WO2019123591A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2019123591A1
WO2019123591A1 PCT/JP2017/045852 JP2017045852W WO2019123591A1 WO 2019123591 A1 WO2019123591 A1 WO 2019123591A1 JP 2017045852 W JP2017045852 W JP 2017045852W WO 2019123591 A1 WO2019123591 A1 WO 2019123591A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
semiconductor device
semiconductor
disposed
Prior art date
Application number
PCT/JP2017/045852
Other languages
French (fr)
Japanese (ja)
Inventor
晴久 齊藤
良章 竹本
芳隆 只木
政康 金沢
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/045852 priority Critical patent/WO2019123591A1/en
Publication of WO2019123591A1 publication Critical patent/WO2019123591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to a semiconductor device.
  • This phenomenon can be applied to the estimation of the type and amount of substances such as metals contained in an object.
  • the object is irradiated with X-rays, and fluorescent X-rays emitted from the object are observed.
  • the above estimation is performed on the basis of the energy intensity for each wavelength of light included in fluorescent X-rays, that is, on the basis of the spectrum of fluorescent X-rays.
  • FIG. 12 shows the configuration of a detector 1010 configured similarly to the SDD disclosed in Patent Document 1.
  • a cross section of detector 1010 is shown.
  • the detector 1010 includes a semiconductor substrate 1100, an insulating layer 1130, an anode electrode 1140, a cathode electrode 1150, and a plurality of gate electrodes 1180.
  • reference numerals of two gate electrodes 1180 are shown as a representative of the plurality of gate electrodes 1180.
  • the semiconductor substrate 1100 and the insulating layer 1130 are stacked in a direction Dr10 perpendicular to the surface 1100a of the semiconductor substrate 1100.
  • the semiconductor substrate 1100 includes a first semiconductor layer 1101, a second semiconductor layer 1102, a first impurity layer 1110, and a plurality of second impurity layers 1120.
  • the symbol of one second impurity layer 1120 is shown as a representative of the plurality of second impurity layers 1120.
  • the first semiconductor layer 1101 and the second semiconductor layer 1102 are stacked in a direction Dr10 perpendicular to the surface 1100a of the semiconductor substrate 1100.
  • the semiconductor substrate 1100 has a surface 1100 a and a surface 1100 b.
  • the face 1100a and the face 1100b face in opposite directions.
  • the first semiconductor layer 1101 contains an N-type semiconductor.
  • the second semiconductor layer 1102 contains a P-type semiconductor.
  • the second semiconductor layer 1102 is configured as a layer from the surface 1100 b to a predetermined depth.
  • the first impurity layer 1110 and the plurality of second impurity layers 1120 are disposed in the first semiconductor layer 1101.
  • the first impurity layer 1110 contains an N-type semiconductor.
  • the first impurity layer 1110 is formed of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 1101.
  • the second impurity layer 1120 contains a P-type semiconductor.
  • the surface of each of the first impurity layer 1110 and the plurality of second impurity layers 1120 constitutes a surface 1100 a.
  • Each of the first impurity layer 1110 and the plurality of second impurity layers 1120 is configured as a layer from the surface 1100 a to a predetermined depth.
  • the insulating layer 1130 is stacked over the first semiconductor layer 1101.
  • the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 are disposed on the surface of the insulating layer 1130. These electrodes are arranged at mutually different positions.
  • the anode electrode 1140 is disposed at a position corresponding to the first impurity layer 1110.
  • the cathode electrode 1150 and the plurality of gate electrodes 1180 are disposed at positions corresponding to the second impurity layer 1120.
  • an opening is formed at a position corresponding to each of the first impurity layer 1110 and the plurality of second impurity layers 1120.
  • the anode electrode 1140 is connected to the first impurity layer 1110 through an opening formed in the insulating layer 1130.
  • the cathode electrode 1150 is connected to the second impurity layer 1120 through an opening formed in the insulating layer 1130.
  • the gate electrode 1180 is connected to the second impurity layer 1120 through an opening formed in the insulating layer 1130. That is, the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 penetrate the insulating layer 1130.
  • the gate electrode 1180 and the second impurity layer 1120 constitute an FET (Field Effect Transistor).
  • FIG. 13 is a plan view of detector 1010.
  • each element is shown when the detector 1010 is viewed in the direction perpendicular to the surface 1100 a of the semiconductor substrate 1100. That is, in FIG. 13, each element when the detector 1010 is viewed from the front of the semiconductor substrate 1100 is shown.
  • the insulating layer 1130 is omitted.
  • reference numerals of one gate electrode 1180 are shown as a representative of the plurality of gate electrodes 1180.
  • the anode electrode 1140 is disposed at the center of the surface 1100 a of the semiconductor substrate 1100.
  • the anode electrode 1140 is a circular electrode.
  • the cathode electrode 1150 and the plurality of gate electrodes 1180 are ring-shaped electrodes.
  • the cathode electrode 1150 and the plurality of gate electrodes 1180 are arranged concentrically.
  • the cathode electrode 1150 and the plurality of gate electrodes 1180 are disposed to surround the anode electrode 1140.
  • the cathode electrode 1150 is disposed at the outermost side.
  • the plurality of gate electrodes 1180 are disposed between the anode electrode 1140 and the cathode electrode 1150.
  • a cross section through line L10 shown in FIG. 13 is shown in FIG.
  • a voltage is applied to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180.
  • the voltage applied to the anode electrode 1140 is higher than the voltage applied to the cathode electrode 1150.
  • the voltage applied to the anode electrode 1140 is higher than any voltage applied to the plurality of gate electrodes 1180.
  • a negative voltage is applied to the cathode electrode 1150 and the plurality of gate electrodes 1180.
  • the voltage applied to the plurality of gate electrodes 1180 is higher than the voltage applied to the cathode electrode 1150.
  • the voltage applied to the inner gate electrode 1180 is higher than the voltage applied to the outer gate electrode 1180.
  • a voltage is applied to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 such that the potential inside the semiconductor substrate 1100 increases from the outer periphery of the semiconductor substrate 1100 toward the center.
  • the electrodes are disposed on the surface 1100 b of the semiconductor substrate 1100. That is, the electrode is disposed on the second semiconductor layer 1102. A voltage lower than that applied to the anode electrode 1140 is applied to that electrode. Thus, a voltage is applied to the second semiconductor layer 1102.
  • the second semiconductor layer 1102 functions as a cathode electrode. A voltage is applied to the second semiconductor layer 1102 such that the internal potential of the semiconductor substrate 1100 increases from the surface 1100b toward the surface 1100a.
  • a voltage as described above is applied to detector 1010.
  • the potential in the semiconductor substrate 1100 increases from the outer periphery to the center of the semiconductor substrate 1100 and also increases from the surface 1100 b to the surface 1100 a. That is, a potential gradient is generated in the semiconductor substrate 1100.
  • the potential acting on the electrons decreases from the outer periphery of the semiconductor substrate 1100 toward the center, and decreases from the surface 1100 b to the surface 1100 a. That is, a potential gradient is generated in the semiconductor substrate 1100.
  • a signal based on the electrons is output from detector 1010.
  • FIG. 14 shows the configuration of a detector 1011 configured similarly to the other SDD disclosed in Patent Document 1.
  • a cross section of the detector 1011 is shown.
  • the detector 1011 includes a semiconductor substrate 1100, an insulating layer 1130, an anode electrode 1140, and a cathode electrode 1150.
  • points different from the configuration shown in FIG. 12 will be described.
  • the plurality of gate electrodes 1180 shown in FIG. 12 are not disposed in the detector 1011. Except for this point, the configuration shown in FIG. 14 is the same as the configuration shown in FIG.
  • a plurality of gate electrodes 1180 constituting an FET are not disposed. Therefore, it is hard to produce the dielectric breakdown by the rapid change of the voltage applied to an electrode.
  • FIG. 15 shows the configuration of another prior art detector 1012.
  • a cross section of the detector 1012 is shown.
  • the detector 1012 includes a semiconductor substrate 1103, an insulating layer 1130, an anode electrode 1140, and a plurality of gate electrodes 1190.
  • reference numerals of two gate electrodes 1190 are shown as a representative of the plurality of gate electrodes 1190.
  • the configuration shown in FIG. 15 will be described about differences from the configuration shown in FIG.
  • the semiconductor substrate 1100 shown in FIG. 12 is changed to a semiconductor substrate 1103.
  • the first semiconductor layer 1101 shown in FIG. 12 is changed to a first semiconductor layer 1104.
  • the plurality of second impurity layers 1120 shown in FIG. 12 are not provided.
  • a plurality of gate electrodes 1190 are disposed on the surface of the insulating layer 1130 instead of the cathode electrode 1150 and the plurality of gate electrodes 1180 shown in FIG. The voltage applied to the inner gate electrode 1190 is higher than the voltage applied to the outer gate electrode 1190.
  • the plurality of second impurity layers 1120 are not disposed.
  • the plurality of gate electrodes 1190 do not penetrate through the insulating layer 1130. Therefore, the detector 1012 can be easily manufactured as compared with the detector 1010.
  • the configurations shown in FIGS. 12 to 15 require a structure for applying a voltage to both the electrode disposed on one surface of the semiconductor substrate and the electrode disposed on the other surface of the semiconductor substrate.
  • a structure for applying a voltage to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 disposed on the surface 1100a is required.
  • a structure for applying a voltage to an electrode connected to the second semiconductor layer 1102 included in the surface 1100 b is required.
  • the structure for applying a voltage to the electrode includes a wire or the like connected to the electrode.
  • a structure is required to apply a voltage to the electrodes on both of the two sides of the semiconductor substrate. Therefore, it is difficult to reduce the size of the detector, and the yield of the detector is reduced.
  • An object of the present invention is to provide a semiconductor device which can be reduced in size and which can realize improvement in yield.
  • a semiconductor device includes a semiconductor substrate, a first electrode, a second electrode, a conductive layer, and a connection layer.
  • the semiconductor substrate has a first main surface and a second main surface facing in opposite directions.
  • the first electrode and the second electrode are disposed on the first main surface.
  • the conductive layer is disposed on the second main surface or disposed in the semiconductor substrate so as to include the second main surface.
  • the connection layer is disposed in a hole opened in at least one of the first main surface and the second main surface in the semiconductor substrate, and is electrically connected to the second electrode and the conductive layer. And it has conductivity.
  • connection layer may be connected to the second electrode on the first main surface.
  • connection layer may be configured by a cylinder which passes through the first electrode and surrounds a virtual straight line perpendicular to the first major surface.
  • the semiconductor device includes a plurality of the semiconductor devices disposed through the first electrode and surrounding a virtual straight line perpendicular to the first major surface. It may have a connection layer.
  • connection layer in the first aspect, in a virtual plane parallel to the first main surface and passing through the semiconductor substrate, the connection layer passes through the first electrode. It may be arranged on the circumference of a virtual circle or a virtual polygon centering on a virtual straight line perpendicular to the first main surface.
  • the semiconductor device may have a plurality of the first electrodes.
  • the second electrode may be disposed so as to surround each of the first electrodes constituting the plurality of first electrodes.
  • connection layer in a virtual plane which is parallel to the first main surface and passes through the semiconductor substrate, includes the plurality of first elements. It may be arranged to pass through each of the first electrodes constituting the electrodes and to surround an imaginary straight line perpendicular to the first major surface.
  • the semiconductor device may have a plurality of the connection layers.
  • the number of connection layers may be smaller than the number of first electrodes.
  • the semiconductor device can be reduced in size, and an improvement in yield can be realized.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. It is a top view of the semiconductor device of a 1st embodiment of the present invention.
  • FIG. 6 is a plan view of a semiconductor device of a first modified example of the first embodiment of the present invention.
  • FIG. 16 is a plan view of a semiconductor device of a second modified example of the first embodiment of the present invention. It is sectional drawing of the semiconductor device of the 2nd Embodiment of this invention.
  • FIG. 35 is a plan view of a semiconductor device of a first modified example of the third embodiment of the present invention. It is a top view of the semiconductor device of the 2nd modification of a 3rd embodiment of the present invention. It is a top view of the semiconductor device of the 3rd modification of a 3rd embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a prior art detector.
  • FIG. 1 is a plan view of a prior art detector.
  • FIG. 1 is a cross-sectional view of a prior art detector. 1 is a cross-sectional view of a prior art detector. 1 is a cross-sectional view of a prior art detector.
  • 1 is a cross-sectional view of a prior art detector.
  • FIG. 1 shows the configuration of a semiconductor device 10 according to a first embodiment of the present invention.
  • a cross section of a semiconductor device 10 is shown.
  • the semiconductor device 10 is configured as a silicon drift detector (SDD) that detects radiation, that is, fluorescent X-rays.
  • SDD silicon drift detector
  • the dimensions of the parts constituting the semiconductor device 10 do not necessarily follow the dimensions shown in FIG.
  • the dimensions of the parts constituting the semiconductor device 10 may be arbitrary. The same applies to the dimensions in other cross-sectional views.
  • the semiconductor device 10 includes a semiconductor substrate 100, a first electrode 140, a second electrode 150, a third electrode 160 (conductive layer), and a connection layer 170.
  • the semiconductor substrate 100 has a surface 101a (first main surface) and a surface 101b (second main surface) facing in opposite directions.
  • the first electrode 140 and the second electrode 150 are disposed on the surface 101 a.
  • the third electrode 160 is disposed on the surface 101 b and has conductivity.
  • the connection layer 170 is disposed in a hole opened in at least one of the surface 101 a and the surface 101 b in the semiconductor substrate 100.
  • the connection layer 170 is electrically connected to the second electrode 150 and the third electrode 160, and has conductivity.
  • the semiconductor device 10 includes a semiconductor substrate 100, an insulating layer 130, a first electrode 140, a second electrode 150, a third electrode 160, a connection layer 170, and a plurality of gate electrodes 180.
  • reference numerals of two gate electrodes 180 are shown as a representative of the plurality of gate electrodes 180.
  • the semiconductor substrate 100, the insulating layer 130, and the third electrode 160 are stacked in a direction Dr1 perpendicular to the surface 101a of the semiconductor substrate 100.
  • the semiconductor substrate 100 includes a first semiconductor layer 101, a first impurity layer 110, and a plurality of second impurity layers 120.
  • the symbol of one second impurity layer 120 is shown as a representative of the plurality of second impurity layers 120.
  • the semiconductor material forming the semiconductor substrate 100 is silicon (Si).
  • the first semiconductor layer 101 contains an N-type semiconductor.
  • the first semiconductor layer 101 has a surface 101 a and a surface 101 b.
  • the face 101a and the face 101b face in opposite directions to each other.
  • the surface 101 a and the surface 101 b constitute the main surface of the semiconductor substrate 100.
  • the main surface is a relatively wide surface among a plurality of surfaces forming the surface of the semiconductor substrate 100.
  • the first impurity layer 110 and the plurality of second impurity layers 120 are disposed in the first semiconductor layer 101.
  • the first impurity layer 110 contains an N-type semiconductor.
  • the first impurity layer 110 is formed of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 101.
  • the second impurity layer 120 contains a P-type semiconductor.
  • the surface of each of the first impurity layer 110 and the plurality of second impurity layers 120 constitutes a surface 101 a.
  • Each of the first impurity layer 110 and the plurality of second impurity layers 120 is configured as a layer from the surface 101 a to a predetermined depth.
  • the insulating layer 130 is made of an insulating material.
  • the insulating material forming the insulating layer 130 is silicon dioxide (SiO 2).
  • the insulating layer 130 is stacked on the first semiconductor layer 101.
  • the insulating layer 130 is in contact with the surface 101 a of the first semiconductor layer 101.
  • the first electrode 140, the second electrode 150, the third electrode 160, and the plurality of gate electrodes 180 are made of a conductive material.
  • the conductive material constituting these electrodes is a metal such as copper (Cu), aluminum (Al), and gold (Au).
  • the conductive material forming these electrodes may include a semiconductor such as polysilicon having a high impurity concentration.
