JP6144929B2 - Method for producing polybutylene terephthalate resin composition - Google Patents

Method for producing polybutylene terephthalate resin composition Download PDF

Info

Publication number
JP6144929B2
JP6144929B2 JP2013040740A JP2013040740A JP6144929B2 JP 6144929 B2 JP6144929 B2 JP 6144929B2 JP 2013040740 A JP2013040740 A JP 2013040740A JP 2013040740 A JP2013040740 A JP 2013040740A JP 6144929 B2 JP6144929 B2 JP 6144929B2
Authority
JP
Japan
Prior art keywords
polybutylene terephthalate
terephthalate resin
resin composition
ceg
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013040740A
Other languages
Japanese (ja)
Other versions
JP2014169356A (en
Inventor
美香 神谷
美香 神谷
邦明 川口
邦明 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WinTech Polymer Ltd
Original Assignee
WinTech Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WinTech Polymer Ltd filed Critical WinTech Polymer Ltd
Priority to JP2013040740A priority Critical patent/JP6144929B2/en
Publication of JP2014169356A publication Critical patent/JP2014169356A/en
Application granted granted Critical
Publication of JP6144929B2 publication Critical patent/JP6144929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ベース樹脂としてポリブチレンテレフタレート樹脂を用いた樹脂組成物に関する。   The present invention relates to a resin composition using a polybutylene terephthalate resin as a base resin.

ポリブチレンテレフタレート樹脂(以下、「PBT樹脂」とも呼ぶ。)は、熱変形温度が高く、電気特性、機械特性、耐候性、耐薬品性等に優れることから、エンジニアリングプラスチックとして、電気・電子部品、自動車部品など種々の用途に広く利用されている。
しかしPBT樹脂は分子内にエステル基を有しているため、高温高湿環境下では加水分解により物性が低下しやすいという欠点を有しており、このようなPBT樹脂においては、加水分解を抑制することが重要となる。また、PBT樹脂の末端カルボキシル基量が多いと耐加水分解性に影響を及ぼすことが知られており、耐加水分解性向上のため末端カルボキシル基量を低減させることについて種々の提案がなされている(例えば、特許文献1〜3参照。)。
Polybutylene terephthalate resin (hereinafter also referred to as “PBT resin”) has a high thermal deformation temperature and excellent electrical properties, mechanical properties, weather resistance, chemical resistance, etc. Widely used in various applications such as automobile parts.
However, since PBT resin has an ester group in the molecule, it has a disadvantage that the physical properties are likely to deteriorate due to hydrolysis in a high temperature and high humidity environment. In such PBT resin, hydrolysis is suppressed. It is important to do. In addition, it is known that if the amount of terminal carboxyl groups of the PBT resin is large, the hydrolysis resistance is known to be affected, and various proposals have been made to reduce the amount of terminal carboxyl groups in order to improve the hydrolysis resistance. (For example, refer patent documents 1-3.).

末端カルボキシル基量を低減させる方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調節する方法や、末端封鎖剤を反応させる方法、固相重合による方法、エポキシやカルボジイミド等の反応性化合物を添加する方法等が知られている。   Methods for reducing the amount of terminal carboxyl groups include a method for adjusting polymerization conditions such as raw material charge ratio, polymerization temperature and pressure reduction method during polymerization, a method for reacting a terminal blocking agent, a method by solid phase polymerization, epoxy and carbodiimide. A method of adding a reactive compound such as is known.

特開2001−114880号公報JP 2001-114880 A 特開2006−063199号公報JP 2006-063199 A 特開2010−143995号公報JP 2010-143959 A

しかしながら、従来の耐加水分解性を向上させる方法によると、粘度が高くなって流動性が低下したり、有毒ガス(カルボジイミドを用いた場合にイソシアネート)が発生したりするといった問題があった。また、初期の末端カルボキシル基量の低減や、長期耐久試験後の物性は検討されているものの、加水分解速度については言及されてこなかった。 前記の長期耐久試験は、高温高湿環境に連続的に長期間曝露される用途を想定して行われているが、間欠的に短時間のみ高温高湿に曝される用途においては、加水分解の反応速度が低いことも重要であり、この点は従来考慮されていなかった。
本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、有毒ガスの発生及び流動性の低下を招くなどの諸問題を生じることなく、加水分解速度を低減することにより耐加水分解性に優れたポリブチレンテレフタレート樹脂組成物を提供することにある。
However, the conventional methods for improving the hydrolysis resistance have a problem that the viscosity is increased and the fluidity is lowered, and a toxic gas (isocyanate when carbodiimide is used) is generated. Moreover, although the reduction | decrease of the initial amount of terminal carboxyl groups and the physical property after a long-term durability test are examined, the hydrolysis rate has not been mentioned. The long-term durability test described above is performed assuming that it is continuously exposed to a high-temperature and high-humidity environment for a long period of time. It is also important that the reaction rate of is low, and this point has not been considered in the past.
The present invention has been made in view of the above-mentioned conventional problems, and its problem is to reduce the hydrolysis rate without causing various problems such as generation of toxic gas and decrease in fluidity. An object of the present invention is to provide a polybutylene terephthalate resin composition having excellent hydrolyzability.

