WO2019123800A1 - Crane and power electronics equipment - Google Patents

Crane and power electronics equipment Download PDF

Info

Publication number
WO2019123800A1
WO2019123800A1 PCT/JP2018/038446 JP2018038446W WO2019123800A1 WO 2019123800 A1 WO2019123800 A1 WO 2019123800A1 JP 2018038446 W JP2018038446 W JP 2018038446W WO 2019123800 A1 WO2019123800 A1 WO 2019123800A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
switch
capacitor
power
voltage
Prior art date
Application number
PCT/JP2018/038446
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 田坂
英昭 湯浅
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2019560826A priority Critical patent/JP7272961B2/en
Publication of WO2019123800A1 publication Critical patent/WO2019123800A1/en
Priority to JP2023037707A priority patent/JP7432033B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a crane and power electronics equipment.
  • an AC power supply is connected to the DC bus via a converter device that converts AC power into DC power.
  • the storage battery is connected to the DC bus via a charge / discharge controller that controls the charge / discharge timing of the storage battery and the amount of power.
  • the AC motor is connected to the DC bus via an inverter that converts DC power into AC power.
  • Power electronics equipment is used for hybridizing cranes.
  • the power electronics device mainly includes a capacitor and a converter, and is connected to the DC bus of the crane.
  • the startup operation of the crane also starts up the power electronics equipment.
  • a power electronics device with high reliability in terms of safety is desirable.
  • FIG. 1 is a block diagram of a conventional power electronic device.
  • the power electronics device 100R includes a motor 102 that is a load, a converter device 110, and a load driving device 120.
  • Converter 110 generates a DC link voltage V DC boosts the DC voltage V E from the DC power source 104, such as a battery, supplies to a load driving device 120 via a DC link 130.
  • the load drive device 120 is, for example, a motor drive device, and includes an inverter 122 that drives a motor 102 that is a load.
  • a large capacity DC link capacitor 132 is connected to the DC link 130.
  • a large capacity smoothing capacitor 124 is also connected to the input of the inverter 122.
  • the magnetic contactor MC1 and the magnetic contactor MC2 are turned on.
  • Switches Relays and electromagnetic contactors (hereinafter collectively referred to as switches) have mechanical contacts, and thus deteriorate with time due to oxidation and wear.
  • the deterioration with time of the relay RY1 and the magnetic contactor MC1 particularly becomes a problem. Therefore, in general, parts with an auxiliary contact are adopted as these switches, and failure detection (welding or open detection) using an answer back signal is widely performed.
  • FIG. 2 is a block diagram of a conventional power electronic device.
  • the power electronic device 100S of FIG. 2 further includes a redundant switch RY2 on the negative electrode (N pole) side instead of using a switch having no auxiliary contact. Then, the switch RY1 (MC1) on the positive electrode side and the switch RY2 on the negative electrode side are sequentially conducted or disconnected, and when the voltage or current in each state deviates from the expected value in the normal state, it is determined as abnormal.
  • a switch with an auxiliary contact used in the power electronic device 100R of FIG. 1 is generally expensive, often large in size, and sometimes has difficulty in adoption.
  • one of the exemplary objects of an embodiment thereof is a crane equipped with a power electronic device having higher safety at startup and a power electronic device mounted on the crane. It is to provide.
  • one of the exemplary objects of the embodiment is to provide a power electronic device capable of detecting the deterioration of the switch.
  • the crane includes a drive unit that drives the main body unit, the suspension operation unit, the traveling unit, and the suspension operation unit, and a storage system that supplies power to the drive unit.
  • the crane has a function of diagnosing an abnormality of the storage system at startup or termination.
  • the power electronics device provides a capacitor, an inrush current prevention circuit including a switch provided between the DC power supply and the capacitor, and gives a switch command or conduction command to the switch in the determination period, and prevents the voltage or inrush current of the capacitor at that time. And a determinator for detecting a switch abnormality based on the current flowing through the circuit.
  • FIG. 7A and 7B are a schematic front view and a schematic side view, respectively, of a crane system according to the present embodiment.
  • FIG. 8 is a power system diagram of the crane system.
  • the crane includes a drive unit that drives the main body unit, the suspension operation unit, the traveling unit, and the suspension operation unit, and a storage system that supplies power to the drive unit.
  • the crane has a function of diagnosing an abnormality of the storage system at startup or termination.
  • the crane may include an abnormality notification unit that detects an abnormality at startup and reports the presence of the abnormality, or detects an abnormality at the end and reports the presence of the abnormality.
  • the abnormality notification unit is a notification unit provided in the remote control unit in the case of remote control, and in the case of automatic operation, is a notification unit provided in the management building via the communication unit, and in the case of manual operation, the operation You may alert
  • the abnormality notification unit may change the notification content according to the type of abnormality. In the case of an abnormality at a level where work is restricted, an alarm of a predetermined first level is reported, replacement or maintenance is recommended, but when an abnormality at a level where work is not restricted has occurred, from the first level The low level second level abnormality may be reported.
  • the work may be started in a work mode not using the power storage system by a predetermined mode change operation.
  • At least one of the traveling speed and the operating speed of the suspension may be limited.
  • the power electronics device provides a capacitor, an inrush current prevention circuit including a switch provided between the DC power supply and the capacitor, and gives a switch command or conduction command to the switch in the determination period, and prevents the voltage or inrush current of the capacitor at that time. And a determinator for detecting a switch abnormality based on the current flowing through the circuit. According to this embodiment, deterioration of the switch can be detected without using a switch with an auxiliary contact or a redundant switch. In addition, the cost of power electronics can be reduced.
  • the determiner temporarily gives a shutoff command to the switch during a charging period for giving a conduction command to the switch to charge the capacitor, and judges the presence or absence of an abnormality based on a change in current flowing in the inrush current prevention circuit at that time. You may If the switch is shut off normally while the switch is commanded to shut off, the current will be zero. On the contrary, when deterioration such as welding occurs in the switch, the current continues to flow. Therefore, the abnormality of the switch can be determined based on the current state of the switch (conduction / shutdown) and the change of the current.
  • the determiner may temporarily give a shutoff command to the switch during a charging period for giving a conduction command to the switch to charge the capacitor, and judge presence or absence of abnormality based on a change in voltage of the capacitor at that time. . If the switch is shut off normally while the shutoff command is given to the switch, the charge on the capacitor is stopped, and the voltage change is zero. On the contrary, when deterioration such as welding occurs in the switch, the charging current to the capacitor continues to flow, and the voltage of the capacitor continues to increase. Therefore, the abnormality of the switch can be determined based on the current state of the switch (conduction / shutdown) and the voltage change of the capacitor.
  • the power electronics device may further comprise a converter device provided between the inrush current protection circuit and the capacitor.
  • the converter device may perform switching operation in a state where a shutoff command is given to the switch, and the presence or absence of abnormality may be determined based on the current flowing through the inrush current prevention circuit at that time.
  • the switch If the switch is normally disconnected in the state where the switch command is given to the switch, the current flowing through the inrush current prevention circuit is zero even if the converter device is switched. On the other hand, when deterioration such as welding occurs in the switch, current flows through the inrush current prevention circuit. Therefore, the presence or absence of abnormality can be determined based on the current.
  • the power electronics device may further comprise a converter device provided between the inrush current protection circuit and the capacitor.
  • the converter device may perform switching operation in a state where a shutoff command is given to the switch, and the presence or absence of abnormality may be determined based on the voltage of the capacitor at that time.
  • the switch is normally shut off in the state where the switch is instructed to shut off, the current flowing through the inrush current prevention circuit is zero even if the converter device is switched, so the voltage of the capacitor does not rise.
  • the current flows through the inrush current prevention circuit, and the voltage of the capacitor rises. Therefore, the presence or absence of abnormality can be determined based on the voltage of the capacitor.
  • the state in which the member A is connected to the member B means that the members A and B are electrically connected in addition to the case where the members A and B are physically and directly connected. It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • a state where the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • FIG. 3 is a block diagram of the electronic device according to the embodiment.
  • the power electronics device 200 includes a DC power supply 202, an inrush current prevention circuit 210, a DC link capacitor 220, and a converter device 230.
  • DC power supply 202 is a battery or a capacitor or an external converter, generates a DC voltage (also referred to as input voltage) V E.
  • a DC link capacitor 220 is connected to the DC link 204.
  • a load driving device as shown in FIG. 1 or 2 is connected to the DC link 204.
  • the type of load is not particularly limited.
  • an inrush current prevention circuit 210 is provided between the DC power supply 202 and the DC link capacitor 220.
  • Inrush current prevention circuit 210 includes at least one switch provided between DC power supply 202 and DC link capacitor 220.
  • the inrush current preventing circuit 210 includes a first switch MC1, the charging resistor R J and the second switch RY1 is provided in series with the parallel paths to the first switch MC1.
  • the first switch MC1 is a magnetic contactor
  • the second switch RY1 is a relay.
  • Converter device 230 is provided between inrush current prevention circuit 210 and DC link capacitor 220. Converter device 230 in the operating state, boosts the input voltage V E, to generate a high DC link voltage V DC from the DC voltage V E to the DC link 204 (a power running operation).
  • the controller 240 includes a converter controller 242 that controls the converter device 230. Converter controller 242 generates control signal S CTRL that defines the duty ratio of the gate signal of converter device 230.
  • the controller 240 is fed back with a digital feedback signal D VDC indicating the DC link voltage V DC .
  • the controller 240 adjusts the duty ratio by feedback so that the feedback signal D VDC approaches the target value D REF that defines the target voltage of the DC link voltage V DC .
  • the gate driver 232 drives the transistors M1 and M2 of the converter device 230 based on the duty ratio indicated by the control signal S CTRL .
  • the current sensor 234 is, for example, current transformer, for detecting a current I L flowing through the reactor L1.
  • the controller 240 receives a digital value D IL indicating the current I L and a digital value D VE indicating the input voltage V E.
  • the feedback control in the converter controller 242, and the input voltage V E, may reflect the current I L flowing through the reactor L1 of the converter device 230.
  • the converter device 230 can be operated in a regenerative manner, and excess energy on the DC link 204 side may be recovered to the DC power supply 202.
  • the controller 240 controls the on / off of the switches MC1 and RY1 included in the inrush current prevention circuit 210 and has a function of detecting an abnormality of the switches MC1 and RY1.
  • the controller 240 stops the converter device 230 and turns on the second switch RY1. Thereby, the charging current I CHG flows through the resistor R J , the second switch RY1, and the diode D11, and the DC link capacitor 220 is charged.
  • the first switch MC1 When the DC link voltage V DC rises to such an extent that there is no possibility of inrush current to the DC link capacitor 220, the first switch MC1 is turned on. Thereafter, the controller 240 starts the operation of the converter device 230.
  • the controller 240 includes a determiner 244. In the determination period, the determiner 244 gives the switch MC1 or RY1 a shutoff command or a conduction command, and the command (the use status of the switch) and the voltage V DC of the DC link capacitor 220 or the rush current prevention circuit 210 at that time. An abnormality of the switches MC1 and RY1 is detected based on the combination of currents.
  • the current sensor 234 can be grasped as detecting the current (referred to as input current) I IN flowing to the inrush current prevention circuit 210.
  • the input current I IN is nothing but the reactor current I L in the operating state of the converter device 230, and nothing but the charge current I CHG during the charging period.
  • abnormality detection by the determiner 244 will be described with reference to three embodiments.
  • FIG. 4 is a diagram for explaining abnormality detection by the determination unit 244.
  • the controller 240 starts the charging of the DC link capacitor 220 provide a conduction command to the second switch RY1.
  • the controller 240 inserts the determination period ⁇ DET1 into the charge period, and temporarily gives a cutoff command (t 1 to t 2 ) to the second switch RY1 during the determination period ⁇ DET1 .
  • the determiner 244 determines the presence or absence of an abnormality based on the change of the input current I IN flowing through the inrush current prevention circuit in the determination period ⁇ DET1 .