  • the first electrode 140, the second electrode 150, the third electrode 160, and the plurality of gate electrodes 180 may be made of different conductive materials.
  • the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 are disposed on the surface of the insulating layer 130. These electrodes are arranged at mutually different positions.
  • the first electrode 140 is disposed at a position corresponding to the first impurity layer 110.
  • the plurality of gate electrodes 180 are disposed at positions corresponding to the second impurity layer 120.
  • the second electrode 150 is disposed at a position corresponding to the connection layer 170. In the example shown in FIG. 1, the impurity layer is not disposed at a position corresponding to the second electrode 150.
  • an opening is formed at a position corresponding to each of the first impurity layer 110 and the plurality of second impurity layers 120.
  • the first electrode 140 is connected to the first impurity layer 110 through an opening formed in the insulating layer 130.
  • the second electrode 150 is connected to the connection layer 170 through an opening formed in the insulating layer 130.
  • the gate electrode 180 is connected to the second impurity layer 120 through an opening formed in the insulating layer 130. That is, the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 penetrate the insulating layer 130.
  • the gate electrode 180 and the second impurity layer 120 constitute an FET.
  • the third electrode 160 is stacked on the first semiconductor layer 101.
  • the third electrode 160 is in contact with the surface 101 b of the first semiconductor layer 101.
  • the third electrode 160 has a surface 160a and a surface 160b.
  • the face 160a and the face 160b face in opposite directions to each other.
  • the surface 160a is in contact with the surface 101b.
  • the third electrode 160 covers at least a part of the surface 101 b. In the example shown in FIG. 1, the third electrode 160 covers the entire surface 101 b. An opening may be formed in part of the third electrode 160.
  • connection layer 170 is made of a conductive material similar to the conductive material constituting the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180.
  • the connection layer 170 penetrates the first semiconductor layer 101.
  • the connection layer 170 is connected to the second electrode 150 at the surface 101 a and connected to the third electrode 160 at the surface 101 b.
  • the connection layer 170 is configured by a cylinder (wall) which passes through the first electrode 140 and surrounds an imaginary straight line L1 perpendicular to the surface 101a.
  • the third electrode 160 is larger than the second electrode 150 when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a.
  • the third electrode 160 is larger than the connection layer 170 when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a.
  • FIG. 2 and 3 show the configuration around the connection layer 170.
  • FIG. FIG. 2 shows a first example and
  • FIG. 3 shows a second example.
  • the third electrode 160 is formed on the surface 101 b of the first semiconductor layer 101.
  • the first semiconductor layer 101 is scraped from the surface 101 a side of the first semiconductor layer 101.
  • a hole 190 penetrating the first semiconductor layer 101 is formed.
  • the hole 190 opens in the surface 101 a and the surface 101 b.
  • the connection layer 170 is formed by filling the holes 190 with a conductive material.
  • the connection layer 170 is disposed in the hole 190.
  • the insulating layer 130 is formed on the surface 101 a of the first semiconductor layer 101.
  • a second electrode 150 is formed to penetrate the insulating layer 130.
  • connection layer 170 and the second electrode 150 coincides with the surface 101 a.
  • the position of the boundary between the connection layer 170 and the third electrode 160 coincides with the surface 101 b.
  • the connection layer 170 and the second electrode 150 are defined on the basis of the position of the surface 101a.
  • a portion above the surface 101 a is a second electrode 150.
  • the portion below the surface 101 a is the connection layer 170.
  • the distance between the connection layer 170 and the surface 101a is smaller than the distance d1 between the third electrode 160 and the surface 101a. In FIG. 2, the distance between the connection layer 170 and the surface 101 a is zero.
  • An impurity layer may be disposed between the connection layer 170 and the third electrode 160. In that case, the connection layer 170 is electrically connected to the third electrode 160 through the impurity layer.
  • an impurity is implanted from the surface 101a of the first semiconductor layer 101, and the impurity is diffused to form an impurity layer 200.
  • the first semiconductor layer 101 is removed from the side of the surface 101 b of the first semiconductor layer 101.
  • the hole 191 connected to the impurity layer 200 is formed.
  • the hole 191 opens only to the surface 101 b.
  • the connection layer 170 and the third electrode 160 are formed by filling the hole 191 with a conductive material and covering the surface 101b with a conductive material. Thereby, the connection layer 170 is disposed in the hole 191.
  • the insulating layer 130 is formed on the surface 101 a of the first semiconductor layer 101.
  • a second electrode 150 is formed to penetrate the insulating layer 130.
  • connection layer 170 and the third electrode 160 coincides with the surface 101 b.
  • the connection layer 170 and the third electrode 160 are integrated.
  • the connection layer 170 and the third electrode 160 are defined based on the position of the surface 101 b.
  • the portion above the surface 101 b is the connection layer 170.
  • a portion below the surface 101 b is a third electrode 160.
  • the distance d2 between the connection layer 170 and the surface 101a is smaller than the distance d1 between the third electrode 160 and the surface 101a.
  • the connection layer 170 is electrically connected to the second electrode 150 through the impurity layer 200.
  • FIG. 4 is a plan view of the semiconductor device 10.
  • each element when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 4, each element when the semiconductor device 10 is viewed from the front of the semiconductor substrate 100 is shown.
  • the insulating layer 130 is omitted.
  • reference numerals of one gate electrode 180 are shown as a representative of the plurality of gate electrodes 180.
  • the outer shape of the semiconductor device 10 is rectangular. In the example shown in FIG. 4, the outline of the semiconductor device 10 is a square. The outer shape of the semiconductor device 10 is not limited to a rectangle.
  • the first electrode 140 is disposed at the center of the surface 101a.
  • the first electrode 140 is a circular electrode.
  • the outer shape of the first electrode 140 may be rectangular or the like.
  • a virtual straight line L1 shown in FIG. 1 passes through the center of the first electrode 140.
  • the second electrode 150 overlaps with the connection layer 170.
  • the second electrode 150 is omitted in FIG.
  • the second electrode 150 and the plurality of gate electrodes 180 are ring-shaped electrodes.
  • the second electrode 150 and the plurality of gate electrodes 180 are arranged concentrically.
  • the second electrode 150 and the plurality of gate electrodes 180 are arranged to surround the first electrode 140.
  • the second electrode 150 is disposed at the outermost side.
  • the plurality of gate electrodes 180 are disposed between the first electrode 140 and the second electrode 150.
  • a cross section through line L2 shown in FIG. 4 is shown in FIG.
  • connection layer 170 is disposed so as to overlap with the outermost second electrode 150.
  • the connection layer 170 is ring-shaped.
  • the connection layer 170 is configured by a cylinder surrounding the virtual straight line L1.
  • the imaginary straight line L1 is indicated by a point.
  • the central axis of the connection layer 170 coincides with the imaginary straight line L1.
  • connection layer 170 is disposed on the circumference of virtual circle C1 centered on virtual straight line L1 passing through first electrode 140 and perpendicular to surface 101a. It is done.
  • the virtual plane S1 is shown by a straight line.
  • the virtual plane S1 is between the surface 101a and the surface 101b.
  • a virtual circle C1 is indicated by a point.
  • the shape of the cross section of the cylinder constituting the connection layer 170 shown in FIG. 4 is a circle.
  • connection layer 170 may be arranged on the circumference of a virtual polygon centered on virtual straight line L1.
  • a virtual polygon has three or more vertices and three or more sides. Therefore, the shape of the cross section of the cylinder constituting the connection layer 170 may be polygonal.
  • a voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180.
  • the voltage applied to the first electrode 140 is higher than the voltage applied to the second electrode 150.
  • the first electrode 140 functions as an anode electrode, and the second electrode 150 functions as a cathode electrode.
  • the voltage applied to the first electrode 140 is higher than any voltage applied to the plurality of gate electrodes 180.
  • a negative voltage is applied to the second electrode 150 and the plurality of gate electrodes 180.
  • the voltage applied to the plurality of gate electrodes 180 is higher than the voltage applied to the second electrode 150.
  • the voltage applied to the inner gate electrode 180 is higher than the voltage applied to the outer gate electrode 180.
  • a voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 such that the potential inside the semiconductor substrate 100 increases from the outer periphery of the semiconductor substrate 100 toward the center.
  • the voltage applied to the second electrode 150 is applied to the third electrode 160 through the connection layer 170.
  • a structure such as a wiring for directly applying a voltage to the third electrode 160 from the outside of the semiconductor device 10 is not necessary.
  • a voltage lower than that applied to the first electrode 140 is applied to the third electrode 160.
  • a voltage is applied to the third electrode 160 such that the internal potential of the semiconductor substrate 100 increases from the surface 101 b toward the surface 101 a.
  • the voltage as described above is applied to the semiconductor device 10.
  • the potential acting on the electrons decreases from the outer periphery to the center of the semiconductor substrate 100 and decreases from the surface 101 b to the surface 101 a. That is, a potential gradient is generated in the semiconductor substrate 100.
  • X-rays enter the semiconductor device 10
  • electrons are generated in the semiconductor substrate 100.
  • the electrons collect at the first electrode 140 according to the potential gradient.
  • a signal based on the electrons is output from the semiconductor device 10.
  • the first semiconductor layer 101 and the first impurity layer 110 may be formed of a P-type semiconductor, and the plurality of second impurity layers 120 may be formed of an N-type semiconductor.
  • the voltage applied to each electrode in that case will be described.
  • the voltage applied to the first electrode 140 is lower than the voltage applied to the second electrode 150.
  • the first electrode 140 functions as a cathode electrode, and the second electrode 150 functions as an anode electrode.
  • the voltage applied to the first electrode 140 is lower than any voltage applied to the plurality of gate electrodes 180.
  • a positive voltage is applied to the second electrode 150 and the plurality of gate electrodes 180.
  • the voltage applied to the plurality of gate electrodes 180 is lower than the voltage applied to the second electrode 150.
  • the voltage applied to the inner gate electrode 180 is lower than the voltage applied to the outer gate electrode 180.
  • a voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 such that the potential inside the semiconductor substrate 100 decreases from the outer periphery of the semiconductor substrate 100 toward the center.
  • the voltage applied to the second electrode 150 is applied to the third electrode 160 through the connection layer 170.
  • a voltage higher than that applied to the first electrode 140 is applied to the third electrode 160.
  • a voltage is applied to the third electrode 160 such that the potential inside the semiconductor substrate 100 decreases from the surface 101 b toward the surface 101 a.
  • the first impurity layer 110, the plurality of second impurity layers 120, and the plurality of gate electrodes 180 are not essential in the semiconductor device of each aspect of the present invention.
  • a favorable potential gradient can be formed. Similar to the detector 1011 shown in FIG. 14, the plurality of second impurity layers 120 may be disposed, and the plurality of gate electrodes 180 may not be disposed. Similar to the detector 1012 shown in FIG. 15, the plurality of gate electrodes 180 may be disposed, and the plurality of second impurity layers 120 may not be disposed.
  • connection layer 170 electrically connected to the second electrode 150 and the third electrode 160 is disposed. Therefore, a structure such as a wire for directly applying a voltage to the third electrode 160 from the outside of the semiconductor device 10 is not necessary. As a result, the size of the semiconductor device 10 can be reduced, and an improvement in yield can be realized.
  • connection layer 170 is configured by a cylinder surrounding the virtual straight line L1. Thereby, the first semiconductor layer 101 is separated into portions inside and outside the connection layer 170.
  • the light incident on the semiconductor substrate 100 from the side surface of the semiconductor substrate 100 is unnecessary.
  • the light is less likely to move toward the center of the semiconductor substrate 100 due to the potential gradient formed by the voltage applied to the connection layer 170. Therefore, it is difficult to detect unnecessary charge based on the light.
  • FIG. 5 is a plan view of a semiconductor device 11 according to a first modification of the first embodiment of the present invention.
  • each element when the semiconductor device 11 is seen in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 5, each element when the semiconductor device 11 is viewed from the front of the semiconductor substrate 100 is shown.
  • connection layer 170 are disposed so as to pass through the first electrode 140 and surround an imaginary straight line L1 perpendicular to the surface 101a.
  • reference numerals of one connection layer 170 are shown as a representative of the plurality of connection layers 170.
  • Each connection layer 170 constituting the plurality of connection layers 170 is formed of a pillar (bar).
  • the plurality of connection layers 170 are arranged at equal intervals.
  • Each connection layer 170 constituting the plurality of connection layers 170 is electrically connected to the second electrode 150 and the third electrode 160.
  • virtual plane S1 (FIG. 1), a plurality of connection layers 170 are arranged on the circumference of virtual circle C1. At least one connection layer 170 need only be disposed.
  • FIG. 5 is similar to the configuration shown in FIG.
  • connection layer 170 is formed of a plurality of pillars separated from one another. Therefore, compared to the semiconductor device 10 shown in FIG. 1, the material constituting the connection layer 170 is reduced. As a result, the manufacturing cost of the semiconductor device 11 is lower than that of the semiconductor device 10.
  • FIG. 6 is a plan view of a semiconductor device 12 according to a second modification of the first embodiment of the present invention.
  • each element when the semiconductor device 12 is seen in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 6, each element when the semiconductor device 12 is viewed from the front of the semiconductor substrate 100 is shown.
  • connection layer 170 is a circle.
  • the cross section of the connection layer 170 may be polygonal.
  • the configuration shown in FIG. 6 is the same as the configuration shown in FIG.
  • connection layer 170 is configured of a plurality of pillars separated from one another. Therefore, similar to the semiconductor device 11 shown in FIG. 5, the manufacturing cost of the semiconductor device 12 is lower than that of the semiconductor device 10 shown in FIG.
  • FIG. 7 shows the configuration of the semiconductor device 13 according to the second embodiment of the present invention.
  • a cross section of the semiconductor device 13 is shown.
  • the configuration shown in FIG. 7 will be described about differences from the configuration shown in FIG.
  • the semiconductor device 13 includes a semiconductor substrate 103, an insulating layer 130, a first electrode 140, a second electrode 150, a connection layer 170, and a plurality of gate electrodes 180.
  • reference numerals of two gate electrodes 180 are shown as a representative of the plurality of gate electrodes 180.
  • the semiconductor substrate 103 has a surface 101a (first main surface) and a surface 102b (second main surface) facing in opposite directions.
  • the semiconductor substrate 103 and the insulating layer 130 are stacked in the direction Dr1 perpendicular to the surface 101a.
  • the semiconductor substrate 103 includes a first semiconductor layer 101, a second semiconductor layer 102, a first impurity layer 110, and a plurality of second impurity layers 120.
  • the symbol of one second impurity layer 120 is shown as a representative of the plurality of second impurity layers 120.
  • the semiconductor material forming the semiconductor substrate 103 is silicon (Si).
  • the first semiconductor layer 101 and the second semiconductor layer 102 are stacked in a direction Dr1 perpendicular to the surface 101a.
  • the first semiconductor layer 101 is configured in the same manner as the first semiconductor layer 101 shown in FIG.
  • the second semiconductor layer 102 contains a P-type semiconductor.
  • the second semiconductor layer 102 has a surface 102 a and a surface 102 b.
  • the surface 102a and the surface 102b face in the opposite direction to each other.
  • the surface 102 a is in contact with the surface 101 b of the first semiconductor layer 101.
  • the surface 102 b constitutes the main surface of the semiconductor substrate 103.
  • the second semiconductor layer 102 is disposed in the semiconductor substrate 103 so as to include the surface 102 b.
  • connection layer 170 is connected to the second semiconductor layer 102 at the surface 101 b.
  • the voltage applied to the second electrode 150 is applied to the second semiconductor layer 102 through the connection layer 170.
  • a voltage higher than the voltage applied to the first electrode 140 is applied to the second semiconductor layer 102.
  • a voltage is applied to the second semiconductor layer 102 such that the internal potential of the first semiconductor layer 101 decreases from the surface 101 b toward the surface 101 a.
  • the structure of the connection layer 170 may be any of the structures shown in FIG. 4 to FIG.