上記課題を解決する本発明は以下の通りである。
(1)ポリブチレンテレフタレート樹脂と、エポキシ当量が500〜5000g/eqの(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体とを含み、加水分解反応速度定数kが0.015h−1未満であることを特徴とするポリブチレンテレフタレート樹脂組成物。
The present invention for solving the above problems is as follows.
(1) It includes a polybutylene terephthalate resin and a (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl polymer having an epoxy equivalent of 500 to 5000 g / eq, and a hydrolysis reaction rate constant k is 0.015 h −1. A polybutylene terephthalate resin composition characterized by being less than.

(2)前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体のエポキシ当量が500〜2000g/eqであることを特徴とする前記(1)に記載のポリブチレンテレフタレート樹脂組成物。 (2) The polybutylene terephthalate resin composition as described in (1) above, wherein the epoxy equivalent of the acrylic acid alkyl ester-glycidyl methacrylate polymer is 500 to 2000 g / eq.

(3)前記ポリブチレンテレフタレート樹脂の末端カルボキシル基量に対する前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体のエポキシ当量の比の値が0.5〜4.0であることを特徴とする前記(1)又は(2)に記載のポリブチレンテレフタレート樹脂組成物。 (3) The ratio of the epoxy equivalent of the alkyl acrylate ester-glycidyl methacrylate polymer to the amount of terminal carboxyl groups of the polybutylene terephthalate resin is 0.5 to 4.0. ) Or (2) polybutylene terephthalate resin composition.

(4)前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体の重量平均分子量が3000〜7000であることを特徴とする前記(1)〜(3)のいずれかに記載のポリブチレンテレフタレート樹脂組成物。 (4) The polybutylene terephthalate resin composition according to any one of (1) to (3), wherein the alkyl acrylate ester-glycidyl methacrylate polymer has a weight average molecular weight of 3000 to 7000.

(5)260℃、せん断速度1000sec−1で測定した溶融粘度が200Pa・s以下であることを特徴とする前記(1)〜(4)のいずれかに記載のポリブチレンテレフタレート樹脂組成物。 (5) The polybutylene terephthalate resin composition according to any one of (1) to (4), wherein the melt viscosity measured at 260 ° C. and a shear rate of 1000 sec −1 is 200 Pa · s or less.

本発明によれば、有毒ガスの発生及び流動性の低下を招くなどの諸問題を生じることなく、加水分解速度を低減することにより耐加水分解性に優れたポリブチレンテレフタレート樹脂組成物を提供することができる。   According to the present invention, there is provided a polybutylene terephthalate resin composition having excellent hydrolysis resistance by reducing the hydrolysis rate without causing various problems such as generation of toxic gas and lowering of fluidity. be able to.

本発明のポリブチレンテレフタレート樹脂組成物は、ポリブチレンテレフタレート樹脂と、エポキシ当量が500〜5000g/eqの(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体(以下、「AGMA」とも呼ぶ。)とを含み、加水分解反応速度定数kが0.015h−1未満であることを特徴とすることを特徴としている。
本発明のPBT樹脂組成物は、特定のAGMAを、加水分解反応速度定数kが0.015h−1未満となるように配合することで加水分解の進行を遅くし、耐加水分解性の向上を図ったものである。
なお、本明細書において、「(メタ)アクリル酸」の表記は、アクリル酸又はメタクリル酸を意味する。
以下に、本発明の樹脂組成物の各成分について説明する。
The polybutylene terephthalate resin composition of the present invention is a polybutylene terephthalate resin and a (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl polymer (hereinafter referred to as “AGMA”) having an epoxy equivalent of 500 to 5000 g / eq. And the hydrolysis reaction rate constant k is less than 0.015 h −1 .
The PBT resin composition of the present invention blends specific AGMA so that the hydrolysis reaction rate constant k is less than 0.015 h −1, thereby slowing the progress of hydrolysis and improving hydrolysis resistance. It is intended.
In the present specification, the expression “(meth) acrylic acid” means acrylic acid or methacrylic acid.
Below, each component of the resin composition of this invention is demonstrated.

[ポリブチレンテレフタレート樹脂(PBT樹脂)]
ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1−6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4−ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られる樹脂である。PBT樹脂は、ホモポリブチレンテレフタレートに限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
[Polybutylene terephthalate resin (PBT resin)]
The polybutylene terephthalate resin (PBT resin) is composed of a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.), and an alkylene glycol having at least 4 carbon atoms (1 , 4-butanediol) or an ester-forming derivative thereof (acetylated product, etc.) and a resin obtained by polycondensation. The PBT resin is not limited to homopolybutylene terephthalate but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.

PBT樹脂の末端カルボキシル基量は、本発明の効果を阻害しない限り特に限定されない。PBT樹脂の末端カルボキシル基量は、40meq/kg以下が好ましく、30meq/kg以下がより好ましく、25meq/kg以下が特に好ましい。   The amount of the terminal carboxyl group of the PBT resin is not particularly limited as long as the effect of the present invention is not inhibited. The amount of terminal carboxyl groups of the PBT resin is preferably 40 meq / kg or less, more preferably 30 meq / kg or less, and particularly preferably 25 meq / kg or less.