  • the determiner 244 can determine the abnormality of the switch based on the input current I IN in the determination period ⁇ DET1 . For example determiner 244, when the digital value DI L in the determination period tau DET1 is higher than a predetermined threshold abnormality may be determined to be normal when low.
  • a second switch RY1 may be on again.
  • the increased DC link voltage V DC until the input voltage V E is substantially equal to the voltage level at time t 3 when there is no possibility of inrush current may provide a conduction command to the first switch MC1. Then, the converter device 230 at time t 4 is started operation.
  • the end time t 2 of the determination period tau DET1 if DC link voltage V DC is sufficiently high to the extent there is no risk of inrush current, and turned immediately first switch MC1 at time t 2, the first switch The DC link capacitor 220 may be charged via the MC1.
  • the determiner 244 determines the presence or absence of an abnormality based on the change of the DC link voltage V DC in the determination period ⁇ DET1 . If the second switch RY1 is normally disconnected while the second switch RY1 is given a cutoff command, the charging to the DC link capacitor 220 is stopped, so the rise of the DC link voltage V DC is stopped as shown by the solid line. And its voltage change is zero. On the other hand, when deterioration such as welding occurs in the second switch RY1, the charging current I CHG continues to flow in the DC link capacitor 220, so the DC link voltage V DC continues to increase as shown by the one-dot chain line.
  • the determiner 244 can determine the abnormality of the second switch RY1 based on the DC link voltage V DC in the determination period ⁇ DET1 .
  • the determiner 244 may determine normal when the amount of change of the digital value D VDC in the determination period ⁇ DET1 is substantially zero and abnormal when the amount of change is not zero. More specifically, the digital value D VDC is sampled at each of the start time t 1 and the end time t 2 of the determination period, and when the difference between them is larger than a predetermined threshold value, it is determined as abnormal. May be
  • the determination period ⁇ DET1 in the first embodiment or the second embodiment will be described.
  • the determination period tau DET1 is a after a predetermined delay time from the charging start time t 0, may be the start time t 1 of the determination period tau.
  • DC link voltage V DC reaches the threshold time may be used as the start time t 1 of the determination period ⁇ a.
  • the input current I IN during the charging period may be monitored, and the time when the input current I IN has dropped to a predetermined reference value after passing the peak may be set as the start time t 1 of the determination period ⁇ .
  • FIG. 5 is a diagram for explaining the abnormality detection by the determination unit 244.
  • the determination period ⁇ DET2 is inserted.
  • the controller 240 is given a cutoff command to both the first switch MC1 and the second switch RY1. Then, converter device 230 is brought into an operating state.
  • the determination period tau DET2 may be inserted in the vicinity of the time t 3 in FIG.
  • the DC link voltage V DC is substantially equal to the input voltage V E. If the switches MC1 and RY1 of the inrush current prevention circuit 210 are normally turned off when the converter device 230 performs switching operation, the DC link voltage V DC does not increase as shown by the solid line, and the original voltage Maintain the level (here V E ). If an abnormality occurs in any of the switches MC1 and RY1, as indicated by the one-dot and dash line, the DC link voltage V DC rises as a result of the boosting operation of the converter device 230. Therefore, the determiner 244 can detect an abnormality of the switches MC1 and RY1 based on the voltage change amount in the determination period ⁇ DET2 .
  • the determiner 244 may determine normal when the amount of change of the digital value D VDC in the determination period ⁇ DET2 is substantially zero and abnormal when the amount of change is not zero. More specifically, the digital value D VDC is sampled at each of the start time t 1 and the end time t 2 of the determination period, and when the difference between them is larger than a predetermined threshold value, it is determined as abnormal. May be
  • the determiner 244 determines the presence or absence of an abnormality based on the change of the input current I IN in the determination period ⁇ DET2 . If both the first switch MC1 and the second switch RY1 are normally disconnected in the determination period ⁇ DET2 , the input current I IN is zero as indicated by the solid line. On the contrary, when any one of the first switch MC1 and the second switch RY1 has an abnormality, the input current I IN becomes non-zero as shown by the one-dot chain line. Therefore, the determiner 244 can determine the abnormality of the switch based on the input current I IN in the determination period ⁇ DET2 . For example determiner 244, when the digital value DI L in the determination period tau DET2 is higher than a predetermined threshold abnormality may be determined to be normal when low.
  • the determination period ⁇ DET2 may be inserted at the end of the power electronic device 200.
  • the initial value of the DC link voltage V DC is a high voltage after boosting.
  • FIG. 6 is a block diagram showing a power electronic device 300 according to a modification.
  • DC power supply 302 includes a converter that generates DC link voltage V DC at DC link 304.
  • Inrush current prevention circuit 310 is provided between DC power supply 302 and smoothing capacitor 320.
  • inrush current prevention circuit 310 includes a resistor R2 and switches MC2 and RY2.
  • the load drive device 330 drives a load 306 such as a motor based on the DC voltage generated in the smoothing capacitor 320.
  • the controller 340 controls the switches MC2 and RY2 and the load driver 330 to detect an abnormality in the switches MC2 and RY2.
  • the same method as the first to fourth embodiments described above can be adopted.
  • V E of the above description and FIG. 4 read as V DC may be read as a V DC and V IN.
  • a switch off command is given to the switches MC2 and RY2 during the determination period ⁇ DET2 to operate the load driving device 330, and the change in the voltage V IN or the current I 1 at that time is performed. It is sufficient to detect the change.
  • Power electronics devices applied to industrial machines, construction machines, and transport vehicles may be started in response to the start of industrial machines, construction machines, and transport vehicles, and at startup, the voltage of the capacitor is 0 V, and power electronics The device may charge the capacitor after startup.
  • a switch with an auxiliary contact and a redundant switch RY2 are applicable. It is understood that the effects of simple configuration, size reduction, cost reduction and the like become even more remarkable if there are no power electronic devices.
  • the application of the power electronic device is not particularly limited, for example, industrial machines such as injection molding machines and presses, construction machines such as shovels and cranes, and transport vehicles such as forklifts and unmanned transport vehicles It is applicable to a machine etc.).
  • FIG. 7A and 7B are a schematic front view and a schematic side view, respectively, of a crane system according to the present embodiment.
  • a plurality of columns 40 support the girder 41.
  • the pillar 40 and the girder 41 constitute a portal frame.
  • a wheel 42 is attached to the lower end of the pillar 40, and a portal frame travels along the rail 43.
  • the direction perpendicular to the paper surface of FIG. 4A and the left and right direction of FIG. 4B correspond to the traveling direction.
  • a trolley 45 is mounted on the girder 41.
  • a hoisting machine 46 is mounted on the trolley 45.
  • a portal-type frame and a wheel 42 constitute a main body, and a trolley 45, a hoist 46 and a suspension work part (a hanger 47 and a wire) constitute a work part.
  • a plurality of electric actuators drive the respective operating units.
  • the traveling motor 51 mounted on the portal frame drives the wheels 42.
  • a traverse motor 52 mounted on the trolley 45 moves the trolley 45 in the transverse direction.
  • the horizontal direction of FIG. 4A and the direction perpendicular to the paper surface of FIG. 4B correspond to the transverse direction.
  • the hoisting machine 46 includes a hoisting motor 53, and winds up and unwinds a wire to which a hanging tool 47 such as a hook is attached at its tip.
  • the electric actuators such as the hoisting motor 53, the traversing motor 52, and the traveling motor 51 operate the hanger 47, the trolley 45, and the wheel 42, respectively.
  • AC power supply 60 An AC power supply 60, a power converter (DC-DC converter) 65, a power storage device 67, and a power converter (DC-DC converter) 68 are mounted on the portal frame.
  • AC power supply 60 includes an engine 61 and a generator 62.
  • the AC power supply 60 supplies driving power to the winding motor 53, the traverse motor 52, and the traveling motor 51. Further, power storage device 67 is charged by the power supplied from AC power supply 60.
  • the power conversion device 68 and the storage device (storage device) 67 are attached to the DC bus 70 (DC bus) as a storage system (power electronics device) 90. It can also be retrofitted to a crane not equipped with such a storage system (power electronics device) 90.
  • FIG. 8 is a power system diagram of the crane system.
  • An AC power supply 60 is connected to the DC bus 70 via a rectifier 63 and a power converter 65.
  • the power converter 65 converts the DC power output from the AC power source 60 and rectified by the rectifier 63 into DC power of a target voltage and supplies the DC power to the DC bus 70.
  • a smoothing capacitor 72 is connected between the positive bus 70P and the negative bus 70N of the DC bus 70.
  • Power storage device 67 is connected to DC bus 70 via power conversion device 68.
  • Power converter 68 controls charge and discharge of power storage device 67.
  • power conversion device 68 boosts the output voltage of power storage device 67 and supplies power from power storage device 67 to DC bus 70.
  • power conversion device 68 steps down the voltage of DC bus 70 and supplies power from power bus 70 to power storage device 67.
  • a traveling motor 51 is connected to the DC bus 70 via an inverter 54 and a power converter (DC-DC converter) 57.
  • a transverse motor 52 is connected to the DC bus 70 via an inverter 55 and a power converter (DC-DC converter) 58.
  • a hoisting motor 53 is connected to the DC bus 70 via an inverter 56 and a power converter (DC-DC converter) 59.
  • Power converters 57, 58, 59 respectively boost the voltage of DC bus 70, and supply the boosted power to inverters 54, 55, 56.
  • the controller 80 controls the power conversion devices 57, 58, 59, 65, 68, and the inverters 54, 55, 56 so that power is supplied from the DC bus 70 to the traveling motor 51, the traverse motor 52, and the winding motor 53. Supply.
  • the controller 80 controls the power conversion devices 57, 58, 59, 65 and 68 to maintain the voltage of the DC bus 70 at a preset target value.
  • the controller 80 controls the inverter 56 and the power conversion device 59 to step down the regenerative power generated by the hoisting motor 53 and supply it to the DC bus 70. Power storage device 67 can be charged by this regenerative power.
  • a rush current prevention circuit 76A is provided between power conversion device 68 and power storage device 67.
  • the controller 80 has a function of diagnosing an abnormality of the storage system 90 at the start or end of the crane.
  • the crane system is triggered by a trigger operation.
  • the activation operation may be configured by activation means such as an activation button or activation key.
  • the start operation can be performed by the operator in the cab.
  • the activation means may be provided in a control room (administration room) that remotely controls the crane, or may be provided in a remote control means available outside the driver's cab.
  • the crane may be terminated using a termination operation to the starting means as a trigger, or may be provided with a dedicated button (termination means) separately.
  • the abnormality of the storage system to be diagnosed is not particularly limited, but may be, for example, an abnormality (internal resistance abnormality, deterioration abnormality, temperature abnormality, voltage abnormality) of the storage means (battery or capacitor, or a combination thereof) It may include means (switches) or resistance or capacitor abnormalities.
  • an abnormality internal resistance abnormality, deterioration abnormality, temperature abnormality, voltage abnormality
  • the storage means battery or capacitor, or a combination thereof
  • It may include means (switches) or resistance or capacitor abnormalities.
  • the crane system further includes an abnormality notification unit 92.
  • the abnormality notification unit 92 detects an abnormality at startup and notifies the presence of an abnormality, or detects an abnormality at end and notifies an existence of an abnormality.
  • the abnormality notification unit 92 is a notification unit provided to the remote control unit in the case of remote control, and is a notification unit provided in the management building via the communication unit in the case of automatic operation, in the case of a manual operation. An alarm is provided in the driver's cabin to notify of an abnormality.
  • the abnormality notification unit 92 can change the notification content according to the type of abnormality or the degree of urgency. For example, in the case of an abnormality at a level at which work is restricted, a predetermined first level abnormality is notified, and replacement or maintenance is recommended, but at a level at which an operation is not restricted, a first abnormality is generated. The second level abnormality lower than the level may be notified.
  • the crane may start the operation in the operation mode not using the storage system 90 by a predetermined mode change operation in a state where it is determined that an abnormality has occurred and notification of an abnormality or operation restriction has been made. .
  • a predetermined mode change operation in a state where it is determined that an abnormality has occurred and notification of an abnormality or operation restriction has been made.
  • at least one of the traveling speed and the operating speed of the hanging portion may be limited.
  • the crane system of FIG. 8 and the power electronics device 300 of FIG. 3 can be associated as follows. 8 and FIG. Controller 80 Controller 240, gate driver 232 Power storage device 67 DC power supply 202 Inrush current prevention circuit 76 A Inrush current prevention circuit 210 Power converter 68 Converter 230 Smoothing capacitor 72 DC link capacitor 220 Positive side bus 70P DC link 204
  • One of the abnormalities monitored by the controller 80 may be deterioration or failure of the relay or the magnetic contactor of the inrush current prevention circuit 76A.
  • the controller 80 may detect deterioration or failure of the relay or the magnetic contactor by the method described with reference to FIGS. 3 and 4.
  • the present invention is applicable to industrial machines.