  • the first semiconductor layer 101 and the first impurity layer 110 may be formed of a P-type semiconductor, and the second semiconductor layer 102 and the plurality of second impurity layers 120 may be formed of an N-type semiconductor. Similar to the detector 1011 shown in FIG. 14, the plurality of second impurity layers 120 may be disposed, and the plurality of gate electrodes 180 may not be disposed. Similar to the detector 1012 shown in FIG. 15, the plurality of gate electrodes 180 may be disposed, and the plurality of second impurity layers 120 may not be disposed.
  • connection layer 170 electrically connected to the second electrode 150 and the second semiconductor layer 102 is disposed. Therefore, a structure such as a wiring for directly applying a voltage to the second semiconductor layer 102 from the outside of the semiconductor device 13 is not necessary. As a result, the size of the semiconductor device 13 can be reduced, and an improvement in yield can be realized.
  • FIG. 8 is a plan view of a semiconductor device 14 according to a third embodiment of the present invention.
  • each element when the semiconductor device 14 is viewed in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 8, each element when the semiconductor device 14 is viewed from the front of the semiconductor substrate 100 is shown.
  • the cross-sectional structure of the semiconductor device 14 is the same as that shown in FIG. In FIG. 8, the insulating layer 130 is omitted.
  • the gate electrode 180 is not disposed.
  • a plurality of first electrodes 140 are arranged. In FIG. 8, a symbol of one first electrode 140 is shown as a representative of the plurality of first electrodes 140.
  • the portion of the second electrode 150 overlapping with the connection layer 170 is omitted.
  • the second electrodes 150 are disposed so as to surround each of the first electrodes 140 constituting the plurality of first electrodes 140.
  • the second electrode 150 is an assembly of a plurality of linear structures.
  • the second electrode 150 constitutes a hexagon centered on the first electrode 140.
  • connection layer 170 In an imaginary plane S1 (FIG. 1) parallel to the surface 101a and passing through the semiconductor substrate 100, the connection layer 170 passes through the respective first electrodes 140 constituting the plurality of first electrodes 140 and is perpendicular to the surface 101a. It is arrange
  • a plurality of electrode units U1 are arranged. In FIG. 8, reference numerals of one electrode unit U1 are shown as a representative of the plurality of electrode units U1.
  • One electrode unit U1 includes one first electrode 140, a second electrode 150 forming a hexagon, and six connection layers 170. Six connection layers 170 are disposed at the apex of the hexagon formed by the second electrode 150. Two adjacent electrode units U1 share a second electrode 150 that constitutes one side of a hexagon. Two electrode units U1 adjacent to each other share two connection layers 170 arranged on one side of the hexagon.
  • the plurality of first electrodes 140 may be connected to each other by a common wiring. Thereby, the signals output from the plurality of first electrodes 140 are added. As a result, the sensitivity is improved.
  • the plurality of first electrodes 140 may be respectively connected to the plurality of amplifiers, and the outputs of the plurality of amplifiers may be connected to each other by a common wiring.
  • the plurality of first electrodes 140 may be connected to the plurality of analog-to-digital converters (AD converters), respectively, and the outputs of the plurality of AD converters may be connected to each other by common wiring.
  • AD converters analog-to-digital converters
  • connection layer 170 may be configured by a cylinder surrounding the virtual straight line L1.
  • the cross section of the connection layer 170 may be hexagonal.
  • a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, the distance between the first electrode 140 and the second electrode 150 is short and the distance between the first electrode 140 and the connection layer 170 is short as compared with the semiconductor device 10 shown in FIG. That is, compared to the semiconductor device 10, the moving distance of electrons is shortened. Therefore, there is a high possibility that the electrons are detected by the first electrode 140 before the electrons generated by the fluorescent X-rays recombine with the holes.
  • the chip size can be increased by arranging a plurality of electrode units U1.
  • the gate electrode 180 and the second impurity for forming a good potential gradient Layer 120 is not required. Even when the chip size is increased, the manufacturing cost of the semiconductor device 14 is reduced.
  • FIG. 9 is a plan view of a semiconductor device 15 of a first modification of the third embodiment of the present invention.
  • FIG. 9 shows each element when the semiconductor device 15 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101. That is, in FIG. 9, each element when the semiconductor device 15 is viewed from the front of the semiconductor substrate 100 is shown.
  • the sectional structure of the semiconductor device 15 is the same as that shown in FIG.
  • the configuration shown in FIG. 9 will be described about differences from the configuration shown in FIG.
  • the second electrode 150 constitutes a quadrangle (square) centered on the first electrode 140.
  • a plurality of electrode units U2 are arranged. In FIG. 9, the reference numeral of one electrode unit U2 is shown as a representative of the plurality of electrode units U2.
  • One electrode unit U2 includes one first electrode 140, a second electrode 150 forming a square, and four connection layers 170. The four connection layers 170 are disposed at the vertexes of the square formed by the second electrode 150.
  • Two electrode units U2 adjacent to each other share a second electrode 150 that constitutes one side of a square.
  • Two electrode units U1 adjacent to each other share two connection layers 170 disposed on one side of a square.
  • FIG. 9 The configuration shown in FIG. 9 is the same as the configuration shown in FIG. 8 except for the points described above.
  • a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased.
  • FIG. 10 is a plan view of a semiconductor device 16 according to a second modification of the third embodiment of the present invention.
  • each element when the semiconductor device 16 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 10, each element when the semiconductor device 16 is viewed from the front of the semiconductor substrate 100 is shown.
  • the cross-sectional structure of the semiconductor device 16 is the same as that shown in FIG. Regarding the configuration shown in FIG. 10, points different from the configuration shown in FIG. 8 will be described.
  • connection layers 170 are arranged.
  • the number of connection layers 170 is smaller than the number of first electrodes 140.
  • four connection layers 170 and eight first electrodes 140 are disposed.
  • the position where the connection layer 170 is disposed is not limited to the position shown in FIG. Further, the number of connection layers 170 is not limited to four.
  • a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased. In addition, the number of connection layers 170 is smaller than the number of first electrodes 140. Therefore, compared to the semiconductor device 14 shown in FIG. 8, the material constituting the connection layer 170 is reduced. As a result, the manufacturing cost of the semiconductor device 16 is lower than that of the semiconductor device 14.
  • FIG. 11 is a plan view of a semiconductor device 17 according to a third modification of the third embodiment of the present invention.
  • each element when the semiconductor device 17 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 11, each element when the semiconductor device 17 is viewed from the front of the semiconductor substrate 100 is shown.
  • the cross-sectional structure of the semiconductor device 17 is the same as that shown in FIG.
  • the configuration shown in FIG. 11 will be described about differences from the configuration shown in FIG.
  • the second electrode 150 constitutes a quadrangle (rectangle).
  • a linear first electrode 140 is disposed at the center of the second electrode 150 constituting a square.
  • a laterally elongated first electrode 140 is disposed. The left and right ends of the first electrode 140 are in the vicinity of the second electrode 150.
  • a plurality of electrode units U3 are arranged. In FIG. 11, the reference numeral of one electrode unit U3 is shown as a representative of the plurality of electrode units U3.
  • One electrode unit U3 includes one first electrode 140, a second electrode 150 forming a square, and six connection layers 170. The six connection layers 170 are disposed on the side of the square formed by the second electrode 150.
  • Two electrode units U3 adjacent to each other share a second electrode 150 which constitutes one side of a square.
  • Two electrode units U3 adjacent to each other share one or two connection layers 170 disposed on one side of the square.
  • FIG. 11 The configuration shown in FIG. 11 is the same as the configuration shown in FIG. 8 except for the points described above.
  • a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased.
  • the semiconductor device can be reduced in size, and an improvement in yield can be realized.

Abstract

This semiconductor device comprises a semiconductor substrate, a first electrode, a second electrode, a conductive layer, and a connection layer. The semiconductor substrate has a first main surface and a second main surface facing opposite directions from one another. The first electrode and the second electrode are disposed on the first main surface. The conductive layer is disposed on the second main surface or is disposed within the semiconductor substrate in such a manner as to include the second main surface. The connection layer is disposed in a hole that is open on at least one among the first main surface and the second main surface in the semiconductor substrate, is connected electrically to the second electrode and the conductive layer, and is conductive.

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
 X線が金属等の物質に照射されたとき、その物質がその物質の原子に固有のエネルギー(波長)の蛍光を発することが知られている。蛍光の波長帯域はX線の波長帯域とほぼ等しい。蛍光の強度は非常に微弱である。 It is known that when a substance such as metal is irradiated with X-rays, the substance emits fluorescence of energy (wavelength) specific to the atoms of the substance. The wavelength band of fluorescence is approximately equal to the wavelength band of X-rays. The intensity of the fluorescence is very weak.
 この現象は、対象物に含まれる金属等の物質の種類および量の推定に応用できる。この推定のために対象物にX線が照射され、かつ対象物から発せられた蛍光X線が観察される。蛍光X線に含まれる光の波長毎のエネルギー強度に基づいて、すなわち蛍光X線のスペクトルに基づいて上記の推定が実行される。 This phenomenon can be applied to the estimation of the type and amount of substances such as metals contained in an object. For this estimation, the object is irradiated with X-rays, and fluorescent X-rays emitted from the object are observed. The above estimation is performed on the basis of the energy intensity for each wavelength of light included in fluorescent X-rays, that is, on the basis of the spectrum of fluorescent X-rays.
 微弱な蛍光X線を効率的に検出するシリコンドリフト検出器(SDD)が開示されている。図12は、特許文献1に開示されたSDDと同様に構成された検出器1010の構成を示す。図12において、検出器1010の断面が示されている。図12に示すように検出器1010は、半導体基板1100、絶縁層1130、アノード電極1140、カソード電極1150、および複数のゲート電極1180を有する。図12において、複数のゲート電極1180のうち代表として2つのゲート電極1180の符号が示されている。半導体基板1100および絶縁層1130は、半導体基板1100の面1100aに垂直な方向Dr10に積層されている。 A silicon drift detector (SDD) is disclosed that efficiently detects weak fluorescent x-rays. FIG. 12 shows the configuration of a detector 1010 configured similarly to the SDD disclosed in Patent Document 1. In FIG. 12, a cross section of detector 1010 is shown. As shown in FIG. 12, the detector 1010 includes a semiconductor substrate 1100, an insulating layer 1130, an anode electrode 1140, a cathode electrode 1150, and a plurality of gate electrodes 1180. In FIG. 12, reference numerals of two gate electrodes 1180 are shown as a representative of the plurality of gate electrodes 1180. The semiconductor substrate 1100 and the insulating layer 1130 are stacked in a direction Dr10 perpendicular to the surface 1100a of the semiconductor substrate 1100.
 半導体基板1100は、第1の半導体層1101、第2の半導体層1102、第1の不純物層1110、および複数の第2の不純物層1120を有する。図12において、複数の第2の不純物層1120のうち代表として1つの第2の不純物層1120の符号が示されている。 The semiconductor substrate 1100 includes a first semiconductor layer 1101, a second semiconductor layer 1102, a first impurity layer 1110, and a plurality of second impurity layers 1120. In FIG. 12, the symbol of one second impurity layer 1120 is shown as a representative of the plurality of second impurity layers 1120.
 第1の半導体層1101および第2の半導体層1102は、半導体基板1100の面1100aに垂直な方向Dr10に積層されている。半導体基板1100は、面1100aおよび面1100bを有する。面1100aおよび面1100bは、互いに反対方向を向く。 The first semiconductor layer 1101 and the second semiconductor layer 1102 are stacked in a direction Dr10 perpendicular to the surface 1100a of the semiconductor substrate 1100. The semiconductor substrate 1100 has a surface 1100 a and a surface 1100 b. The face 1100a and the face 1100b face in opposite directions.
 第1の半導体層1101は、N型半導体を含む。第2の半導体層1102は、P型半導体を含む。第2の半導体層1102は、面1100bから所定の深さまでの層として構成されている。 The first semiconductor layer 1101 contains an N-type semiconductor. The second semiconductor layer 1102 contains a P-type semiconductor. The second semiconductor layer 1102 is configured as a layer from the surface 1100 b to a predetermined depth.
 第1の不純物層1110および複数の第2の不純物層1120は、第1の半導体層1101に配置されている。第1の不純物層1110は、N型半導体を含む。例えば、第1の不純物層1110は、第1の半導体層1101を構成する半導体材料とは不純物濃度が異なる半導体材料で構成されている。第2の不純物層1120は、P型半導体を含む。第1の不純物層1110および複数の第2の不純物層1120の各々の表面は、面1100aを構成する。第1の不純物層1110および複数の第2の不純物層1120の各々は、面1100aから所定の深さまでの層として構成されている。 The first impurity layer 1110 and the plurality of second impurity layers 1120 are disposed in the first semiconductor layer 1101. The first impurity layer 1110 contains an N-type semiconductor. For example, the first impurity layer 1110 is formed of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 1101. The second impurity layer 1120 contains a P-type semiconductor. The surface of each of the first impurity layer 1110 and the plurality of second impurity layers 1120 constitutes a surface 1100 a. Each of the first impurity layer 1110 and the plurality of second impurity layers 1120 is configured as a layer from the surface 1100 a to a predetermined depth.
 絶縁層1130は、第1の半導体層1101に積層されている。アノード電極1140、カソード電極1150、および複数のゲート電極1180は、絶縁層1130の表面に配置されている。これらの電極は、互いに異なる位置に配置されている。アノード電極1140は、第1の不純物層1110と対応する位置に配置されている。カソード電極1150および複数のゲート電極1180は、第2の不純物層1120と対応する位置に配置されている。 The insulating layer 1130 is stacked over the first semiconductor layer 1101. The anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 are disposed on the surface of the insulating layer 1130. These electrodes are arranged at mutually different positions. The anode electrode 1140 is disposed at a position corresponding to the first impurity layer 1110. The cathode electrode 1150 and the plurality of gate electrodes 1180 are disposed at positions corresponding to the second impurity layer 1120.
 絶縁層1130において、第1の不純物層1110および複数の第2の不純物層1120の各々に対応する位置に開口部が形成されている。アノード電極1140は、絶縁層1130に形成された開口部を通って第1の不純物層1110に接続されている。カソード電極1150は、絶縁層1130に形成された開口部を通って第2の不純物層1120に接続されている。ゲート電極1180は、絶縁層1130に形成された開口部を通って第2の不純物層1120に接続されている。つまり、アノード電極1140、カソード電極1150、および複数のゲート電極1180は、絶縁層1130を貫通する。ゲート電極1180および第2の不純物層1120は、FET(Field Effect Transistor)を構成する。 In the insulating layer 1130, an opening is formed at a position corresponding to each of the first impurity layer 1110 and the plurality of second impurity layers 1120. The anode electrode 1140 is connected to the first impurity layer 1110 through an opening formed in the insulating layer 1130. The cathode electrode 1150 is connected to the second impurity layer 1120 through an opening formed in the insulating layer 1130. The gate electrode 1180 is connected to the second impurity layer 1120 through an opening formed in the insulating layer 1130. That is, the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 penetrate the insulating layer 1130. The gate electrode 1180 and the second impurity layer 1120 constitute an FET (Field Effect Transistor).
 図13は、検出器1010の平面図である。図13において、半導体基板1100の面1100aに垂直な方向に検出器1010を見たときの各要素が示されている。つまり、図13において、半導体基板1100の正面から検出器1010を見たときの各要素が示されている。図13において、絶縁層1130は省略されている。図13において、複数のゲート電極1180のうち代表として1つのゲート電極1180の符号が示されている。 FIG. 13 is a plan view of detector 1010. In FIG. 13, each element is shown when the detector 1010 is viewed in the direction perpendicular to the surface 1100 a of the semiconductor substrate 1100. That is, in FIG. 13, each element when the detector 1010 is viewed from the front of the semiconductor substrate 1100 is shown. In FIG. 13, the insulating layer 1130 is omitted. In FIG. 13, reference numerals of one gate electrode 1180 are shown as a representative of the plurality of gate electrodes 1180.