PBT樹脂の固有粘度(IV)は本発明の効果を阻害しない範囲で特に制限されない。PBT樹脂の固有粘度は0.60〜1.20dL/gであるのが好ましい。割れの防止や、加熱冷却耐久性の向上のための靱性向上の観点から、さらに好ましくは0.65〜1.15dL/gである。かかる範囲の固有粘度のPBT樹脂を用いる場合には、得られるPBT樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するPBT樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのPBT樹脂と固有粘度0.8dL/gのPBT樹脂とをブレンドすることにより、固有粘度0.9dL/gのPBT樹脂を調製することができる。PBT樹脂の固有粘度(IV)は、例えば、o−クロロフェノール中で温度35℃の条件で測定することができる。   The intrinsic viscosity (IV) of the PBT resin is not particularly limited as long as the effect of the present invention is not impaired. The intrinsic viscosity of the PBT resin is preferably 0.60 to 1.20 dL / g. From the viewpoint of preventing cracking and improving toughness for improving heating and cooling durability, it is more preferably 0.65 to 1.15 dL / g. When a PBT resin having an intrinsic viscosity in such a range is used, the resulting PBT resin composition is particularly excellent in moldability. In addition, the intrinsic viscosity can be adjusted by blending PBT resins having different intrinsic viscosities. For example, a PBT resin having an intrinsic viscosity of 0.9 dL / g can be prepared by blending a PBT resin having an intrinsic viscosity of 1.0 dL / g and a PBT resin having an intrinsic viscosity of 0.8 dL / g. The intrinsic viscosity (IV) of the PBT resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.

PBT樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジカルボキシジフェニルエーテル等のC8−14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4−16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5−10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1−6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。 In the PBT resin, as dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-dicarboxydiphenyl ether, etc. C 8-14 aromatic dicarboxylic acids; C 4-16 alkane dicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 cycloalkane dicarboxylic acids such as cyclohexane dicarboxylic acid; these dicarboxylic acids Examples thereof include ester-forming derivatives of acid components (C 1-6 alkyl ester derivatives, acid halides, and the like). These dicarboxylic acid components can be used alone or in combination of two or more.

これらのジカルボン酸成分の中では、イソフタル酸等のC8−12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6−12のアルカンジカルボン酸がより好ましい。 Among these dicarboxylic acid components, C 8-12 aromatic dicarboxylic acids such as isophthalic acid, and C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.

PBT樹脂において、1,4−ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3−オクタンジオール等のC2−10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’−ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2−4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。 In the PBT resin, as glycol components (comonomer components) other than 1,4-butanediol, for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, 1, C 2-10 alkylene glycol such as 3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; cycloaliphatic diol such as cyclohexanedimethanol and hydrogenated bisphenol A; bisphenol A, 4, Bisphenols, such as aromatic diols such as 4'-dihydroxybiphenyl; ethylene oxide 2-mole adducts of bisphenol A, propylene oxide 3-mole adducts of bisphenol A, etc. Alkylene oxide adducts of C 2-4 of A; or ester-forming derivatives of these glycols (acetylated, etc.). These glycol components can be used alone or in combination of two or more.

これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2−6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。 Among these glycol components, C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol, polyoxyalkylene glycol such as diethylene glycol, and alicyclic diol such as cyclohexanedimethanol are more preferable.

ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4−ヒドロキシ安息香酸、3−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸、4−カルボキシ−4’−ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε−カプロラクトン等)等のC3−12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1−6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。 Examples of comonomer components that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 4-carboxy-4′-hydroxybiphenyl. Aromatic hydroxycarboxylic acids; Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (ε-caprolactone, etc.); esters of these comonomer components And forming derivatives (C 1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.).

[(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体(AGMA)]
本発明のPBT樹脂組成物においては、エポキシ当量が500〜5000g/eqのAGMAを配合するのであるが、当該AGMAを配合することで、加水分解反応速度定数を低減することができ、ひいてはPBT樹脂の加水分解の進行を遅くし、長期間にわたり機械特性の維持を図ることができる。
[(Meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl polymer (AGMA)]
In the PBT resin composition of the present invention, AGMA having an epoxy equivalent of 500 to 5000 g / eq is blended. By blending the AGMA, the hydrolysis reaction rate constant can be reduced, and as a result, the PBT resin. It is possible to slow the progress of hydrolysis and maintain mechanical properties over a long period of time.

本発明のPBT樹脂組成物においては、エポキシ当量が500〜5000g/eqのAGMAを用いるが、当該エポキシ当量が500g/eq未満であると加水分解反応速度定数の低減を図ることができず、5000g/eqを超える場合も加水分解反応速度定数を十分に低減できなくなる可能性がある。当該エポキシ当量は500〜2000g/eqが好ましく、1000〜1500g/eqがより好ましい。   In the PBT resin composition of the present invention, AGMA having an epoxy equivalent of 500 to 5000 g / eq is used, but if the epoxy equivalent is less than 500 g / eq, the hydrolysis reaction rate constant cannot be reduced, and 5000 g Also when it exceeds / eq, the hydrolysis reaction rate constant may not be sufficiently reduced. The epoxy equivalent is preferably 500 to 2000 g / eq, more preferably 1000 to 1500 g / eq.