Abstract

Power electronics equipment 200 comprises a DC link capacitor 220 and an inrush current prevention circuit 210. A tester 244 gives a cut off instruction or a conduction instruction to a switch RY1, MC1 during testing and detects an abnormality in the switch RY1, MC1 on the basis of the voltage VDC of the DC link capacitor 220 or the current IIN flowing to the inrush current prevention circuit 210 at that time.

Description

クレーンおよびパワーエレクトロニクス機器Cranes and power electronics equipment
 本発明は、クレーンおよびパワーエレクトロニクス機器に関する。 The present invention relates to a crane and power electronics equipment.
1. クレーン等の作業機械において、交流電源、交流電動機、及び蓄電池が直流母線を介して相互に接続される(例えば特許文献1)。交流電源は、交流電力を直流電力に変換するコンバータ装置を介して直流母線に接続される。蓄電池は、蓄電池の充放電のタイミングと電力量を制御する充電/放電コントローラを介して直流母線に接続される。交流電動機は、直流電力を交流電力に変換するインバータを介して直流母線に接続される。 1. In a working machine such as a crane, an AC power supply, an AC motor, and a storage battery are mutually connected via a DC bus (for example, Patent Document 1). The AC power supply is connected to the DC bus via a converter device that converts AC power into DC power. The storage battery is connected to the DC bus via a charge / discharge controller that controls the charge / discharge timing of the storage battery and the amount of power. The AC motor is connected to the DC bus via an inverter that converts DC power into AC power.
特開2006-131311号公報JP 2006-131311 A 特開2007-295699号公報JP 2007-295699 A 特開2005-116485号公報JP 2005-116485 A
 1. クレーンのハイブリッド化にパワーエレクトロニクス機器が用いられる。パワーエレクトロニクス機器は、蓄電器とコンバータとを主構成とし、クレーンのDCバスに接続される。クレーンの起動操作により、パワーエレクトロニクス機器も起動する。DCバスと蓄電器とを電気的に接続するに際し、安全面で信頼性の高いパワーエレクトロニクス機器が望ましい。 1. Power electronics equipment is used for hybridizing cranes. The power electronics device mainly includes a capacitor and a converter, and is connected to the DC bus of the crane. The startup operation of the crane also starts up the power electronics equipment. When electrically connecting a DC bus and a capacitor, a power electronics device with high reliability in terms of safety is desirable.
2. 図1は、従来のパワーエレクトロニクス機器のブロック図である。パワーエレクトロニクス機器100Rは、負荷であるモータ102、コンバータ装置110および負荷駆動装置120を備える。コンバータ装置110は、バッテリなどの直流電源104からの直流電圧Vを昇圧してDCリンク電圧VDCを生成し、DCリンク130を介して負荷駆動装置120に供給する。負荷駆動装置120はたとえばモータ駆動装置であり、負荷であるモータ102を駆動するインバータ122を含む。DCリンク130には、大容量のDCリンクコンデンサ132が接続される。またインバータ122の入力にも、大容量の平滑コンデンサ124が接続される。 2. FIG. 1 is a block diagram of a conventional power electronic device. The power electronics device 100R includes a motor 102 that is a load, a converter device 110, and a load driving device 120. Converter 110 generates a DC link voltage V DC boosts the DC voltage V E from the DC power source 104, such as a battery, supplies to a load driving device 120 via a DC link 130. The load drive device 120 is, for example, a motor drive device, and includes an inverter 122 that drives a motor 102 that is a load. A large capacity DC link capacitor 132 is connected to the DC link 130. A large capacity smoothing capacitor 124 is also connected to the input of the inverter 122.
 パワーエレクトロニクス機器100Rの起動時に、DCリンクコンデンサ132、平滑コンデンサ124の電荷はゼロである。このようなコンデンサに、直流電圧Vが印加されると突入電流が流れる。これを防止するために、充電抵抗R、リレーRY1、電磁接触器MC1が設けられる。はじめにリレーRY1がオンされ、充電抵抗RおよびダイオードD11を介してDCリンクコンデンサ132が緩やかに充電される。また、平滑コンデンサ124は充電抵抗R2を介して緩やかに充電される。 When the power electronic device 100R starts up, the charges of the DC link capacitor 132 and the smoothing capacitor 124 are zero. When a DC voltage VE is applied to such a capacitor, an inrush current flows. In order to prevent this, a charging resistor R J , a relay RY1 and a magnetic contactor MC1 are provided. Introduction relay RY1 is turned on, DC link capacitor 132 is charged slowly via a charging resistor R J and a diode D11. Also, the smoothing capacitor 124 is gently charged via the charging resistor R2.
 DCリンクコンデンサ132、平滑コンデンサ124の充電がある程度進むと、あるいはそれらの充電が完了すると、電磁接触器MC1および電磁接触器MC2がオンされる。 When charging of the DC link capacitor 132 and the smoothing capacitor 124 proceeds to a certain extent or when their charging is completed, the magnetic contactor MC1 and the magnetic contactor MC2 are turned on.
 リレーや電磁接触器(以下、スイッチと総称する)は機械的な接点を有するため、酸化や摩耗により経時的に劣化する。 Relays and electromagnetic contactors (hereinafter collectively referred to as switches) have mechanical contacts, and thus deteriorate with time due to oxidation and wear.
 図1のパワーエレクトロニクス機器100Rでは、特にリレーRY1や電磁接触器MC1の経時的な劣化が問題となる。そこで一般的には、これらのスイッチに補助接点付きの部品を採用し、アンサーバック信号を利用した故障検出(溶着や開放検出)が広く行われている。 In the power electronic device 100R of FIG. 1, the deterioration with time of the relay RY1 and the magnetic contactor MC1 particularly becomes a problem. Therefore, in general, parts with an auxiliary contact are adopted as these switches, and failure detection (welding or open detection) using an answer back signal is widely performed.
 図2は、従来のパワーエレクトロニクス機器のブロック図である。図2のパワーエレクトロニクス機器100Sは、補助接点を有しないスイッチを用いる代わりに、負極(N極)側に冗長なスイッチRY2をさらに備える。そして、正極側のスイッチRY1(MC1)と負極側のスイッチRY2を順に導通、あるいは遮断し、各状態での電圧あるいは電流が正常時の期待値から逸脱したときに、異常と判定する。 FIG. 2 is a block diagram of a conventional power electronic device. The power electronic device 100S of FIG. 2 further includes a redundant switch RY2 on the negative electrode (N pole) side instead of using a switch having no auxiliary contact. Then, the switch RY1 (MC1) on the positive electrode side and the switch RY2 on the negative electrode side are sequentially conducted or disconnected, and when the voltage or current in each state deviates from the expected value in the normal state, it is determined as abnormal.
 図1のパワーエレクトロニクス機器100Rに用いる補助接点付きのスイッチは、一般的に高価であり、また大型である場合が多く、採用に支障がある場合もある。 A switch with an auxiliary contact used in the power electronic device 100R of FIG. 1 is generally expensive, often large in size, and sometimes has difficulty in adoption.
 また図2のパワーエレクトロニクス機器100Sでは、冗長なスイッチRY2を追加する必要があるため、パワーエレクトロニクス機器100Sのサイズが大きくなり、コストが高くなる。 Further, in the power electronic device 100S of FIG. 2, since it is necessary to add a redundant switch RY2, the size of the power electronic device 100S becomes large and the cost becomes high.
 本発明はかかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、起動時により安全性の高いパワーエレクトロニクス機器を搭載したクレーン、及びこのクレーンに搭載されるパワーエレクトロニクス機器を提供することである。またそのある態様の例示的な目的のひとつは、スイッチの劣化を検出可能なパワーエレクトロニクス機器の提供にある。 The present invention has been made in such a situation, and one of the exemplary objects of an embodiment thereof is a crane equipped with a power electronic device having higher safety at startup and a power electronic device mounted on the crane. It is to provide. In addition, one of the exemplary objects of the embodiment is to provide a power electronic device capable of detecting the deterioration of the switch.
 本発明のある態様はクレーンに関する。クレーンは、本体部と、吊り作業部と、走行部、および吊り作業部、を駆動する駆動部と、駆動部に電力を供給する蓄電システムと、を備える。クレーンは、起動時、或いは終了時に、蓄電システムの異常を診断する機能を有する。 One aspect of the present invention relates to a crane. The crane includes a drive unit that drives the main body unit, the suspension operation unit, the traveling unit, and the suspension operation unit, and a storage system that supplies power to the drive unit. The crane has a function of diagnosing an abnormality of the storage system at startup or termination.
2. 本発明のある態様はパワーエレクトロニクス機器に関する。パワーエレクトロニクス機器は、コンデンサと、直流電源とコンデンサとの間に設けられるスイッチを含む突入電流防止回路と、判定期間においてスイッチに遮断指令または導通指令を与え、そのときのコンデンサの電圧または突入電流防止回路に流れる電流にもとづいてスイッチの異常を検出する判定器と、を備える。 2. One aspect of the present invention relates to power electronics devices. The power electronics device provides a capacitor, an inrush current prevention circuit including a switch provided between the DC power supply and the capacitor, and gives a switch command or conduction command to the switch in the determination period, and prevents the voltage or inrush current of the capacitor at that time. And a determinator for detecting a switch abnormality based on the current flowing through the circuit.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements, or one in which the constituent elements and expressions of the present invention are mutually replaced among methods, apparatuses, systems, etc. is also effective as an aspect of the present invention.
 本発明のある態様によれば、起動時により安全性の高いパワーエレクトロニクス機器を搭載したクレーン、及びこのクレーンに搭載されるパワーエレクトロニクス機器を提供できる。また本発明のある態様によれば、スイッチの劣化を検出できる。 According to an aspect of the present invention, it is possible to provide a crane equipped with a power electronic device with higher safety at startup and a power electronic device mounted on the crane. Further, according to an aspect of the present invention, deterioration of the switch can be detected.
従来のパワーエレクトロニクス機器のブロック図である。It is a block diagram of the conventional power electronics device. 従来のパワーエレクトロニクス機器のブロック図である。It is a block diagram of the conventional power electronics device. 実施の形態に係るエレクトロニクス機器のブロック図である。It is a block diagram of the electronic device which concerns on embodiment. 判定器による異常検出を説明する図である。It is a figure explaining abnormality detection by a judgment device. 判定器による異常検出を説明する図である。It is a figure explaining abnormality detection by a judgment device. 変形例に係るパワーエレクトロニクス機器を示すブロック図である。It is a block diagram showing the power electronics device concerning a modification. 図7A及び図7Bは、それぞれ本実施例によるクレーンシステムの概略正面図及び概略側面図である。7A and 7B are a schematic front view and a schematic side view, respectively, of a crane system according to the present embodiment. 図8は、クレーンシステムの電力系統図である。FIG. 8 is a power system diagram of the crane system.
(実施の形態の概要)
 本明細書に開示される一実施の形態は、クレーンに関する。クレーンは、本体部と、吊り作業部と、走行部、および吊り作業部、を駆動する駆動部と、駆動部に電力を供給する蓄電システムと、を備える。クレーンは、起動時、或いは終了時に、蓄電システムの異常を診断する機能を有する。
(Overview of the embodiment)
One embodiment disclosed herein relates to a crane. The crane includes a drive unit that drives the main body unit, the suspension operation unit, the traveling unit, and the suspension operation unit, and a storage system that supplies power to the drive unit. The crane has a function of diagnosing an abnormality of the storage system at startup or termination.
 クレーンは、起動時に異常を検知して異常の存在を報知するか、終了時に異常を検知して異常の存在を報知する異常報知部を備えてもよい。 The crane may include an abnormality notification unit that detects an abnormality at startup and reports the presence of the abnormality, or detects an abnormality at the end and reports the presence of the abnormality.
 異常報知部は、遠隔操作の場合は遠隔操作手段に備えられた報知手段に、自動運転の場合は、通信手段を介して、管理棟に供えられた報知手段に、手動運転の場合は、運転室内に設けられた報知手段に、異常を報知してもよい。 The abnormality notification unit is a notification unit provided in the remote control unit in the case of remote control, and in the case of automatic operation, is a notification unit provided in the management building via the communication unit, and in the case of manual operation, the operation You may alert | report abnormality to the alerting | reporting means provided indoors.
 異常報知部は、異常の種別に応じて報知内容を変更してもよい。作業が制限されるレベルの異常の場合は所定の第1レベルの異常を報知し、交換、或いはメンテナンスが推奨されるが、作業は制限されないレベルの異常が生じている場合は、第1レベルより低いレベルの第2レベルの異常を報知してもよい。 The abnormality notification unit may change the notification content according to the type of abnormality. In the case of an abnormality at a level where work is restricted, an alarm of a predetermined first level is reported, replacement or maintenance is recommended, but when an abnormality at a level where work is not restricted has occurred, from the first level The low level second level abnormality may be reported.
 異常が生じていると判断され、異常の報知、或いは作業の制限がされている状態において、所定のモード変更操作により、蓄電システムを利用しない作業モードで作業を開始してもよい。 In a state where it is determined that an abnormality has occurred and notification of an abnormality or work restriction has been made, the work may be started in a work mode not using the power storage system by a predetermined mode change operation.
 蓄電システムを利用しない作業モードは、走行速度、吊り部の動作速度、の少なくとも一つが制限されてもよい。 In the operation mode not using the storage system, at least one of the traveling speed and the operating speed of the suspension may be limited.
 本明細書に開示される一実施の形態は、パワーエレクトロニクス機器に関する。パワーエレクトロニクス機器は、コンデンサと、直流電源とコンデンサとの間に設けられるスイッチを含む突入電流防止回路と、判定期間においてスイッチに遮断指令または導通指令を与え、そのときのコンデンサの電圧または突入電流防止回路に流れる電流にもとづいてスイッチの異常を検出する判定器と、を備える。この実施の形態によると、補助接点付きのスイッチや、冗長なスイッチを用いずに、スイッチの劣化を検出できる。またパワーエレクトロニクス機器のコストを下げることができる。 One embodiment disclosed herein relates to power electronics devices. The power electronics device provides a capacitor, an inrush current prevention circuit including a switch provided between the DC power supply and the capacitor, and gives a switch command or conduction command to the switch in the determination period, and prevents the voltage or inrush current of the capacitor at that time. And a determinator for detecting a switch abnormality based on the current flowing through the circuit. According to this embodiment, deterioration of the switch can be detected without using a switch with an auxiliary contact or a redundant switch. In addition, the cost of power electronics can be reduced.