 アノード電極1140は、半導体基板1100の面1100aの中心に配置されている。アノード電極1140は、円形の電極である。カソード電極1150および複数のゲート電極1180は、リング状の電極である。カソード電極1150および複数のゲート電極1180は、同心円状に配置されている。カソード電極1150および複数のゲート電極1180は、アノード電極1140を囲むように配置されている。カソード電極1150は、最も外側に配置されている。複数のゲート電極1180は、アノード電極1140およびカソード電極1150の間に配置されている。図13に示す線L10を通る断面が図12に示されている。 The anode electrode 1140 is disposed at the center of the surface 1100 a of the semiconductor substrate 1100. The anode electrode 1140 is a circular electrode. The cathode electrode 1150 and the plurality of gate electrodes 1180 are ring-shaped electrodes. The cathode electrode 1150 and the plurality of gate electrodes 1180 are arranged concentrically. The cathode electrode 1150 and the plurality of gate electrodes 1180 are disposed to surround the anode electrode 1140. The cathode electrode 1150 is disposed at the outermost side. The plurality of gate electrodes 1180 are disposed between the anode electrode 1140 and the cathode electrode 1150. A cross section through line L10 shown in FIG. 13 is shown in FIG.
 電圧がアノード電極1140、カソード電極1150、および複数のゲート電極1180に印加される。アノード電極1140に印加される電圧は、カソード電極1150に印加される電圧よりも高い。アノード電極1140に印加される電圧は、複数のゲート電極1180に印加されるどの電圧よりも高い。負電圧がカソード電極1150および複数のゲート電極1180に印加される。複数のゲート電極1180に印加される電圧は、カソード電極1150に印加される電圧よりも高い。より内側のゲート電極1180に印加される電圧は、より外側のゲート電極1180に印加される電圧よりも高い。半導体基板1100の内部の電位が半導体基板1100の外周から中心に向かって高くなるように、電圧がアノード電極1140、カソード電極1150、および複数のゲート電極1180に印加される。 A voltage is applied to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180. The voltage applied to the anode electrode 1140 is higher than the voltage applied to the cathode electrode 1150. The voltage applied to the anode electrode 1140 is higher than any voltage applied to the plurality of gate electrodes 1180. A negative voltage is applied to the cathode electrode 1150 and the plurality of gate electrodes 1180. The voltage applied to the plurality of gate electrodes 1180 is higher than the voltage applied to the cathode electrode 1150. The voltage applied to the inner gate electrode 1180 is higher than the voltage applied to the outer gate electrode 1180. A voltage is applied to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 such that the potential inside the semiconductor substrate 1100 increases from the outer periphery of the semiconductor substrate 1100 toward the center.
 電極が半導体基板1100の面1100bに配置されている。つまり、電極が第2の半導体層1102上に配置されている。アノード電極1140に印加される電圧よりも低い電圧がその電極に印加される。これにより、電圧が第2の半導体層1102に印加される。第2の半導体層1102は、カソード電極として機能する。半導体基板1100の内部の電位が面1100bから面1100aに向かって高くなるように、電圧が第2の半導体層1102に印加される。 The electrodes are disposed on the surface 1100 b of the semiconductor substrate 1100. That is, the electrode is disposed on the second semiconductor layer 1102. A voltage lower than that applied to the anode electrode 1140 is applied to that electrode. Thus, a voltage is applied to the second semiconductor layer 1102. The second semiconductor layer 1102 functions as a cathode electrode. A voltage is applied to the second semiconductor layer 1102 such that the internal potential of the semiconductor substrate 1100 increases from the surface 1100b toward the surface 1100a.
 上記のような電圧が検出器1010に印加される。半導体基板1100内の電位は、半導体基板1100の外周から中心に向かって高くなり、かつ面1100bから面1100aに向かって高くなる。つまり、電位勾配が半導体基板1100に発生する。電子に作用するポテンシャルは、半導体基板1100の外周から中心に向かって低くなり、かつ面1100bから面1100aに向かって低くなる。つまり、ポテンシャル勾配が半導体基板1100に発生する。X線が検出器1010に入射した場合、半導体基板1100において電子が発生する。その電子は、ポテンシャル勾配に従ってアノード電極1140に集まる。その電子に基づく信号が検出器1010から出力される。 A voltage as described above is applied to detector 1010. The potential in the semiconductor substrate 1100 increases from the outer periphery to the center of the semiconductor substrate 1100 and also increases from the surface 1100 b to the surface 1100 a. That is, a potential gradient is generated in the semiconductor substrate 1100. The potential acting on the electrons decreases from the outer periphery of the semiconductor substrate 1100 toward the center, and decreases from the surface 1100 b to the surface 1100 a. That is, a potential gradient is generated in the semiconductor substrate 1100. When X-rays enter the detector 1010, electrons are generated in the semiconductor substrate 1100. The electrons gather at the anode electrode 1140 according to the potential gradient. A signal based on the electrons is output from detector 1010.
 図14は、特許文献1に開示された他のSDDと同様に構成された検出器1011の構成を示す。図14において、検出器1011の断面が示されている。図14に示すように検出器1011は、半導体基板1100、絶縁層1130、アノード電極1140、およびカソード電極1150を有する。図14に示す構成について、図12に示す構成と異なる点を説明する。 FIG. 14 shows the configuration of a detector 1011 configured similarly to the other SDD disclosed in Patent Document 1. In FIG. 14 a cross section of the detector 1011 is shown. As shown in FIG. 14, the detector 1011 includes a semiconductor substrate 1100, an insulating layer 1130, an anode electrode 1140, and a cathode electrode 1150. Regarding the configuration shown in FIG. 14, points different from the configuration shown in FIG. 12 will be described.
 図12に示す複数のゲート電極1180は検出器1011に配置されていない。これ以外の点について、図14に示す構成は、図12に示す構成と同様である。 The plurality of gate electrodes 1180 shown in FIG. 12 are not disposed in the detector 1011. Except for this point, the configuration shown in FIG. 14 is the same as the configuration shown in FIG.
 図14に示すように検出器1011において、FETを構成する複数のゲート電極1180が配置されていない。そのため、電極に印加される電圧の急激な変化による絶縁破壊が生じにくい。 As shown in FIG. 14, in the detector 1011, a plurality of gate electrodes 1180 constituting an FET are not disposed. Therefore, it is hard to produce the dielectric breakdown by the rapid change of the voltage applied to an electrode.
 図15は、他の従来技術の検出器1012の構成を示す。図15において、検出器1012の断面が示されている。図15に示すように検出器1012は、半導体基板1103、絶縁層1130、アノード電極1140、および複数のゲート電極1190を有する。図15において、複数のゲート電極1190のうち代表として2つのゲート電極1190の符号が示されている。図15に示す構成について、図12に示す構成と異なる点を説明する。 FIG. 15 shows the configuration of another prior art detector 1012. In FIG. 15, a cross section of the detector 1012 is shown. As shown in FIG. 15, the detector 1012 includes a semiconductor substrate 1103, an insulating layer 1130, an anode electrode 1140, and a plurality of gate electrodes 1190. In FIG. 15, reference numerals of two gate electrodes 1190 are shown as a representative of the plurality of gate electrodes 1190. The configuration shown in FIG. 15 will be described about differences from the configuration shown in FIG.
 図15に示すように検出器1012において、図12に示す半導体基板1100は半導体基板1103に変更される。半導体基板1103において、図12に示す第1の半導体層1101は第1の半導体層1104に変更される。第1の半導体層1104において、図12に示す複数の第2の不純物層1120は配置されていない。図12に示すカソード電極1150および複数のゲート電極1180の代わりに複数のゲート電極1190が絶縁層1130の表面に配置されている。より内側のゲート電極1190に印加される電圧は、より外側のゲート電極1190に印加される電圧よりも高い。 As shown in FIG. 15, in the detector 1012, the semiconductor substrate 1100 shown in FIG. 12 is changed to a semiconductor substrate 1103. In the semiconductor substrate 1103, the first semiconductor layer 1101 shown in FIG. 12 is changed to a first semiconductor layer 1104. In the first semiconductor layer 1104, the plurality of second impurity layers 1120 shown in FIG. 12 are not provided. A plurality of gate electrodes 1190 are disposed on the surface of the insulating layer 1130 instead of the cathode electrode 1150 and the plurality of gate electrodes 1180 shown in FIG. The voltage applied to the inner gate electrode 1190 is higher than the voltage applied to the outer gate electrode 1190.
 上記以外の点について、図15に示す構成は、図12に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 15 is the same as the configuration shown in FIG.
 図15に示す検出器1012において、複数の第2の不純物層1120が配置されていない。また、複数のゲート電極1190は絶縁層1130を貫通していない。そのため、検出器1010と比較して検出器1012を容易に製造することができる。 In the detector 1012 shown in FIG. 15, the plurality of second impurity layers 1120 are not disposed. In addition, the plurality of gate electrodes 1190 do not penetrate through the insulating layer 1130. Therefore, the detector 1012 can be easily manufactured as compared with the detector 1010.
日本国特開2008-258348号公報Japanese Patent Application Laid-Open No. 2008-258348
 図12から図15に示す構成では、半導体基板の一方の面に配置された電極と、半導体基板の他方の面に配置された電極との両方に電圧を印加するための構造が必要である。例えば、図12に示す検出器1010において、面1100aに配置されたアノード電極1140、カソード電極1150、および複数のゲート電極1180に電圧を印加するための構造が必要である。また、面1100bを構成する第2の半導体層1102に接続された電極に電圧を印加するための構造が必要である。電極に電圧を印加するための構造は、電極に接続された配線等を含む。 The configurations shown in FIGS. 12 to 15 require a structure for applying a voltage to both the electrode disposed on one surface of the semiconductor substrate and the electrode disposed on the other surface of the semiconductor substrate. For example, in the detector 1010 illustrated in FIG. 12, a structure for applying a voltage to the anode electrode 1140, the cathode electrode 1150, and the plurality of gate electrodes 1180 disposed on the surface 1100a is required. In addition, a structure for applying a voltage to an electrode connected to the second semiconductor layer 1102 included in the surface 1100 b is required. The structure for applying a voltage to the electrode includes a wire or the like connected to the electrode.
 半導体基板の2つの面の両方において、電極に電圧を印加するための構造が必要である。そのため、検出器のサイズを縮小することが難しく、かつ検出器の歩留まりが低下する。 A structure is required to apply a voltage to the electrodes on both of the two sides of the semiconductor substrate. Therefore, it is difficult to reduce the size of the detector, and the yield of the detector is reduced.
 本発明は、サイズを縮小することができ、かつ歩留まりの向上を実現することができる半導体装置を提供することを目的とする。 An object of the present invention is to provide a semiconductor device which can be reduced in size and which can realize improvement in yield.
 本発明の第1の態様によれば、半導体装置は、半導体基板、第1の電極、第2の電極、導電層、および接続層を有する。前記半導体基板は、互いに反対方向を向く第1の主面および第2の主面を有する。前記第1の電極および前記第2の電極は、前記第1の主面に配置されている。前記導電層は、前記第2の主面に配置され、または前記第2の主面を含むように前記半導体基板内に配置されている。前記接続層は、前記半導体基板において前記第1の主面および前記第2の主面の少なくとも1つに開口した穴に配置され、前記第2の電極および前記導電層に電気的に接続され、かつ導電性を有する。 According to a first aspect of the present invention, a semiconductor device includes a semiconductor substrate, a first electrode, a second electrode, a conductive layer, and a connection layer. The semiconductor substrate has a first main surface and a second main surface facing in opposite directions. The first electrode and the second electrode are disposed on the first main surface. The conductive layer is disposed on the second main surface or disposed in the semiconductor substrate so as to include the second main surface. The connection layer is disposed in a hole opened in at least one of the first main surface and the second main surface in the semiconductor substrate, and is electrically connected to the second electrode and the conductive layer. And it has conductivity.
 本発明の第2の態様によれば、第1の態様において、前記接続層は、前記第1の主面において前記第2の電極に接続されてもよい。 According to a second aspect of the present invention, in the first aspect, the connection layer may be connected to the second electrode on the first main surface.
 本発明の第3の態様によれば、第1の態様において、前記接続層は、前記第1の電極を通り前記第1の主面に垂直な仮想直線を囲む筒で構成されてもよい。 According to a third aspect of the present invention, in the first aspect, the connection layer may be configured by a cylinder which passes through the first electrode and surrounds a virtual straight line perpendicular to the first major surface.
 本発明の第4の態様によれば、第1の態様において、前記半導体装置は、前記第1の電極を通り前記第1の主面に垂直な仮想直線を囲むように配置された複数の前記接続層を有してもよい。 According to a fourth aspect of the present invention, in the first aspect, the semiconductor device includes a plurality of the semiconductor devices disposed through the first electrode and surrounding a virtual straight line perpendicular to the first major surface. It may have a connection layer.
 本発明の第5の態様によれば、第1の態様において、前記第1の主面に平行であり、かつ前記半導体基板を通る仮想平面において、前記接続層は、前記第1の電極を通り前記第1の主面に垂直な仮想直線を中心とする仮想円または仮想多角形の周上に配置されてもよい。 According to a fifth aspect of the present invention, in the first aspect, in a virtual plane parallel to the first main surface and passing through the semiconductor substrate, the connection layer passes through the first electrode. It may be arranged on the circumference of a virtual circle or a virtual polygon centering on a virtual straight line perpendicular to the first main surface.
 本発明の第6の態様によれば、第1の態様において、前記半導体装置は、複数の前記第1の電極を有してもよい。前記第1の主面において、前記第2の電極は、前記複数の前記第1の電極を構成する各第1の電極を囲むように配置されてもよい。 According to a sixth aspect of the present invention, in the first aspect, the semiconductor device may have a plurality of the first electrodes. In the first main surface, the second electrode may be disposed so as to surround each of the first electrodes constituting the plurality of first electrodes.
 本発明の第7の態様によれば、第6の態様において、前記第1の主面に平行であり、かつ前記半導体基板を通る仮想平面において、前記接続層は、前記複数の前記第1の電極を構成する各第1の電極を通り前記第1の主面に垂直な仮想直線を囲むように配置されてもよい。 According to a seventh aspect of the present invention, in the sixth aspect, in a virtual plane which is parallel to the first main surface and passes through the semiconductor substrate, the connection layer includes the plurality of first elements. It may be arranged to pass through each of the first electrodes constituting the electrodes and to surround an imaginary straight line perpendicular to the first major surface.
 本発明の第8の態様によれば、第6の態様において、前記半導体装置は、複数の前記接続層を有してもよい。前記接続層の数は前記第1の電極の数よりも少なくてもよい。 According to an eighth aspect of the present invention, in the sixth aspect, the semiconductor device may have a plurality of the connection layers. The number of connection layers may be smaller than the number of first electrodes.
 上記の各態様によれば、半導体装置は、サイズを縮小することができ、かつ歩留まりの向上を実現することができる。 According to each of the above aspects, the semiconductor device can be reduced in size, and an improvement in yield can be realized.
本発明の第1の実施形態の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態の半導体装置の平面図である。It is a top view of the semiconductor device of a 1st embodiment of the present invention. 本発明の第1の実施形態の第1の変形例の半導体装置の平面図である。FIG. 6 is a plan view of a semiconductor device of a first modified example of the first embodiment of the present invention. 本発明の第1の実施形態の第2の変形例の半導体装置の平面図である。FIG. 16 is a plan view of a semiconductor device of a second modified example of the first embodiment of the present invention. 本発明の第2の実施形態の半導体装置の断面図である。It is sectional drawing of the semiconductor device of the 2nd Embodiment of this invention. 本発明の第3の実施形態の半導体装置の平面図である。It is a top view of the semiconductor device of a 3rd embodiment of the present invention. 本発明の第3の実施形態の第1の変形例の半導体装置の平面図である。FIG. 35 is a plan view of a semiconductor device of a first modified example of the third embodiment of the present invention. 本発明の第3の実施形態の第2の変形例の半導体装置の平面図である。It is a top view of the semiconductor device of the 2nd modification of a 3rd embodiment of the present invention. 本発明の第3の実施形態の第3の変形例の半導体装置の平面図である。It is a top view of the semiconductor device of the 3rd modification of a 3rd embodiment of the present invention. 従来技術の検出器の断面図である。FIG. 1 is a cross-sectional view of a prior art detector. 従来技術の検出器の平面図である。FIG. 1 is a plan view of a prior art detector. 従来技術の検出器の断面図である。FIG. 1 is a cross-sectional view of a prior art detector. 従来技術の検出器の断面図である。1 is a cross-sectional view of a prior art detector.
 図面を参照し、本発明の実施形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の半導体装置10の構成を示す。図1において、半導体装置10の断面が示されている。半導体装置10は、放射線すなわち蛍光X線を検出するシリコンドリフト検出器(SDD)として構成されている。
First Embodiment
FIG. 1 shows the configuration of a semiconductor device 10 according to a first embodiment of the present invention. In FIG. 1, a cross section of a semiconductor device 10 is shown. The semiconductor device 10 is configured as a silicon drift detector (SDD) that detects radiation, that is, fluorescent X-rays.
 半導体装置10を構成する部分の寸法は、図1に示される寸法に従うとは限らない。半導体装置10を構成する部分の寸法は任意であってよい。他の断面図における寸法についても同様である。 The dimensions of the parts constituting the semiconductor device 10 do not necessarily follow the dimensions shown in FIG. The dimensions of the parts constituting the semiconductor device 10 may be arbitrary. The same applies to the dimensions in other cross-sectional views.
 半導体装置10の概略構成について説明する。半導体装置10は、半導体基板100、第1の電極140、第2の電極150、第3の電極160(導電層)、および接続層170を有する。半導体基板100は、互いに反対方向を向く面101a(第1の主面)および面101b(第2の主面)を有する。第1の電極140および第2の電極150は、面101aに配置されている。第3の電極160は、面101bに配置され、かつ導電性を有する。接続層170は、半導体基板100において面101aおよび面101bの少なくとも1つに開口した穴に配置されている。接続層170は、第2の電極150および第3の電極160に電気的に接続され、かつ導電性を有する。 The schematic configuration of the semiconductor device 10 will be described. The semiconductor device 10 includes a semiconductor substrate 100, a first electrode 140, a second electrode 150, a third electrode 160 (conductive layer), and a connection layer 170. The semiconductor substrate 100 has a surface 101a (first main surface) and a surface 101b (second main surface) facing in opposite directions. The first electrode 140 and the second electrode 150 are disposed on the surface 101 a. The third electrode 160 is disposed on the surface 101 b and has conductivity. The connection layer 170 is disposed in a hole opened in at least one of the surface 101 a and the surface 101 b in the semiconductor substrate 100. The connection layer 170 is electrically connected to the second electrode 150 and the third electrode 160, and has conductivity.
 半導体装置10の詳細な構成について説明する。図1に示すように半導体装置10は、半導体基板100、絶縁層130、第1の電極140、第2の電極150、第3の電極160、接続層170、および複数のゲート電極180を有する。図1において、複数のゲート電極180のうち代表として2つのゲート電極180の符号が示されている。半導体基板100、絶縁層130、および第3の電極160は、半導体基板100の面101aに垂直な方向Dr1に積層されている。 The detailed configuration of the semiconductor device 10 will be described. As shown in FIG. 1, the semiconductor device 10 includes a semiconductor substrate 100, an insulating layer 130, a first electrode 140, a second electrode 150, a third electrode 160, a connection layer 170, and a plurality of gate electrodes 180. In FIG. 1, reference numerals of two gate electrodes 180 are shown as a representative of the plurality of gate electrodes 180. The semiconductor substrate 100, the insulating layer 130, and the third electrode 160 are stacked in a direction Dr1 perpendicular to the surface 101a of the semiconductor substrate 100.
 半導体基板100は、第1の半導体層101、第1の不純物層110、および複数の第2の不純物層120を有する。図1において、複数の第2の不純物層120のうち代表として1つの第2の不純物層120の符号が示されている。例えば、半導体基板100を構成する半導体材料は、シリコン(Si)である。 The semiconductor substrate 100 includes a first semiconductor layer 101, a first impurity layer 110, and a plurality of second impurity layers 120. In FIG. 1, the symbol of one second impurity layer 120 is shown as a representative of the plurality of second impurity layers 120. For example, the semiconductor material forming the semiconductor substrate 100 is silicon (Si).
 第1の半導体層101は、N型半導体を含む。第1の半導体層101は、面101aおよび面101bを有する。面101aおよび面101bは、互いに反対方向を向く。面101aおよび面101bは、半導体基板100の主面を構成する。主面は、半導体基板100の表面を構成する複数の面のうち相対的に広い面である。 The first semiconductor layer 101 contains an N-type semiconductor. The first semiconductor layer 101 has a surface 101 a and a surface 101 b. The face 101a and the face 101b face in opposite directions to each other. The surface 101 a and the surface 101 b constitute the main surface of the semiconductor substrate 100. The main surface is a relatively wide surface among a plurality of surfaces forming the surface of the semiconductor substrate 100.
 第1の不純物層110および複数の第2の不純物層120は、第1の半導体層101に配置されている。第1の不純物層110は、N型半導体を含む。例えば、第1の不純物層110は、第1の半導体層101を構成する半導体材料とは不純物濃度が異なる半導体材料で構成されている。第2の不純物層120は、P型半導体を含む。第1の不純物層110および複数の第2の不純物層120の各々の表面は、面101aを構成する。第1の不純物層110および複数の第2の不純物層120の各々は、面101aから所定の深さまでの層として構成されている。 The first impurity layer 110 and the plurality of second impurity layers 120 are disposed in the first semiconductor layer 101. The first impurity layer 110 contains an N-type semiconductor. For example, the first impurity layer 110 is formed of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 101. The second impurity layer 120 contains a P-type semiconductor. The surface of each of the first impurity layer 110 and the plurality of second impurity layers 120 constitutes a surface 101 a. Each of the first impurity layer 110 and the plurality of second impurity layers 120 is configured as a layer from the surface 101 a to a predetermined depth.
 絶縁層130は、絶縁材料で構成されている。例えば、絶縁層130を構成する絶縁材料は、二酸化珪素(SiO2)である。絶縁層130は、第1の半導体層101に積層されている。絶縁層130は、第1の半導体層101の面101aと接触している。 The insulating layer 130 is made of an insulating material. For example, the insulating material forming the insulating layer 130 is silicon dioxide (SiO 2). The insulating layer 130 is stacked on the first semiconductor layer 101. The insulating layer 130 is in contact with the surface 101 a of the first semiconductor layer 101.
 第1の電極140、第2の電極150、第3の電極160、および複数のゲート電極180は、導電材料で構成されている。例えば、これらの電極を構成する導電材料は、銅(Cu)、アルミニウム(Al)、および金(Au)などの金属である。これらの電極を構成する導電材料は、不純物濃度が高いポリシリコンなどの半導体を含んでもよい。第1の電極140、第2の電極150、第3の電極160、および複数のゲート電極180が、互いに異なる導電材料で構成されてもよい。 The first electrode 140, the second electrode 150, the third electrode 160, and the plurality of gate electrodes 180 are made of a conductive material. For example, the conductive material constituting these electrodes is a metal such as copper (Cu), aluminum (Al), and gold (Au). The conductive material forming these electrodes may include a semiconductor such as polysilicon having a high impurity concentration. The first electrode 140, the second electrode 150, the third electrode 160, and the plurality of gate electrodes 180 may be made of different conductive materials.
 第1の電極140、第2の電極150、および複数のゲート電極180は、絶縁層130の表面に配置されている。これらの電極は、互いに異なる位置に配置されている。第1の電極140は、第1の不純物層110と対応する位置に配置されている。複数のゲート電極180は、第2の不純物層120と対応する位置に配置されている。第2の電極150は、接続層170と対応する位置に配置されている。図1に示す例では、第2の電極150と対応する位置に不純物層は配置されていない。 The first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 are disposed on the surface of the insulating layer 130. These electrodes are arranged at mutually different positions. The first electrode 140 is disposed at a position corresponding to the first impurity layer 110. The plurality of gate electrodes 180 are disposed at positions corresponding to the second impurity layer 120. The second electrode 150 is disposed at a position corresponding to the connection layer 170. In the example shown in FIG. 1, the impurity layer is not disposed at a position corresponding to the second electrode 150.
 絶縁層130において、第1の不純物層110および複数の第2の不純物層120の各々に対応する位置に開口部が形成されている。第1の電極140は、絶縁層130に形成された開口部を通って第1の不純物層110に接続されている。第2の電極150は、絶縁層130に形成された開口部を通って接続層170に接続されている。ゲート電極180は、絶縁層130に形成された開口部を通って第2の不純物層120に接続されている。つまり、第1の電極140、第2の電極150、および複数のゲート電極180は、絶縁層130を貫通する。ゲート電極180および第2の不純物層120は、FETを構成する。 In the insulating layer 130, an opening is formed at a position corresponding to each of the first impurity layer 110 and the plurality of second impurity layers 120. The first electrode 140 is connected to the first impurity layer 110 through an opening formed in the insulating layer 130. The second electrode 150 is connected to the connection layer 170 through an opening formed in the insulating layer 130. The gate electrode 180 is connected to the second impurity layer 120 through an opening formed in the insulating layer 130. That is, the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 penetrate the insulating layer 130. The gate electrode 180 and the second impurity layer 120 constitute an FET.
 第3の電極160は、第1の半導体層101に積層されている。第3の電極160は、第1の半導体層101の面101bと接触している。第3の電極160は、面160aおよび面160bを有する。面160aおよび面160bは、互いに反対方向を向く。面160aは、面101bと接触している。第3の電極160は、面101bの少なくとも一部を覆っている。図1に示す例では、第3の電極160は、面101bの全体を覆っている。第3の電極160の一部に開口部が形成されてもよい。 The third electrode 160 is stacked on the first semiconductor layer 101. The third electrode 160 is in contact with the surface 101 b of the first semiconductor layer 101. The third electrode 160 has a surface 160a and a surface 160b. The face 160a and the face 160b face in opposite directions to each other. The surface 160a is in contact with the surface 101b. The third electrode 160 covers at least a part of the surface 101 b. In the example shown in FIG. 1, the third electrode 160 covers the entire surface 101 b. An opening may be formed in part of the third electrode 160.
 接続層170は、第1の電極140、第2の電極150、および複数のゲート電極180を構成する導電材料と同様の導電材料で構成されている。接続層170は、第1の半導体層101を貫通する。接続層170は、面101aにおいて第2の電極150に接続され、かつ面101bにおいて第3の電極160に接続されている。接続層170は、第1の電極140を通り面101aに垂直な仮想直線L1を囲む筒(壁)で構成されている。 The connection layer 170 is made of a conductive material similar to the conductive material constituting the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180. The connection layer 170 penetrates the first semiconductor layer 101. The connection layer 170 is connected to the second electrode 150 at the surface 101 a and connected to the third electrode 160 at the surface 101 b. The connection layer 170 is configured by a cylinder (wall) which passes through the first electrode 140 and surrounds an imaginary straight line L1 perpendicular to the surface 101a.
 面101aに垂直な方向に半導体装置10を見た場合に第3の電極160は第2の電極150よりも大きい。面101aに垂直な方向に半導体装置10を見た場合に第3の電極160は接続層170よりも大きい。 The third electrode 160 is larger than the second electrode 150 when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a. The third electrode 160 is larger than the connection layer 170 when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a.
 図2および図3は、接続層170の周辺の構成を示す。図2は第1の例を示し、かつ図3は第2の例を示す。 2 and 3 show the configuration around the connection layer 170. FIG. FIG. 2 shows a first example and FIG. 3 shows a second example.
 図2に示す構成を説明する。半導体装置10の製造工程において、第1の半導体層101の面101b上に第3の電極160が形成される。第3の電極160が形成された後、第1の半導体層101の面101a側から第1の半導体層101が削られる。これにより、第1の半導体層101を貫通する穴190が形成される。穴190は、面101aおよび面101bに開口している。穴190が形成された後、穴190を導電材料で埋めることにより接続層170が形成される。これにより、接続層170が穴190に配置される。接続層170が形成された後、第1の半導体層101の面101a上に絶縁層130が形成される。絶縁層130が形成された後、絶縁層130を貫通するように第2の電極150が形成される。 The configuration shown in FIG. 2 will be described. In the manufacturing process of the semiconductor device 10, the third electrode 160 is formed on the surface 101 b of the first semiconductor layer 101. After the third electrode 160 is formed, the first semiconductor layer 101 is scraped from the surface 101 a side of the first semiconductor layer 101. Thus, a hole 190 penetrating the first semiconductor layer 101 is formed. The hole 190 opens in the surface 101 a and the surface 101 b. After the holes 190 are formed, the connection layer 170 is formed by filling the holes 190 with a conductive material. Thus, the connection layer 170 is disposed in the hole 190. After the connection layer 170 is formed, the insulating layer 130 is formed on the surface 101 a of the first semiconductor layer 101. After the insulating layer 130 is formed, a second electrode 150 is formed to penetrate the insulating layer 130.
 接続層170および第2の電極150の境界の位置は、面101aと一致する。接続層170および第3の電極160の境界の位置は、面101bと一致する。面101aの位置を基準に接続層170および第2の電極150が定義される。面101aよりも上側の部分が第2の電極150である。面101aよりも下側の部分が接続層170である。接続層170と面101aとの距離は、第3の電極160と面101aとの距離d1よりも小さい。図2において、接続層170と面101aとの距離は、0である。接続層170および第3の電極160の間に不純物層が配置されてもよい。その場合、接続層170は、不純物層を介して第3の電極160に電気的に接続される。 The position of the boundary between the connection layer 170 and the second electrode 150 coincides with the surface 101 a. The position of the boundary between the connection layer 170 and the third electrode 160 coincides with the surface 101 b. The connection layer 170 and the second electrode 150 are defined on the basis of the position of the surface 101a. A portion above the surface 101 a is a second electrode 150. The portion below the surface 101 a is the connection layer 170. The distance between the connection layer 170 and the surface 101a is smaller than the distance d1 between the third electrode 160 and the surface 101a. In FIG. 2, the distance between the connection layer 170 and the surface 101 a is zero. An impurity layer may be disposed between the connection layer 170 and the third electrode 160. In that case, the connection layer 170 is electrically connected to the third electrode 160 through the impurity layer.
 図3に示す構成を説明する。半導体装置10の製造工程において、第1の半導体層101の面101aから不純物が注入され、かつその不純物が拡散することにより、不純物層200が形成される。不純物層200が形成された後、第1の半導体層101の面101b側から第1の半導体層101が削られる。これにより、不純物層200と接続された穴191が形成される。穴191は、面101bのみに開口している。穴191が形成された後、穴191を導電材料で埋め、かつ面101bを導電材料で覆うことにより接続層170および第3の電極160が形成される。これにより、接続層170が穴191に配置される。接続層170および第3の電極160が形成された後、第1の半導体層101の面101a上に絶縁層130が形成される。絶縁層130が形成された後、絶縁層130を貫通するように第2の電極150が形成される。 The configuration shown in FIG. 3 will be described. In the manufacturing process of the semiconductor device 10, an impurity is implanted from the surface 101a of the first semiconductor layer 101, and the impurity is diffused to form an impurity layer 200. After the impurity layer 200 is formed, the first semiconductor layer 101 is removed from the side of the surface 101 b of the first semiconductor layer 101. Thereby, the hole 191 connected to the impurity layer 200 is formed. The hole 191 opens only to the surface 101 b. After the hole 191 is formed, the connection layer 170 and the third electrode 160 are formed by filling the hole 191 with a conductive material and covering the surface 101b with a conductive material. Thereby, the connection layer 170 is disposed in the hole 191. After the connection layer 170 and the third electrode 160 are formed, the insulating layer 130 is formed on the surface 101 a of the first semiconductor layer 101. After the insulating layer 130 is formed, a second electrode 150 is formed to penetrate the insulating layer 130.