一方、AGMAの重量平均分子量は3000〜7000であることが好ましく、4000〜6000であることがより好ましく、4500〜5500であることが特に好ましい。当該重量平均分子量が3000以上であればブリードアウトの発生を抑制しやすく、7000以下であれば相溶性が有利となるため外観ムラや物性バラツキを抑制しやすい。   On the other hand, the weight average molecular weight of AGMA is preferably 3000 to 7000, more preferably 4000 to 6000, and particularly preferably 4500 to 5500. If the weight average molecular weight is 3000 or more, it is easy to suppress the occurrence of bleed-out, and if it is 7000 or less, compatibility is advantageous, and thus uneven appearance and variations in physical properties are easily suppressed.

本発明においては、AGMAは、加水分解反応速度定数kが0.015h−1未満、好ましくは0.010h−1未満となるように配合される。
ここで、当該加水分解反応速度定数kは加水分解による末端カルボキシル基の生成速度、すなわち加水分解速度を示す指標であり、以下のようにして求められる。
まず、PBT樹脂が加水分解することで末端カルボキシル基(以下、「CEG」とも呼ぶ。)が生成する化学反応式は下記(1)式のようになる。
〜COO〜 + HO → 〜COOH + HO〜 ・・・(1)
上記(1)式における反応速度vをCEG濃度[CEG]に対する一次式で記述すると(2)式となる。
v = d[CEG]/dt = k[CEG] ・・・(2)
[kは加水分解反応速度定数(h−1)、tは時間(h)である。]
上記(2)式を下記(3)式のように変形し、初期CEG濃度(t=0)を[CEG](mmol/kg)として、[CEG]と[CEG]との間、及び0とtとの間で積分して変形すると(4)式が得られる。
d[CEG] / [CEG] = kdt ・・・(3)
ln[CEG] = kt + ln[CEG] ・・・(4)
(4)式において、tとln[CEG]との関係は、傾きkの直線を示している。そして、式(1)の反応において、t及び[CEG]を実測し、その実測データ([CEG]はln[CEG]に換算)から最小二乗法により直線を求め、その直線の傾きが加水分解反応速度定数kとなる。
なお、本発明において、PBT樹脂組成物の末端カルボキシル基量、及びPBT樹脂の末端カルボキシル基量の測定方法は、例えば、樹脂組成物、PBT樹脂の粉砕試料をベンジルアルコール中215℃で10分間溶解後、0.01Nの水酸化ナトリウム/ベンジルアルコール溶液にて滴定することで測定することができる。
In the present invention, AGMA is blended so that the hydrolysis reaction rate constant k is less than 0.015 h −1 , preferably less than 0.010 h −1 .
Here, the hydrolysis reaction rate constant k is an index indicating the rate of terminal carboxyl group formation by hydrolysis, that is, the rate of hydrolysis, and is determined as follows.
First, the chemical reaction formula in which a terminal carboxyl group (hereinafter also referred to as “CEG”) is generated by hydrolysis of the PBT resin is represented by the following formula (1).
~COO~ + H 2 O → ~COOH + HO~ ··· (1)
When the reaction rate v in the above equation (1) is described by a linear equation with respect to the CEG concentration [CEG], the equation (2) is obtained.
v = d [CEG] / dt = k [CEG] (2)
[K is a hydrolysis reaction rate constant (h −1 ), and t is time (h). ]
The above equation (2) is transformed into the following equation (3), the initial CEG concentration (t = 0) is set as [CEG] 0 (mmol / kg), and between [CEG] 0 and [CEG], and When transforming by integrating between 0 and t, equation (4) is obtained.
d [CEG] / [CEG] = kdt (3)
ln [CEG] = kt + ln [CEG] 0 (4)
In the equation (4), the relationship between t and ln [CEG] indicates a straight line with a slope k. Then, in the reaction of the formula (1), t and [CEG] are measured, a straight line is obtained from the measured data ([CEG] is converted into ln [CEG]) by the least square method, and the slope of the straight line is hydrolyzed. The reaction rate constant is k.
In the present invention, the amount of terminal carboxyl group of the PBT resin composition and the method of measuring the amount of terminal carboxyl group of the PBT resin are, for example, dissolving a resin composition and a pulverized sample of PBT resin in benzyl alcohol at 215 ° C. for 10 minutes. Thereafter, it can be measured by titrating with a 0.01N sodium hydroxide / benzyl alcohol solution.

一方、AGMAは、(メタ)アクリル酸アルキルエステルと、(メタ)アクリル酸グリシジルとの共重合体である。以下に、(メタ)アクリル酸アルキルエステルについて説明する。
(メタ)アクリル酸アルキルエステルのアルキル基は、直鎖状でも分岐状でもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基などが挙げられる。このような、(メタ)アクリル酸アルキルエステルは、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル等が挙げられ、中でも、メタクリル酸メチルが好ましい。
On the other hand, AGMA is a copolymer of (meth) acrylic acid alkyl ester and (meth) acrylic acid glycidyl. Below, (meth) acrylic-acid alkylester is demonstrated.
The alkyl group of the (meth) acrylic acid alkyl ester may be linear or branched. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group. Examples of such (meth) acrylic acid alkyl esters include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, and the like. Is preferred.

AGMAの配合量は、加水分解反応速度定数kを0.015h−1未満とするため、前記ポリブチレンテレフタレート樹脂の末端カルボキシル基量に対する前記(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体のエポキシ当量の比の値が0.5〜4.0となるように設定することが好ましく、0.6〜3.0となるように設定することがより好ましく、0.7〜2.0(例えば1.5)となるように設定することが特に好ましい。 The blending amount of AGMA is such that the hydrolysis reaction rate constant k is less than 0.015 h −1, and therefore the (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl heavy weight relative to the terminal carboxyl group amount of the polybutylene terephthalate resin. The ratio of the epoxy equivalent ratio of the coalescence is preferably set to be 0.5 to 4.0, more preferably 0.6 to 3.0, and more preferably 0.7 to 2. It is particularly preferable to set to 0 (for example, 1.5).

[他の成分]
本発明のPBT樹脂組成物は、本発明の効果を害さない範囲で必要に応じて、他の樹脂や酸化防止剤、安定剤、帯電防止剤、滑剤、可塑剤、結晶核剤、着色剤、難燃剤、強化用充填材等の従来公知の添加剤を配合することができる。
[Other ingredients]
The PBT resin composition of the present invention is, as necessary, other resins, antioxidants, stabilizers, antistatic agents, lubricants, plasticizers, crystal nucleating agents, colorants, as long as the effects of the present invention are not impaired. Conventional additives such as flame retardants and reinforcing fillers can be blended.

以上の本発明のPBT樹脂組成物は、流動性を低下させることなく加水分解速度を低減できるのであるが、260℃、せん断速度1000sec−1で測定した溶融粘度は200Pa・s以下とすることができ、150Pa・s以下とすることができる。 Although the PBT resin composition of the present invention can reduce the hydrolysis rate without lowering the fluidity, the melt viscosity measured at 260 ° C. and a shear rate of 1000 sec −1 should be 200 Pa · s or less. It can be set to 150 Pa · s or less.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

[実施例1〜4、比較例1〜10」
各実施例・比較例において、PBT樹脂と、(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体(AGMA)、スチレン−メタクリル酸グリシジル共重合体(SGMA)、及びエチレン−グリシジルメタクリレート共重合体(EGMA)のうちの1種と、酸化防止剤とを、下記表1に示す部数(質量部)をブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)にて260℃で溶融混練し、ペレット状のPBT樹脂組成物を得た。ただし、比較例1においては、PBT樹脂及び酸化防止剤のみを用いた。
なお、上記各成分の詳細は以下の通りである。
(1)PBT樹脂:ウィンテックポリマー(株)製、ジュラネックス(登録商標)(固有粘度0.68dL/g、末端カルボキシル基量24meq/kg)
(2)AGMA
AGMA1:日油(株)製、(重量平均分子量5000、エポキシ当量1100g/eq)
AGMA2:日油(株)製、(重量平均分子量5000、エポキシ当量2100g/eq)
AGMA3:日油(株)製、(重量平均分子量5000、エポキシ当量3800g/eq)
AGMA4:日油(株)製、マープルーフG−0150M(重量平均分子量10000、エポキシ当量310g/eq)
AGMA5:日油(株)製、マープルーフG−2050M(重量平均分子量200000、エポキシ当量340g/eq)
(3)SGMA
SGMA1:日油(株)製、(重量平均分子量5000、エポキシ当量310g/eq)
SGMA2:日油(株)製、マープルーフG−0130S(重量平均分子量9000、エポキシ当量530g/eq)
SGMA3:日油(株)製、(重量平均分子量5000、エポキシ当量1100g/eq)
SGMA4:日油(株)製、(重量平均分子量5000、エポキシ当量2100g/eq)
SGMA5:日油(株)製、(重量平均分子量5000、エポキシ当量3700g/eq)
(4)EGMA:住友化学(株)製、ボンドファーストE(メタクリル酸グリシジル/エチレン共重合体、メタクリル酸グリシジル12質量%、エポキシ当量約1190g/eq)
(6)酸化防止剤:BASF社製、テトラキス[メチレン3(3,5ジtブチル4ヒドロキシフェニル)プロピオネート]メタン
[Examples 1 to 4, Comparative Examples 1 to 10]
In each example and comparative example, PBT resin, (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl polymer (AGMA), styrene-glycidyl methacrylate copolymer (SGMA), and ethylene-glycidyl methacrylate copolymer One type of polymer (EGMA) and an antioxidant are blended in the number of parts (parts by mass) shown in Table 1 below, and a twin-screw extruder having a 30 mmφ screw (manufactured by Nippon Steel Works) And kneaded at 260 ° C. to obtain a PBT resin composition in the form of pellets. However, in Comparative Example 1, only the PBT resin and the antioxidant were used.
In addition, the detail of said each component is as follows.
(1) PBT resin: manufactured by Wintech Polymer Co., Ltd., DURANEX (registered trademark) (inherent viscosity 0.68 dL / g, terminal carboxyl group amount 24 meq / kg)
(2) AGMA
AGMA1: NOF Corporation (weight average molecular weight 5000, epoxy equivalent 1100 g / eq)
AGMA2: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 2100 g / eq)
AGMA3: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 3800 g / eq)
AGMA4: NOF Corporation, Marproof G-0150M (weight average molecular weight 10,000, epoxy equivalent 310 g / eq)
AGMA5: NOF Corporation, Marproof G-2050M (weight average molecular weight 200000, epoxy equivalent 340 g / eq)
(3) SGMA
SGMA1: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 310 g / eq)
SGMA2: NOF Corporation, Marproof G-0130S (weight average molecular weight 9000, epoxy equivalent 530 g / eq)
SGMA3: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 1100 g / eq)
SGMA4: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 2100 g / eq)
SGMA5: NOF Corporation, (weight average molecular weight 5000, epoxy equivalent 3700 g / eq)
(4) EGMA: manufactured by Sumitomo Chemical Co., Ltd., Bond First E (glycidyl methacrylate / ethylene copolymer, glycidyl methacrylate 12 mass%, epoxy equivalent of about 1190 g / eq)
(6) Antioxidant: Tetrakis [methylene 3 (3,5 di-t-butyl 4-hydroxyphenyl) propionate] methane manufactured by BASF

各実施例・比較例において得られたPBT樹脂組成物を用いて、以下の測定又は評価を行った。
(1)加水分解反応速度定数k
得られたPBT樹脂組成物のペレットを高温高湿器内で121℃、100%RHの条件で暴露処理を行った後粉砕し、ベンジルアルコール中215℃で10分間溶解後、0.01Nの水酸化ナトリウム/ベンジルアルコール溶液にて滴定することで末端カルボキシル基量を測定した。処理時間t及び末端カルボキシル基量(ln[CEG]に換算)のデータから最小二乗法により直線を求め、その直線の傾きを加水分解反応速度定数kとした。求めたkの値を表1に示す。
(2)溶融粘度
東洋精機(株)製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度260℃、せん断速度1000sec−1での溶融粘度を測定した。測定結果を表1に示す。
(3)引張強度80%寿命(h)
得られたペレットを140℃で3時間乾燥後、シリンダ温度250℃、金型温度80℃の条件で射出成形し、ISO3167に準拠した引張試験片を作製した。作製した試験片を恒温恒湿器内で121℃、100%RHの条件下で暴露処理し、24時間おきに、ISO527−1,2に準拠し引張強度を測定した。そして、引張強度が初期強度の80%まで低下するのに要する時間を引張強度の指標とした。当該時間を表1に示す。なお、本評価試験は、実施例1及び2、比較例4のみに対して行った。
The following measurements or evaluations were performed using the PBT resin compositions obtained in each of the examples and comparative examples.
(1) Hydrolysis reaction rate constant k
The obtained PBT resin composition pellets were subjected to an exposure treatment at 121 ° C. and 100% RH in a high-temperature humidifier, pulverized, dissolved in benzyl alcohol at 215 ° C. for 10 minutes, and then 0.01 N water The amount of terminal carboxyl groups was measured by titrating with a sodium oxide / benzyl alcohol solution. A straight line was obtained from the data of the treatment time t and the terminal carboxyl group amount (converted to ln [CEG]) by the least square method, and the slope of the straight line was defined as the hydrolysis reaction rate constant k. Table 1 shows the obtained values of k.
(2) Melt Viscosity Using a Capillograph manufactured by Toyo Seiki Co., Ltd., a 1 mmφ × 20 mmL / flat die was used as the capillary, and the melt viscosity at a barrel temperature of 260 ° C. and a shear rate of 1000 sec −1 was measured. The measurement results are shown in Table 1.
(3) 80% tensile strength life (h)
The obtained pellets were dried at 140 ° C. for 3 hours, and then injection molded under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. to produce tensile test pieces in accordance with ISO 3167. The produced test piece was exposed and treated in a thermo-hygrostat under the conditions of 121 ° C. and 100% RH, and the tensile strength was measured every 24 hours in accordance with ISO527-1,2. The time required for the tensile strength to decrease to 80% of the initial strength was used as an index of tensile strength. The time is shown in Table 1. This evaluation test was performed only for Examples 1 and 2 and Comparative Example 4.

Figure 0006144929
Figure 0006144929

表1より、実施例1〜4においては、いずれも加水分解反応速度定数kが0.015h−1未満であり、加水分解が遅くなり各種機械特性が良好な状態で長時間保たれると考えられる。その証拠に、実施例1及び2は、比較例4よりも引張強度寿命試験において優秀な結果が得られた。一般に引張強度寿命は溶融粘度が高いほど長いことが知られているが、これら実施例1及び2、並びに比較例4は同程度の溶融粘度を呈することから、加水分解反応速度定数kが小さい方が機械特性の長期保持に有利と推察される。
これに対して、AGMAを配合しなかった比較例1、エポキシ当量が本発明に規定する範囲外のAGMAを用いた比較例2〜4、AGMAの代わりにSGMAを用いた比較例5〜9、及びAGMAの代わりにEGMAを用いた比較例10はいずれも加水分解反応速度定数kが0.015h−1を超えており、AGMA以外のエポキシ化合物では加水分解反応速度定数kを低減できないことが分かる。また、それらの比較例は、実施例と比較すると短時間で加水分解が進行するものと考えられる。
From Table 1, in Examples 1-4, the hydrolysis reaction rate constant k is less than 0.015 h −1 , and it is considered that hydrolysis is slow and various mechanical properties are maintained in a good state for a long time. It is done. As evidence, the results of Examples 1 and 2 were superior to those of Comparative Example 4 in the tensile strength life test. In general, it is known that the tensile strength life is longer as the melt viscosity is higher. However, since Examples 1 and 2 and Comparative Example 4 exhibit the same melt viscosity, the hydrolysis reaction rate constant k is smaller. Is presumed to be advantageous for long-term retention of mechanical properties.
On the other hand, Comparative Example 1 in which AGMA was not blended, Comparative Examples 2 to 4 in which AGMA having an epoxy equivalent outside the range specified in the present invention, Comparative Examples 5 to 9 in which SGMA was used instead of AGMA, In Comparative Example 10 using EGMA in place of AGMA and AGMA, the hydrolysis reaction rate constant k exceeds 0.015 h −1 , and it is found that the hydrolysis reaction rate constant k cannot be reduced with an epoxy compound other than AGMA. . In addition, these comparative examples are considered to undergo hydrolysis in a short time compared to the examples.

Claims (5)

ポリブチレンテレフタレート樹脂と、エポキシ当量が500〜5000g/eqの(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体とを用い、前記(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸グリシジル重合体を、下記条件で測定して得られる加水分解反応速度定数kが0.015h−1未満となるように配合する工程を含むことを特徴とするポリブチレンテレフタレート樹脂組成物の製造方法。
(条件)
ポリブチレンテレフタレート樹脂組成物のペレットを高温高湿器内で121℃、100%RHの条件で暴露処理を行った後粉砕し、得られた粉砕試料をベンジルアルコール中215℃で10分間溶解後、0.01Nの水酸化ナトリウム/ベンジルアルコール溶液にて滴定することで、ポリブチレンテレフタレート樹脂の末端カルボキシル基量の初期濃度[CEG]及び時間tにおける濃度[CEG]を測定する。次いで、処理時間t及び末端カルボキシル基量の濃度から最小二乗法により下記式で示される直線を求め、その直線の傾きを加水分解反応速度定数kとする。
ln[CEG] = kt + ln[CEG]
Using a polybutylene terephthalate resin and an (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl polymer having an epoxy equivalent of 500 to 5000 g / eq, the (meth) acrylic acid alkyl ester- (meth) acrylic acid glycidyl The manufacturing method of the polybutylene terephthalate resin composition characterized by including the process of mix | blending a polymer so that the hydrolysis reaction rate constant k obtained by measuring on the following conditions may be less than 0.015h- 1 .
(conditions)
The pellets of the polybutylene terephthalate resin composition were subjected to exposure treatment at 121 ° C. and 100% RH in a high-temperature and high-humidifier, and then pulverized. The obtained pulverized sample was dissolved in benzyl alcohol at 215 ° C. for 10 minutes, By titrating with a 0.01N sodium hydroxide / benzyl alcohol solution, the initial concentration [CEG] of the terminal carboxyl group amount of the polybutylene terephthalate resin [ 0 ] and the concentration [CEG] at time t are measured. Next, a straight line represented by the following formula is obtained from the treatment time t and the concentration of the terminal carboxyl group by the least square method, and the slope of the straight line is defined as a hydrolysis reaction rate constant k.
ln [CEG] = kt + ln [CEG] 0
前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体のエポキシ当量が500〜2000g/eqであることを特徴とする請求項1に記載のポリブチレンテレフタレート樹脂組成物の製造方法2. The method for producing a polybutylene terephthalate resin composition according to claim 1, wherein an epoxy equivalent of the alkyl acrylate ester-glycidyl methacrylate polymer is 500 to 2000 g / eq. 前記ポリブチレンテレフタレート樹脂の末端カルボキシル基量に対する前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体のエポキシ当量の比の値が0.5〜4.0であることを特徴とする請求項1又は2に記載のポリブチレンテレフタレート樹脂組成物の製造方法The ratio of the epoxy equivalent ratio of the alkyl acrylate ester-glycidyl methacrylate polymer to the amount of terminal carboxyl groups of the polybutylene terephthalate resin is 0.5 to 4.0, according to claim 1 or 2. The manufacturing method of the polybutylene terephthalate resin composition of description. 前記アクリル酸アルキルエステル−メタクリル酸グリシジル重合体の重量平均分子量が3000〜7000であることを特徴とする請求項1〜3のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法4. The method for producing a polybutylene terephthalate resin composition according to claim 1, wherein the alkyl alkyl ester-glycidyl methacrylate polymer has a weight average molecular weight of 3000 to 7000. 5. 260℃、せん断速度1000sec−1で測定した溶融粘度が200Pa・s以下であることを特徴とする請求項1〜4のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法5. The method for producing a polybutylene terephthalate resin composition according to claim 1, wherein the melt viscosity measured at 260 ° C. and a shear rate of 1000 sec −1 is 200 Pa · s or less.
JP2013040740A 2013-03-01 2013-03-01 Method for producing polybutylene terephthalate resin composition Expired - Fee Related JP6144929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040740A JP6144929B2 (en) 2013-03-01 2013-03-01 Method for producing polybutylene terephthalate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040740A JP6144929B2 (en) 2013-03-01 2013-03-01 Method for producing polybutylene terephthalate resin composition