 判定器は、スイッチに導通指令を与えてコンデンサを充電する充電期間中に、スイッチに一時的に遮断指令を与え、そのときの突入電流防止回路に流れる電流の変化にもとづいて異常の有無を判定してもよい。スイッチに遮断指令を与える間、スイッチが正常に遮断されていれば、電流はゼロとなる。反対にスイッチに溶着等の劣化が生じている場合、電流が流れ続ける。したがって、現在のスイッチの状態(導通・遮断)と、電流の変化にもとづいてスイッチの異常を判定できる。 The determiner temporarily gives a shutoff command to the switch during a charging period for giving a conduction command to the switch to charge the capacitor, and judges the presence or absence of an abnormality based on a change in current flowing in the inrush current prevention circuit at that time. You may If the switch is shut off normally while the switch is commanded to shut off, the current will be zero. On the contrary, when deterioration such as welding occurs in the switch, the current continues to flow. Therefore, the abnormality of the switch can be determined based on the current state of the switch (conduction / shutdown) and the change of the current.
 判定器は、スイッチに導通指令を与えてコンデンサを充電する充電期間中に、スイッチに一時的に遮断指令を与え、そのときのコンデンサの電圧の変化にもとづいて異常の有無を判定してもよい。スイッチに遮断指令を与える間、スイッチが正常に遮断されていれば、コンデンサへの充電が停止するため、電圧の変化はゼロとなる。反対にスイッチに溶着等の劣化が生じている場合、コンデンサへの充電電流が流れ続けるため、コンデンサの電圧は増加し続ける。したがって、現在のスイッチの状態(導通・遮断)と、コンデンサの電圧変化にもとづいてスイッチの異常を判定できる。 The determiner may temporarily give a shutoff command to the switch during a charging period for giving a conduction command to the switch to charge the capacitor, and judge presence or absence of abnormality based on a change in voltage of the capacitor at that time. . If the switch is shut off normally while the shutoff command is given to the switch, the charge on the capacitor is stopped, and the voltage change is zero. On the contrary, when deterioration such as welding occurs in the switch, the charging current to the capacitor continues to flow, and the voltage of the capacitor continues to increase. Therefore, the abnormality of the switch can be determined based on the current state of the switch (conduction / shutdown) and the voltage change of the capacitor.
 パワーエレクトロニクス機器は、突入電流防止回路とコンデンサの間に設けられるコンバータ装置をさらに備えてもよい。スイッチに遮断指令を与えた状態においてコンバータ装置をスイッチング動作させ、そのときの突入電流防止回路に流れる電流にもとづいて、異常の有無を判定してもよい。 The power electronics device may further comprise a converter device provided between the inrush current protection circuit and the capacitor. The converter device may perform switching operation in a state where a shutoff command is given to the switch, and the presence or absence of abnormality may be determined based on the current flowing through the inrush current prevention circuit at that time.
 スイッチに遮断指令を与えた状態において、スイッチが正常に遮断されていれば、コンバータ装置をスイッチング動作させても、突入電流防止回路に流れる電流はゼロである。反対にスイッチに溶着等の劣化が生じている場合、突入電流防止回路を経由して電流が流れる。したがって、電流にもとづいて異常の有無を判定できる。 If the switch is normally disconnected in the state where the switch command is given to the switch, the current flowing through the inrush current prevention circuit is zero even if the converter device is switched. On the other hand, when deterioration such as welding occurs in the switch, current flows through the inrush current prevention circuit. Therefore, the presence or absence of abnormality can be determined based on the current.
 パワーエレクトロニクス機器は、突入電流防止回路とコンデンサの間に設けられるコンバータ装置をさらに備えてもよい。スイッチに遮断指令を与えた状態においてコンバータ装置をスイッチング動作させ、そのときのコンデンサの電圧にもとづいて、異常の有無を判定してもよい。 The power electronics device may further comprise a converter device provided between the inrush current protection circuit and the capacitor. The converter device may perform switching operation in a state where a shutoff command is given to the switch, and the presence or absence of abnormality may be determined based on the voltage of the capacitor at that time.
 スイッチに遮断指令を与えた状態において、スイッチが正常に遮断されていれば、コンバータ装置をスイッチング動作させても、突入電流防止回路に流れる電流はゼロであり、したがってコンデンサの電圧は上昇しない。反対にスイッチに溶着等の劣化が生じている場合、突入電流防止回路を経由して電流が流れるため、コンデンサの電圧は上昇する。したがって、コンデンサの電圧にもとづいて異常の有無を判定できる。 If the switch is normally shut off in the state where the switch is instructed to shut off, the current flowing through the inrush current prevention circuit is zero even if the converter device is switched, so the voltage of the capacitor does not rise. On the other hand, when deterioration such as welding occurs in the switch, the current flows through the inrush current prevention circuit, and the voltage of the capacitor rises. Therefore, the presence or absence of abnormality can be determined based on the voltage of the capacitor.
(実施の形態)
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
Embodiment
Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and duplicating descriptions will be omitted as appropriate. In addition, the embodiments do not limit the invention and are merely examples, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In the present specification, “the state in which the member A is connected to the member B” means that the members A and B are electrically connected in addition to the case where the members A and B are physically and directly connected. It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state where the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
 本明細書において参照する波形図やタイムチャートの縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化され、あるいは誇張もしくは強調されている。 The vertical and horizontal axes of the waveform diagrams and time charts referred to in the present specification are scaled up and down appropriately to facilitate understanding, and each waveform shown is also simplified for ease of understanding. Or exaggerated or emphasized.
 図3は、実施の形態に係るエレクトロニクス機器のブロック図である。パワーエレクトロニクス機器200は、直流電源202、突入電流防止回路210、DCリンクコンデンサ220、コンバータ装置230を備える。 FIG. 3 is a block diagram of the electronic device according to the embodiment. The power electronics device 200 includes a DC power supply 202, an inrush current prevention circuit 210, a DC link capacitor 220, and a converter device 230.
 直流電源202は、バッテリやキャパシタ、あるいは外部のコンバータであり、直流電圧(入力電圧ともいう)Vを生成する。DCリンク204には、DCリンクコンデンサ220が接続される。また図3には図示しないが、DCリンク204には、図1や図2に示すような負荷駆動装置が接続される。負荷の種類は特に限定されない。 DC power supply 202 is a battery or a capacitor or an external converter, generates a DC voltage (also referred to as input voltage) V E. A DC link capacitor 220 is connected to the DC link 204. Although not shown in FIG. 3, a load driving device as shown in FIG. 1 or 2 is connected to the DC link 204. The type of load is not particularly limited.
 パワーエレクトロニクス機器200の起動直後において、DCリンクコンデンサ220の電荷が少なく、DCリンク電圧VDCが低い状態において、入力電圧Vが低インピーダンス経路を介してDCリンクコンデンサ220に印加されると突入電流が流れる。これを防止するために、直流電源202とDCリンクコンデンサ220の間には、突入電流防止回路210が設けられる。 Immediately after start-up of power electronic device 200, in a state where DC link capacitor 220 has a small amount of charge and DC link voltage V DC is low, rush current when input voltage V E is applied to DC link capacitor 220 via a low impedance path. Flows. In order to prevent this, an inrush current prevention circuit 210 is provided between the DC power supply 202 and the DC link capacitor 220.
 突入電流防止回路210は、直流電源202とDCリンクコンデンサ220との間に設けられる少なくともひとつのスイッチを含む。本実施の形態では、突入電流防止回路210は、第1スイッチMC1と、第1スイッチMC1と並列な経路に直列に設けられる充電抵抗Rおよび第2スイッチRY1を含む。たとえば第1スイッチMC1は電磁接触器であり、第2スイッチRY1はリレーである。 Inrush current prevention circuit 210 includes at least one switch provided between DC power supply 202 and DC link capacitor 220. In the present embodiment, the inrush current preventing circuit 210 includes a first switch MC1, the charging resistor R J and the second switch RY1 is provided in series with the parallel paths to the first switch MC1. For example, the first switch MC1 is a magnetic contactor, and the second switch RY1 is a relay.
 コンバータ装置230は、突入電流防止回路210とDCリンクコンデンサ220の間に設けられる。コンバータ装置230は、動作状態において、入力電圧Vを昇圧し、DCリンク204に直流電圧Vより高いDCリンク電圧VDCを発生させる(力行運転)。コントローラ240は、コンバータ装置230を制御するコンバータコントローラ242を含む。コンバータコントローラ242は、コンバータ装置230のゲート信号のデューティ比を規定する制御信号SCTRLを生成する。 Converter device 230 is provided between inrush current prevention circuit 210 and DC link capacitor 220. Converter device 230 in the operating state, boosts the input voltage V E, to generate a high DC link voltage V DC from the DC voltage V E to the DC link 204 (a power running operation). The controller 240 includes a converter controller 242 that controls the converter device 230. Converter controller 242 generates control signal S CTRL that defines the duty ratio of the gate signal of converter device 230.
 コントローラ240には、DCリンク電圧VDCを示すデジタルのフィードバック信号DVDCがフィードバックされている。コントローラ240は、フィードバック信号DVDCが、DCリンク電圧VDCの目標電圧を規定する目標値DREFに近づくように、フィードバックによってデューティ比を調節する。 The controller 240 is fed back with a digital feedback signal D VDC indicating the DC link voltage V DC . The controller 240 adjusts the duty ratio by feedback so that the feedback signal D VDC approaches the target value D REF that defines the target voltage of the DC link voltage V DC .
 ゲートドライバ232は、制御信号SCTRLが示すデューティ比にもとづいて、コンバータ装置230のトランジスタM1,M2を駆動する。 The gate driver 232 drives the transistors M1 and M2 of the converter device 230 based on the duty ratio indicated by the control signal S CTRL .
 電流センサ234はたとえばカレントトランスであり、リアクトルL1に流れる電流Iを検出する。コントローラ240には、電流Iを示すデジタル値DILや、入力電圧Vを示すデジタル値DVEが入力される。コンバータコントローラ242におけるフィードバック制御に、入力電圧Vや、コンバータ装置230のリアクトルL1に流れる電流Iを反映してもよい。 The current sensor 234 is, for example, current transformer, for detecting a current I L flowing through the reactor L1. The controller 240 receives a digital value D IL indicating the current I L and a digital value D VE indicating the input voltage V E. The feedback control in the converter controller 242, and the input voltage V E, may reflect the current I L flowing through the reactor L1 of the converter device 230.
 直流電源202が充電可能なバッテリあるいはキャパシタを含む場合、コンバータ装置230を回生運転させることが可能であり、DCリンク204側の余剰なエネルギーを直流電源202に回収してもよい。 When the DC power supply 202 includes a chargeable battery or capacitor, the converter device 230 can be operated in a regenerative manner, and excess energy on the DC link 204 side may be recovered to the DC power supply 202.
 コントローラ240は、突入電流防止回路210に含まれるスイッチMC1,RY1のオン、オフを制御するとともに、スイッチMC1,RY1の異常を検出する機能を備える。 The controller 240 controls the on / off of the switches MC1 and RY1 included in the inrush current prevention circuit 210 and has a function of detecting an abnormality of the switches MC1 and RY1.
 パワーエレクトロニクス機器200の起動直後の充電期間において、コントローラ240はコンバータ装置230を停止状態とし、第2スイッチRY1をオンする。これにより、抵抗R、第2スイッチRY1、ダイオードD11を介して充電電流ICHGが流れ、DCリンクコンデンサ220が充電される。 In the charging period immediately after the start of the power electronic device 200, the controller 240 stops the converter device 230 and turns on the second switch RY1. Thereby, the charging current I CHG flows through the resistor R J , the second switch RY1, and the diode D11, and the DC link capacitor 220 is charged.
 DCリンクコンデンサ220への突入電流のおそれが無い程度に、DCリンク電圧VDCが上昇すると、第1スイッチMC1がオンされる。その後、コントローラ240は、コンバータ装置230の動作を開始する。 When the DC link voltage V DC rises to such an extent that there is no possibility of inrush current to the DC link capacitor 220, the first switch MC1 is turned on. Thereafter, the controller 240 starts the operation of the converter device 230.
 突入電流防止回路210のスイッチの異常検出について説明する。コントローラ240は、判定器244を含む。判定器244は、判定期間においてスイッチMC1,RY1に遮断指令または導通指令を与え、その指令(スイッチの使用状況)と、そのときのDCリンクコンデンサ220の電圧VDCまたは突入電流防止回路210に流れる電流の組み合わせにもとづいてスイッチMC1,RY1の異常を検出する。 Abnormality detection of switches of the inrush current prevention circuit 210 will be described. The controller 240 includes a determiner 244. In the determination period, the determiner 244 gives the switch MC1 or RY1 a shutoff command or a conduction command, and the command (the use status of the switch) and the voltage V DC of the DC link capacitor 220 or the rush current prevention circuit 210 at that time. An abnormality of the switches MC1 and RY1 is detected based on the combination of currents.
 電流センサ234は、突入電流防止回路210に流れる電流(入力電流という)IINを検出しているものと把握することができる。入力電流IINは、コンバータ装置230の動作状態ではリアクトル電流Iに他ならず、充電期間中は、充電電流ICHGに他ならない。 The current sensor 234 can be grasped as detecting the current (referred to as input current) I IN flowing to the inrush current prevention circuit 210. The input current I IN is nothing but the reactor current I L in the operating state of the converter device 230, and nothing but the charge current I CHG during the charging period.
 以下、判定器244による異常検出について、3つの実施例を参照して説明する。 Hereinafter, abnormality detection by the determiner 244 will be described with reference to three embodiments.
(第1実施例)
 図4は、判定器244による異常検出を説明する図である。
 時刻tに、コントローラ240は、第2スイッチRY1に導通指令を与えてDCリンクコンデンサ220の充電を開始する。コントローラ240は、充電期間に判定期間τDET1を挿入し、判定期間τDET1の間、第2スイッチRY1に一時的(t~t)に遮断指令を与える。判定器244は、判定期間τDET1における突入電流防止回路に流れる入力電流IINの変化にもとづいて異常の有無を判定する。
(First embodiment)
FIG. 4 is a diagram for explaining abnormality detection by the determination unit 244. As shown in FIG.
At time t 0, the controller 240 starts the charging of the DC link capacitor 220 provide a conduction command to the second switch RY1. The controller 240 inserts the determination period τ DET1 into the charge period, and temporarily gives a cutoff command (t 1 to t 2 ) to the second switch RY1 during the determination period τ DET1 . The determiner 244 determines the presence or absence of an abnormality based on the change of the input current I IN flowing through the inrush current prevention circuit in the determination period τ DET1 .