 接続層170および第3の電極160の境界の位置は、面101bと一致する。接続層170および第3の電極160は一体化されている。面101bの位置を基準に接続層170および第3の電極160が定義される。面101bよりも上側の部分が接続層170である。面101bよりも下側の部分が第3の電極160である。接続層170と面101aとの距離d2は、第3の電極160と面101aとの距離d1よりも小さい。接続層170は、不純物層200を介して第2の電極150に電気的に接続されている。 The position of the boundary between the connection layer 170 and the third electrode 160 coincides with the surface 101 b. The connection layer 170 and the third electrode 160 are integrated. The connection layer 170 and the third electrode 160 are defined based on the position of the surface 101 b. The portion above the surface 101 b is the connection layer 170. A portion below the surface 101 b is a third electrode 160. The distance d2 between the connection layer 170 and the surface 101a is smaller than the distance d1 between the third electrode 160 and the surface 101a. The connection layer 170 is electrically connected to the second electrode 150 through the impurity layer 200.
 図4は、半導体装置10の平面図である。図4において、第1の半導体層101の面101aに垂直な方向に半導体装置10を見たときの各要素が示されている。つまり、図4において、半導体基板100の正面から半導体装置10を見たときの各要素が示されている。図4において、絶縁層130は省略されている。図4において、複数のゲート電極180のうち代表として1つのゲート電極180の符号が示されている。 FIG. 4 is a plan view of the semiconductor device 10. In FIG. 4, each element when the semiconductor device 10 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 4, each element when the semiconductor device 10 is viewed from the front of the semiconductor substrate 100 is shown. In FIG. 4, the insulating layer 130 is omitted. In FIG. 4, reference numerals of one gate electrode 180 are shown as a representative of the plurality of gate electrodes 180.
 半導体装置10の外形は矩形である。図4に示す例では、半導体装置10の外形は正方形である。半導体装置10の外形は、矩形に限らない。第1の電極140は、面101aの中心に配置されている。第1の電極140は、円形の電極である。第1の電極140の外形は、矩形等であってもよい。図1に示す仮想直線L1は、第1の電極140の中心を通る。 The outer shape of the semiconductor device 10 is rectangular. In the example shown in FIG. 4, the outline of the semiconductor device 10 is a square. The outer shape of the semiconductor device 10 is not limited to a rectangle. The first electrode 140 is disposed at the center of the surface 101a. The first electrode 140 is a circular electrode. The outer shape of the first electrode 140 may be rectangular or the like. A virtual straight line L1 shown in FIG. 1 passes through the center of the first electrode 140.
 第2の電極150は接続層170と重なる。図示の都合上、図4において第2の電極150は省略されている。第2の電極150および複数のゲート電極180は、リング状の電極である。第2の電極150および複数のゲート電極180は、同心円状に配置されている。第2の電極150および複数のゲート電極180は、第1の電極140を囲むように配置されている。第2の電極150は、最も外側に配置されている。複数のゲート電極180は、第1の電極140および第2の電極150の間に配置されている。図4に示す線L2を通る断面が図1に示されている。 The second electrode 150 overlaps with the connection layer 170. For convenience of illustration, the second electrode 150 is omitted in FIG. The second electrode 150 and the plurality of gate electrodes 180 are ring-shaped electrodes. The second electrode 150 and the plurality of gate electrodes 180 are arranged concentrically. The second electrode 150 and the plurality of gate electrodes 180 are arranged to surround the first electrode 140. The second electrode 150 is disposed at the outermost side. The plurality of gate electrodes 180 are disposed between the first electrode 140 and the second electrode 150. A cross section through line L2 shown in FIG. 4 is shown in FIG.
 接続層170は、最も外側に配置された第2の電極150と重なるように配置されている。面101aに垂直な方向に半導体装置10を見た場合に接続層170は、リング状である。接続層170は、仮想直線L1を囲む筒で構成されている。図4において、仮想直線L1は点で示されている。例えば、接続層170の中心軸は仮想直線L1と一致する。 The connection layer 170 is disposed so as to overlap with the outermost second electrode 150. When the semiconductor device 10 is viewed in the direction perpendicular to the surface 101a, the connection layer 170 is ring-shaped. The connection layer 170 is configured by a cylinder surrounding the virtual straight line L1. In FIG. 4, the imaginary straight line L1 is indicated by a point. For example, the central axis of the connection layer 170 coincides with the imaginary straight line L1.
 面101aに平行であり、かつ半導体基板100を通る仮想平面S1において、接続層170は、第1の電極140を通り面101aに垂直な仮想直線L1を中心とする仮想円C1の周上に配置されている。図1において、仮想平面S1は直線で示されている。仮想平面S1は、面101aおよび面101bの間にある。図1において、仮想円C1は点で示されている。図4に示す接続層170を構成する筒の断面の形状は円である。仮想平面S1において、接続層170は、仮想直線L1を中心とする仮想多角形の周上に配置されてもよい。仮想多角形は、3つ以上の頂点および3つ以上の辺を有する。したがって、接続層170を構成する筒の断面の形状は多角形であってもよい。 In virtual plane S1 parallel to surface 101a and passing through semiconductor substrate 100, connection layer 170 is disposed on the circumference of virtual circle C1 centered on virtual straight line L1 passing through first electrode 140 and perpendicular to surface 101a. It is done. In FIG. 1, the virtual plane S1 is shown by a straight line. The virtual plane S1 is between the surface 101a and the surface 101b. In FIG. 1, a virtual circle C1 is indicated by a point. The shape of the cross section of the cylinder constituting the connection layer 170 shown in FIG. 4 is a circle. In virtual plane S1, connection layer 170 may be arranged on the circumference of a virtual polygon centered on virtual straight line L1. A virtual polygon has three or more vertices and three or more sides. Therefore, the shape of the cross section of the cylinder constituting the connection layer 170 may be polygonal.
 電圧が第1の電極140、第2の電極150、および複数のゲート電極180に印加される。第1の電極140に印加される電圧は、第2の電極150に印加される電圧よりも高い。第1の電極140はアノード電極として機能し、かつ第2の電極150はカソード電極として機能する。第1の電極140に印加される電圧は、複数のゲート電極180に印加されるどの電圧よりも高い。負電圧が第2の電極150および複数のゲート電極180に印加される。 A voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180. The voltage applied to the first electrode 140 is higher than the voltage applied to the second electrode 150. The first electrode 140 functions as an anode electrode, and the second electrode 150 functions as a cathode electrode. The voltage applied to the first electrode 140 is higher than any voltage applied to the plurality of gate electrodes 180. A negative voltage is applied to the second electrode 150 and the plurality of gate electrodes 180.
 複数のゲート電極180に印加される電圧は、第2の電極150に印加される電圧よりも高い。より内側のゲート電極180に印加される電圧は、より外側のゲート電極180に印加される電圧よりも高い。半導体基板100の内部の電位が半導体基板100の外周から中心に向かって高くなるように、電圧が第1の電極140、第2の電極150、および複数のゲート電極180に印加される。 The voltage applied to the plurality of gate electrodes 180 is higher than the voltage applied to the second electrode 150. The voltage applied to the inner gate electrode 180 is higher than the voltage applied to the outer gate electrode 180. A voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 such that the potential inside the semiconductor substrate 100 increases from the outer periphery of the semiconductor substrate 100 toward the center.
 第2の電極150に印加された電圧は、接続層170を介して第3の電極160に印加される。したがって、電圧を第3の電極160に直接印加する必要はない。つまり、半導体装置10の外部から第3の電極160に電圧を直接印加するための配線等の構造は必要ない。第1の電極140に印加される電圧よりも低い電圧が第3の電極160に印加される。半導体基板100の内部の電位が面101bから面101aに向かって高くなるように、電圧が第3の電極160に印加される。 The voltage applied to the second electrode 150 is applied to the third electrode 160 through the connection layer 170. Thus, there is no need to apply a voltage directly to the third electrode 160. That is, a structure such as a wiring for directly applying a voltage to the third electrode 160 from the outside of the semiconductor device 10 is not necessary. A voltage lower than that applied to the first electrode 140 is applied to the third electrode 160. A voltage is applied to the third electrode 160 such that the internal potential of the semiconductor substrate 100 increases from the surface 101 b toward the surface 101 a.
 上記のような電圧が半導体装置10に印加される。電子に作用するポテンシャルは、半導体基板100の外周から中心に向かって低くなり、かつ面101bから面101aに向かって低くなる。つまり、ポテンシャル勾配が半導体基板100に発生する。X線が半導体装置10に入射した場合、半導体基板100において電子が発生する。その電子は、ポテンシャル勾配に従って第1の電極140に集まる。その電子に基づく信号が半導体装置10から出力される。 The voltage as described above is applied to the semiconductor device 10. The potential acting on the electrons decreases from the outer periphery to the center of the semiconductor substrate 100 and decreases from the surface 101 b to the surface 101 a. That is, a potential gradient is generated in the semiconductor substrate 100. When X-rays enter the semiconductor device 10, electrons are generated in the semiconductor substrate 100. The electrons collect at the first electrode 140 according to the potential gradient. A signal based on the electrons is output from the semiconductor device 10.
 第1の半導体層101および第1の不純物層110がP型半導体で構成され、かつ複数の第2の不純物層120がN型半導体で構成されてもよい。その場合に各電極に印加される電圧について説明する。第1の電極140に印加される電圧は、第2の電極150に印加される電圧よりも低い。第1の電極140はカソード電極として機能し、かつ第2の電極150はアノード電極として機能する。第1の電極140に印加される電圧は、複数のゲート電極180に印加されるどの電圧よりも低い。正電圧が第2の電極150および複数のゲート電極180に印加される。 The first semiconductor layer 101 and the first impurity layer 110 may be formed of a P-type semiconductor, and the plurality of second impurity layers 120 may be formed of an N-type semiconductor. The voltage applied to each electrode in that case will be described. The voltage applied to the first electrode 140 is lower than the voltage applied to the second electrode 150. The first electrode 140 functions as a cathode electrode, and the second electrode 150 functions as an anode electrode. The voltage applied to the first electrode 140 is lower than any voltage applied to the plurality of gate electrodes 180. A positive voltage is applied to the second electrode 150 and the plurality of gate electrodes 180.
 複数のゲート電極180に印加される電圧は、第2の電極150に印加される電圧よりも低い。より内側のゲート電極180に印加される電圧は、より外側のゲート電極180に印加される電圧よりも低い。半導体基板100の内部の電位が半導体基板100の外周から中心に向かって低くなるように、電圧が第1の電極140、第2の電極150、および複数のゲート電極180に印加される。 The voltage applied to the plurality of gate electrodes 180 is lower than the voltage applied to the second electrode 150. The voltage applied to the inner gate electrode 180 is lower than the voltage applied to the outer gate electrode 180. A voltage is applied to the first electrode 140, the second electrode 150, and the plurality of gate electrodes 180 such that the potential inside the semiconductor substrate 100 decreases from the outer periphery of the semiconductor substrate 100 toward the center.
 第2の電極150に印加された電圧は、接続層170を介して第3の電極160に印加される。第1の電極140に印加される電圧よりも高い電圧が第3の電極160に印加される。半導体基板100の内部の電位が面101bから面101aに向かって低くなるように、電圧が第3の電極160に印加される。 The voltage applied to the second electrode 150 is applied to the third electrode 160 through the connection layer 170. A voltage higher than that applied to the first electrode 140 is applied to the third electrode 160. A voltage is applied to the third electrode 160 such that the potential inside the semiconductor substrate 100 decreases from the surface 101 b toward the surface 101 a.
 第1の不純物層110、複数の第2の不純物層120、および複数のゲート電極180は、本発明の各態様の半導体装置において必須ではない。複数の第2の不純物層120が配置され、かつ複数のゲート電極180に印加される電圧が制御されることにより、良好なポテンシャル勾配を形成することができる。図14に示す検出器1011と同様に、複数の第2の不純物層120が配置され、かつ複数のゲート電極180が配置されなくてもよい。図15に示す検出器1012と同様に、複数のゲート電極180が配置され、かつ複数の第2の不純物層120が配置されなくてもよい。 The first impurity layer 110, the plurality of second impurity layers 120, and the plurality of gate electrodes 180 are not essential in the semiconductor device of each aspect of the present invention. By arranging the plurality of second impurity layers 120 and controlling the voltage applied to the plurality of gate electrodes 180, a favorable potential gradient can be formed. Similar to the detector 1011 shown in FIG. 14, the plurality of second impurity layers 120 may be disposed, and the plurality of gate electrodes 180 may not be disposed. Similar to the detector 1012 shown in FIG. 15, the plurality of gate electrodes 180 may be disposed, and the plurality of second impurity layers 120 may not be disposed.
 上記のように、第2の電極150および第3の電極160に電気的に接続された接続層170が配置されている。そのため、半導体装置10の外部から第3の電極160に電圧を直接印加するための配線等の構造は必要ない。その結果、半導体装置10は、サイズを縮小することができ、かつ歩留まりの向上を実現することができる。 As described above, the connection layer 170 electrically connected to the second electrode 150 and the third electrode 160 is disposed. Therefore, a structure such as a wire for directly applying a voltage to the third electrode 160 from the outside of the semiconductor device 10 is not necessary. As a result, the size of the semiconductor device 10 can be reduced, and an improvement in yield can be realized.
 接続層170は、仮想直線L1を囲む筒で構成されている。これにより、第1の半導体層101は、接続層170よりも内側および外側の部分に分離される。半導体基板100の側面から半導体基板100に入射した光は不要である。接続層170に印加された電圧が形成するポテンシャル勾配のため、その光は半導体基板100の中心に向かって移動しにくい。したがって、その光に基づく不要な電荷が検知されにくい。 The connection layer 170 is configured by a cylinder surrounding the virtual straight line L1. Thereby, the first semiconductor layer 101 is separated into portions inside and outside the connection layer 170. The light incident on the semiconductor substrate 100 from the side surface of the semiconductor substrate 100 is unnecessary. The light is less likely to move toward the center of the semiconductor substrate 100 due to the potential gradient formed by the voltage applied to the connection layer 170. Therefore, it is difficult to detect unnecessary charge based on the light.
 (第1の実施形態の第1の変形例)
 図5は、本発明の第1の実施形態の第1の変形例の半導体装置11の平面図である。図5において、第1の半導体層101の面101aに垂直な方向に半導体装置11を見たときの各要素が示されている。つまり、図5において、半導体基板100の正面から半導体装置11を見たときの各要素が示されている。
First Modification of First Embodiment
FIG. 5 is a plan view of a semiconductor device 11 according to a first modification of the first embodiment of the present invention. In FIG. 5, each element when the semiconductor device 11 is seen in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 5, each element when the semiconductor device 11 is viewed from the front of the semiconductor substrate 100 is shown.
 図5に示す構成について、図4に示す構成と異なる点を説明する。図示の都合上、図5において、接続層170と重なる第2の電極150の部分は省略されている。第1の電極140を通り面101aに垂直な仮想直線L1を囲むように複数の接続層170が配置されている。図5において、複数の接続層170のうち代表として1つの接続層170の符号が示されている。複数の接続層170を構成する各接続層170は、柱(棒)で構成されている。例えば、複数の接続層170は、等間隔に配置されている。複数の接続層170を構成する各接続層170は、第2の電極150および第3の電極160と電気的に接続されている。仮想平面S1(図1)において、複数の接続層170は仮想円C1の周上に配置されている。少なくとも1つの接続層170が配置されさえすればよい。 The configuration shown in FIG. 5 will be described about differences from the configuration shown in FIG. For convenience of illustration, in FIG. 5, the portion of the second electrode 150 overlapping the connection layer 170 is omitted. A plurality of connection layers 170 are disposed so as to pass through the first electrode 140 and surround an imaginary straight line L1 perpendicular to the surface 101a. In FIG. 5, reference numerals of one connection layer 170 are shown as a representative of the plurality of connection layers 170. Each connection layer 170 constituting the plurality of connection layers 170 is formed of a pillar (bar). For example, the plurality of connection layers 170 are arranged at equal intervals. Each connection layer 170 constituting the plurality of connection layers 170 is electrically connected to the second electrode 150 and the third electrode 160. In virtual plane S1 (FIG. 1), a plurality of connection layers 170 are arranged on the circumference of virtual circle C1. At least one connection layer 170 need only be disposed.