Publications (2)

Publication Number Publication Date
JP2014169356A JP2014169356A (en) 2014-09-18
JP6144929B2 true JP6144929B2 (en) 2017-06-07

Family

ID=51691975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040740A Expired - Fee Related JP6144929B2 (en) 2013-03-01 2013-03-01 Method for producing polybutylene terephthalate resin composition

Country Status (1)

Country Link
JP (1) JP6144929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691819A (en) * 2017-06-29 2020-01-14 东丽株式会社 Thermoplastic polyester resin composition and molded article thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902253B (en) * 2003-11-05 2010-10-20 株式会社吴羽 Process for producing aliphatic polyester
JP4821952B2 (en) * 2005-02-24 2011-11-24 東洋紡績株式会社 POLYESTER RESIN MODIFICATOR AND METHOD FOR PRODUCING MOLDED ARTICLE USING THE SAME
JP5005204B2 (en) * 2005-09-28 2012-08-22 ウィンテックポリマー株式会社 Case, cover or housing molded product that houses electronic components
JP2007254541A (en) * 2006-03-22 2007-10-04 Mitsubishi Rayon Co Ltd Polyester-based resin composition-processing aid and polyester-based resin composition
DE102008056694A1 (en) * 2008-11-11 2010-05-12 Mitsubishi Polyester Film Gmbh Biaxially stretched polyester film containing a chain extender, as well as processes for their preparation and their use
JP5851416B2 (en) * 2010-11-18 2016-02-03 ウィンテックポリマー株式会社 Inorganic filler reinforced polybutylene terephthalate resin composition and molded article thereof
WO2012147847A1 (en) * 2011-04-28 2012-11-01 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition, and injection molded product configured from said resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691819A (en) * 2017-06-29 2020-01-14 东丽株式会社 Thermoplastic polyester resin composition and molded article thereof
CN110691819B (en) * 2017-06-29 2021-12-03 东丽株式会社 Thermoplastic polyester resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2014169356A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5883543B2 (en) Polybutylene terephthalate resin composition and injection molded article
JP6100983B1 (en) Polybutylene terephthalate resin composition
KR101385879B1 (en) Bio plastic composition
JP6144929B2 (en) Method for producing polybutylene terephthalate resin composition
JP6864161B1 (en) Polybutylene terephthalate resin composition
JP2020033501A (en) Measuring property improving polybutylene terephthalate resin pellet
JP6302072B2 (en) Release agent for use in molding polybutylene terephthalate resin composition and method for improving release property
JP6097096B2 (en) Method for producing polybutylene terephthalate resin composition
JP6445820B2 (en) Polybutylene terephthalate resin composition
JP6159652B2 (en) Polybutylene terephthalate resin composition
JP6456559B2 (en) Method for producing thermoplastic aromatic polyester resin composition
JP6682044B2 (en) Thermoplastic resin composition
KR101284654B1 (en) Environmentally Friendly Resin Composition
JP2018141108A (en) Polybutylene terephthalate resin composition for molded body welding polyester elastomer and composite molding
JP6911383B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
WO2023105955A1 (en) Polyalkylene terephthalate resin composition, polyalkylene terephthalate resin composition production method, and molded article
JP2024076744A (en) Flame-retardant polybutylene terephthalate resin composition, method for producing flame-retardant polybutylene terephthalate resin composition, and molded article
JP2023083810A (en) Polyalkylene terephthalate resin composition for injection molding, and injection molded article
JP2013249343A (en) Polybutylene terephthalate resin composition, sliding member and composite component
JPWO2018159487A1 (en) Polybutylene terephthalate resin composition for molded article to which polyester elastomer is welded and composite molded article
JPWO2020166444A1 (en) Polybutylene terephthalate resin composition
JP3286156B2 (en) Polyester resin composition moldable by low-temperature mold
JP2007126604A (en) Polyalkylene terephthalate resin composition and molded product using the same
JP2005281486A (en) Resin composition
JPS61133264A (en) Polyester composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170512

R150 Certificate of patent or registration of utility model

Ref document number: 6144929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees