WO2019124008A1 - Tool, and control circuit and control method for tool - Google Patents

Tool, and control circuit and control method for tool Download PDF

Info

Publication number
WO2019124008A1
WO2019124008A1 PCT/JP2018/043750 JP2018043750W WO2019124008A1 WO 2019124008 A1 WO2019124008 A1 WO 2019124008A1 JP 2018043750 W JP2018043750 W JP 2018043750W WO 2019124008 A1 WO2019124008 A1 WO 2019124008A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
pass
tool
work process
setting data
Prior art date
Application number
PCT/JP2018/043750
Other languages
French (fr)
Japanese (ja)
Inventor
彰太 荒井
Original Assignee
日東工器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東工器株式会社 filed Critical 日東工器株式会社
Priority to JP2019510387A priority Critical patent/JP6654269B2/en
Priority to CN201880081538.6A priority patent/CN111479655B/en
Publication of WO2019124008A1 publication Critical patent/WO2019124008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a control circuit for a tool that operates while sequentially changing control conditions for each work process, a tool including such a control circuit, and a control method of the tool.
  • Patent Document 1 discloses an electric driver in which a driver bit is rotationally driven by an electric motor to perform a screw tightening operation.
  • the user can change settings such as the rotation speed and the tightening torque of the electric motor in accordance with the type of screw and the member to which the screw is to be tightened.
  • different types of screws may be tightened in sequence in a predetermined order, and in the case of an electric driver used in such a case, one operation process is completed and the next operation is completed.
  • the setting of the motor-driven driver is automatically changed to the control conditions required in the work process.
  • a pass standard is set in advance for each work process, and when the operation of the motor-driven driver in each work process satisfies this pass standard, a pass signal is also output to an external device. It has become.
  • the electric driver as described above may be connected to an external device such as a programmable logic controller (PLC), and the external device may perform various operations based on a pass signal transmitted from the electric driver.
  • PLC programmable logic controller
  • an operation for example, there is an operation of closing the lid of the container containing the screw used in the finished work step and opening the lid of the container containing the screw used in the next work step .
  • the external device since tightening of the screw is first completed by performing two operation steps, there is a case where the external device does not perform any operation even if a pass signal is received when the first operation step is completed. In this case, the external device needs to be preset to handle the first pass signal as unnecessary. That is, in an external device connected to a conventional motor-driven driver to which a pass signal is sent at the completion of all work steps, it is not necessary to make settings so as to ignore unnecessary pass signals. It becomes complicated.
  • the present invention is a control circuit in a tool that operates while sequentially changing control conditions for each work process, and sets the presence or absence of an output of a pass signal on the side of the tool and outputs only a necessary pass signal. It is an object to provide a control circuit that makes it possible. Another object of the present invention is to provide a tool having such a control circuit and a control method of the tool.
  • the present invention A control circuit of a tool that operates while sequentially changing control conditions for each work process, An information storage unit in which setting data for setting control conditions in each work process is stored; An operation unit that sequentially changes the control conditions of the tool for each work process based on the setting data; Equipped with The setting data includes a pass reference value indicating pass criteria for the operation of the tool in each work step, and whether or not to output a pass signal when the pass criterion is satisfied in each work step, for each work step Contains a pass signal output set value for setting The operation unit determines whether or not the operation of the tool in each operation process satisfies the acceptance criterion based on the acceptance criterion value, and fulfills the acceptance criterion and outputs an acceptance signal corresponding to the operation process at that time. When the set value is a set value for outputting the pass signal, the pass signal is output, and when the set value for the pass signal output is a set value not to output the pass signal, the pass signal is not output.
  • the setting data includes
  • the control circuit since it is possible to set the presence or absence of the output of the pass signal for each work process based on the pass signal output setting value, the pass signal which is not required in the connected external device is transmitted. It will be possible not to As a result, the external device need not be set to ignore unnecessary pass signals, and the setting of the external device can be simplified.
  • the computing unit may output a rejection signal when it is determined that the operation of the tool does not meet the pass criteria in the current operation process.
  • the present invention also provides a tool including the above-described control circuit, which is operated while sequentially changing control conditions for each work process.
  • the present invention A control method of a tool which operates while sequentially changing control conditions for each work process, Reading setting data stored in the information storage unit; Sequentially changing the control condition of the tool in each work process based on the setting data; Determining whether the operation of the tool in each work process satisfies the pass standard in each work process indicated by the pass reference value included in the setting data; When the acceptance criteria is satisfied and the acceptance signal output setting value corresponding to the work process at that time is the setting value for outputting the acceptance signal, the acceptance signal is output to the outside, and the acceptance signal output setting value is the acceptance signal A step of preventing the output of the pass signal to the outside when the set value is not output; Provide a control method including:
  • FIG. 1 is an external view of an electric driver according to a first embodiment of the present invention. It is a functional block diagram of the electric driver of FIG. It is a figure which shows the condition setting data preserve
  • the electric driver (tool) 100 is rotated by the tool housing 110, the electric motor 112 built in the tool housing 110, and the electric motor 112. And a driven bit holder 114.
  • a driver bit 116 appropriately selected according to a target screw is removably attached.
  • the tool housing 110 is provided with an input interface 122 having a display unit 118 and an input button 120, and a connection cable 124 for connecting the motor-driven driver 100 to a programmable logic controller (PLC) 123.
  • PLC programmable logic controller
  • a motor drive circuit 126 for controlling the drive of the electric motor 112 a control circuit 128 for controlling the entire electric driver 100, and a rotational position of the rotor of the electric motor 112 are detected. Hall sensors 130 are provided.
  • the control circuit 128 includes an arithmetic unit 131 and a memory (information storage unit) 132 in which setting data is stored.
  • the calculation unit 131 controls the motor-driven driver 100 based on the setting data stored in the memory 132.
  • the setting data stored in the memory 132 includes condition setting data for setting control conditions in each work process.
  • the memory 132 of the motor-driven driver 100 can store first to thirtieth condition setting data corresponding to the first to twentieth work processes.
  • the condition setting data includes setting values indicating the tightening torque and the number of tightening screws in the screw tightening operation. Besides these, for example, setting values for controlling the rotational speed of the electric motor 112 can also be included.
  • the condition setting data in the motor-driven driver 100 further includes a pass reference value indicating a pass standard for the operation of the motor-driven driver 100 in each work process.
  • set values for setting the minimum rotation time and the maximum rotation time of the electric motor 112 when the screw tightening operation is performed are included as the pass reference values. For example, when the rotation of the electric motor 112 is stopped in a time shorter than the minimum rotation time, it is expected that the head of the screw is seated earlier than the expected time, and the electric motor 112 in the time longer than the maximum rotation time. It is expected that when the rotation has stopped the screw head has been seated later than expected. That is, when the electric motor 112 is stopped earlier than the minimum rotation time or later than the maximum rotation time, it can be determined that there is a high possibility that the wrong screw is selected and screwing is performed.
  • the condition setting data further includes a pass signal output setting value for setting whether or not to output a pass signal to the outside when the pass criteria are satisfied.
  • the calculation unit 131 can output a pass signal when it is determined that the operation of a certain work process satisfies the pass criteria, but whether to output a pass signal depends on the pass signal output setting value It is determined.
  • the pass signal output setting value is a setting value (ON) for outputting a pass signal
  • the pass signal is output to the PLC 123
  • a setting value (OFF) for not outputting a pass signal
  • the pass signal is It does not output to PLC123.
  • the setting data further includes a plurality of order setting data for setting the execution order of the work process.
  • the first to thirtieth execution orders can be set in the memory 132 of the motor-driven driver 100, and data indicating each execution order is stored in the memory 132 as order setting data. There is. Up to eight work processes can be registered in each order setting data.
  • the order setting data further includes a next operation setting value for setting the next operation after the series of work processes are completed.
  • a setting value (termination) for stopping the operation of the electric driver 100 a setting value (loop) for re-executing a series of work processes in the same execution order, and It is possible to select from setting values (transition to another execution order) to shift to a series of work processes in the execution order based on the order setting data.
  • condition setting data and order setting data included in the setting data can be arbitrarily changed by the operation of the input interface 122.
  • setting data can be rewritten by transmitting corresponding data from an external device such as a personal computer.
  • the calculation unit 131 reads necessary setting data from the memory 132. Which one of the plurality of execution orders is to be executed can be arbitrarily selected, and is usually specified in advance.
  • the arithmetic unit 131 reads predetermined order setting data corresponding to the specified execution order, and sets the execution order of the work process. For example, when the first execution order is specified, the first order setting data is read, and as shown in FIG. 4, the first operation process, the second operation process, the third operation process, and the fourth operation process Are set as a series of work processes, and these work processes will be sequentially performed.
  • the calculation unit 131 operates the electric driver 100 while sequentially changing the control conditions for each work process based on the first to fourth condition setting data respectively corresponding to the work processes.
  • the first work process assumes that four screws are temporarily tightened
  • the second work process assumes that the temporarily tightened screws are completely tightened. . Therefore, when the first work process is normally completed, the four screws are screwed in with their heads not seated, and in the second work process, these temporarily tightened screws are further screwed to seat the screw heads. Further tightening is performed with a predetermined tightening torque. As a result, the four screws are completely tightened.
  • the computing unit 131 Since the pass signal output setting value of the first condition setting data is “OFF”, the computing unit 131 does not output a pass signal even if the first work process is normally completed and the pass criteria are satisfied. On the other hand, since the pass signal output setting value of the second condition setting data is "ON”, the computing unit 131 outputs a pass signal when the second operation process is normally completed and the pass criteria are satisfied. Similarly, in the third operation process, eight screws are temporarily tightened, and in the fourth operation process, the temporarily tightened eight screws are fully tightened, and when the fourth operation process is normally completed. A pass signal is output. Since the next operation setting value in the first order setting data is “end”, the operation of the electric driver 100 is stopped when the fourth operation process is completed.
  • the pass signal is not output at the completion of the first and third working steps which are the temporary tightening step, but is output only when the second and fourth working steps which are the final tightening step are completed.
  • PLC 123 will only receive a pass signal when screw tightening is complete.
  • the PLC 123 controls the operation of the other peripheral devices etc. in conjunction with the operation of the electric driver 100, but does not necessarily perform some control every time each work process is completed, and a predetermined work process Control is often performed only when it is completed.
  • a pass signal is outputted every time each work process is completed, and therefore, it is necessary to set the PLC 123 side so as to ignore an unnecessary pass signal.
  • the second order setting data is read, and the third operation process, the 30th operation process, and the 7th operation process are set as a series of operation processes, for each operation process.
  • the electric driver 100 operates while sequentially changing the control conditions. Since the next operation setting value in the second order setting data is "loop", when the seventh operation process which is the last operation process is completed, the process returns to the third operation process which is the first operation process, and so on. The work process will be repeated.
  • the third order setting data is read, and eight operation steps from the first first operation step to the last thirteenth operation step are set as a series of operation steps.
  • the electric driver 100 operates while sequentially changing the control conditions for each work process. Since the next operation setting value in the third order setting data is "transition to the fourth execution order", when the final thirteenth working process is completed, the designated fourth order setting data is read and the fourth execution order Are set, and the process shifts to a series of work steps in the fourth execution order.
  • the next operation after completion of a series of work steps based on certain order setting data can be selected from “end", "loop", and "transition to another execution order".
  • the electric driver 100 since it is possible to shift to an execution order based on another order setting data, the electric driver 100 itself sets a work process in a more complicated execution order without depending on control of an external device such as the PLC 123. It is possible to In addition, if the basic execution order that is often used is set in each order setting data, setting the execution order to be shifted appropriately as compared with the case where the execution order is reassembled from the beginning Thus, process changes can be made more quickly and easily. It is not necessary to necessarily include the above-described three as the selectable next operation, and may include another next operation instead or additionally.
  • the motor-driven driver 100 is further configured to store in the memory 132 a history of work processes executed across a plurality of execution orders based on a plurality of order setting data. Due to some work errors, it may be necessary to redo the work process or, in some cases, to start from the previous work process. In that case, based on the history of the work process stored in the memory 132, it is possible to return to the work process that needs to be redone. Specifically, by operating the input button 120 of the input interface 122, it is possible to return to the previous work process remaining in the history.
  • the memory 132 in the motor-driven driver 100 is a combination of a readable and writable non-volatile memory and a volatile memory such as a cache memory for temporarily storing data necessary for the program operation.
  • the setting data is stored in the non-volatile memory, and the work process history is stored in the volatile memory.
  • An electric driver 200 includes an electric driver main body 202 and a controller 204 for controlling the electric driver main body 202, as shown in FIGS.
  • the motor-driven driver main body 202 and the controller 204 are connected by a communication cable 206 via communication units 238 a and 238 b respectively provided.
  • a communication cable 224 connected to the PLC 223 is provided on the controller 204 side.
  • an electric motor 212, a motor drive circuit 226, and a hall sensor 230 similar to the electric driver 100 according to the first embodiment are provided.
  • the input interface 222 is provided on the controller 204 side.
  • calculation units 231a and 231b are provided in the electric driver main body 202 and the controller 204, respectively.
  • the two arithmetic units 231a and 231b communicate with each other via the communication cable 206, and the two arithmetic units 231a and 231b perform the same function as the arithmetic unit 131 in the first embodiment.
  • memories 232a and 232b are respectively provided in the motor-driven driver main body 202 and the controller 204, and these two memories 232a and 232b perform the same function as the memory 132 in the first embodiment. That is, in the motor-driven driver, the control circuit 228 is dispersedly disposed in the motor-driven driver main body 202 and the controller 204.
  • the arithmetic units 231a and 231b and the memories 232a and 232b are disposed in a distributed manner in the motor driver 202 and the controller 204, respectively. Or the entire control circuit 228 may be located on the side of the controller 204.
  • the present invention is not limited to these embodiments.
  • the tool according to the present invention is described as an example of the electric driver which is a kind of electric tool, but other electric tools such as a torque wrench and a grinder can also be used. It is also possible to use other power tools such as an air tool that uses an air motor instead of an electric motor as a power source while having a control circuit such as the above.
  • the tool according to the invention can also be a hand tool without power. As such a hand tool, for example, there is a torque wrench having a torque detection function.
  • setting data including condition setting data including the number of times of tightening (control condition) of a nut, a bolt or the like for each work process and a torque reference value (acceptance standard) at the time of tightening operation
  • condition setting data including the number of times of tightening (control condition) of a nut, a bolt or the like for each work process and a torque reference value (acceptance standard) at the time of tightening operation
  • the operation unit of the control circuit moves to the next work process and the control condition is changed based on the setting data.
  • the control circuit also compares the torque value detected by the torque sensor during the tightening operation with the torque reference value to determine whether the tightening operation is accepted.
  • the condition setting data includes a pass signal output setting value, and the work process whether or not to output a pass signal when the tightening operation satisfies the torque reference value (pass criteria). It can be set arbitrarily for each. Similarly, based on the order setting data and the next operation setting value, it is possible to select the next operation after the series of work steps set by the order setting data is completed.
  • the tool of the present invention can be connected to other external devices such as a personal computer other than the PLC, and the pass signal and the fail signal can be transmitted wirelessly.
  • a personal computer other than the PLC a personal computer other than the PLC
  • the pass signal and the fail signal can be transmitted wirelessly.
  • other devices such as a hard disk drive, a recordable medium such as a writable CD or DVD, a removable USB memory, etc. Alternatively, any combination of these may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • General Factory Administration (AREA)

Abstract

[Problem] To set whether to output a pass signal on an electric driver side, and to enable only a necessary pass signal to be output. [Solution] This control circuit 128 of an electric driver 100 has: a memory 132 which stores setting data; and a calculation unit 131 which controls the electric driver 100 on the basis of the setting data. The setting data includes: a pass criterion value which indicates a pass criterion for an operation of a tool in each work process; and a pass signal output setting value for setting, for each work process, whether to output the pass signal when the pass criterion is satisfied in each work process. The calculation unit 131 outputs the pass signal when the pass criterion is satisfied and the pass signal output setting value corresponding to the work process at that time is a setting value at which the pass signal is to be output, and does not output the pass signal when the pass signal output setting value is a setting value at which the pass signal is not to be output.

Description

工具並びに工具の制御回路及び制御方法Tool and tool control circuit and control method
 本発明は、制御条件を作業工程毎に順次変更しながら動作する工具のための制御回路、そのような制御回路を備える工具、及び該工具の制御方法に関する。 The present invention relates to a control circuit for a tool that operates while sequentially changing control conditions for each work process, a tool including such a control circuit, and a control method of the tool.
 例えば特許文献1には、電動モータによってドライバビットを回転駆動してねじ締め作業を行なうようにした電動ドライバが開示されている。このような電動ドライバにおいては、通常、ねじの種類やねじが締め付けられる部材に合せて電動モータの回転速度や締め付けトルクなどの設定をユーザが変更できるようになっている。また、工場の生産ラインにおいては異なる種類のねじの締め付け作業を所定の順序で連続的に行なう場合があり、そのような場合に使用される電動ドライバにおいては、ある作業工程が終了して次の作業工程に移る際に、電動ドライバの設定がその作業工程で要求される制御条件に自動的に変更されていくようになっている。また、作業工程毎に予め合格基準が設定されており、各作業工程における電動ドライバの動作がこの合格基準を満たすものであった場合には、外部装置に対して合格信号を出力するようにもなっている。 For example, Patent Document 1 discloses an electric driver in which a driver bit is rotationally driven by an electric motor to perform a screw tightening operation. In such an electric driver, generally, the user can change settings such as the rotation speed and the tightening torque of the electric motor in accordance with the type of screw and the member to which the screw is to be tightened. In addition, in the factory production line, different types of screws may be tightened in sequence in a predetermined order, and in the case of an electric driver used in such a case, one operation process is completed and the next operation is completed. When moving to the work process, the setting of the motor-driven driver is automatically changed to the control conditions required in the work process. In addition, a pass standard is set in advance for each work process, and when the operation of the motor-driven driver in each work process satisfies this pass standard, a pass signal is also output to an external device. It has become.
 上述のような電動ドライバはプログラマブルロジックコントローラ(PLC)などの外部装置に接続され、外部装置が電動ドライバから送信された合格信号に基づいて種々の動作を行なうようになっている場合がある。そのような動作としては、例えば、終了した作業工程で使用したねじが収容されている容器の蓋を閉じるとともに、次の作業工程で使用するねじが収容されている容器の蓋を開ける動作がある。 The electric driver as described above may be connected to an external device such as a programmable logic controller (PLC), and the external device may perform various operations based on a pass signal transmitted from the electric driver. As such an operation, for example, there is an operation of closing the lid of the container containing the screw used in the finished work step and opening the lid of the container containing the screw used in the next work step .
国際公開第2017/170648号International Publication No. 2017/170648
 上述の従来の電動ドライバにおいては、各作業工程において合格基準が満たされている場合に、各作業工程が終了する毎に毎回合格信号を出力するか、又は全ての作業工程が合格基準を満たすものであった場合に最後に一度だけ合格信号をするか、のどちらかしか選択することができなかった。しかしながら、合格信号を受信する外部装置においては、一連の作業工程のうちの特定の作業工程が完了したときにだけ所定の動作を行ない、他の作業工程が完了したときには何らの動作も行なわない場合もある。このような場合として、例えば、ある作業工程においてねじの仮締めを行ない次の作業工程においてそのねじの本締めを行い、さらにこの後に別の作業工程が続くような場合が考えられる。この場合には2つの作業工程を行なうことによって初めてねじの締め付けが完了するため、最初の作業工程が完了した時点で合格信号を受信しても外部装置が行なう動作がない場合がある。この場合、外部装置は最初の合格信号は必要がないものとして処理するように予め設定しておく必要がある。すなわち、全ての作業工程の完了時に合格信号が送信される従来の電動ドライバに接続される外部装置においては、不要な合格信号を無視するような設定をしておかなければならなくなり、設定作業が繁雑になる。 In the conventional electric driver described above, when the acceptance criteria are satisfied in each operation process, an acceptance signal is output every time each operation process is completed, or all the operation processes satisfy the acceptance criteria If it was the last one pass only once, you could only choose either. However, in an external device that receives a pass signal, a predetermined operation is performed only when a specific operation step in the series of operation steps is completed, and no operation is performed when another operation step is completed. There is also. As such a case, for example, it is conceivable that temporary tightening of a screw is performed in a certain operation process, and final tightening of the screw is performed in the next operation process, and then another operation process is continued. In this case, since tightening of the screw is first completed by performing two operation steps, there is a case where the external device does not perform any operation even if a pass signal is received when the first operation step is completed. In this case, the external device needs to be preset to handle the first pass signal as unnecessary. That is, in an external device connected to a conventional motor-driven driver to which a pass signal is sent at the completion of all work steps, it is not necessary to make settings so as to ignore unnecessary pass signals. It becomes complicated.
 そこで本発明は、制御条件を作業工程毎に順次変更しながら動作する工具における制御回路であって、工具の側で合格信号の出力の有無を設定して必要な合格信号のみを出力することを可能とする制御回路を提供することを目的とする。また、そのような制御回路を備える工具、及び工具の制御方法を提供することも目的とする。 Therefore, the present invention is a control circuit in a tool that operates while sequentially changing control conditions for each work process, and sets the presence or absence of an output of a pass signal on the side of the tool and outputs only a necessary pass signal. It is an object to provide a control circuit that makes it possible. Another object of the present invention is to provide a tool having such a control circuit and a control method of the tool.
 すなわち本発明は、
 制御条件を作業工程毎に順次変更しながら動作する工具における制御回路であって、
 各作業工程における制御条件を設定するための設定データが保存される情報記憶部と、
 該設定データに基づいて該工具の制御条件を作業工程毎に順次変更する演算部と、
を備え、
 該設定データには、各作業工程における該工具の動作に対する合格基準を示す合格基準値、及び各作業工程において該合格基準が満たされたときに合格信号を出力するか否かを作業工程毎に設定するための合格信号出力設定値が含まれており、
 該演算部は、該合格基準値に基づいて各作業工程における該工具の動作が該合格基準を満たすか否かを判断し、該合格基準を満たし且つそのときの作業工程に対応する合格信号出力設定値が該合格信号を出力する設定値であるときには該合格信号を出力し、該合格信号出力設定値が該合格信号を出力しない設定値であるときには該合格信号を出力しないようにされた、制御回路を提供する。
That is, the present invention
A control circuit of a tool that operates while sequentially changing control conditions for each work process,
An information storage unit in which setting data for setting control conditions in each work process is stored;
An operation unit that sequentially changes the control conditions of the tool for each work process based on the setting data;
Equipped with
The setting data includes a pass reference value indicating pass criteria for the operation of the tool in each work step, and whether or not to output a pass signal when the pass criterion is satisfied in each work step, for each work step Contains a pass signal output set value for setting
The operation unit determines whether or not the operation of the tool in each operation process satisfies the acceptance criterion based on the acceptance criterion value, and fulfills the acceptance criterion and outputs an acceptance signal corresponding to the operation process at that time. When the set value is a set value for outputting the pass signal, the pass signal is output, and when the set value for the pass signal output is a set value not to output the pass signal, the pass signal is not output. Provide a control circuit.
 当該制御回路においては、合格信号出力設定値に基づいて作業工程毎に合格信号の出力の有無を設定することができるようになっているため、接続される外部装置において必要とされない合格信号を送信しないようにすることが可能となる。これにより、外部装置の側で不要な合格信号を無視するような設定をする必要がなくなり、外部装置の設定を簡略化することが可能となる。 In the control circuit, since it is possible to set the presence or absence of the output of the pass signal for each work process based on the pass signal output setting value, the pass signal which is not required in the connected external device is transmitted. It will be possible not to As a result, the external device need not be set to ignore unnecessary pass signals, and the setting of the external device can be simplified.
 好ましくは、該演算部は、該工具の動作がそのときの作業工程における該合格基準を満たさないと判断したときに、不合格信号を出力するようにすることができる。 Preferably, the computing unit may output a rejection signal when it is determined that the operation of the tool does not meet the pass criteria in the current operation process.
 また本発明は、上述の制御回路を備え、該制御回路によって制御条件を作業工程毎に順次変更しながら動作するようにされた工具を提供する。 The present invention also provides a tool including the above-described control circuit, which is operated while sequentially changing control conditions for each work process.
 さらに本発明は、
 制御条件を作業工程毎に順次変更しながら動作する工具の制御方法であって、
 情報記憶部に保存された設定データを読み込むステップと、
 該設定データに基づいて、各作業工程における該工具の制御条件を順次変更するステップと、
 各作業工程における該工具の動作が、該設定データに含まれる合格基準値が示す各作業工程における合格基準を満たすか否かを判断するステップと、
 該合格基準を満たし、且つそのときの作業工程に対応する合格信号出力設定値が合格信号を出力する設定値であるときには外部に合格信号を出力し、該合格信号出力設定値が該合格信号を出力しない設定値であるときには外部に該合格信号を出力しないようにするステップと、
 を含む制御方法を提供する。
Furthermore, the present invention
A control method of a tool which operates while sequentially changing control conditions for each work process,
Reading setting data stored in the information storage unit;
Sequentially changing the control condition of the tool in each work process based on the setting data;
Determining whether the operation of the tool in each work process satisfies the pass standard in each work process indicated by the pass reference value included in the setting data;
When the acceptance criteria is satisfied and the acceptance signal output setting value corresponding to the work process at that time is the setting value for outputting the acceptance signal, the acceptance signal is output to the outside, and the acceptance signal output setting value is the acceptance signal A step of preventing the output of the pass signal to the outside when the set value is not output;
Provide a control method including:
 以下、本発明に係る工具の実施形態を添付図面に基づき説明する。 Hereinafter, an embodiment of a tool concerning the present invention is described based on an accompanying drawing.
本発明の第1の実施形態に係る電動ドライバの外観図である。FIG. 1 is an external view of an electric driver according to a first embodiment of the present invention. 図1の電動ドライバの機能ブロック図である。It is a functional block diagram of the electric driver of FIG. メモリに保存される条件設定データを示す図である。It is a figure which shows the condition setting data preserve | saved at memory. メモリに保存される順序設定データを示す図である。It is a figure which shows the order setting data preserve | saved at memory. 本発明の第2の実施形態に係る電動ドライバの外観図である。It is an external view of the electric driver concerning a 2nd embodiment of the present invention. 図5の電動ドライバの機能ブロック図である。It is a functional block diagram of the electric driver of FIG.
 本発明の第1の実施形態に係る電動ドライバ(工具)100は、図1及び図2に示すように、工具ハウジング110と、工具ハウジング110に内蔵された電動モータ112と、電動モータ112によって回転駆動されるビットホルダ114とを備える。ビットホルダ114には、対象となるねじに合せて適宜選択されたドライバビット116が取り外し可能に取り付けられる。工具ハウジング110には、表示部118及び入力ボタン120を有する入力インターフェース122と、当該電動ドライバ100をプログラマブルロジックコントローラ(以下、PLC)123に接続するための接続ケーブル124とが設けられている。工具ハウジング110内にはさらに、電動モータ112の駆動を制御するためのモータ駆動回路126と、当該電動ドライバ100全体の制御を行うための制御回路128と、電動モータ112のロータの回転位置を検出するホールセンサ130と、が設けられている。制御回路128は、演算部131と、設定データが保存されているメモリ(情報記憶部)132とを有している。演算部131はメモリ132に保存されている設定データに基づいて電動ドライバ100を制御する。 As shown in FIGS. 1 and 2, the electric driver (tool) 100 according to the first embodiment of the present invention is rotated by the tool housing 110, the electric motor 112 built in the tool housing 110, and the electric motor 112. And a driven bit holder 114. In the bit holder 114, a driver bit 116 appropriately selected according to a target screw is removably attached. The tool housing 110 is provided with an input interface 122 having a display unit 118 and an input button 120, and a connection cable 124 for connecting the motor-driven driver 100 to a programmable logic controller (PLC) 123. Further, in the tool housing 110, a motor drive circuit 126 for controlling the drive of the electric motor 112, a control circuit 128 for controlling the entire electric driver 100, and a rotational position of the rotor of the electric motor 112 are detected. Hall sensors 130 are provided. The control circuit 128 includes an arithmetic unit 131 and a memory (information storage unit) 132 in which setting data is stored. The calculation unit 131 controls the motor-driven driver 100 based on the setting data stored in the memory 132.
 メモリ132に保存される設定データには、各作業工程における制御条件を設定するための条件設定データが含まれる。当該電動ドライバ100のメモリ132には、図3に示すように第1から第30の作業工程に対応した第1から第30の条件設定データを保存することができるようになっている。条件設定データには、ねじ締め作業の際の締め付けトルクやねじ締め本数を示す設定値が含まれている。これら以外にも、例えば電動モータ112の回転速度を制御するための設定値などを含めることもできる。当該電動ドライバ100における条件設定データにはさらに、各作業工程における当該電動ドライバ100の動作に対する合格基準を示す合格基準値が含まれている。当該電動ドライバ100においては、合格基準値として、ねじ締め作業を行なったときの電動モータ112の最小回転時間と最大回転時間とを設定するための設定値が含まれている。例えば最小回転時間よりも短い時間で電動モータ112の回転が停止したときにはねじの頭が想定している時間よりも早く着座したことが予想され、また最大回転時間よりも長い時間で電動モータ112の回転が停止したときにはねじの頭が想定している時間よりも遅く着座したことが予想される。すなわち、最小回転時間より早く又は最大回転時間よりも遅く電動モータ112が停止したときには誤ったねじを選択してねじ締めを行なった可能性が高いと判断できる。演算部131は、当該電動ドライバ100の動作が合格基準を満たさなかったと判断したときには、当該電動ドライバ100の動作を一時的に停止させるとともに、不合格信号をPLC123に対して出力する。条件設定データにはさらに、合格基準を満たしたときに外部に合格信号を出力するか否かを設定するための合格信号出力設定値が含まれる。演算部131は、ある作業工程の動作が合格基準を満たすものであったと判断したときに合格信号を出力できるようになっているが、合格信号を出力するか否かは合格信号出力設定値によって決定される。すなわち合格信号出力設定値が合格信号を出力する設定値(ON)である場合には合格信号をPLC123に対して出力し、合格信号を出力しない設定値(OFF)である場合には合格信号をPLC123に対して出力しない。条件設定データにおけるこれらの設定値は、対応する作業工程に合せて適宜の値にそれぞれ設定されている。なお、条件設定データにおける上述の設定項目は例示的に示すものであり、想定される作業工程に合せて他の項目としてもよい。 The setting data stored in the memory 132 includes condition setting data for setting control conditions in each work process. As shown in FIG. 3, the memory 132 of the motor-driven driver 100 can store first to thirtieth condition setting data corresponding to the first to twentieth work processes. The condition setting data includes setting values indicating the tightening torque and the number of tightening screws in the screw tightening operation. Besides these, for example, setting values for controlling the rotational speed of the electric motor 112 can also be included. The condition setting data in the motor-driven driver 100 further includes a pass reference value indicating a pass standard for the operation of the motor-driven driver 100 in each work process. In the motor-driven driver 100, set values for setting the minimum rotation time and the maximum rotation time of the electric motor 112 when the screw tightening operation is performed are included as the pass reference values. For example, when the rotation of the electric motor 112 is stopped in a time shorter than the minimum rotation time, it is expected that the head of the screw is seated earlier than the expected time, and the electric motor 112 in the time longer than the maximum rotation time. It is expected that when the rotation has stopped the screw head has been seated later than expected. That is, when the electric motor 112 is stopped earlier than the minimum rotation time or later than the maximum rotation time, it can be determined that there is a high possibility that the wrong screw is selected and screwing is performed. When it is determined that the operation of the motor-driven driver 100 does not meet the acceptance criteria, the computing unit 131 temporarily stops the operation of the motor-driven driver 100 and outputs a rejection signal to the PLC 123. The condition setting data further includes a pass signal output setting value for setting whether or not to output a pass signal to the outside when the pass criteria are satisfied. The calculation unit 131 can output a pass signal when it is determined that the operation of a certain work process satisfies the pass criteria, but whether to output a pass signal depends on the pass signal output setting value It is determined. That is, if the pass signal output setting value is a setting value (ON) for outputting a pass signal, the pass signal is output to the PLC 123, and if it is a setting value (OFF) for not outputting a pass signal, the pass signal is It does not output to PLC123. These setting values in the condition setting data are respectively set to appropriate values in accordance with the corresponding work process. The above-described setting items in the condition setting data are illustrated as an example, and may be other items in accordance with the assumed work process.
 設定データにはさらに、作業工程の実行順序を設定するための複数の順序設定データが含まれる。図4に示すように、当該電動ドライバ100のメモリ132には第1から第30までの実行順序を設定することができ、各実行順序を示すデータがそれぞれ順序設定データとしてメモリ132に保存されている。各順序設定データには、最大で8つの作業工程を登録することができる。順序設定データにはさらに、一連の作業工程が完了した後の次動作を設定するための次動作設定値が含まれる。当該電動ドライバ100においては、次動作設定値として、当該電動ドライバ100の動作を停止する設定値(終了)、同じ実行順序での一連の作業工程を再度実行する設定値(ループ)、及び別の順序設定データに基づく実行順序での一連の作業工程に移行する設定値(他の実行順序に移行)から選択可能となっている。 The setting data further includes a plurality of order setting data for setting the execution order of the work process. As shown in FIG. 4, the first to thirtieth execution orders can be set in the memory 132 of the motor-driven driver 100, and data indicating each execution order is stored in the memory 132 as order setting data. There is. Up to eight work processes can be registered in each order setting data. The order setting data further includes a next operation setting value for setting the next operation after the series of work processes are completed. In the electric driver 100, as the next operation setting value, a setting value (termination) for stopping the operation of the electric driver 100, a setting value (loop) for re-executing a series of work processes in the same execution order, and It is possible to select from setting values (transition to another execution order) to shift to a series of work processes in the execution order based on the order setting data.
 設定データに含まれる上述の条件設定データ及び順序設定データは、入力インターフェース122の操作により任意に変更可能である。または、パソコンなどの外部装置から対応するデータを送信して設定データを書き換えることも可能である。 The above-mentioned condition setting data and order setting data included in the setting data can be arbitrarily changed by the operation of the input interface 122. Alternatively, setting data can be rewritten by transmitting corresponding data from an external device such as a personal computer.
 当該電動ドライバ100が起動して所定の初期設定が完了すると、演算部131がメモリ132から必要な設定データを読み込む。複数の実行順序のうちのどれを実行するかは任意に選択可能であり、通常は予め指定されている。演算部131は指定された実行順序に対応する所定の順序設定データを読み込んで作業工程の実行順序を設定する。例えば第1実行順序が指定されている場合には、第1順序設定データを読み込んで、図4に示すように、第1作業工程、第2作業工程、第3作業工程、及び第4作業工程が一連の作業工程として設定されて、これらの作業工程が順次実行されることになる。演算部131は、これらの作業工程にそれぞれ対応する第1乃至第4条件設定データに基づいて作業工程毎に制御条件を順次変更しながら、電動ドライバ100を動作させる。本実施形態においては、第1作業工程は4本のねじの仮締めを行うことを想定したものであり、第2作業工程は仮締めしたねじを本締めすることを想定したものとなっている。したがって、第1作業工程が正常に完了すると4本のねじがその頭が着座しない状態でねじ込まれた状態となり、第2作業工程ではそれらの仮締めしたねじをさらにねじ込んでねじの頭を着座させてさらに所定の締め付けトルクでの締め付けを行う。これにより4本のねじのねじ締めが完了した状態となる。第1条件設定データの合格信号出力設定値は「OFF」となっているため、第1作業工程が正常に完了して合格基準が満たされていても演算部131は合格信号を出力しない。一方で第2条件設定データの合格信号出力設定値は「ON」となっているため、第2作業工程が正常に完了して合格基準が満たされると演算部131は合格信号を出力する。同様に第3作業工程では8本のねじの仮締めが行なわれ、第4作業工程では仮締めされた8本のねじの本締めが行なわれて、第4作業工程が正常に完了した時点で合格信号が出力される。第1順序設定データにおける次動作設定値は「終了」となっているため、第4作業工程が完了した時点で当該電動ドライバ100の動作は停止する。 When the motor-driven driver 100 is activated and predetermined initial setting is completed, the calculation unit 131 reads necessary setting data from the memory 132. Which one of the plurality of execution orders is to be executed can be arbitrarily selected, and is usually specified in advance. The arithmetic unit 131 reads predetermined order setting data corresponding to the specified execution order, and sets the execution order of the work process. For example, when the first execution order is specified, the first order setting data is read, and as shown in FIG. 4, the first operation process, the second operation process, the third operation process, and the fourth operation process Are set as a series of work processes, and these work processes will be sequentially performed. The calculation unit 131 operates the electric driver 100 while sequentially changing the control conditions for each work process based on the first to fourth condition setting data respectively corresponding to the work processes. In the present embodiment, the first work process assumes that four screws are temporarily tightened, and the second work process assumes that the temporarily tightened screws are completely tightened. . Therefore, when the first work process is normally completed, the four screws are screwed in with their heads not seated, and in the second work process, these temporarily tightened screws are further screwed to seat the screw heads. Further tightening is performed with a predetermined tightening torque. As a result, the four screws are completely tightened. Since the pass signal output setting value of the first condition setting data is “OFF”, the computing unit 131 does not output a pass signal even if the first work process is normally completed and the pass criteria are satisfied. On the other hand, since the pass signal output setting value of the second condition setting data is "ON", the computing unit 131 outputs a pass signal when the second operation process is normally completed and the pass criteria are satisfied. Similarly, in the third operation process, eight screws are temporarily tightened, and in the fourth operation process, the temporarily tightened eight screws are fully tightened, and when the fourth operation process is normally completed. A pass signal is output. Since the next operation setting value in the first order setting data is “end”, the operation of the electric driver 100 is stopped when the fourth operation process is completed.
 上述のように、仮締め工程である第1及び第3作業工程の完了時には合格信号を出力せず、本締め工程である第2及び第4作業工程の完了時にのみ合格信号を出力することにより、PLC123はねじの締め付けが完了したときにのみ合格信号を受信することになる。PLC123は、当該電動ドライバ100での動作に連動して他の周辺機器などの動作を制御するが、各作業工程が完了したときに必ずしも毎回何かしらの制御を行なうわけではなく、所定の作業工程が完了したときにのみ制御を行なうようにする場合が多い。従来の電動ドライバ100においては各作業工程が完了したときに毎回合格信号が出力されるため、PLC123側で不要な合格信号を無視するような設定をしておかなければならなかった。これに対して当該電動ドライバ100においては不要な合格信号を出力しないようにできるため、PLC123の側での合格信号を無視するような設定をなくすことが可能となる。また、例えば上述の第2作業工程のあとにねじの増し締め工程を新たに追加する場合には、最初の4本のねじ締めは第1乃至第3作業工程が全て完了することにより完了することになるため第2作業工程の完了時の合格信号出力設定値を「OFF」にして新たな第3作業工程(増し締め工程)の完了時の合格信号出力設定値を「ON」とすれば、この作業工程の変更に伴うPLC123側での設定変更は生じない。 As described above, the pass signal is not output at the completion of the first and third working steps which are the temporary tightening step, but is output only when the second and fourth working steps which are the final tightening step are completed. , PLC 123 will only receive a pass signal when screw tightening is complete. The PLC 123 controls the operation of the other peripheral devices etc. in conjunction with the operation of the electric driver 100, but does not necessarily perform some control every time each work process is completed, and a predetermined work process Control is often performed only when it is completed. In the conventional motor-driven driver 100, a pass signal is outputted every time each work process is completed, and therefore, it is necessary to set the PLC 123 side so as to ignore an unnecessary pass signal. On the other hand, since it is possible to prevent the electric driver 100 from outputting an unnecessary pass signal, it is possible to eliminate the setting for ignoring the pass signal on the PLC 123 side. Also, for example, in the case where a screw retightening step is newly added after the above-described second work step, the first four screwings should be completed by completing all of the first to third work steps. Therefore, if the pass signal output setting value at the completion of the second operation process is set to “OFF” and the pass signal output setting value at the completion of the new third operation process (additional tightening process) is “ON”, There is no setting change on the PLC 123 side due to the change of the work process.
 第2実行順序が指定されている場合には、第2順序設定データが読み込まれて、第3作業工程、第30作業工程、及び第7作業工程が一連の作業工程として設定され、作業工程毎に制御条件を順次変更しながら電動ドライバ100は動作する。第2順序設定データにおける次動作設定値は「ループ」となっているため、最後の作業工程である第7作業工程が完了すると、再び最初の作業工程である第3作業工程に戻り、以降同じ作業工程を繰り返し実行することになる。 When the second execution order is specified, the second order setting data is read, and the third operation process, the 30th operation process, and the 7th operation process are set as a series of operation processes, for each operation process. The electric driver 100 operates while sequentially changing the control conditions. Since the next operation setting value in the second order setting data is "loop", when the seventh operation process which is the last operation process is completed, the process returns to the third operation process which is the first operation process, and so on. The work process will be repeated.
 第3実行順序が指定されている場合には、第3順序設定データが読み込まれて、最初の第1作業工程から最後の第13作業工程までの8つの作業工程が一連の作業工程として設定され、作業工程毎に制御条件を順次変更しながら電動ドライバ100は動作する。第3順序設定データにおける次動作設定値は「第4実行順序に移行」となっているため、最後の第13作業工程が完了すると、指定された第4順序設定データを読み出して第4実行順序が設定され、該第4実行順序での一連の作業工程に移行する。当該電動ドライバ100が、第4実行順序での一連の作業工程に基づいて動作を継続し、第4実行順序での最後の作業工程である第11作業工程が完了すると、第4順序設定データの次動作設定値が「終了」となっていることにより、当該電動ドライバ100の動作は停止する。 When the third execution order is specified, the third order setting data is read, and eight operation steps from the first first operation step to the last thirteenth operation step are set as a series of operation steps. The electric driver 100 operates while sequentially changing the control conditions for each work process. Since the next operation setting value in the third order setting data is "transition to the fourth execution order", when the final thirteenth working process is completed, the designated fourth order setting data is read and the fourth execution order Are set, and the process shifts to a series of work steps in the fourth execution order. When the motor-driven driver 100 continues the operation based on the series of work processes in the fourth execution order, and the eleventh work process, which is the last work process in the fourth execution order, is completed, When the next operation setting value is "end", the operation of the motor-driven driver 100 is stopped.
 このように当該電動ドライバ100においては、ある順序設定データに基づく一連の作業工程が完了した後の次動作を「終了」、「ループ」、「他の実行順序に移行」から選択可能となっている。特に別の順序設定データに基づく実行順序に移行することができるようになっているため、PLC123などの外部装置の制御に依ることなく当該電動ドライバ100自身でより複雑な実行順序の作業工程を設定することが可能となる。また、よく利用される基本的な実行順序を各順序設定データに設定しておけば、それらの実行順序間を適宜移行していくように設定することにより、最初から実行順序を組み直す場合に比べて、工程変更をより素早く且つ容易に行なうことも可能となる。なお、選択可能な次動作として上述の3つを必ずしも含む必要はなく、また別の次動作を代わりにまたは追加的に含んでいても良い。 Thus, in the motor-driven driver 100, the next operation after completion of a series of work steps based on certain order setting data can be selected from "end", "loop", and "transition to another execution order". There is. In particular, since it is possible to shift to an execution order based on another order setting data, the electric driver 100 itself sets a work process in a more complicated execution order without depending on control of an external device such as the PLC 123. It is possible to In addition, if the basic execution order that is often used is set in each order setting data, setting the execution order to be shifted appropriately as compared with the case where the execution order is reassembled from the beginning Thus, process changes can be made more quickly and easily. It is not necessary to necessarily include the above-described three as the selectable next operation, and may include another next operation instead or additionally.
 当該電動ドライバ100においてはさらに、複数の順序設定データに基づく複数の実行順序にまたがって実行された作業工程の履歴をメモリ132に保存していくようにもなっている。何らかの作業ミスにより、その作業工程をやり直したり、場合によっては前の作業工程からやり直したりする必要が生じる場合がある。その場合にはメモリ132に保存された作業工程の履歴に基づいて、やり直しが必要となる作業工程にまで戻れるようになっている。具体的には、入力インターフェース122の入力ボタン120を操作することにより履歴に残っている前の作業工程に戻ることができる。入力ボタン120の操作により、そのときの作業工程中の一つの作業分だけ戻る、一つ前の作業工程にまで戻る、一つ前の順序設定データの実行順序における最後の作業工程に戻る、又は一つ前の順序設定データの実行順序における最初の作業工程に戻るといった戻り方ができるようになっている。なお、当該電動ドライバ100におけるメモリ132は、読み出し及び書き込みが可能な不揮発性メモリと、プラグラム動作に必要なデータを一時的に保存するためのキャッシュメモリなどの揮発性メモリとの組み合わせとなっており、設定データは不揮発性メモリに保存され、作業工程の履歴は揮発性メモリに保存される。 The motor-driven driver 100 is further configured to store in the memory 132 a history of work processes executed across a plurality of execution orders based on a plurality of order setting data. Due to some work errors, it may be necessary to redo the work process or, in some cases, to start from the previous work process. In that case, based on the history of the work process stored in the memory 132, it is possible to return to the work process that needs to be redone. Specifically, by operating the input button 120 of the input interface 122, it is possible to return to the previous work process remaining in the history. By the operation of the input button 120, only one operation in the current process is returned, the operation is returned to the previous operation, the operation is returned to the last operation in the previous order setting data execution sequence, or It is possible to return to the first work process in the execution order of the previous order setting data. The memory 132 in the motor-driven driver 100 is a combination of a readable and writable non-volatile memory and a volatile memory such as a cache memory for temporarily storing data necessary for the program operation. The setting data is stored in the non-volatile memory, and the work process history is stored in the volatile memory.
 本発明の第2の実施形態に係る電動ドライバ200は、図5及び図6に示すように、電動ドライバ本体202と、それを制御するためのコントローラ204とからなる。電動ドライバ本体202とコントローラ204とは、それぞれに設けられた通信部238a,238bを介して通信ケーブル206により接続されている。PLC223に接続される通信ケーブル224はコントローラ204の側に設けられている。電動ドライバ本体202の工具ハウジング210内には、第1の実施形態に係る電動ドライバ100と同様な、電動モータ212、モータ駆動回路226、及びホールセンサ230が設けられている。入力インターフェース222はコントローラ204の側に設けられている。 An electric driver 200 according to a second embodiment of the present invention includes an electric driver main body 202 and a controller 204 for controlling the electric driver main body 202, as shown in FIGS. The motor-driven driver main body 202 and the controller 204 are connected by a communication cable 206 via communication units 238 a and 238 b respectively provided. A communication cable 224 connected to the PLC 223 is provided on the controller 204 side. In the tool housing 210 of the electric driver main body 202, an electric motor 212, a motor drive circuit 226, and a hall sensor 230 similar to the electric driver 100 according to the first embodiment are provided. The input interface 222 is provided on the controller 204 side.
 当該電動ドライバ200においては、電動ドライバ本体202とコントローラ204とにそれぞれ演算部231a、231bが設けられている。これら2つの演算部231a、231bは通信ケーブル206を介して互いに通信しており、2つの演算部231a、231bにより第1の実施形態における演算部131と同様の機能を果たしている。同様に電動ドライバ本体202とコントローラ204とのそれぞれにメモリ232a、232bが設けられ、これら2つのメモリ232a、232bにより第1の実施形態におけるメモリ132と同様な機能を果たしている。すなわち当該電動ドライバにおいては、制御回路228が電動ドライバ本体202とコントローラ204とに分散して配置されている。 In the electric driver 200, calculation units 231a and 231b are provided in the electric driver main body 202 and the controller 204, respectively. The two arithmetic units 231a and 231b communicate with each other via the communication cable 206, and the two arithmetic units 231a and 231b perform the same function as the arithmetic unit 131 in the first embodiment. Similarly, memories 232a and 232b are respectively provided in the motor-driven driver main body 202 and the controller 204, and these two memories 232a and 232b perform the same function as the memory 132 in the first embodiment. That is, in the motor-driven driver, the control circuit 228 is dispersedly disposed in the motor-driven driver main body 202 and the controller 204.
 なお、当該実施形態においては、演算部231a、231b及びメモリ232a、232bを電動ドライバ本体202とコントローラ204とに分散して配置しているが、それぞれを電動ドライバ本体202とコントローラ204のうちの一方にまとめて配置することもできるし、制御回路228の全体をコントローラ204の側に配置することもできる。 In the embodiment, the arithmetic units 231a and 231b and the memories 232a and 232b are disposed in a distributed manner in the motor driver 202 and the controller 204, respectively. Or the entire control circuit 228 may be located on the side of the controller 204.
 以上に本発明の実施形態について説明をしたが、本発明はこれら実施形態に限定されるものではない。例えば、上記実施形態においては、本発明に係る工具を電動工具の一種である電動ドライバを例として説明しているが、トルクレンチや研磨機などの他の電動工具とすることもできるし、上述のような制御回路を有しつつ動力源を電動モータではなくエアモータとしたエア工具などの他の動力工具とすることもできる。本発明に係る工具はさらに、動力を有さない手工具とすることもできる。このような手工具としては、例えばトルク検出機能を有するトルクレンチがある。該トルクレンチにおいては、作業工程毎のナットやボルトなどの締め付け回数(制御条件)や締め付け動作の際のトルク基準値(合格基準)などを含む条件設定データを含む設定データが制御回路のメモリに保存されており、締め付け動作がその作業工程において設定された所定の締め付け回数分だけ行なわれると、制御回路の演算部により次の作業工程に移るとともに制御条件が設定データに基づいて変更される。また制御回路は、締め付け動作の際にトルクセンサによって検出されたトルク値をトルク基準値と比較して該締め付け動作の合格判定を行なう。条件設定データには、上記実施形態と同様に、合格信号出力設定値が含まれていて、締め付け動作がトルク基準値(合格基準)を満たしたときに合格信号を出力するか否かを作業工程毎に任意に設定可能となっている。また同様に、順序設定データと次動作設定値とに基づいて、順序設定データにより設定された一連の作業工程が完了した後の次動作を選択できるようにもなっている。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments. For example, in the above embodiment, the tool according to the present invention is described as an example of the electric driver which is a kind of electric tool, but other electric tools such as a torque wrench and a grinder can also be used. It is also possible to use other power tools such as an air tool that uses an air motor instead of an electric motor as a power source while having a control circuit such as the above. The tool according to the invention can also be a hand tool without power. As such a hand tool, for example, there is a torque wrench having a torque detection function. In the torque wrench, setting data including condition setting data including the number of times of tightening (control condition) of a nut, a bolt or the like for each work process and a torque reference value (acceptance standard) at the time of tightening operation When the clamping operation is performed for the predetermined number of tightenings set in the work process, the operation unit of the control circuit moves to the next work process and the control condition is changed based on the setting data. The control circuit also compares the torque value detected by the torque sensor during the tightening operation with the torque reference value to determine whether the tightening operation is accepted. As in the above embodiment, the condition setting data includes a pass signal output setting value, and the work process whether or not to output a pass signal when the tightening operation satisfies the torque reference value (pass criteria). It can be set arbitrarily for each. Similarly, based on the order setting data and the next operation setting value, it is possible to select the next operation after the series of work steps set by the order setting data is completed.
 また、本発明の工具は、PLC以外の例えばパソコンなどの他の外部装置に接続するようにすることもできるし、合格信号や不合格信号を無線により送信するようにすることもできる。さらには、設定データを保存するための情報記憶部として上述のような内蔵された半導体メモリ以外にも、ハードディスクドライブ、書き込み可能なCDやDVDなどの記録メディア、及び取外し可能なUSBメモリなど、他の手段を採用することもできるし、これらを任意に組み合わせたものとしてもよい。 Further, the tool of the present invention can be connected to other external devices such as a personal computer other than the PLC, and the pass signal and the fail signal can be transmitted wirelessly. Furthermore, besides the above-mentioned built-in semiconductor memory as an information storage unit for storing setting data, other devices such as a hard disk drive, a recordable medium such as a writable CD or DVD, a removable USB memory, etc. Alternatively, any combination of these may be used.
100 電動ドライバ(工具)
110 工具ハウジング
112 電動モータ
114 ビットホルダ
116 ドライバビット
118 表示部
120 入力ボタン
122 入力インターフェース
123 プログラマブルロジックコントローラ(PLC)
124 接続ケーブル
126 モータ駆動回路
128 制御回路
130 ホールセンサ
131 演算部
132 メモリ(情報記憶部)
200 電動ドライバ
202 電動ドライバ本体
204 コントローラ
206 通信ケーブル
210 工具ハウジング
212 電動モータ
222 入力インターフェース
224 通信ケーブル
226 モータ駆動回路
228 制御回路
230 ホールセンサ
231a 演算部
231b 演算部
232a メモリ
232b メモリ
238a 通信部
238b 通信部
100 electric driver (tool)
DESCRIPTION OF SYMBOLS 110 Tool housing 112 Electric motor 114 Bit holder 116 Driver bit 118 Display part 120 Input button 122 Input interface 123 Programmable logic controller (PLC)
124 connection cable 126 motor drive circuit 128 control circuit 130 hall sensor 131 operation unit 132 memory (information storage unit)
200 electric driver 202 electric driver main body 204 controller 206 communication cable 210 tool housing 212 electric motor 222 input interface 224 communication cable 226 motor drive circuit 228 control circuit 230 hall sensor 231a arithmetic unit 231b arithmetic unit 232a memory 232b memory 238a communication unit 238b communication unit

Claims (4)

  1.  制御条件を作業工程毎に順次変更しながら動作する工具における制御回路であって、
     各作業工程における制御条件を設定するための設定データが保存される情報記憶部と、
     該設定データに基づいて該工具の制御条件を作業工程毎に順次変更する演算部と、
    を備え、
     該設定データには、各作業工程における該工具の動作に対する合格基準を示す合格基準値、及び各作業工程において該合格基準が満たされたときに合格信号を出力するか否かを作業工程毎に設定するための合格信号出力設定値が含まれており、
     該演算部は、該合格基準値に基づいて各作業工程における該工具の動作が該合格基準を満たすか否かを判断し、該合格基準を満たし且つそのときの作業工程に対応する合格信号出力設定値が該合格信号を出力する設定値であるときには該合格信号を出力し、該合格信号出力設定値が該合格信号を出力しない設定値であるときには該合格信号を出力しないようにされた、制御回路。
    A control circuit of a tool that operates while sequentially changing control conditions for each work process,
    An information storage unit in which setting data for setting control conditions in each work process is stored;
    An operation unit that sequentially changes the control conditions of the tool for each work process based on the setting data;
    Equipped with
    The setting data includes a pass reference value indicating pass criteria for the operation of the tool in each work step, and whether or not to output a pass signal when the pass criterion is satisfied in each work step, for each work step Contains a pass signal output set value for setting
    The operation unit determines whether or not the operation of the tool in each operation process satisfies the acceptance criterion based on the acceptance criterion value, and fulfills the acceptance criterion and outputs an acceptance signal corresponding to the operation process at that time. When the set value is a set value for outputting the pass signal, the pass signal is output, and when the set value for the pass signal output is a set value not to output the pass signal, the pass signal is not output. Control circuit.
  2.  該演算部は、該工具の動作がそのときの作業工程における該合格基準を満たさないと判断したときに、不合格信号を出力するようにされた、請求項1に記載の制御回路。 The control circuit according to claim 1, wherein the arithmetic unit is configured to output a rejection signal when it is determined that the operation of the tool does not meet the acceptance criteria in the current operation process.
  3.  請求項1又は2に記載の制御回路を備え、該制御回路によって制御条件を作業工程毎に順次変更しながら動作するようにされた工具。 A tool comprising the control circuit according to claim 1 or 2, wherein the control circuit is operated while sequentially changing control conditions for each work process.
  4.  制御条件を作業工程毎に順次変更しながら動作する電動工具の制御方法であって、
     情報記憶部に保存された設定データを読み込むステップと、
     該設定データに基づいて、各作業工程における該工具の制御条件を順次変更するステップと、
     各作業工程における該工具の動作が、該設定データに含まれる合格基準値が示す各作業工程における合格基準を満たすか否かを判断するステップと、
     該合格基準を満たし、且つそのときの作業工程に対応する合格信号出力設定値が合格信号を出力する設定値であるときには外部に合格信号を出力し、該合格信号出力設定値が該合格信号を出力しない設定値であるときには外部に該合格信号を出力しないようにするステップと、
     を含む制御方法。
    A control method of a power tool which operates while sequentially changing control conditions for each work process,
    Reading setting data stored in the information storage unit;
    Sequentially changing the control condition of the tool in each work process based on the setting data;
    Determining whether the operation of the tool in each work process satisfies the pass standard in each work process indicated by the pass reference value included in the setting data;
    When the acceptance criteria is satisfied and the acceptance signal output setting value corresponding to the work process at that time is the setting value for outputting the acceptance signal, the acceptance signal is output to the outside, and the acceptance signal output setting value is the acceptance signal A step of preventing the output of the pass signal to the outside when the set value is not output;
    Control method including:
PCT/JP2018/043750 2017-12-18 2018-11-28 Tool, and control circuit and control method for tool WO2019124008A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019510387A JP6654269B2 (en) 2017-12-18 2018-11-28 Tool and tool control circuit and control method
CN201880081538.6A CN111479655B (en) 2017-12-18 2018-11-28 Tool, control circuit of tool, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-241918 2017-12-18
JP2017241918 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124008A1 true WO2019124008A1 (en) 2019-06-27

Family

ID=66992662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043750 WO2019124008A1 (en) 2017-12-18 2018-11-28 Tool, and control circuit and control method for tool

Country Status (4)

Country Link
JP (1) JP6654269B2 (en)
CN (1) CN111479655B (en)
TW (1) TWI699634B (en)
WO (1) WO2019124008A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308865A (en) * 1994-05-13 1995-11-28 Nissan Motor Co Ltd Impact type thread fastening device
JP2008307670A (en) * 2007-06-18 2008-12-25 Tohnichi Mfg Co Ltd Torque tool device
JP2011041989A (en) * 2009-08-19 2011-03-03 Tohnichi Mfg Co Ltd Torque wrench

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062065A (en) * 2004-08-30 2006-03-09 Katsuyuki Totsu Method and device for controlling screw-fastening in electric rotating tool
JP4669455B2 (en) * 2006-08-31 2011-04-13 パナソニック電工株式会社 Electric tool
CN201217193Y (en) * 2008-04-30 2009-04-08 申箭峰 Numerical display type power supply for electric screwdriver
CN101929899B (en) * 2009-06-18 2013-06-05 鸿富锦精密工业(深圳)有限公司 Torque detection system and method
CN105320168B (en) * 2014-07-31 2017-06-06 中国气动工业股份有限公司 Torsion control method and its torque controlling device
CN207564093U (en) * 2017-10-25 2018-07-03 苏州轩明视测控科技有限公司 A kind of the screwed lock machine for phone housing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308865A (en) * 1994-05-13 1995-11-28 Nissan Motor Co Ltd Impact type thread fastening device
JP2008307670A (en) * 2007-06-18 2008-12-25 Tohnichi Mfg Co Ltd Torque tool device
JP2011041989A (en) * 2009-08-19 2011-03-03 Tohnichi Mfg Co Ltd Torque wrench

Also Published As

Publication number Publication date
JPWO2019124008A1 (en) 2019-12-19
JP6654269B2 (en) 2020-02-26
CN111479655B (en) 2022-03-11
CN111479655A (en) 2020-07-31
TWI699634B (en) 2020-07-21
TW201935158A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP5780896B2 (en) Electric tool
US8796976B2 (en) Electric power tool
US10903765B2 (en) Programmable power tool with brushless DC motor
JP4181432B2 (en) Drive control means for hand tool machine, hand tool machine, and drive method for hand tool machine
JP5801143B2 (en) Motor system and motor control device
CN112388297A (en) Automatic screw locking method, screw machine and storage medium
WO2019124008A1 (en) Tool, and control circuit and control method for tool
WO2019124009A1 (en) Tool, and control circuit and control method for tool
CN110636921B (en) Electric pulse tool
JP2006062065A (en) Method and device for controlling screw-fastening in electric rotating tool
JP6853368B2 (en) Power tools and control circuits and control methods for power tools
JP3967410B2 (en) Numerical control device with spindle control function
JP5338060B2 (en) Electric power steering device
JP2005288589A (en) Automatic screw driving device
WO2019207861A1 (en) Control device for power-consuming body, control system, and control method for power-consuming body
JP2006187088A (en) Apparatus and method of controlling motor
JP6621013B2 (en) Method and system for determining whether screw tightening is good or bad
CN116175458A (en) Electric tool and control method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510387

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891573

Country of ref document: EP

Kind code of ref document: A1