 上記以外の点について、図5に示す構成は図4に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 5 is similar to the configuration shown in FIG.
 半導体装置11において、接続層170は、互いに分離した複数の柱で構成されている。そのため、図1に示す半導体装置10と比較して、接続層170を構成する材料が少なくなる。その結果、半導体装置10と比較して、半導体装置11の製造コストがより低くなる。 In the semiconductor device 11, the connection layer 170 is formed of a plurality of pillars separated from one another. Therefore, compared to the semiconductor device 10 shown in FIG. 1, the material constituting the connection layer 170 is reduced. As a result, the manufacturing cost of the semiconductor device 11 is lower than that of the semiconductor device 10.
 (第1の実施形態の第2の変形例)
 図6は、本発明の第1の実施形態の第2の変形例の半導体装置12の平面図である。図6において、第1の半導体層101の面101aに垂直な方向に半導体装置12を見たときの各要素が示されている。つまり、図6において、半導体基板100の正面から半導体装置12を見たときの各要素が示されている。
Second Modification of First Embodiment
FIG. 6 is a plan view of a semiconductor device 12 according to a second modification of the first embodiment of the present invention. In FIG. 6, each element when the semiconductor device 12 is seen in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 6, each element when the semiconductor device 12 is viewed from the front of the semiconductor substrate 100 is shown.
 図6に示す構成について、図5に示す構成と異なる点を説明する。接続層170の断面は円である。接続層170の断面は多角形であってもよい。 The configuration shown in FIG. 6 will be described about differences from the configuration shown in FIG. The cross section of the connection layer 170 is a circle. The cross section of the connection layer 170 may be polygonal.
 上記以外の点について、図6に示す構成は図5に示す構成と同様である。 The configuration shown in FIG. 6 is the same as the configuration shown in FIG.
 半導体装置12において、接続層170は、互いに分離した複数の柱で構成されている。そのため、図5に示す半導体装置11と同様に、図1に示す半導体装置10と比較して、半導体装置12の製造コストがより低くなる。 In the semiconductor device 12, the connection layer 170 is configured of a plurality of pillars separated from one another. Therefore, similar to the semiconductor device 11 shown in FIG. 5, the manufacturing cost of the semiconductor device 12 is lower than that of the semiconductor device 10 shown in FIG.
 (第2の実施形態)
 図7は、本発明の第2の実施形態の半導体装置13の構成を示す。図7において、半導体装置13の断面が示されている。図7に示す構成について、図1に示す構成と異なる点を説明する。
Second Embodiment
FIG. 7 shows the configuration of the semiconductor device 13 according to the second embodiment of the present invention. In FIG. 7, a cross section of the semiconductor device 13 is shown. The configuration shown in FIG. 7 will be described about differences from the configuration shown in FIG.
 図7に示すように半導体装置13は、半導体基板103、絶縁層130、第1の電極140、第2の電極150、接続層170、および複数のゲート電極180を有する。図7において、複数のゲート電極180のうち代表として2つのゲート電極180の符号が示されている。半導体基板103は、互いに反対方向を向く面101a(第1の主面)および面102b(第2の主面)を有する。半導体基板103および絶縁層130は、面101aに垂直な方向Dr1に積層されている。 As shown in FIG. 7, the semiconductor device 13 includes a semiconductor substrate 103, an insulating layer 130, a first electrode 140, a second electrode 150, a connection layer 170, and a plurality of gate electrodes 180. In FIG. 7, reference numerals of two gate electrodes 180 are shown as a representative of the plurality of gate electrodes 180. The semiconductor substrate 103 has a surface 101a (first main surface) and a surface 102b (second main surface) facing in opposite directions. The semiconductor substrate 103 and the insulating layer 130 are stacked in the direction Dr1 perpendicular to the surface 101a.
 半導体基板103は、第1の半導体層101、第2の半導体層102、第1の不純物層110、および複数の第2の不純物層120を有する。図7において、複数の第2の不純物層120のうち代表として1つの第2の不純物層120の符号が示されている。例えば、半導体基板103を構成する半導体材料は、シリコン(Si)である。 The semiconductor substrate 103 includes a first semiconductor layer 101, a second semiconductor layer 102, a first impurity layer 110, and a plurality of second impurity layers 120. In FIG. 7, the symbol of one second impurity layer 120 is shown as a representative of the plurality of second impurity layers 120. For example, the semiconductor material forming the semiconductor substrate 103 is silicon (Si).
 第1の半導体層101および第2の半導体層102は、面101aに垂直な方向Dr1に積層されている。第1の半導体層101は、図1に示す第1の半導体層101と同様に構成されている。第2の半導体層102は、P型半導体を含む。第2の半導体層102は、面102aおよび面102bを有する。面102aおよび面102bは、互いに反対方向を向く。面102aは、第1の半導体層101の面101bと接触している。面102bは、半導体基板103の主面を構成する。第2の半導体層102は、面102bを含むように半導体基板103内に配置されている。 The first semiconductor layer 101 and the second semiconductor layer 102 are stacked in a direction Dr1 perpendicular to the surface 101a. The first semiconductor layer 101 is configured in the same manner as the first semiconductor layer 101 shown in FIG. The second semiconductor layer 102 contains a P-type semiconductor. The second semiconductor layer 102 has a surface 102 a and a surface 102 b. The surface 102a and the surface 102b face in the opposite direction to each other. The surface 102 a is in contact with the surface 101 b of the first semiconductor layer 101. The surface 102 b constitutes the main surface of the semiconductor substrate 103. The second semiconductor layer 102 is disposed in the semiconductor substrate 103 so as to include the surface 102 b.
 接続層170は、面101bにおいて第2の半導体層102に接続されている。第2の電極150に印加された電圧は、接続層170を介して第2の半導体層102に印加される。第1の電極140に印加される電圧よりも高い電圧が第2の半導体層102に印加される。第1の半導体層101の内部の電位が面101bから面101aに向かって低くなるように、電圧が第2の半導体層102に印加される。 The connection layer 170 is connected to the second semiconductor layer 102 at the surface 101 b. The voltage applied to the second electrode 150 is applied to the second semiconductor layer 102 through the connection layer 170. A voltage higher than the voltage applied to the first electrode 140 is applied to the second semiconductor layer 102. A voltage is applied to the second semiconductor layer 102 such that the internal potential of the first semiconductor layer 101 decreases from the surface 101 b toward the surface 101 a.
 上記以外の点について、図7に示す構成は、図1に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 7 is the same as the configuration shown in FIG.
 接続層170の構造は、図4から図6に示す構造のいずれであってもよい。第1の半導体層101および第1の不純物層110がP型半導体で構成され、かつ第2の半導体層102および複数の第2の不純物層120がN型半導体で構成されてもよい。図14に示す検出器1011と同様に、複数の第2の不純物層120が配置され、かつ複数のゲート電極180が配置されなくてもよい。図15に示す検出器1012と同様に、複数のゲート電極180が配置され、かつ複数の第2の不純物層120が配置されなくてもよい。 The structure of the connection layer 170 may be any of the structures shown in FIG. 4 to FIG. The first semiconductor layer 101 and the first impurity layer 110 may be formed of a P-type semiconductor, and the second semiconductor layer 102 and the plurality of second impurity layers 120 may be formed of an N-type semiconductor. Similar to the detector 1011 shown in FIG. 14, the plurality of second impurity layers 120 may be disposed, and the plurality of gate electrodes 180 may not be disposed. Similar to the detector 1012 shown in FIG. 15, the plurality of gate electrodes 180 may be disposed, and the plurality of second impurity layers 120 may not be disposed.
 上記のように、第2の電極150および第2の半導体層102に電気的に接続された接続層170が配置されている。そのため、半導体装置13の外部から第2の半導体層102に電圧を直接印加するための配線等の構造は必要ない。その結果、半導体装置13は、サイズを縮小することができ、かつ歩留まりの向上を実現することができる。 As described above, the connection layer 170 electrically connected to the second electrode 150 and the second semiconductor layer 102 is disposed. Therefore, a structure such as a wiring for directly applying a voltage to the second semiconductor layer 102 from the outside of the semiconductor device 13 is not necessary. As a result, the size of the semiconductor device 13 can be reduced, and an improvement in yield can be realized.
 (第3の実施形態)
 図8は、本発明の第3の実施形態の半導体装置14の平面図である。図8において、第1の半導体層101の面101aに垂直な方向に半導体装置14を見たときの各要素が示されている。つまり、図8において、半導体基板100の正面から半導体装置14を見たときの各要素が示されている。半導体装置14の断面構造は、図1に示す構造と同様である。図8において、絶縁層130は省略されている。ゲート電極180は配置されていない。
Third Embodiment
FIG. 8 is a plan view of a semiconductor device 14 according to a third embodiment of the present invention. In FIG. 8, each element when the semiconductor device 14 is viewed in the direction perpendicular to the surface 101a of the first semiconductor layer 101 is shown. That is, in FIG. 8, each element when the semiconductor device 14 is viewed from the front of the semiconductor substrate 100 is shown. The cross-sectional structure of the semiconductor device 14 is the same as that shown in FIG. In FIG. 8, the insulating layer 130 is omitted. The gate electrode 180 is not disposed.
 複数の第1の電極140が配置されている。図8において、複数の第1の電極140のうち代表として1つの第1の電極140の符号が示されている。 A plurality of first electrodes 140 are arranged. In FIG. 8, a symbol of one first electrode 140 is shown as a representative of the plurality of first electrodes 140.
 図示の都合上、図8において、接続層170と重なる第2の電極150の部分は省略されている。面101aにおいて、第2の電極150は、複数の第1の電極140を構成する各第1の電極140を囲むように配置されている。第2の電極150は、複数の線状構造の集合体である。第2の電極150は、第1の電極140を中心とする六角形を構成する。 For convenience of illustration, in FIG. 8, the portion of the second electrode 150 overlapping with the connection layer 170 is omitted. In the surface 101 a, the second electrodes 150 are disposed so as to surround each of the first electrodes 140 constituting the plurality of first electrodes 140. The second electrode 150 is an assembly of a plurality of linear structures. The second electrode 150 constitutes a hexagon centered on the first electrode 140.
 面101aに平行であり、かつ半導体基板100を通る仮想平面S1(図1)において、接続層170は、複数の第1の電極140を構成する各第1の電極140を通り面101aに垂直な仮想直線L1を囲むように配置されている。各仮想直線L1を囲むように2つ以上の接続層170が配置されている。図8において、複数の接続層170のうち代表として1つの接続層170の符号が示されている。複数の接続層170を構成する各接続層170は、柱で構成されている。複数の接続層170を構成する各接続層170は、第2の電極150および第3の電極160と電気的に接続されている。 In an imaginary plane S1 (FIG. 1) parallel to the surface 101a and passing through the semiconductor substrate 100, the connection layer 170 passes through the respective first electrodes 140 constituting the plurality of first electrodes 140 and is perpendicular to the surface 101a. It is arrange | positioned so that the virtual straight line L1 may be enclosed. Two or more connection layers 170 are arranged to surround each virtual straight line L1. In FIG. 8, reference numerals of one connection layer 170 are shown as a representative of the plurality of connection layers 170. Each connection layer 170 constituting the plurality of connection layers 170 is formed of a pillar. Each connection layer 170 constituting the plurality of connection layers 170 is electrically connected to the second electrode 150 and the third electrode 160.
 複数の電極ユニットU1が配置されている。図8において、複数の電極ユニットU1のうち代表として1つの電極ユニットU1の符号が示されている。1つの電極ユニットU1は、1つの第1の電極140、六角形を構成する第2の電極150、および6つの接続層170を含む。6つの接続層170は、第2の電極150によって構成される六角形の頂点に配置されている。互いに隣接する2つの電極ユニットU1は、六角形の1つの辺を構成する第2の電極150を共有する。互いに隣接する2つの電極ユニットU1は、六角形の1つの辺に配置された2つの接続層170を共有する。 A plurality of electrode units U1 are arranged. In FIG. 8, reference numerals of one electrode unit U1 are shown as a representative of the plurality of electrode units U1. One electrode unit U1 includes one first electrode 140, a second electrode 150 forming a hexagon, and six connection layers 170. Six connection layers 170 are disposed at the apex of the hexagon formed by the second electrode 150. Two adjacent electrode units U1 share a second electrode 150 that constitutes one side of a hexagon. Two electrode units U1 adjacent to each other share two connection layers 170 arranged on one side of the hexagon.
 複数の第1の電極140は、互いに共通の配線で接続されてもよい。これにより、複数の第1の電極140から出力された信号は加算される。その結果、感度が向上する。複数の第1の電極140がそれぞれ、複数のアンプに接続され、かつ複数のアンプの出力が互いに共通の配線で接続されてもよい。複数の第1の電極140がそれぞれ、複数のアナログ-デジタル変換器(AD変換器)に接続され、かつ複数のAD変換器の出力が互いに共通の配線で接続されてもよい。 The plurality of first electrodes 140 may be connected to each other by a common wiring. Thereby, the signals output from the plurality of first electrodes 140 are added. As a result, the sensitivity is improved. The plurality of first electrodes 140 may be respectively connected to the plurality of amplifiers, and the outputs of the plurality of amplifiers may be connected to each other by a common wiring. The plurality of first electrodes 140 may be connected to the plurality of analog-to-digital converters (AD converters), respectively, and the outputs of the plurality of AD converters may be connected to each other by common wiring.
 接続層170は、仮想直線L1を囲む筒で構成されてもよい。接続層170の断面は、六角形であってもよい。 The connection layer 170 may be configured by a cylinder surrounding the virtual straight line L1. The cross section of the connection layer 170 may be hexagonal.
 上記のように、複数の第1の電極140が配置され、かつ第2の電極150および接続層170が各第1の電極140の周囲に配置されている。そのため、図1に示す半導体装置10と比較して、第1の電極140および第2の電極150の距離が短く、かつ第1の電極140および接続層170の距離が短くなる。つまり、半導体装置10と比較して、電子の移動距離が短くなる。そのため、蛍光X線により発生した電子が正孔と再結合する前に電子が第1の電極140により検出される可能性が高い。複数の電極ユニットU1を配置することにより、チップサイズを増加させることができる。 As described above, a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, the distance between the first electrode 140 and the second electrode 150 is short and the distance between the first electrode 140 and the connection layer 170 is short as compared with the semiconductor device 10 shown in FIG. That is, compared to the semiconductor device 10, the moving distance of electrons is shortened. Therefore, there is a high possibility that the electrons are detected by the first electrode 140 before the electrons generated by the fluorescent X-rays recombine with the holes. The chip size can be increased by arranging a plurality of electrode units U1.
 蛍光X線により発生した電子が正孔と再結合する前に電子が第1の電極140により検出される可能性が高いため、良好なポテンシャル勾配を形成するためのゲート電極180および第2の不純物層120は不要である。チップサイズが増加した場合でも、半導体装置14の製造コストが低減される。 Since there is a high possibility that the electrons are detected by the first electrode 140 before the electrons generated by the fluorescent X-rays recombine with the holes, the gate electrode 180 and the second impurity for forming a good potential gradient Layer 120 is not required. Even when the chip size is increased, the manufacturing cost of the semiconductor device 14 is reduced.
 (第3の実施形態の第1の変形例)
 図9は、本発明の第3の実施形態の第1の変形例の半導体装置15の平面図である。図9において、第1の半導体層101の面101aに垂直な方向に半導体装置15を見たときの各要素が示されている。つまり、図9において、半導体基板100の正面から半導体装置15を見たときの各要素が示されている。半導体装置15の断面構造は、図1に示す構造と同様である。図9に示す構成について、図8に示す構成と異なる点を説明する。
First Modification of Third Embodiment
FIG. 9 is a plan view of a semiconductor device 15 of a first modification of the third embodiment of the present invention. FIG. 9 shows each element when the semiconductor device 15 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101. That is, in FIG. 9, each element when the semiconductor device 15 is viewed from the front of the semiconductor substrate 100 is shown. The sectional structure of the semiconductor device 15 is the same as that shown in FIG. The configuration shown in FIG. 9 will be described about differences from the configuration shown in FIG.
 第2の電極150は、第1の電極140を中心とする四角形(正方形)を構成する。複数の電極ユニットU2が配置されている。図9において、複数の電極ユニットU2のうち代表として1つの電極ユニットU2の符号が示されている。1つの電極ユニットU2は、1つの第1の電極140、四角形を構成する第2の電極150、および4つの接続層170を含む。4つの接続層170は、第2の電極150によって構成される四角形の頂点に配置されている。互いに隣接する2つの電極ユニットU2は、四角形の1つの辺を構成する第2の電極150を共有する。互いに隣接する2つの電極ユニットU1は、四角形の1つの辺に配置された2つの接続層170を共有する。 The second electrode 150 constitutes a quadrangle (square) centered on the first electrode 140. A plurality of electrode units U2 are arranged. In FIG. 9, the reference numeral of one electrode unit U2 is shown as a representative of the plurality of electrode units U2. One electrode unit U2 includes one first electrode 140, a second electrode 150 forming a square, and four connection layers 170. The four connection layers 170 are disposed at the vertexes of the square formed by the second electrode 150. Two electrode units U2 adjacent to each other share a second electrode 150 that constitutes one side of a square. Two electrode units U1 adjacent to each other share two connection layers 170 disposed on one side of a square.
 上記以外の点について、図9に示す構成は、図8に示す構成と同様である。 The configuration shown in FIG. 9 is the same as the configuration shown in FIG. 8 except for the points described above.
 上記のように、複数の第1の電極140が配置され、かつ第2の電極150および接続層170が各第1の電極140の周囲に配置されている。そのため、図8に示す半導体装置14と同様に、チップサイズを増加させることができる。 As described above, a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased.
 (第3の実施形態の第2の変形例)
 図10は、本発明の第3の実施形態の第2の変形例の半導体装置16の平面図である。図10において、第1の半導体層101の面101aに垂直な方向に半導体装置16を見たときの各要素が示されている。つまり、図10において、半導体基板100の正面から半導体装置16を見たときの各要素が示されている。半導体装置16の断面構造は、図1に示す構造と同様である。図10に示す構成について、図8に示す構成と異なる点を説明する。
Second Modification of Third Embodiment
FIG. 10 is a plan view of a semiconductor device 16 according to a second modification of the third embodiment of the present invention. In FIG. 10, each element when the semiconductor device 16 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 10, each element when the semiconductor device 16 is viewed from the front of the semiconductor substrate 100 is shown. The cross-sectional structure of the semiconductor device 16 is the same as that shown in FIG. Regarding the configuration shown in FIG. 10, points different from the configuration shown in FIG. 8 will be described.
 複数の接続層170が配置されている。接続層170の数は、第1の電極140の数よりも少ない。図10において、4つの接続層170および8つの第1の電極140が配置されている。接続層170が配置される位置は、図10に示す位置に限らない。また、接続層170の数は4つに限らない。 A plurality of connection layers 170 are arranged. The number of connection layers 170 is smaller than the number of first electrodes 140. In FIG. 10, four connection layers 170 and eight first electrodes 140 are disposed. The position where the connection layer 170 is disposed is not limited to the position shown in FIG. Further, the number of connection layers 170 is not limited to four.
 上記のように、複数の第1の電極140が配置され、かつ第2の電極150および接続層170が各第1の電極140の周囲に配置されている。そのため、図8に示す半導体装置14と同様に、チップサイズを増加させることができる。また、接続層170の数が第1の電極140の数よりも少ない。そのため、図8に示す半導体装置14と比較して、接続層170を構成する材料が少なくなる。その結果、半導体装置14と比較して、半導体装置16の製造コストがより低くなる。 As described above, a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased. In addition, the number of connection layers 170 is smaller than the number of first electrodes 140. Therefore, compared to the semiconductor device 14 shown in FIG. 8, the material constituting the connection layer 170 is reduced. As a result, the manufacturing cost of the semiconductor device 16 is lower than that of the semiconductor device 14.
 (第3の実施形態の第3の変形例)
 図11は、本発明の第3の実施形態の第3の変形例の半導体装置17の平面図である。図11において、第1の半導体層101の面101aに垂直な方向に半導体装置17を見たときの各要素が示されている。つまり、図11において、半導体基板100の正面から半導体装置17を見たときの各要素が示されている。半導体装置17の断面構造は、図1に示す構造と同様である。図11に示す構成について、図8に示す構成と異なる点を説明する。
(Third Modification of Third Embodiment)
FIG. 11 is a plan view of a semiconductor device 17 according to a third modification of the third embodiment of the present invention. In FIG. 11, each element when the semiconductor device 17 is viewed in the direction perpendicular to the surface 101 a of the first semiconductor layer 101 is shown. That is, in FIG. 11, each element when the semiconductor device 17 is viewed from the front of the semiconductor substrate 100 is shown. The cross-sectional structure of the semiconductor device 17 is the same as that shown in FIG. The configuration shown in FIG. 11 will be described about differences from the configuration shown in FIG.
 第2の電極150は、四角形(長方形)を構成する。四角形を構成する第2の電極150の中心に線状の第1の電極140が配置されている。横方向に細長い第1の電極140が配置されている。第1の電極140の左端および右端は第2の電極150の近傍にある。複数の電極ユニットU3が配置されている。図11において、複数の電極ユニットU3のうち代表として1つの電極ユニットU3の符号が示されている。1つの電極ユニットU3は、1つの第1の電極140、四角形を構成する第2の電極150、および6つの接続層170を含む。6つの接続層170は、第2の電極150によって構成される四角形の辺に配置されている。互いに隣接する2つの電極ユニットU3は、四角形の1つの辺を構成する第2の電極150を共有する。互いに隣接する2つの電極ユニットU3は、四角形の1つの辺に配置された1つまたは2つの接続層170を共有する。 The second electrode 150 constitutes a quadrangle (rectangle). A linear first electrode 140 is disposed at the center of the second electrode 150 constituting a square. A laterally elongated first electrode 140 is disposed. The left and right ends of the first electrode 140 are in the vicinity of the second electrode 150. A plurality of electrode units U3 are arranged. In FIG. 11, the reference numeral of one electrode unit U3 is shown as a representative of the plurality of electrode units U3. One electrode unit U3 includes one first electrode 140, a second electrode 150 forming a square, and six connection layers 170. The six connection layers 170 are disposed on the side of the square formed by the second electrode 150. Two electrode units U3 adjacent to each other share a second electrode 150 which constitutes one side of a square. Two electrode units U3 adjacent to each other share one or two connection layers 170 disposed on one side of the square.
 上記以外の点について、図11に示す構成は、図8に示す構成と同様である。 The configuration shown in FIG. 11 is the same as the configuration shown in FIG. 8 except for the points described above.
 上記のように、複数の第1の電極140が配置され、かつ第2の電極150および接続層170が各第1の電極140の周囲に配置されている。そのため、図8に示す半導体装置14と同様に、チップサイズを増加させることができる。 As described above, a plurality of first electrodes 140 are disposed, and a second electrode 150 and a connection layer 170 are disposed around each first electrode 140. Therefore, as in the case of the semiconductor device 14 shown in FIG. 8, the chip size can be increased.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments and their modifications. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention. Also, the present invention is not limited by the above description, and is limited only by the scope of the attached claims.
 本発明の各実施形態によれば、半導体装置は、サイズを縮小することができ、かつ歩留まりの向上を実現することができる。 According to each embodiment of the present invention, the semiconductor device can be reduced in size, and an improvement in yield can be realized.
 10,11,12,13,14,15,16,17 半導体装置
 100,103,1100,1103 半導体基板
 101,1101,1104 第1の半導体層
 102,1102 第2の半導体層
 110,1110 第1の不純物層
 120,1120 第2の不純物層
 130,1130 絶縁層
 140 第1の電極
 150 第2の電極
 160 第3の電極
 170 接続層
 180,1180,1190 ゲート電極
 190,191 穴
 200 不純物層
 1010,1011,1012 検出器
 1140 アノード電極
 1150 カソード電極
10, 11, 12, 13, 14, 15, 16, 17 semiconductor devices 100, 103, 1100, 1103 semiconductor substrates 101, 1101, 1104 first semiconductor layers 102, 1102 second semiconductor layers 110, 1110 first Impurity layer 120, 1120 Second impurity layer 130, 1130 Insulating layer 140 First electrode 150 Second electrode 160 Third electrode 170 Connection layer 180, 1180, 1190 Gate electrode 190, 191 Hole 200 Impurity layer 1010, 1011 , 1012 Detector 1140 Anode electrode 1150 Cathode electrode

Claims (8)

  1.  互いに反対方向を向く第1の主面および第2の主面を有する半導体基板と、
     前記第1の主面に配置された第1の電極および第2の電極と、
     前記第2の主面に配置され、または前記第2の主面を含むように前記半導体基板内に配置された導電層と、
     前記半導体基板において前記第1の主面および前記第2の主面の少なくとも1つに開口した穴に配置され、前記第2の電極および前記導電層に電気的に接続され、かつ導電性を有する接続層と、
     を有する半導体装置。
    A semiconductor substrate having a first main surface and a second main surface facing in opposite directions;
    A first electrode and a second electrode disposed on the first major surface;
    A conductive layer disposed on the second main surface or disposed in the semiconductor substrate to include the second main surface;
    It is disposed in a hole opened in at least one of the first main surface and the second main surface in the semiconductor substrate, is electrically connected to the second electrode and the conductive layer, and has conductivity. Connection layer,
    Semiconductor device having
  2.  前記接続層は、前記第1の主面において前記第2の電極に接続されている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the connection layer is connected to the second electrode on the first main surface.
  3.  前記接続層は、前記第1の電極を通り前記第1の主面に垂直な仮想直線を囲む筒で構成されている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the connection layer is configured by a cylinder that passes through the first electrode and surrounds a virtual straight line perpendicular to the first main surface.
  4.  前記第1の電極を通り前記第1の主面に垂直な仮想直線を囲むように配置された複数の前記接続層を有する
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, further comprising a plurality of the connection layers disposed so as to pass through the first electrode and surround a virtual straight line perpendicular to the first main surface.
  5.  前記第1の主面に平行であり、かつ前記半導体基板を通る仮想平面において、前記接続層は、前記第1の電極を通り前記第1の主面に垂直な仮想直線を中心とする仮想円または仮想多角形の周上に配置されている
     請求項1に記載の半導体装置。
    In a virtual plane parallel to the first main surface and passing through the semiconductor substrate, the connection layer is a virtual circle centered on a virtual straight line passing through the first electrode and perpendicular to the first main surface. The semiconductor device according to claim 1, wherein the semiconductor device is disposed on a circumference of a virtual polygon.
  6.  複数の前記第1の電極を有し、
     前記第1の主面において、前記第2の電極は、前記複数の前記第1の電極を構成する各第1の電極を囲むように配置されている
     請求項1に記載の半導体装置。
    Having a plurality of said first electrodes,
    2. The semiconductor device according to claim 1, wherein the second electrode is disposed on the first main surface so as to surround each of the first electrodes constituting the plurality of first electrodes.
  7.  前記第1の主面に平行であり、かつ前記半導体基板を通る仮想平面において、前記接続層は、前記複数の前記第1の電極を構成する各第1の電極を通り前記第1の主面に垂直な仮想直線を囲むように配置されている
     請求項6に記載の半導体装置。
    In a virtual plane parallel to the first main surface and passing through the semiconductor substrate, the connection layer passes through the respective first electrodes constituting the plurality of first electrodes, and the first main surface The semiconductor device according to claim 6, wherein the semiconductor device is disposed so as to surround a virtual straight line perpendicular to the line.
  8.  複数の前記接続層を有し、
     前記接続層の数は前記第1の電極の数よりも少ない
     請求項6に記載の半導体装置。
    Having a plurality of said connection layers,
    The semiconductor device according to claim 6, wherein the number of connection layers is smaller than the number of first electrodes.
PCT/JP2017/045852 2017-12-21 2017-12-21 Semiconductor device WO2019123591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045852 WO2019123591A1 (en) 2017-12-21 2017-12-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045852 WO2019123591A1 (en) 2017-12-21 2017-12-21 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019123591A1 true WO2019123591A1 (en) 2019-06-27

Family

ID=66993299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045852 WO2019123591A1 (en) 2017-12-21 2017-12-21 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2019123591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281856A1 (en) * 2021-07-06 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device, x-ray imaging device, and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082023A1 (en) * 2003-03-10 2004-09-23 Hamamatsu Photonics K.K. Photodiode array, method for manufacturing same, and radiation detector
WO2006005803A1 (en) * 2004-07-09 2006-01-19 Artto Aurola Semiconductor radiation detector
JP2008258348A (en) * 2007-04-04 2008-10-23 Institute X-Ray Technologies Co Ltd Radiation detector
US20090206436A1 (en) * 2005-12-01 2009-08-20 Artto Aurola Semiconductor apparatus
US20120313196A1 (en) * 2009-10-19 2012-12-13 Brookhaven Science Associates ,LLC et al. 3-d trench electrode detectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082023A1 (en) * 2003-03-10 2004-09-23 Hamamatsu Photonics K.K. Photodiode array, method for manufacturing same, and radiation detector
WO2006005803A1 (en) * 2004-07-09 2006-01-19 Artto Aurola Semiconductor radiation detector
US20090206436A1 (en) * 2005-12-01 2009-08-20 Artto Aurola Semiconductor apparatus
JP2008258348A (en) * 2007-04-04 2008-10-23 Institute X-Ray Technologies Co Ltd Radiation detector
US20120313196A1 (en) * 2009-10-19 2012-12-13 Brookhaven Science Associates ,LLC et al. 3-d trench electrode detectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281856A1 (en) * 2021-07-06 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device, x-ray imaging device, and electronic equipment

Similar Documents

Publication Publication Date Title
EP3493275B1 (en) Light detection device
DE10213812B4 (en) Cable transfer for a semiconductor detector
EP3493276B1 (en) Light detection device
JP5297276B2 (en) Photodiode array
US20190120689A1 (en) Combination sensors and electronic devices
TW201330199A (en) Semiconductor device having through-substrate via
JP6195031B1 (en) High frequency amplifier
EP1431779B1 (en) Semiconductor detector with an optimised entrance window
WO2019123591A1 (en) Semiconductor device
EP3358622A1 (en) Image-capturing element and image-capturing device
US8586400B2 (en) Fabricating method of organic photodetector
JP4267397B2 (en) Signal electronic detector
WO2019135265A1 (en) Semiconductor device
EP4141939A1 (en) Light detector and electronic instrument
WO2020008531A1 (en) X-ray detector
JP7471817B2 (en) Multiplication type image sensor
KR20230001795A (en) Spad pixel structure and manufacturing the same
WO2016132616A1 (en) Infrared detection device
JP6965222B2 (en) Semiconductor device
JPS6340381A (en) Radiation detector
JP2006261274A (en) Semiconductor detector and manufacturing method thereof
JP2005043263A (en) Signal detector
US20240136380A1 (en) Active pixel sensor and method for fabricating an active pixel sensor
JP2002343952A5 (en) Photodetector and radiation detector
JP6237803B2 (en) Optical sensor and spectroscopic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP