
Cellulose fiber 2: Asahi Kasei Co., Ltd. CEOLUS ST-100
Cellulose fiber 3: manufactured by JRS Pharma, HEWETEN 101
Cellulose fiber 4: manufactured by Nippon Paper Industries Co., Ltd., KC floc W-50GK
Talc: Matsumura Sangyo Co., Ltd., Crown Talc PP
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 微結晶セルロース繊維1~4の繊維長L、繊維径、繊維長L÷繊維径の比A、回帰分析により求めたA=a×L+bにおける定数b、及び熱分解温度を下記表2に示す。なお、比A及び定数bは既述のようにして求めた。従って、表2に示す繊維長などの最大及び最小は、繊維長が大きいものから上位10%を抽出したうちの最大及び最小であり、平均値は抽出したものの平均値である。 The fiber length L, the fiber diameter, the fiber length L / the fiber diameter ratio A of the microcrystalline cellulose fibers 1-4, the constant b at A = a × L + b determined by regression analysis, and the thermal decomposition temperature are shown in Table 2 below. The ratio A and the constant b were determined as described above. Therefore, the maximum and minimum of the fiber length shown in Table 2 are the maximum and the minimum of the top 10% extracted from those with the largest fiber length, and the average value is the average value of the extracted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
 上記のようにして得られた、各実施例・比較例のPBT樹脂組成物及び参考例のPBT樹脂を、射出成形機(東芝機械製、EC40)に投入して、シリンダ温度260℃、金型温度90℃にて、ISO3167に準拠し、厚み4mmtの1A型引張試験片を成形した。
(1)明度(L値)
 得られた試験片の明度(L値)を、日本電色工業(株)製SE6000を用いて測定した。測定結果を表1に示す。一般的に明度(L値)の数値が大きいほど、熱による変色が抑えられ、特に耐熱性が高いことを示す。
(2)曲げ強さ・曲げ弾性率・曲げ破断歪
 得られた試験片を切削し、ISO3167に準じた曲げ試験片(幅10mm、厚み4mmt)を作製し、ISO178に準じて曲げ強さ、曲げ弾性率及び曲げ破断歪みを測定した。測定結果を表1に示す。
(3)曲げ強さの成形品内バラつき
 日本製鋼所製射出成形機(型締力40トン)のシリンダ部にガス注入機構(窒素ボンベに接続された発泡剤供給機構と導入速度調整容器とを備え、所定の圧力でガスを注入する機構)を設置した射出発泡成形機を用い、以下のようにして発泡成形品を得た。すなわち、まず、6MPaに制御した状態でシリンダの飢餓ゾーンにダイレクトに注入した窒素ガスと、飢餓供給にてホッパより適正量のペレットを供給して計量可塑化した実施例・比較例のPBT樹脂組成物とを混練した。次いで、シリンダ温度260℃、金型温度80MPa、保圧0MPaにて射出発泡成形を行い、80mm×80mm×2mmの平板状の発泡成形品(幅80mm、厚さ1.5mmのフィルムゲート)を得た。発泡成形品の重量減少率(窒素ガスを注入せず、保圧を60MPaとして通常の射出成形を行った未発泡の成形品に対する、発泡成形品の重量減少率)は、発泡成形時のV-P射出切替え位置の変更により調整し、10%となるようにした。その後、発泡成形品を、ゲート側の端辺及び反ゲート側の端辺からそれぞれ13mm幅で切断し、80mm×13mm×2mmの短冊状試験片を得た。このようにして得たゲート側の短冊状試験片と反ゲート側の短冊状試験片を用いて、オリエンテック社製万能試験機RTC-1325Aにて、上押し治具R5mm、下支持台R2mm、スパン32mm(片側16mm)、速度2mm/minの条件で曲げ強さを測定し、曲げ強さの成形品内バラつきを評価した。また、窒素ガスを注入せず、保圧を60MPaとして通常の射出成形を行った未発泡成形品でも同様に、曲げ強さの成形品内バラつきを評価した。結果を表1に示す。
[Evaluation]
The PBT resin composition of each example and comparative example obtained as described above and the PBT resin of the reference example are charged into an injection molding machine (EC40, manufactured by Toshiba Machine), cylinder temperature 260 ° C., mold In accordance with ISO 3167 at a temperature of 90 ° C., a 1 mm tensile test piece having a thickness of 4 mm was formed.
(1) Brightness (L value)
The lightness (L value) of the obtained test piece was measured using SE6000 manufactured by Nippon Denshoku Kogyo Co., Ltd. The measurement results are shown in Table 1. Generally, the larger the value of lightness (L value), the less the discoloration due to heat, and in particular, the higher the heat resistance.
(2) Bending strength, bending elastic modulus, bending fracture strain The obtained test piece is cut, and a bending test piece (width 10 mm, thickness 4 mm t) conforming to ISO 3167 is prepared, bending strength according to ISO 178, bending The modulus of elasticity and bending strain were measured. The measurement results are shown in Table 1.
(3) Bending strength in molded articles: Gas injection mechanism (foaming agent feed mechanism connected to nitrogen cylinder and introduction rate adjustment container) in cylinder part of Japan Steel Works injection molding machine (40 ton clamping force) Using an injection foam molding machine equipped with a mechanism for injecting a gas at a predetermined pressure, a foam molded article was obtained as follows. That is, first, nitrogen gas directly injected into the starvation zone of the cylinder in a controlled state at 6 MPa, and PBT resin compositions of examples and comparative examples obtained by supplying pellets of appropriate amount from the hopper by starvation supply The mixture was kneaded with Then, injection foam molding is performed at a cylinder temperature of 260 ° C., a mold temperature of 80 MPa and a holding pressure of 0 MPa to obtain a flat foam molded article (film gate of 80 mm in width and 1.5 mm in thickness) of 80 mm × 80 mm × 2 mm. The The weight loss rate of the foam molded article (the weight loss rate of the foam molded article with respect to the non-foamed molded article subjected to ordinary injection molding with a holding pressure of 60 MPa without injecting nitrogen gas) It adjusted by the change of P injection switching position, and it was made to be 10%. Thereafter, the foamed molded article was cut at a width of 13 mm from each of the gate-side end and the side opposite to the gate to obtain a strip-shaped test piece of 80 mm × 13 mm × 2 mm. Using the strip-shaped test piece on the gate side and the strip-shaped test piece on the non-gate side thus obtained, an upward pushing jig R 5 mm, a lower support stand R 2 mm, in a universal testing machine RTC-1325A manufactured by Orientec Co., Ltd. The bending strength was measured under the conditions of a span of 32 mm (one side of 16 mm) and a speed of 2 mm / min to evaluate the variation in bending strength in the formed product. Further, in the case of an unfoamed molded article which was subjected to ordinary injection molding with a holding pressure of 60 MPa without injection of nitrogen gas, the variation in the inside of the molded article of the bending strength was similarly evaluated. The results are shown in Table 1.
 表1より、実施例1及び2においては、曲げ強さ、曲げ弾性率、曲げ破断歪及び発泡成形品における曲げ強さの成形品内バラつきが良好な結果が得られたことが分かる。つまり、加工温度の高い熱可塑性樹脂中に溶融混練されても強度低下が生じておらず、耐熱性及び機械的特性の優れた樹脂組成物が得られていることが分かる。なお、実施例1では、特に熱分解温度の高い微結晶セルロースを用いているため、明度も良好なものとなっている。また、実施例2では発泡成形品において、特にゲート側と反ゲート側での曲げ強度の差が小さく、成形品内での強度バラつきが小さいものが得られている。これについて、実施例1、2とも未発泡成形品では成形品内での強度バラつきが小さかったのに対し、発泡成形品では実施例1と2で成形品内の強度バラつきに差が生じている。この理由は定かではないが、微結晶セルロースの形状によって成形品内の発泡状態の均一性に差が生じるためである可能性があり、実施例2のような比Aの最大値と最小値の差が小さい(例えば10以下となる)微結晶セルロース繊維を用いることで、成形品内の発泡状態のバラつき、ひいては曲げ強さの場所によるバラつきを抑えられたものと推測される。これらに対して、比Aと定数bが5未満の微結晶セルロース繊維を用いた比較例1は、明度は良好であったが、機械的特性において劣っていた。また、従来のセルロース繊維を用いた比較例2は、比Aや定数bは高くとも熱分解温度が低いため、加工温度の高い熱可塑性樹脂中に溶融混練された際の変色や強度低下により、機械的特性や明度に劣っていた。 From Table 1, in Examples 1 and 2, it can be seen that good results were obtained for the bending strength, the bending elastic modulus, the bending rupture strain and the variation in the bending strength of the foam molded article in the molded article. That is, it can be seen that there is no strength reduction even when melt-kneaded in a thermoplastic resin having a high processing temperature, and a resin composition having excellent heat resistance and mechanical properties is obtained. In addition, in Example 1, since microcrystalline cellulose having a particularly high thermal decomposition temperature is used, the lightness is also good. Further, in Example 2, in the foam molded article, a difference in bending strength between the gate side and the non-gate side is particularly small, and a variation in strength within the molded article is small. Regarding this, in Examples 1 and 2, in the unfoamed molded product, the strength deviation in the molded product is small, while in the foam molded product, the strength deviation in the molded product is different in Examples 1 and 2. . The reason for this is not clear, but may be because the shape of microcrystalline cellulose causes a difference in the uniformity of the foamed state in the molded product, and the maximum value and the minimum value of the ratio A as in Example 2 By using a microcrystalline cellulose fiber having a small difference (for example, 10 or less), it is presumed that the variation in the foamed state in the molded product and, further, the variation due to the location of the bending strength can be suppressed. On the other hand, Comparative Example 1 using a microcrystalline cellulose fiber having a ratio A and a constant b of less than 5 was good in lightness but inferior in mechanical properties. Further, in Comparative Example 2 using conventional cellulose fibers, the thermal decomposition temperature is low even if the ratio A and constant b are high, so discoloration and strength reduction when melt-kneaded in a thermoplastic resin with a high processing temperature, It was inferior to mechanical characteristics and lightness.
[実施例3~6、比較例4]
 各実施例・比較例において、表3に示す比率(質量%)で、PBT樹脂と、微結晶セルロース繊維及び/又はガラス繊維とを原料とし、実施例1と同様にしてペレットを得た。なお、PBT樹脂及び微結晶セルロース繊維(セルロース繊維1又は2)は、実施例1~2で示したものと同じである。また、ガラス繊維は以下の通りである。
 ガラス繊維:日本電気硝子(株)製、ECS03T-187(平均繊維径13μm、平均繊維長3mm)
[Examples 3 to 6, Comparative Example 4]
In each example and comparative example, pellets were obtained in the same manner as in Example 1 using PBT resin and microcrystalline cellulose fiber and / or glass fiber as raw materials at the ratio (% by mass) shown in Table 3. The PBT resin and microcrystalline cellulose fiber (cellulose fiber 1 or 2) are the same as those described in Examples 1 and 2. Moreover, glass fiber is as follows.
Glass fiber: ECS03T-187 (average fiber diameter 13 μm, average fiber length 3 mm) manufactured by Nippon Electric Glass Co., Ltd.
[評価] ~耐トラッキング性~
 実施例3~6、比較例4及び参考例で得られたペレットを用い、IEC60112第3版に準拠して試験片を作製しつつ、0.1質量%塩化アンモニウム水溶液と白金電極を用いて、試験片にトラッキングが生じる印加電圧(V:ボルト)を測定した。なお、最大印加電圧は600Vである。測定結果を表3に示す。
[Evaluation]-Tracking resistance-
Using the pellets obtained in Examples 3 to 6 and Comparative Example 4 and Reference Example and using a 0.1 mass% ammonium chloride aqueous solution and a platinum electrode while preparing test pieces in accordance with IEC 60112 3rd Edition, The applied voltage (V: volt) which tracking generate | occur | produced in the test piece was measured. The maximum applied voltage is 600V. The measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例3及び4と参考例はいずれも最大印加電圧の600Vであり、これらの例の比較から、セルロース繊維1及び2、すなわち微結晶セルロース繊維は樹脂組成物の耐トラッキング性を悪化させないことが分かる。
 一方、微結晶セルロース繊維の代わりにガラス繊維を用いた比較例4においては、耐トラッキング性が悪化している。ところが、比較例4におけるガラス繊維の添加量はそのままとし、セルロース繊維2(微結晶セルロース繊維)を添加した実施例5及び6においては耐トラッキング性が比較例4よりも改善している。
 以上より、微結晶セルロース繊維を添加することにより、樹脂組成物の耐トラッキング性を向上することが可能であることが分かる。
From Table 3, Examples 3 and 4 and the reference example all have a maximum applied voltage of 600 V, and from the comparison of these examples, cellulose fibers 1 and 2, ie, microcrystalline cellulose fibers, are used for the tracking resistance of the resin composition. It turns out that it does not make it worse.
On the other hand, in Comparative Example 4 in which glass fibers are used instead of microcrystalline cellulose fibers, the tracking resistance is deteriorated. However, in Examples 5 and 6 in which the amount of glass fiber added in Comparative Example 4 is the same and the cellulose fibers 2 (microcrystalline cellulose fibers) are added, the tracking resistance is improved as compared with Comparative Example 4.
From the above, it is understood that the tracking resistance of the resin composition can be improved by adding microcrystalline cellulose fiber.

Claims (2)

  1.  熱可塑性樹脂と、下記(I)及び(II)をともに満たす微結晶セルロース繊維とを含む熱可塑性樹脂組成物。
    (I)前記熱可塑性樹脂組成物からなる成形品の任意の箇所に含まれる、150個以上の前記微結晶セルロース繊維から、繊維長を基準に上位10%の粒子群を抽出し、当該粒子群中の個々の前記微結晶セルロース繊維の繊維長L及び繊維径を測定し、繊維長L÷繊維径にて算出した比Aの平均値が5以上である。
    (II)a及びbを定数として、前記粒子群中の個々の前記微結晶セルロース繊維の繊維長L、及び繊維長L÷繊維径の比Aをもとに、式「A=a×L+b」にて前記粒子群を回帰分析して得られる換算式におけるbの値が5以上である。
    The thermoplastic resin composition containing a thermoplastic resin and the microcrystalline cellulose fiber which satisfy | fills both following (I) and (II).
    (I) Extract the top 10% of the particle groups based on the fiber length from 150 or more of the microcrystalline cellulose fibers contained in any part of the molded article made of the thermoplastic resin composition, and the particle groups The fiber length L and the fiber diameter of each of the microcrystalline cellulose fibers therein are measured, and the average value of the ratio A calculated by the fiber length L / the fiber diameter is 5 or more.
    (II) Formula “A = a × L + b” based on the ratio A of the fiber length L of the individual microcrystalline cellulose fibers in the particle group and the fiber length L ÷ fiber diameter, with a and b as constants. The value of b in the conversion formula obtained by regression analysis of the particle group is 5 or more.
  2.  前記微結晶セルロース繊維の下記(III)で示される熱分解温度が265℃以上である請求項1に記載の熱可塑性樹脂組成物。
    (III)前記微結晶セルロース繊維を30℃から600℃まで10℃/minで昇温した際に、105℃における重量に対し1%の重量減少が見られる温度。
    The thermoplastic resin composition according to claim 1, wherein the thermal decomposition temperature of the microcrystalline cellulose fiber shown by the following (III) is 265 ° C or more.
    (III) A temperature at which a weight loss of 1% is observed with respect to the weight at 105 ° C. when the temperature of the microcrystalline cellulose fiber is raised from 30 ° C. to 600 ° C. at 10 ° C./min.
PCT/JP2018/045803 2017-12-22 2018-12-13 Thermoplastic resin composition WO2019124199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517994A JP6682044B2 (en) 2017-12-22 2018-12-13 Thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245942 2017-12-22
JP2017245942 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124199A1 true WO2019124199A1 (en) 2019-06-27

Family

ID=66993363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045803 WO2019124199A1 (en) 2017-12-22 2018-12-13 Thermoplastic resin composition

Country Status (2)

Country Link
JP (1) JP6682044B2 (en)
WO (1) WO2019124199A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282923A (en) * 2005-04-04 2006-10-19 Asahi Kasei Chemicals Corp Resin composition blended with cellulose
JP2011052339A (en) * 2009-09-01 2011-03-17 Konica Minolta Holdings Inc Cellulose fiber and fiber composite material
JP2011094046A (en) * 2009-10-30 2011-05-12 Konica Minolta Opto Inc Resin film and method for manufacturing the same
JP2014114401A (en) * 2012-12-11 2014-06-26 Kirin Brewery Co Ltd Composite material and container
JP2015010154A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Flame retardant composition and molded article including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282923A (en) * 2005-04-04 2006-10-19 Asahi Kasei Chemicals Corp Resin composition blended with cellulose
JP2011052339A (en) * 2009-09-01 2011-03-17 Konica Minolta Holdings Inc Cellulose fiber and fiber composite material
JP2011094046A (en) * 2009-10-30 2011-05-12 Konica Minolta Opto Inc Resin film and method for manufacturing the same
JP2014114401A (en) * 2012-12-11 2014-06-26 Kirin Brewery Co Ltd Composite material and container
JP2015010154A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Flame retardant composition and molded article including the same

Also Published As

Publication number Publication date
JPWO2019124199A1 (en) 2020-01-16
JP6682044B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR101921130B1 (en) Method for pulverizing cellulose, cellulose nanofiber, masterbatch and resin composition
Kim et al. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites
US10093798B2 (en) Polyester resin composition
US8304500B2 (en) Polyglycolic acid resin particle composition and process for production thereof
JP4572516B2 (en) Method for producing resin composition
KR101734561B1 (en) Manufacturing Method of Polylactic acid composites composition
JP2020531678A (en) Biodegradable polymer composition and its use
Andrzejewski et al. Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization
TW201602211A (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
WO2014199915A1 (en) Polybutylene terephthalate resin composition and injection-molded article
Sirin et al. The effects of thermomechanical cycles on the properties of PLA/TPS blends
JP2022015904A (en) Thermoplastic resin composition and member, and method for producing member composed of thermoplastic resin composition and method for improving mechanical strength
TW201305275A (en) Inorganic filler-reinforced polybutylene terephthalate resin composition, and injection molded product formed by molding said resin composition
Abay et al. Preparation and characterization of poly (lactic acid)/recycled polypropylene blends with and without the coupling agent, n-(6-aminohexyl) aminomethyltriethoxysilane
TW201311811A (en) Polybutylene terephthalate resin composition, and injection molded product configured from said resin composition
WO2019124199A1 (en) Thermoplastic resin composition
JP2009249583A (en) Polylactic acid composition and molding
JP7168357B2 (en) Polybutylene terephthalate resin composition for sealing member
JP4562852B2 (en) Biodegradable and antistatic aliphatic polyester resin composition
KR101520154B1 (en) Polylactic acid-based resin composition to improve crystallization behavior and product by using the same
EP4032954B1 (en) Biopolymer composition, preparation method for same and bioplastic using same
JP2017214471A (en) Method for producing polybutylene terephthalate resin composition molded article
JP6144929B2 (en) Method for producing polybutylene terephthalate resin composition
US20240018343A1 (en) Composite resin molded article and method for producing same
Soćko et al. The Development of Sustainable polyoxymethylene (POM)-Based Composites by the Introduction of Natural Fillers and Melt Blending with Poly (lactic Acid)-PLA

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517994

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891478

Country of ref document: EP

Kind code of ref document: A1