 第2スイッチRY1に遮断指令を与える間、第2スイッチRY1が正常に遮断されていれば、入力電流IINは実線で示すようにゼロとなる。反対に第2スイッチRY1に溶着等の劣化が生じている場合、一点鎖線で示すように非ゼロの入力電流IINが流れ続ける。したがって判定器244は、判定期間τDET1における入力電流IINにもとづいてスイッチの異常を判定できる。たとえば判定器244は、判定期間τDET1におけるデジタル値DIが所定のしきい値より高いとき異常、低いとき正常と判定してもよい。 If the second switch RY1 is normally disconnected while the second switch RY1 is given a cutoff command, the input current I IN becomes zero as shown by the solid line. On the other hand, when deterioration such as welding occurs in the second switch RY1, as shown by the alternate long and short dash line, the non-zero input current I IN continues to flow. Therefore, the determiner 244 can determine the abnormality of the switch based on the input current I IN in the determination period τ DET1 . For example determiner 244, when the digital value DI L in the determination period tau DET1 is higher than a predetermined threshold abnormality may be determined to be normal when low.
 判定期間τDET1の終了時刻tに、第2スイッチRY1を再びオンしてもよい。そしてDCリンク電圧VDCが入力電圧Vと実質的に等しい電圧レベルまで上昇し、突入電流のおそれがなくなる時刻tに、第1スイッチMC1に導通指令を与えてもよい。その後、時刻tにコンバータ装置230が動作開始する。 The end time t 2 of the determination period tau DET1, a second switch RY1 may be on again. The increased DC link voltage V DC until the input voltage V E is substantially equal to the voltage level at time t 3 when there is no possibility of inrush current may provide a conduction command to the first switch MC1. Then, the converter device 230 at time t 4 is started operation.
 なお、判定期間τDET1の終了時刻tに、突入電流のおそれがない程度にDCリンク電圧VDCが十分に高い場合には、時刻tに直ちに第1スイッチMC1をオンし、第1スイッチMC1を介してDCリンクコンデンサ220を充電するようにしてもよい。 Incidentally, the end time t 2 of the determination period tau DET1, if DC link voltage V DC is sufficiently high to the extent there is no risk of inrush current, and turned immediately first switch MC1 at time t 2, the first switch The DC link capacitor 220 may be charged via the MC1.
(第2実施例)
 引き続き図4を参照する。第2実施例において判定器244は、判定期間τDET1におけるDCリンク電圧VDCの変化にもとづいて異常の有無を判定する。第2スイッチRY1に遮断指令を与える間、第2スイッチRY1が正常に遮断されていれば、DCリンクコンデンサ220への充電が停止するため、実線で示すようにDCリンク電圧VDCの上昇が停止し、その電圧変化はゼロとなる。反対に第2スイッチRY1に溶着等の劣化が生じている場合、DCリンクコンデンサ220に充電電流ICHGが流れ続けるため、一点鎖線で示すようにDCリンク電圧VDCは増加し続ける。したがって判定器244は、判定期間τDET1におけるDCリンク電圧VDCにもとづいて第2スイッチRY1の異常を判定できる。たとえば判定器244は、判定期間τDET1におけるデジタル値DVDCの変化量が実質的にゼロのときに正常、非ゼロのときに異常と判定してもよい。より具体的には判定期間の開始時刻tと終了時刻tそれぞれにおいて、デジタル値DVDCをサンプリングし、それらの差分が所定のしきい値より大きいときに異常、小さいときに正常と判定してもよい。
Second Embodiment
Continuing to refer to FIG. In the second embodiment, the determiner 244 determines the presence or absence of an abnormality based on the change of the DC link voltage V DC in the determination period τ DET1 . If the second switch RY1 is normally disconnected while the second switch RY1 is given a cutoff command, the charging to the DC link capacitor 220 is stopped, so the rise of the DC link voltage V DC is stopped as shown by the solid line. And its voltage change is zero. On the other hand, when deterioration such as welding occurs in the second switch RY1, the charging current I CHG continues to flow in the DC link capacitor 220, so the DC link voltage V DC continues to increase as shown by the one-dot chain line. Therefore, the determiner 244 can determine the abnormality of the second switch RY1 based on the DC link voltage V DC in the determination period τ DET1 . For example, the determiner 244 may determine normal when the amount of change of the digital value D VDC in the determination period τ DET1 is substantially zero and abnormal when the amount of change is not zero. More specifically, the digital value D VDC is sampled at each of the start time t 1 and the end time t 2 of the determination period, and when the difference between them is larger than a predetermined threshold value, it is determined as abnormal. May be
 続いて、第1実施例あるいは第2実施例における判定期間τDET1について説明する。たとえば判定期間τDET1は、充電開始時刻tから所定の遅延時間の経過後を、判定期間τの開始時刻tとしてもよい。 Subsequently, the determination period τ DET1 in the first embodiment or the second embodiment will be described. For example the determination period tau DET1 is a after a predetermined delay time from the charging start time t 0, may be the start time t 1 of the determination period tau.
 あるいは起動直後の入力電圧Vをモニターし、入力電圧Vに係数K(K<1)を乗じてしきい値K×Vを決定し、DCリンク電圧VDCがしきい値に到達した時刻を判定期間τの開始時刻tとしてもよい。 Or to monitor the input voltage V E immediately after startup, to determine the threshold K × V E multiplied by the coefficient K (K <1) to an input voltage V E, DC link voltage V DC reaches the threshold time may be used as the start time t 1 of the determination period τ a.
 あるいは充電期間中の入力電流IINを監視し、入力電流IINがピークを経た後に、所定の基準値まで低下した時刻を、判定期間τの開始時刻tとしてもよい。 Alternatively, the input current I IN during the charging period may be monitored, and the time when the input current I IN has dropped to a predetermined reference value after passing the peak may be set as the start time t 1 of the determination period τ.
(第3実施例)
 図5は、判定器244による異常検出を説明する図である。充電期間の終了後の非充電期間中に、判定期間τDET2が挿入される。この判定期間τDET2の間、コントローラ240は第1スイッチMC1、第2スイッチRY1を両方に遮断指令が与えられる。そしてコンバータ装置230を動作状態とする。
Third Embodiment
FIG. 5 is a diagram for explaining the abnormality detection by the determination unit 244. During the non-charging period after the end of the charging period, the determination period τ DET2 is inserted. During the determination period τ DET2 , the controller 240 is given a cutoff command to both the first switch MC1 and the second switch RY1. Then, converter device 230 is brought into an operating state.
 たとえば判定期間τDET2は、図4における時刻tの近傍に挿入してもよい。この場合、DCリンク電圧VDCは、実質的に入力電圧Vと等しい。コンバータ装置230をスイッチング動作させたときに、突入電流防止回路210のスイッチMC1,RY1が正常にオフしていれば、実線で示すように、DCリンク電圧VDCは上昇せず、もとの電圧レベル(ここではV)を維持する。もしスイッチMC1,RY1のいずれかに異常が生じていれば、一点鎖線で示すように、コンバータ装置230の昇圧動作の結果、DCリンク電圧VDCが上昇する。したがって判定器244は、判定期間τDET2における電圧変化量にもとづいて、スイッチMC1,RY1の異常を検出できる。 For example the determination period tau DET2 may be inserted in the vicinity of the time t 3 in FIG. In this case, the DC link voltage V DC is substantially equal to the input voltage V E. If the switches MC1 and RY1 of the inrush current prevention circuit 210 are normally turned off when the converter device 230 performs switching operation, the DC link voltage V DC does not increase as shown by the solid line, and the original voltage Maintain the level (here V E ). If an abnormality occurs in any of the switches MC1 and RY1, as indicated by the one-dot and dash line, the DC link voltage V DC rises as a result of the boosting operation of the converter device 230. Therefore, the determiner 244 can detect an abnormality of the switches MC1 and RY1 based on the voltage change amount in the determination period τ DET2 .
 たとえば判定器244は、判定期間τDET2におけるデジタル値DVDCの変化量が実質的にゼロのときに正常、非ゼロのときに異常と判定してもよい。より具体的には判定期間の開始時刻tと終了時刻tそれぞれにおいて、デジタル値DVDCをサンプリングし、それらの差分が所定のしきい値より大きいときに異常、小さいときに正常と判定してもよい。 For example, the determiner 244 may determine normal when the amount of change of the digital value D VDC in the determination period τ DET2 is substantially zero and abnormal when the amount of change is not zero. More specifically, the digital value D VDC is sampled at each of the start time t 1 and the end time t 2 of the determination period, and when the difference between them is larger than a predetermined threshold value, it is determined as abnormal. May be
(第4実施例)
 引き続き図5を参照する。第4実施例において判定器244は、判定期間τDET2における入力電流IINの変化にもとづいて異常の有無を判定する。判定期間τDET2において第1スイッチMC1、第2スイッチRY1が両方とも正常に遮断されていれば、入力電流IINは実線で示すようにゼロである。反対に第1スイッチMC1、第2スイッチRY1のいずれかに異常が生じていると、入力電流IINは一点鎖線で示すように非ゼロとなる。したがって判定器244は、判定期間τDET2における入力電流IINにもとづいてスイッチの異常を判定できる。たとえば判定器244は、判定期間τDET2におけるデジタル値DIが所定のしきい値より高いとき異常、低いとき正常と判定してもよい。
Fourth Embodiment
Continuing to refer to FIG. In the fourth embodiment, the determiner 244 determines the presence or absence of an abnormality based on the change of the input current I IN in the determination period τ DET2 . If both the first switch MC1 and the second switch RY1 are normally disconnected in the determination period τ DET2 , the input current I IN is zero as indicated by the solid line. On the contrary, when any one of the first switch MC1 and the second switch RY1 has an abnormality, the input current I IN becomes non-zero as shown by the one-dot chain line. Therefore, the determiner 244 can determine the abnormality of the switch based on the input current I IN in the determination period τ DET2 . For example determiner 244, when the digital value DI L in the determination period tau DET2 is higher than a predetermined threshold abnormality may be determined to be normal when low.
 第3実施例、第4実施例において、判定期間τDET2は、パワーエレクトロニクス機器200の終了時に挿入してもよい。この場合、DCリンク電圧VDCの初期値は、昇圧後の高い電圧となる。 In the third and fourth embodiments, the determination period τ DET2 may be inserted at the end of the power electronic device 200. In this case, the initial value of the DC link voltage V DC is a high voltage after boosting.
(変形例)
 実施の形態では、コンバータ装置230の前段に設けられる突入電流防止回路210のスイッチの異常検出を説明したが、本発明の適用はそれに限定されない。図1や図2に示すように、負荷駆動装置120の前段には、抵抗R2およびスイッチMC2を含む突入電流防止回路が設けられており、スイッチMC2の異常検出にも本発明は適用できる。図6は、変形例に係るパワーエレクトロニクス機器300を示すブロック図である。直流電源302は、DCリンク304にDCリンク電圧VDCを発生するコンバータを含む。
(Modification)
In the embodiment, the abnormality detection of the switch of the inrush current prevention circuit 210 provided in the front stage of the converter device 230 has been described, but the application of the present invention is not limited thereto. As shown in FIG. 1 and FIG. 2, the inrush current prevention circuit including the resistor R2 and the switch MC2 is provided at the front stage of the load driving device 120, and the present invention can be applied to abnormality detection of the switch MC2. FIG. 6 is a block diagram showing a power electronic device 300 according to a modification. DC power supply 302 includes a converter that generates DC link voltage V DC at DC link 304.
 突入電流防止回路310は、直流電源302と平滑コンデンサ320の間に設けられる。この変形例では突入電流防止回路310は、抵抗R2と、スイッチMC2、RY2を含む。負荷駆動装置330は、平滑コンデンサ320に生ずる直流電圧にもとづいてモータなどの負荷306を駆動する。 Inrush current prevention circuit 310 is provided between DC power supply 302 and smoothing capacitor 320. In this modification, inrush current prevention circuit 310 includes a resistor R2 and switches MC2 and RY2. The load drive device 330 drives a load 306 such as a motor based on the DC voltage generated in the smoothing capacitor 320.
 コントローラ340は、スイッチMC2、RY2および負荷駆動装置330を制御し、スイッチMC2、RY2の異常を検出する。検出方法は、上述した第1実施例~第4実施例と同じ方法を採用できる。 The controller 340 controls the switches MC2 and RY2 and the load driver 330 to detect an abnormality in the switches MC2 and RY2. As the detection method, the same method as the first to fourth embodiments described above can be adopted.
 第1、第2実施例を採用する場合、上述の説明および図4のVをVDCと読み替え、VDCをVINと読み替えれば良い。第3、第4実施例を採用する場合、判定期間τDET2の間、スイッチMC2,RY2に遮断指令を与え、負荷駆動装置330を動作させ、そのときの電圧VINの変化あるいは電流Iの変化を検出すればよい。 First, if employing the second embodiment, the V E of the above description and FIG. 4 read as V DC, may be read as a V DC and V IN. When the third and fourth embodiments are employed, a switch off command is given to the switches MC2 and RY2 during the determination period τ DET2 to operate the load driving device 330, and the change in the voltage V IN or the current I 1 at that time is performed. It is sufficient to detect the change.
 産業機械、建設機械、搬送車両に適用されるパワーエレクトロニクス機器は、産業機械、建設機械、搬送車両の起動に対応して起動してもよく、起動時において、コンデンサの電圧0Vであり、パワーエレクトロニクス機器は、起動後にコンデンサを充電してもよい。 Power electronics devices applied to industrial machines, construction machines, and transport vehicles may be started in response to the start of industrial machines, construction machines, and transport vehicles, and at startup, the voltage of the capacitor is 0 V, and power electronics The device may charge the capacitor after startup.
 なお、補助接点付きのスイッチ、冗長なスイッチRY2を有するパワーエレクトロニクス機器にも、保護の2重化の観点から、本発明を適用することができるが、補助接点付きのスイッチ、冗長なスイッチRY2が無いパワーエレクトロニクス機器であれば、シンプルな構成、サイズダウン、コストダウン等の効果が、より一層顕著となることが理解される。 Although the present invention can be applied to a power electronic device having a switch with an auxiliary contact and a redundant switch RY2 from the viewpoint of double protection, a switch with an auxiliary contact and a redundant switch RY2 are applicable. It is understood that the effects of simple configuration, size reduction, cost reduction and the like become even more remarkable if there are no power electronic devices.
 なお、パワーエレクトロニクス機器において、異常と称するものを検知した場合に、産業機械等に搭載される上位のコントローラに通知したり、産業機械等に設けられた表示部等に異常表示したり、産業機械等を停止させたりすれば、安全性の向上に寄与することとなる。また予備的、予報的に報知してもよく、この場合、産業機械等を停止させない故障予知の観点から優れている。 In power electronics equipment, when something called abnormality is detected, it notifies a higher controller installed in the industrial machine etc., displays abnormality on the display part etc. provided in the industrial machine etc., or the industrial machine Stopping the system will contribute to the improvement of safety. The notification may be made in a preliminary or forecast manner, and in this case, it is excellent from the viewpoint of failure prediction that does not stop the industrial machine or the like.
 なおパワーエレクトロニクス機器の用途は特に限定されるものではないが、たとえば、射出成形機やプレスなどの産業機械、ショベルやクレーンなどの建設機械、フォークリフトや無人搬送車等の搬送車両(統括して産業機械等と称する)に適用できる。 Although the application of the power electronic device is not particularly limited, for example, industrial machines such as injection molding machines and presses, construction machines such as shovels and cranes, and transport vehicles such as forklifts and unmanned transport vehicles It is applicable to a machine etc.).
 図7A及び図7Bは、それぞれ本実施例によるクレーンシステムの概略正面図及び概略側面図である。複数の柱40が桁41を支えている。柱40と桁41とによって門型フレームが構成される。柱40の下端に車輪42が取り付けられており、門型フレームがレール43に沿って走行する。図4Aの紙面に垂直な方向及び図4Bの左右方向が走行方向に相当する。桁41にトロリー45が搭載されている。トロリー45に巻き上げ機46が搭載されている。門型フレーム、車輪42により本体部が構成され、トロリー45、巻き上げ機46、吊り作業部(吊り下げ具47とワイヤ)により作業部が構成される。 7A and 7B are a schematic front view and a schematic side view, respectively, of a crane system according to the present embodiment. A plurality of columns 40 support the girder 41. The pillar 40 and the girder 41 constitute a portal frame. A wheel 42 is attached to the lower end of the pillar 40, and a portal frame travels along the rail 43. The direction perpendicular to the paper surface of FIG. 4A and the left and right direction of FIG. 4B correspond to the traveling direction. A trolley 45 is mounted on the girder 41. A hoisting machine 46 is mounted on the trolley 45. A portal-type frame and a wheel 42 constitute a main body, and a trolley 45, a hoist 46 and a suspension work part (a hanger 47 and a wire) constitute a work part.
 複数の電動アクチュエータがそれぞれの作動部を駆動する。例えば、門型フレームに搭載された走行用モータ51が車輪42を駆動する。トロリー45に搭載された横行用モータ52が、トロリー45を横行方向に移動させる。図4Aの左右方向及び図4Bの紙面に垂直な方向が横行方向に相当する。巻き上げ機46は巻上げモータ53を含み、先端にフック等の吊り下げ具47が取り付けられたワイヤを巻上げ及び繰り出す。このように、巻上げモータ53、横行用モータ52、及び走行用モータ51等の電動アクチュエータが、それぞれ吊り下げ具47、トロリー45、車輪42を動作させる。 A plurality of electric actuators drive the respective operating units. For example, the traveling motor 51 mounted on the portal frame drives the wheels 42. A traverse motor 52 mounted on the trolley 45 moves the trolley 45 in the transverse direction. The horizontal direction of FIG. 4A and the direction perpendicular to the paper surface of FIG. 4B correspond to the transverse direction. The hoisting machine 46 includes a hoisting motor 53, and winds up and unwinds a wire to which a hanging tool 47 such as a hook is attached at its tip. Thus, the electric actuators such as the hoisting motor 53, the traversing motor 52, and the traveling motor 51 operate the hanger 47, the trolley 45, and the wheel 42, respectively.
 門型フレームに、交流電源60、電力変換装置(DC-DCコンバータ)65、蓄電装置67、及び電力変換装置(DC-DCコンバータ)68が搭載されている。交流電源60は、エンジン61と発電機62とを含む。交流電源60は、巻上げモータ53、横行用モータ52、及び走行用モータ51に駆動用の電力を供給する。さらに、交流電源60から供給される電力によって蓄電装置67が充電される。 An AC power supply 60, a power converter (DC-DC converter) 65, a power storage device 67, and a power converter (DC-DC converter) 68 are mounted on the portal frame. AC power supply 60 includes an engine 61 and a generator 62. The AC power supply 60 supplies driving power to the winding motor 53, the traverse motor 52, and the traveling motor 51. Further, power storage device 67 is charged by the power supplied from AC power supply 60.
 電力変換装置68、蓄電装置(蓄電器)67は、直流母線70(DCバス)に蓄電システム(パワーエレクトロニクス機器)90として取り付けられる。このような蓄電システム(パワーエレクトロニクス機器)90を備えないクレーンに後付で取り付けることもできる。 The power conversion device 68 and the storage device (storage device) 67 are attached to the DC bus 70 (DC bus) as a storage system (power electronics device) 90. It can also be retrofitted to a crane not equipped with such a storage system (power electronics device) 90.
 図8は、クレーンシステムの電力系統図である。交流電源60が整流器63及び電力変換装置65を介して直流母線70に接続されている。電力変換装置65は、交流電源60から出力され整流器63で整流された直流電力を、目標とする電圧の直流電力に変換して直流母線70に供給する。直流母線70の正側母線70Pと負側母線70Nとの間に平滑コンデンサ72が接続されている。 FIG. 8 is a power system diagram of the crane system. An AC power supply 60 is connected to the DC bus 70 via a rectifier 63 and a power converter 65. The power converter 65 converts the DC power output from the AC power source 60 and rectified by the rectifier 63 into DC power of a target voltage and supplies the DC power to the DC bus 70. A smoothing capacitor 72 is connected between the positive bus 70P and the negative bus 70N of the DC bus 70.
 蓄電装置67が電力変換装置68を介して直流母線70に接続されている。電力変換装置68は、蓄電装置67の充放電を制御する。蓄電装置67の放電時には、電力変換装置68が蓄電装置67の出力電圧を昇圧して蓄電装置67から直流母線70に電力を供給する。蓄電装置67の充電時には、電力変換装置68が直流母線70の電圧を降圧して直流母線70から蓄電装置67に電力を供給する。 Power storage device 67 is connected to DC bus 70 via power conversion device 68. Power converter 68 controls charge and discharge of power storage device 67. When discharging power storage device 67, power conversion device 68 boosts the output voltage of power storage device 67 and supplies power from power storage device 67 to DC bus 70. When charging power storage device 67, power conversion device 68 steps down the voltage of DC bus 70 and supplies power from power bus 70 to power storage device 67.
 走行用モータ51が、インバータ54及び電力変換装置(DC-DCコンバータ)57を介して直流母線70に接続されている。横行用モータ52が、インバータ55及び電力変換装置(DC-DCコンバータ)58を介して直流母線70に接続されている。巻上げモータ53が、インバータ56及び電力変換装置(DC-DCコンバータ)59を介して直流母線70に接続されている。電力変換装置57、58、59は、それぞれ直流母線70の電圧を昇圧し、昇圧された電力をインバータ54、55、56に供給する。 A traveling motor 51 is connected to the DC bus 70 via an inverter 54 and a power converter (DC-DC converter) 57. A transverse motor 52 is connected to the DC bus 70 via an inverter 55 and a power converter (DC-DC converter) 58. A hoisting motor 53 is connected to the DC bus 70 via an inverter 56 and a power converter (DC-DC converter) 59. Power converters 57, 58, 59 respectively boost the voltage of DC bus 70, and supply the boosted power to inverters 54, 55, 56.
 コントローラ80が、電力変換装置57、58、59、65、68、及びインバータ54、55、56を制御することにより、直流母線70から走行用モータ51、横行用モータ52、及び巻上げモータ53に電力を供給する。コントローラ80は、直流母線70の電圧を予め設定された目標値に維持するように電力変換装置57、58、59、65、及び68を制御する。巻上げモータ53が巻下げ動作をするときには、コントローラ80がインバータ56及び電力変換装置59を制御して、巻上げモータ53で発生した回生電力を降圧して直流母線70に供給する。この回生電力により蓄電装置67を充電することができる。 The controller 80 controls the power conversion devices 57, 58, 59, 65, 68, and the inverters 54, 55, 56 so that power is supplied from the DC bus 70 to the traveling motor 51, the traverse motor 52, and the winding motor 53. Supply. The controller 80 controls the power conversion devices 57, 58, 59, 65 and 68 to maintain the voltage of the DC bus 70 at a preset target value. When the hoisting motor 53 performs the lowering operation, the controller 80 controls the inverter 56 and the power conversion device 59 to step down the regenerative power generated by the hoisting motor 53 and supply it to the DC bus 70. Power storage device 67 can be charged by this regenerative power.
 電力変換装置68と蓄電装置67の間には、突入電流防止回路76Aが設けられる。 A rush current prevention circuit 76A is provided between power conversion device 68 and power storage device 67.
 コントローラ80は、クレーンの起動時、或いは終了時に、蓄電システム90の異常を診断する機能を有する。クレーンシステムは起動操作をトリガーとして起動する。起動操作は、起動ボタンや起動キー等の起動手段によって構成されてもよい。起動操作は、運転室でオペレータが実行できる。遠隔操作の場合は、起動手段は、遠隔でクレーンを制御する制御室(管理室)に備えられてもよく、運転室外で使用可能な遠隔操作手段に備えられてもよい。クレーンは、起動手段への終了操作をトリガーとして終了してもよいし、別途専用のボタン(終了手段)を設けてもよい。 The controller 80 has a function of diagnosing an abnormality of the storage system 90 at the start or end of the crane. The crane system is triggered by a trigger operation. The activation operation may be configured by activation means such as an activation button or activation key. The start operation can be performed by the operator in the cab. In the case of remote control, the activation means may be provided in a control room (administration room) that remotely controls the crane, or may be provided in a remote control means available outside the driver's cab. The crane may be terminated using a termination operation to the starting means as a trigger, or may be provided with a dedicated button (termination means) separately.
 診断対象の蓄電システムの異常は、特に限定されないが、たとえば蓄電手段(バッテリやキャパシタ、これらの組み合わせ)の異常(内部抵抗異常、劣化異常、温度異常、電圧異常)であってもよいし、接続手段(スイッチ)あるいは抵抗やコンデンサの異常を含めてもよい。直列接続された複数の蓄電手段を有する場合は、それぞれの蓄電手段に電圧が均等にバランスしていると寿命が延びるため、起動時あるいは終了時に電圧状態を検出してもよい。またこの際それぞれの蓄電手段の内部抵抗や温度を計測することで、内部抵抗異常、温度異常をクレーンの動作に先立って検出することができる。 The abnormality of the storage system to be diagnosed is not particularly limited, but may be, for example, an abnormality (internal resistance abnormality, deterioration abnormality, temperature abnormality, voltage abnormality) of the storage means (battery or capacitor, or a combination thereof) It may include means (switches) or resistance or capacitor abnormalities. In the case of having a plurality of storage means connected in series, if the voltage is equally balanced in each storage means, the life is extended, so the voltage state may be detected at the time of start or end. At this time, by measuring the internal resistance and temperature of each storage means, internal resistance abnormality and temperature abnormality can be detected prior to the operation of the crane.
 クレーンシステムはさらに異常報知部92を備える。異常報知部92は、起動時に異常を検知して異常の存在を報知するか、終了時に異常を検知して異常の存在を報知する。 The crane system further includes an abnormality notification unit 92. The abnormality notification unit 92 detects an abnormality at startup and notifies the presence of an abnormality, or detects an abnormality at end and notifies an existence of an abnormality.
 異常報知部92は、遠隔操作の場合は遠隔操作手段に備えられた報知手段に、自動運転の場合は、通信手段を介して、管理棟に供えられた報知手段に、手動運転の場合は、運転室内に設けられた報知手段に、異常を報知する。 The abnormality notification unit 92 is a notification unit provided to the remote control unit in the case of remote control, and is a notification unit provided in the management building via the communication unit in the case of automatic operation, in the case of a manual operation. An alarm is provided in the driver's cabin to notify of an abnormality.
 異常報知部92は、異常の種別、あるいは緊急度に応じて報知内容を変更することができる。たとえば、作業が制限されるレベルの異常の場合は所定の第1レベルの異常を報知し、交換、或いはメンテナンスが推奨されるが、作業は制限されないレベルの異常が生じている場合は、第1レベルより低いレベルの第2レベルの異常を報知してもよい。 The abnormality notification unit 92 can change the notification content according to the type of abnormality or the degree of urgency. For example, in the case of an abnormality at a level at which work is restricted, a predetermined first level abnormality is notified, and replacement or maintenance is recommended, but at a level at which an operation is not restricted, a first abnormality is generated. The second level abnormality lower than the level may be notified.
 クレーンは、異常が生じていると判断され、異常の報知、或いは作業の制限がされている状態において、所定のモード変更操作により、蓄電システム90を利用しない作業モードで作業を開始してもよい。この蓄電システム90を利用しない作業モードは、走行速度、吊り部の動作速度、の少なくとも一つが制限されてもよい。 The crane may start the operation in the operation mode not using the storage system 90 by a predetermined mode change operation in a state where it is determined that an abnormality has occurred and notification of an abnormality or operation restriction has been made. . In the operation mode in which the storage system 90 is not used, at least one of the traveling speed and the operating speed of the hanging portion may be limited.
 図8のクレーンシステムと、図3のパワーエレクトロニクス機器300は、以下のように対応付けることができる。
 図8          図3
 コントローラ80    コントローラ240、ゲートドライバ232
 蓄電装置67      直流電源202
 突入電流防止回路76A 突入電流防止回路210
 電力変換装置68    コンバータ装置230
 平滑コンデンサ72   DCリンクコンデンサ220
 正側母線70P     DCリンク204
The crane system of FIG. 8 and the power electronics device 300 of FIG. 3 can be associated as follows.
8 and FIG.
Controller 80 Controller 240, gate driver 232
Power storage device 67 DC power supply 202
Inrush current prevention circuit 76 A Inrush current prevention circuit 210
Power converter 68 Converter 230
Smoothing capacitor 72 DC link capacitor 220
Positive side bus 70P DC link 204
 コントローラ80が監視する異常のひとつは、突入電流防止回路76Aのリレーや電磁接触器の劣化や故障でありうる。この場合、コントローラ80は、図3や図4を参照して説明した方法によって、リレーや電磁接触器の劣化や故障を検出してもよい。 One of the abnormalities monitored by the controller 80 may be deterioration or failure of the relay or the magnetic contactor of the inrush current prevention circuit 76A. In this case, the controller 80 may detect deterioration or failure of the relay or the magnetic contactor by the method described with reference to FIGS. 3 and 4.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 While the present invention has been described using specific terms based on the embodiments, the embodiments merely show the principles and applications of the present invention, and the embodiments are defined in the claims. Many variations and modifications of the arrangement can be made without departing from the concept of the present invention.
 200 パワーエレクトロニクス機器
 202 直流電源
 204 DCリンク
 210 突入電流防止回路
 220 DCリンクコンデンサ
 230 コンバータ装置
 232 ゲートドライバ
 234 電流センサ
 240 コントローラ
 242 コンバータコントローラ
 244 判定器
 MC1 第1スイッチ
 RY1 第2スイッチ
 300 パワーエレクトロニクス機器
 302 直流電源
 304 DCリンク
 306 負荷
 310 突入電流防止回路
 320 平滑コンデンサ
 330 負荷駆動装置
 332 負荷
200 Power Electronics Equipment 202 DC Power Supply 204 DC Link 210 Inrush Current Prevention Circuit 220 DC Link Capacitor 230 Converter Device 232 Gate Driver 234 Current Sensor 240 Controller 242 Converter Controller 244 Determination Unit MC1 1st Switch RY 1 2nd Switch 300 Power Electronics Equipment 302 DC Power supply 304 DC link 306 Load 310 Inrush current protection circuit 320 Smoothing capacitor 330 Load driver 332 Load
 本発明は、産業機械に利用できる。 The present invention is applicable to industrial machines.

Claims (13)

  1.  本体部と、
     吊り作業部と、
     前記走行部、および吊り作業部、を駆動する駆動部と、
     前記駆動部に電力を供給する蓄電システムと、
     を備え、
     起動時、或いは終了時に、前記蓄電システムの異常を診断する機能を有するクレーン。
    Body part,
    A hanging work unit,
    A driving unit for driving the traveling unit and the hanging operation unit;
    A storage system for supplying power to the drive unit;
    Equipped with
    The crane which has a function which diagnoses the abnormalities of the electricity storage system at the time of starting or completion.
  2.  起動時に異常を検知して異常の存在を報知するか、終了時に異常を検知して異常の存在を報知する異常報知部を備える、請求項1に記載のクレーン。 The crane according to claim 1, further comprising: an abnormality notification unit that detects an abnormality at startup and reports an existence of the abnormality, or detects an abnormality at an end and reports an existence of the abnormality.
  3.  前記異常報知部は、
     遠隔操作の場合は遠隔操作手段に備えられた報知手段に、
     自動運転の場合は、通信手段を介して、管理棟に供えられた報知手段に、
     手動運転の場合は、運転室内に設けられた報知手段に、
     異常を報知する、請求項2に記載のクレーン。
    The abnormality notification unit
    In the case of remote control, informing means provided in the remote control means,
    In the case of automatic operation, the notification means provided to the management building through the communication means,
    In the case of manual operation, the notification means provided in the driver's cab
    The crane according to claim 2, which reports an abnormality.
  4.  前記異常報知部は、異常の種別に応じて報知内容を変更し、
     作業が制限されるレベルの異常の場合は所定の第1レベルの異常を報知し、
     交換、或いはメンテナンスが推奨されるが、作業は制限されないレベルの異常が生じている場合は、第1レベルより低いレベルの第2レベルの異常を報知する、請求項2に記載のクレーン。
    The abnormality notification unit changes the notification content according to the type of abnormality,
    In the case of an abnormality at a level at which work is limited, an alarm of a predetermined first level is notified,
    The crane according to claim 2, wherein if the level of abnormality that replacement or maintenance is recommended but the operation is not limited occurs, the second level of abnormality lower than the first level is notified.
  5.  異常が生じていると判断され、異常の報知、或いは作業の制限がされている状態において、所定のモード変更操作により、前記蓄電システムを利用しない作業モードで作業を開始する、請求項1に記載のクレーン。 The operation is started in a work mode not using the power storage system by a predetermined mode change operation in a state where it is determined that an abnormality has occurred and notification of an abnormality or work restriction has been made. Crane.
  6.  前記蓄電システムを利用しない作業モードは、走行速度、吊り部の動作速度、の少なくとも一つが制限される、請求項5に記載のクレーン。 The crane according to claim 5, wherein at least one of a traveling speed and an operating speed of the suspension portion is limited in the operation mode not using the storage system.
  7.  コンデンサと、
     直流電源と前記コンデンサとの間に設けられるスイッチを含む突入電流防止回路と、
     判定期間において前記スイッチに遮断指令または導通指令を与え、そのときの前記コンデンサの電圧または前記突入電流防止回路に流れる電流にもとづいて前記スイッチの異常を検出する判定器と、
     を備えることを特徴とするパワーエレクトロニクス機器。
    A capacitor,
    An inrush current prevention circuit including a switch provided between a DC power supply and the capacitor;
    A determinator for giving a shutoff command or a conduction command to the switch in a judgment period, and detecting an abnormality of the switch based on a voltage of the capacitor at that time or a current flowing in the inrush current prevention circuit;
    Power electronics equipment characterized by comprising.
  8.  前記判定器は、前記スイッチに導通指令を与えて前記コンデンサを充電する充電期間中に、前記スイッチに一時的に遮断指令を与え、そのときの前記突入電流防止回路に流れる電流の変化にもとづいて前記異常の有無を判定することを特徴とする請求項7に記載のパワーエレクトロニクス機器。 The determination unit temporarily gives a shutoff command to the switch during a charging period for giving a conduction command to the switch to charge the capacitor, and based on a change in current flowing in the inrush current prevention circuit at that time. The power electronics device according to claim 7, wherein the presence or absence of the abnormality is determined.
  9.  前記判定器は、前記スイッチに導通指令を与えて前記コンデンサを充電する充電期間中に、前記スイッチに一時的に遮断指令を与え、そのときの前記コンデンサの電圧の変化にもとづいて前記異常の有無を判定することを特徴とする請求項8に記載のパワーエレクトロニクス機器。 The determinator gives a conduction command to the switch to temporarily give a shutoff command to the switch during a charging period for charging the capacitor, and the presence or absence of the abnormality based on a change in voltage of the capacitor at that time. The power electronics device according to claim 8, characterized in that:
  10.  前記突入電流防止回路と前記コンデンサの間に設けられるコンバータ装置をさらに備え、
     前記スイッチに遮断指令を与えた状態において前記コンバータ装置をスイッチング動作させ、そのときの前記突入電流防止回路に流れる電流にもとづいて、前記異常の有無を判定することを特徴とする請求項7に記載のパワーエレクトロニクス機器。
    A converter device provided between the inrush current prevention circuit and the capacitor;
    8. The converter device is subjected to switching operation in a state where a shutoff command is given to the switch, and the presence or absence of the abnormality is determined based on the current flowing through the inrush current prevention circuit at that time. Power electronics equipment.
  11.  前記突入電流防止回路と前記コンデンサの間に設けられるコンバータ装置をさらに備え、
     前記スイッチに遮断指令を与えた状態において前記コンバータ装置をスイッチング動作させ、そのときの前記コンデンサの電圧にもとづいて、前記異常の有無を判定することを特徴とする請求項7に記載のパワーエレクトロニクス機器。
    A converter device provided between the inrush current prevention circuit and the capacitor;
    8. The power electronic device according to claim 7, wherein the converter device is subjected to switching operation in a state where a shutoff command is given to the switch, and the presence or absence of the abnormality is determined based on the voltage of the capacitor at that time. .
  12.  前記コンデンサに接続される負荷駆動装置をさらに備え、
     前記スイッチに遮断指令を与えた状態において前記負荷駆動装置を動作させ、そのときの前記突入電流防止回路に流れる電流にもとづいて、前記異常の有無を判定することを特徴とする請求項7に記載のパワーエレクトロニクス機器。
    Further comprising a load driver connected to the capacitor;
    The load driving device is operated in a state where a shutoff command is given to the switch, and the presence or absence of the abnormality is determined based on the current flowing through the inrush current prevention circuit at that time. Power electronics equipment.
  13.  前記コンデンサに接続される負荷駆動装置をさらに備え、
     前記スイッチに遮断指令を与えた状態において前記負荷駆動装置を動作させ、そのときの前記コンデンサの電圧にもとづいて、前記異常の有無を判定することを特徴とする請求項7に記載のパワーエレクトロニクス機器。
    Further comprising a load driver connected to the capacitor;
    8. The power electronic device according to claim 7, wherein the load driving device is operated in a state in which a shutoff command is given to the switch, and the presence or absence of the abnormality is determined based on the voltage of the capacitor at that time. .
PCT/JP2018/038446 2017-12-21 2018-10-16 Crane and power electronics equipment WO2019123800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019560826A JP7272961B2 (en) 2017-12-21 2018-10-16 crane
JP2023037707A JP7432033B2 (en) 2017-12-21 2023-03-10 crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017245331 2017-12-21
JP2017-245331 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019123800A1 true WO2019123800A1 (en) 2019-06-27

Family

ID=66994495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038446 WO2019123800A1 (en) 2017-12-21 2018-10-16 Crane and power electronics equipment

Country Status (3)

Country Link
JP (2) JP7272961B2 (en)
TW (1) TWI772553B (en)
WO (1) WO2019123800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112549999A (en) * 2020-11-21 2021-03-26 中联重科股份有限公司 Power supply system and construction machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274779A (en) * 2001-03-15 2002-09-25 Daido Steel Co Ltd Overhead crane operating device
JP2006089254A (en) * 2004-09-27 2006-04-06 Mitsui Eng & Shipbuild Co Ltd Container crane
JP2009092628A (en) * 2007-10-12 2009-04-30 Panasonic Corp Electric storage device
WO2015040742A1 (en) * 2013-09-20 2015-03-26 株式会社小松製作所 Battery type vehicle, charging management system, and charging management method
JP2016116269A (en) * 2014-12-11 2016-06-23 株式会社小松製作所 Regenerative power supply device for crane device
JP2017136971A (en) * 2016-02-04 2017-08-10 三菱自動車工業株式会社 Contactor failure determination device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701744B2 (en) * 2005-02-23 2011-06-15 ムラテックオートメーション株式会社 Auxiliary controller for automatic guided vehicle
TWI462432B (en) * 2012-12-28 2014-11-21 Power management method and apparatus for battery module of electric vehicle
KR101546801B1 (en) * 2015-04-06 2015-08-25 주식회사 대산이노텍 Hoist including regenerative brake resistor
CN106144906A (en) * 2015-04-15 2016-11-23 上海宝冶工业工程有限公司 The wear detector of crane Electricity collecting frame and crane Electricity collecting frame

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274779A (en) * 2001-03-15 2002-09-25 Daido Steel Co Ltd Overhead crane operating device
JP2006089254A (en) * 2004-09-27 2006-04-06 Mitsui Eng & Shipbuild Co Ltd Container crane
JP2009092628A (en) * 2007-10-12 2009-04-30 Panasonic Corp Electric storage device
WO2015040742A1 (en) * 2013-09-20 2015-03-26 株式会社小松製作所 Battery type vehicle, charging management system, and charging management method
JP2016116269A (en) * 2014-12-11 2016-06-23 株式会社小松製作所 Regenerative power supply device for crane device
JP2017136971A (en) * 2016-02-04 2017-08-10 三菱自動車工業株式会社 Contactor failure determination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112549999A (en) * 2020-11-21 2021-03-26 中联重科股份有限公司 Power supply system and construction machine

Also Published As

Publication number Publication date
TW201927677A (en) 2019-07-16
JP2023083270A (en) 2023-06-15
TWI772553B (en) 2022-08-01
JP7272961B2 (en) 2023-05-12
JP7432033B2 (en) 2024-02-15
JPWO2019123800A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
EP2570292B1 (en) Alternating-current electric vehicle
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
JP5020420B2 (en) Electric vehicle control device
JP5240684B2 (en) Elevator power supply system
JP5414818B2 (en) Electric vehicle power converter
JP5875214B2 (en) Power conversion system
JP7432033B2 (en) crane
JP2007267504A (en) Storage apparatus of crane, crane power supply and power supply facility of crane
CN103608278B (en) Elevator control device
CN103562108A (en) Control device for elevator
JP2010041806A (en) Power supply for electric railcar
JP2006014395A (en) Controller of electric vehicle
KR101973749B1 (en) Redundant Scheme of Levitation and Guidance Control System for Magnetic Levitation Train
JP6336250B2 (en) Inverter device
JP4837272B2 (en) Elevator control device
EP3858652A1 (en) Power system for an electric train, and electric train
JP2014009041A (en) Elevator control device
JP6129061B2 (en) Elevator control system and elevator control method
JP6726121B2 (en) Power conversion system
JPH07252073A (en) Controller of man conveyor
JP6477385B2 (en) Elevating mechanism and power supply control method thereof
CN111391677A (en) Emergency traction system
JP2002120973A (en) Elevator control device
JP2013150380A (en) Voltage drop protection device for dc power supply
US11323060B2 (en) Motor control apparatus including protection mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890222

Country of ref document: EP

Kind code of ref document: A1