WO2019123589A1 - Three-dimensional shape measurement device - Google Patents

Three-dimensional shape measurement device Download PDF

Info

Publication number
WO2019123589A1
WO2019123589A1 PCT/JP2017/045848 JP2017045848W WO2019123589A1 WO 2019123589 A1 WO2019123589 A1 WO 2019123589A1 JP 2017045848 W JP2017045848 W JP 2017045848W WO 2019123589 A1 WO2019123589 A1 WO 2019123589A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
dimensional shape
pivoting
laser beam
laser light
Prior art date
Application number
PCT/JP2017/045848
Other languages
French (fr)
Japanese (ja)
Inventor
博仁 廣橋
Original Assignee
株式会社フリックフィット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フリックフィット filed Critical 株式会社フリックフィット
Priority to JP2018538668A priority Critical patent/JP6423984B1/en
Priority to CN201780097841.0A priority patent/CN111556952B/en
Priority to PCT/JP2017/045848 priority patent/WO2019123589A1/en
Publication of WO2019123589A1 publication Critical patent/WO2019123589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to a three-dimensional shape measurement apparatus.
  • Patent Document 1 it takes a lot of time and money to produce a mold made of foamed plastic for each measurement of the internal shape of the shoe.
  • it is necessary to be careful not to contaminate the shoes, which is inefficient, and additionally, it takes time and money to discard and recycle the mold after measurement.
  • Patent Document 2 requires significant downsizing in order to measure the shape of a narrow space such as a shoe, but the downsizing of the tip portion having a plurality of mirrors and a driving unit It is difficult and difficult to use for measurement of narrow space shapes. Furthermore, in the case of moving and imaging the light emitting part at the tip using a plurality of joints, in the case of shape measurement, it is necessary to calculate the position of the tip at which the position changes accurately. The time required to calculate
  • An object of the present invention is to provide a shape measurement apparatus.
  • the three-dimensional shape measuring device of this disclosure With the base, An apparatus main body supported by the base;
  • the device body is An optical length measuring apparatus that emits an outgoing laser beam from an irradiation unit, receives a reflected laser beam reflected by a measurement object at a light reception unit, and measures the position of a reflection point on the measurement object by triangulation method
  • a mirror which is disposed apart from the optical length measuring device in the emitting direction of the outgoing laser light, and which has an axis directed in a direction substantially orthogonal to the emitting direction to a support member coupled to the optical length measuring device.
  • Moving mirror A mirror rotation device for rotating the mirror rotation axis to scan the emitted laser light; And an apparatus main assembly rotating apparatus configured to rotate the apparatus main assembly with respect to the base so as to scan the outgoing laser light reflected by the rotating mirror in the circumferential direction.
  • the shape of a narrow space such as the inner periphery of a shoe can be measured with high accuracy in a short time with a simple and inexpensive configuration.
  • FIG. 1 is a cross-sectional view of a three-dimensional shape measuring apparatus according to a first embodiment viewed in plan. It is a longitudinal cross-sectional view in the position of a turntable of the three-dimensional shape measuring apparatus of Embodiment 1.
  • FIG. 2 is a structure explanatory view of a mirror rotation device applied to the three-dimensional shape measurement device of the first embodiment.
  • FIG. 1 is an overall schematic view showing a three-dimensional shape measuring apparatus according to the first embodiment, and the three-dimensional shape measuring apparatus according to the first embodiment includes a base 10, an apparatus main body 20, and a back and forth moving device 30 2 and 3), the apparatus main assembly turning device 40, and the vertical movement device 50.
  • the base 10 supports the apparatus main body 20 and the shoe SH which is an object to be measured, and includes a frame 11, an upper support plate 12, and a lower support plate 13.
  • the frame 11 forms a substantially rectangular parallelepiped framework, and includes legs 11 a erected at four places in the horizontal direction.
  • the upper support plate 12 and the lower support plate 13 are vertically separated from each other and supported by the middle portion of the leg 11a, and the upper ends of the legs 11a are connected by the upper frame 11b.
  • the upper support plate 12 has a rectangular slide hole 12a open from above as viewed from above and is viewed in plan Is formed in a rectangular ring shape.
  • the lower support plate 13 is formed in a rectangular plate shape in plan view having the same outer peripheral dimension as the outer periphery of the upper support plate 12, although the illustration of the planar shape is omitted. Therefore, as shown in FIG. 1, the shoe SH can be placed on the upper surface thereof.
  • the device body 20 has an optical length measuring device 210 at the top, and a support 220 vertically extended from the optical length measuring device 210, which will be described later in detail.
  • the device body 20 is supported by the upper support plate 12 with the support 220 penetrating the slide hole 12 a of the upper support plate 12.
  • the support of the apparatus main body 20 by the upper side support plate 12 is a support in which a slide plate 31 and a turn table 41 described later are interposed. That is, the apparatus main body 20 is supported by a turntable 41 described later, the turntable 41 is supported by the slide plate 31, and the slide plate 31 is supported by the upper support plate 12.
  • the longitudinal movement device 30 is for moving the device body 20 in the direction of the x-axis in FIG. 1 with respect to the upper side support plate 12 (this direction is hereinafter referred to as the longitudinal direction), and as shown in FIG. A plate 31, a motor 32 for back and forth movement, a reduction gear 33, and a pulley mechanism 34 are provided.
  • a direction orthogonal to the x-axis in the horizontal direction is represented as a y-axis, which is hereinafter referred to as the left-right direction.
  • a direction orthogonal to the x axis and the y axis is represented as az axis, and hereinafter, this is referred to as a vertical direction.
  • the slide plate 31 is formed to have a lateral width slightly smaller than the lateral width (the width in the y-axis direction) of the slide hole 12a, and is slidably supported in the longitudinal direction. That is, as shown in FIG. 3 which is a longitudinal sectional view of the three-dimensional shape measuring apparatus according to the first embodiment at the position of a turn table 41 described later, slide flanges 12f and 12f are provided at the left and right ends of the slide hole 12a. It is formed to protrude. Further, in the slide plate 31, engaging flanges 31f, 31f provided at both ends in the left-right direction are engaged with the upper side of the sliding flanges 12f, 12f in the vertical direction. Therefore, the slide plate 31 is supported by the upper support plate 12 so as to be movable in the front-rear direction along the slide flanges 12f, 12f.
  • the slide plate 31 moves in the front-rear direction along the slide hole 12 a by the drive of the front-rear movement motor 32. That is, the back and forth movement motor 32 is attached to the lower surface of the upper support plate 12, and the reduction gear 33 is provided on the drive shaft 32 a of the back and forth movement motor 32. Then, the rotation decelerated by the reduction gear 33 is transmitted to the pulley mechanism 34.
  • the pulley mechanism 34 includes a pulley 34a rotated by the reduction gear 33, and a pair of belts 34b and 34c wound by the pulley 34a. That is, the belts 34b and 34c are attached to the lower surface of the slide plate 31 so as to be separated in the front-rear direction with the pulley 34a interposed therebetween. Therefore, when the pulley 34a rotates in one direction, the one of the belts 34b and 34c is wound up, and the slide plate 31 slides in one of the front and rear (for example, the front). In addition, when the pulley 34a rotates in the forward and reverse direction, the other of the belts 34b and 34c is wound up, and the slide plate 31 slides in the other direction (for example, backward).
  • the sliding plate 31 moves in the longitudinal direction (direction of the x-axis) with respect to the upper side supporting plate 12 by driving the longitudinal movement motor 32 forward and reversely.
  • the supported apparatus body 20 moves in the front-rear direction.
  • the apparatus body rotation apparatus 40 includes a turntable 41, a turntable driving timing belt 42, and a turntable rotation motor 43.
  • the turntable 41 is formed in a circular shape in plan view as shown in FIG. 2 and is formed in a plate shape as shown in FIG. It is rotatably supported. That is, a circular support hole 31 a is opened at the center of the slide plate 31, a bearing 44 is provided on the inner periphery of the support hole 31 a, and the turntable 41 is supported by the bearing 44.
  • the turntable rotation motor 43 is supported on the slide plate 31 by a gate-shaped bracket 43a with the drive shaft facing downward. Then, the turntable drive timing belt 42 is bridged over the drive gear 43 b rotated by the drive shaft of the turntable rotation motor 43 and the table gear 41 a (see FIG. 3) formed on the outer periphery of the turntable 41. ing.
  • the turntable rotation motor 43 when the turntable rotation motor 43 is driven to rotate the drive gear 43b, the rotation is transmitted to the table gear 41a via the turntable drive timing belt 42, and the turntable 41 rotates with respect to the slide plate 31. .
  • the rotation of the turntable 41 can be performed in the forward or reverse direction, that is, in either of the clockwise direction and the counterclockwise direction in FIG. 2 by forward and reverse rotation of the turntable rotation motor 43. It has become.
  • the turntable rotation motor 43 when the turntable rotation motor 43 is driven in the forward and reverse direction, the turntable 41 rotates clockwise relative to the slide plate 31 as viewed from above centering on the z-axis along the z-axis. Rotate clockwise. And thereby, the apparatus main body 20 supported by the turntable 41 rotates clockwise and anticlockwise rotation direction seeing from upper direction centering on za axis.
  • the vertical movement device 50 includes a slide support bracket 51, a vertical movement motor 52, and a vertical movement rack gear 53.
  • the slide support bracket 51 is provided upright on the turn table 41, and is formed in a U-shaped cross section in plan view as shown in FIG. 2, and supports the column 220 of the device body 20 so as to be vertically slidable by the inner surface of the U doing.
  • the vertical movement motor 52 is supported by a bracket 52b fixed to the turn table 41, and has a pinion gear 52a on the rotation shaft.
  • the vertical movement rack gear 53 extends in the vertical direction along the side surface of the support 220.
  • the vertical movement rack gear 53 and the pinion gear 52 a mesh with each other through a window 51 b (see FIG. 1) opened at the side of the slide support bracket 51.
  • the support 220 that is, the device main body 20 moves up and down along the slide support bracket 51.
  • the slide plate 31 moves in the front-rear direction (direction of the x-axis) with respect to the upper support plate 12 by the front-rear moving device 30. Move in the back and forth direction. Further, the apparatus body 20 rotates about the za axis when the turntable 41 rotates about the za axis with respect to the upper support plate 12 of the base 10 by the apparatus body rotating device 40. The apparatus main body 20 can move up and down by moving the support 220 in the vertical direction (direction along the z-axis) with respect to the turntable 41 by the vertical movement device 50.
  • FIG. 4 is a side view showing the device body 20.
  • the device body 20 includes an optical length measuring device 210, a support 220, a pivoting mirror 230, and a mirror pivoting device 240.
  • the optical length measuring device 210 includes a laser light source 211 and a laser beam position detector 212. Further, the support 220 has a pivoting mirror 230 at a position directly below the laser light source 211.
  • the laser beam position detector 212 is disposed so as to be capable of receiving the reflected laser beam LB2 reflected by the rotating mirror 230.
  • the output laser beam LB1 emitted from the laser light source 211 is reflected by the rotating mirror 230, and the object to be measured is measured from the three-dimensional shape measuring apparatus (shoes SH) Irradiate.
  • the laser beam position detector 212 receives the reflected laser beam LB2 which is incident on the rotating mirror 230 and is reflected among the laser beams reflected by the object to be measured (shoes SH).
  • the optical length measuring device 210 detects the incident position of the reflected laser beam LB2 received by the laser beam position detector 212, and measures the target object from the distance and incident angle of the incident position of the laser light source 211 and the reflected laser beam LB2. The distance to the reflection point P (laser measurement point) in the shoe SH) is measured.
  • the laser light source 211 and the rotation mirror 230 are disposed such that the laser light source 211 and the emission laser light LB1 to be emitted are disposed on the za axis which is the rotation center of the turn table 41 described above. Therefore, when the turntable 41 is rotated, the emission laser beam LB1 reaching the laser light source 211 and the rotation mirror 230 is always disposed on the za axis.
  • the horizontal dimensions of the support 220 and the pivoting mirror 230 are such that they do not interfere with the lining (inner side) of the shoe SH when the support 220 and the pivoting mirror 230 pivot about the za axis.
  • the support 220 and the pivoting mirror 230 are formed to fit within a circle with a radius of 25 mm centered on the za axis.
  • the mirror rotation device 240 is a device that rotates the rotation mirror 230 in the vertical direction about the mirror rotation shaft 231 to scan the emitted laser beam LB1 in the vertical direction.
  • the pivoting mirror 230 is supported so as to be vertically pivotable about a mirror pivoting shaft 231 provided at the lower end portion of the support 220.
  • FIG. 5 is a view for explaining the structure of the mirror rotation device 240.
  • the mirror rotation device 240 includes a rotation arm 241, a connection link 242, an eccentric cam 243, and a mirror rotation motor 244.
  • the proximal end portion of the pivoting arm 241 is, together with the pivoting mirror 230, supported by the support 220 so as to be pivotable in the vertical direction about the mirror pivoting axis 231.
  • the tip end portion of the pivoting arm 241 is coupled to the eccentric cam 243 via a coupling link 242. That is, as shown in FIGS. 1 and 4, the eccentric cam 243 rotates about a cam rotation shaft 243c shown in FIG. 5 on a bracket 243b coupled to the lower surface of the optical length measuring device 210 and the support 220. It is supported possible.
  • connection link 242 The lower end portion of the connection link 242 is connected to the tip end portion of the rotation arm 241 so as to be relatively rotatable around the rotation connection shaft 242 a.
  • the upper end portion of the connection link 242 is relatively rotatably coupled to the eccentric position of the eccentric cam 243, that is, the position away from the cam rotation shaft 243c in the outer diameter direction about the rotation connection shaft 242b.
  • the connection link is disposed at a position away from the rotation mirror 230 in the direction along the axial direction of the mirror rotation shaft 231 so as not to interfere with the emission laser beam LB1 and the reflection laser beam LB2.
  • the mirror rotation motor 244 is supported by the bracket 243 b in the same manner as the eccentric cam 243, transmits its rotation to the eccentric cam 243 via a speed reduction mechanism (not shown), and rotates the eccentric cam 243.
  • the pivot connection shaft 242b is at an intermediate position between the top dead center and the bottom dead center of the eccentric cam 243 (the same height as the cam rotary shaft 243c (hereinafter referred to as neutral point
  • the pivoting arm 241 is substantially horizontal.
  • the pivoting arm 241 pivots upward and downward by approximately the same angle around a substantially horizontal neutral point.
  • the pivoting mirror 230 and the pivoting arm 241 with respect to the mirror pivoting axis 231 are inclined at approximately 45 degrees with respect to the horizontal direction when the pivoting arm 241 is positioned at a substantially horizontal neutral point. It is attached out of phase.
  • the outgoing laser beam LB1 emitted from the laser light source 211 is illuminated substantially horizontally when it is reflected by the pivoting mirror 230.
  • the reflected laser beam LB2 reflected by the rotating mirror 230 has a symmetrical angle between the upper side and the lower side around the horizontal direction. And scanned at angular velocity.
  • the outgoing laser beam LB1 is scanned at an angle of approximately 20 to 30 degrees, with the upward scanning angle ⁇ and the downward scanning angle ⁇ being substantially the same.
  • the shoe SH is placed on the lower support plate 13 of the base 10. Then, the longitudinal direction of the shoe SH is directed in the front and back direction (direction of the x axis), and further, in the left and right direction (direction of the y axis) Arrange so as to substantially coincide with (za axis).
  • the vertical movement device 50 is operated, and as shown in FIGS. 1 and 4, the position of the mirror rotation shaft 231 is “below the footwear port TL of the shoe SH and from the insole of the shoe SH The apparatus main body 20 is lowered until the upper position is reached.
  • the emission laser beam LB1 is irradiated from the laser light source 211 of the optical length measuring device 210.
  • the mirror rotation device 240 is operated to swing the rotation mirror 230 up and down in a reciprocating manner, thereby scanning the emission laser beam LB1 up and down.
  • the light is received by the detector 212.
  • the optical length measuring device 210 detects the incident position of the reflected laser beam LB2 received by the laser beam position detector 212 and detects the distance from the incident position of the laser light source 211 and the incident position of the reflected laser beam LB2 and the incident angle. Measure the distance to the reflection point P on the inner surface of the SH.
  • the reflection point P of the object to be measured is determined by the rotation angle (tilt ⁇ ) of the rotation mirror 230, the rotation angle (direction ⁇ ) including the rotation mirror 230, and the distance from the rotation mirror 230.
  • the spatial coordinates of can be determined.
  • the above-mentioned scanning is performed while operating the device body rotation device 40 while rotating the device body 20 around the za axis, and further, operating the longitudinal movement device 30 to move the device body 20 in the front-rear direction (x axis direction Move to).
  • the emitted laser beam LB1 can be scanned over the entire peripheral surface of the inner surface of the shoe SH, and the internal shape of the shoe SH can be measured and quantified.
  • the apparatus main body 20 can be moved forward and backward, and the lower part of the outgoing laser beam LB1 can be scanned also in a part which is not scanned.
  • the emission laser beam LB1 can be scanned to digitize the inner surface shape of the shoe SH, which can be performed in about 30 seconds to 10 minutes although it varies depending on the number of measurement points. Therefore, compared with producing a mold made of foamed plastic, the time, labor and cost can be significantly reduced, and moreover, when producing the mold, a device that does not contaminate the shoe SH, and disposal of the mold after measurement And no need for recycling.
  • the vertical movement device 50 not only moves the pivoting mirror 230 to a position optimum for measuring the shape of the shoe SH, but also performs scanning of the emission laser beam LB1. It is also possible to move the main body 20 (rotational view 230). That is, when the shoe SH measures a boot whose inner circumferential shape is long in the vertical direction, the above-mentioned scanning of the emitted laser beam LB1 is performed while moving the apparatus main body 20 vertically by the vertical movement device 50. It is also possible to measure the inner circumferential shape.
  • the three-dimensional shape measuring apparatus of Embodiment 1 Base 10 An apparatus body 20 supported by the base 10;
  • the device body 20 is
  • the emission laser beam LB1 is emitted from the laser light source 211 as the irradiation unit, and the reflected laser beam LB2 reflected by the measurement object (shoes SH) is received by the laser beam position detector 212 as the light reception unit, and the triangulation method is performed.
  • An optical length measuring device 210 for measuring the position of the reflection point P on the measurement object The support 220 coupled to the optical length measuring device 210 is disposed at a lower position, which is the emission direction of the laser beam LB1 emitted from the laser light source 211 as the irradiation unit, and has an axis in the direction substantially orthogonal to the emission direction.
  • the laser beam LB2 is supported so as to be pivotable about the mirror pivot shaft 231 directed, reflects the emitted laser beam LB1 toward the object to be measured (shoes SH), and reflects the reflected laser beam LB2 reflected at the reflection point P as a laser beam
  • a pivoting mirror 230 which reflects towards the position detector 212;
  • a mirror rotation device 240 for rotating the mirror rotation shaft 231 to scan the emitted laser beam LB1;
  • a device body rotation device 40 for rotating the device body 20 relative to the base 10 so as to scan the emission laser beam LB1 reflected by the rotation mirror 230 in the circumferential direction; Equipped with Therefore, even if the measurement object is a narrow space (the inner circumference of the shoe SH) where it is difficult to directly irradiate the output laser beam LB1 from the laser light source 211 of the optical length measuring device 210, the pivoting mirror 230 is disposed in the space Then, the emission laser beam LB1 is irradiated, and the position of the
  • the turning mirror 230 is turned by the mirror turning device 240 to scan the emitted laser beam LB1, and further, the device body turning device 40 can turn the device body 20 to scan in all directions. Therefore, the internal shape of a narrow space such as the inner circumference of the shoe SH can be measured. Further, since the optical length measuring device 210 measures the position of the reflection point P by the triangulation method, the reflection point P such as the internal shape of the shoe SH is compared with that measured by the reflection time of the laser light or the like. Even short distances can be measured with high accuracy. As described above, in the three-dimensional shape measurement apparatus according to the first embodiment, the shape of a narrow space such as the inner periphery of the shoe SH can be measured with high accuracy in a short time with a simple and inexpensive configuration.
  • the rotation center (za axis) of the device body rotation device 40 is made to substantially coincide with the optical axis of the emitted laser beam LB1 emitted from the laser light source 211, and the device body 20 is rotated. Even so, the optical axis did not move. Therefore, when the device body 20 is rotated by the device body rotating device 40, the calculation by the optical length measuring device 210 can be facilitated as compared with the case where the optical axis is also rotated. For this reason, while being able to simplify the structure which performs arithmetic processing of the optical length measuring apparatus 210, arithmetic time can be shortened.
  • the base 10 moves the device body 20 relative to the base 10 in the vertical direction, which is the emission direction, along the extending direction (vertical direction) of the support 220 relative to the base 10.
  • a vertical movement device 50 as a movement device is provided. Therefore, the rotation mirror 230 can be moved by moving the device body 20 in the extending direction of the support 220.
  • the reflection position (emission position) of the emission laser beam LB1 from the rotation mirror 230 is moved to move the scanning range of the emission laser beam LB1, and a wide range of scanning is possible. That is, a wider range of shape measurement is possible, and the pivoting mirror 230 can be moved to the optimum position for measurement.
  • the three-dimensional shape measuring apparatus according to the first embodiment
  • the base 10 is provided with a back and forth moving device 30 as a second moving device for moving the device body 20 along one direction (front and back direction) perpendicular to the base 10 in the emission direction. Therefore, the rotation mirror 230 can be moved by moving the device body 20 in the direction orthogonal to the extending direction of the support 220. As a result, the reflection position (emission position) of the emission laser beam LB1 from the rotation mirror 230 is moved to move the scanning range of the emission laser beam LB1, thereby enabling a wider range of scanning. That is, a wide range of shape measurement is possible, and the pivoting mirror 230 can be moved to the optimum position for measurement.
  • the three-dimensional shape measuring apparatus In the device body 20, the direction of emission is directed downward, and the support 220 is extended downward from the optical length measuring device 210. Therefore, the apparatus body 20 may be moved up and down by the vertical movement device 50 which is the first movement device, and may be moved in the front and back direction which is one horizontal direction by the longitudinal movement device 30 which is the second movement device. it can. Further, the emission laser beam LB1 reflected from the rotation mirror 230 by the apparatus main assembly rotation device 40 can be scanned over the entire circumference in the horizontal direction. Therefore, it is most suitable for measuring the inner circumferential shape of the shoe SH disposed with the wear opening TL facing upward.
  • the mirror rotation device 240 is A pivot arm 241 connected to the mirror pivot shaft 231 and extending outward from the mirror pivot shaft 231;
  • a driving unit that vertically pivots the pivoting arm 241; Equipped with The drive unit is An eccentric cam 243 rotatably supported by the apparatus main body 20 about a cam rotation shaft 243c;
  • An eccentric cam 243 and a pivoting arm 241 are coupled, and a pivoting coupling shaft 242a as a first coupling portion is coupled to the eccentric cam 243 so as to be relatively pivotable at a position away from the cam rotary shaft 243c in the outer diameter direction.
  • the positions of the pivoting arm 241 and the pivoting mirror 230 are set so that the emitting laser beam LB1 is directed in the horizontal direction orthogonal to the vertical direction which is the irradiation direction from the laser light source 211.
  • the emission laser beam LB1 reflected by the rotating mirror 230 can be scanned at uniform angles and changes in angular velocity up and down around the horizontal direction, as compared with the case of scanning at non-uniform angles and changes in angular velocity from above and below.
  • the irradiation position of the outgoing laser beam LB1 at the neutral point is irradiated unevenly in the upper and lower directions, the angular velocity is also uneven in the upper and lower directions, and the efficiency (speed) of the measurement of the position of the reflection point P Falls.
  • the three-dimensional shape measuring apparatus according to the first embodiment
  • the size of the support 220 including the rotation mirror 230 is formed to fit within a circle having a radius of 25 mm from the za axis of the rotation center of the apparatus main body 20. Therefore, when the three-dimensional shape measurement apparatus according to the first embodiment is used to measure the shape of the inner periphery of the shoe SH, the apparatus main body 20 is rotated about the za axis to scan the emitted laser beam LB1 in the horizontal direction. At the same time, interference between the support 220 and the pivoting mirror 230 with the shoe SH can be suppressed. Therefore, the three-dimensional shape measuring apparatus of Embodiment 1 can be made suitable for use in measuring the inner circumferential shape of the shoe SH. In addition, it is also suitable for measuring the internal shape of a narrow space other than the shoe SH.
  • the three-dimensional measurement object is the inner shape of the shoe
  • the measurement object is not limited to the inner circumferential shape of the shoe .
  • the support is extended downward from the device main body, and the device main body rotating device rotates the device main body substantially along the horizontal plane.
  • the extending direction of the column and the rotating direction of the device body are not limited to this, for example, upside down or extending the column in a substantially horizontal direction, and rotating the device body about a horizontal axis You may make it In the case of such a structure, the object to be measured may be other than the shoe as described above, and even in the case of measuring the inner circumferential shape of the shoe, the direction of the shoe is as in the embodiment. The measurement may be performed by pointing downward or sideways instead of pointing upward.
  • the one including the vertical movement device as the first movement device and the longitudinal movement device as the second movement device is shown, but the invention is not limited thereto. That is, even if the first moving device and the second moving device do not have either, it is possible to emit the outgoing laser light to the entire circumference in the circumferential direction to measure the three-dimensional shape. Alternatively, even if the first moving device and the second moving device are not provided as described above, the moving direction by the first moving device and the moving direction by the second moving device are manually moved. It may be possible. In addition, only one of the first moving device and the second moving device may be provided.
  • pillar of U-shaped cross-sectional shape was shown as a support member in embodiment, the shape of this support member is not limited to this. That is, the support member may be any member capable of pivotally supporting the pivoting mirror at a position away from the optical length measuring device in the emission direction of the emission laser light, for example, a round rod shape It may be one that does not extend linearly in the emission direction, but may have a shape that is curved or bent halfway.
  • the drive unit for rotating the mirror rotation shaft the one that converts the rotational movement of the disk-shaped eccentric cam into the vertical reciprocation movement of the rotation arm is shown, but the invention is not limited thereto.
  • a structure may be used in which rotational motion is transmitted as rotational motion using a pulley, a belt, or the like as the mirror pivot shaft.
  • the eccentric cam instead of the eccentric cam, for example, the vertical movement of the slider that slides up and down by forward and reverse rotation of the motor may be transmitted to the pivoting arm.
  • the eccentric cam is at the neutral position even when the mirror rotation device shown in the embodiment is used and the outgoing laser light is emitted from the rotation mirror in the horizontal direction at the neutral point.
  • the angle of the rotation arm at that time is not limited to horizontal, therefore The angle between the moving mirror and the pivoting arm is not limited to 45 degrees.
  • the pivoting arm and the pivoting mirror are shown to form an angle of 45 degrees, but the angle between the two is not limited to this.
  • the neutral point of the irradiation range by the rotating mirror may be vertically shifted about ⁇ 5 degrees with respect to the horizontal.
  • the relative positions of the pivoting arm and the eccentric cam may be arranged such that the neutral point of the pivoting arm is inclined with respect to the horizontal.
  • base 20 apparatus body 30: back and forth movement device (second movement device) 40 Apparatus Body Rotating Device 50 Vertically Moving Device (First Moving Device) 210 Optical measuring device 211 Laser light source (irradiator) 212 Laser beam position detector (light receiving unit) 220 support (support member) 230 Rotation mirror 231 Mirror rotation shaft 240 Mirror rotation device 241 Rotation arm 242 Connection link 242 a Rotation connection shaft (second connection portion) 242b Rotating connecting shaft (first connecting part) 243 Eccentric cam 243c Cam rotating shaft 244 Mirror rotation motor LB1 Emitting laser beam LB2 Reflection laser beam P Reflection point SH Shoes TL Footwear port

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided is a three-dimensional shape measurement device capable of quickly and highly accurately measuring the shape of, for example, the inner periphery of a shoe by using a simple and inexpensive structure. This three-dimensional shape measurement device comprises a base (10) and a device body (20) supported by the base (10). The device body (20) comprises: an optical length measurement device (210) for emitting emitted laser light (LB1) from a laser light source (211), using a laser light beam position detector (212) to receive reflected laser light (LB2) that has been reflected by an object (shoe SH) of measurement, and measuring the position of a reflection point (P) on the object of measurement using triangulation; a rotating mirror (230) supported at the bottom of a support (220) so as to be capable of rotating around a mirror rotation shaft (231); a mirror rotation device (240) for rotating the mirror rotation shaft (231) and scanning the emitted laser light (LB1); and a device body rotation device (40) for rotating the device body (20) in relation to the base (10) so as to scan the emitted laser light (LB1) reflected by the rotating mirror (230).

Description

三次元形状測定装置Three-dimensional shape measuring device
 本開示は、三次元形状測定装置に関するものである。 The present disclosure relates to a three-dimensional shape measurement apparatus.
 従来、靴の内部形状を数値化するとともに、足の形状を数値化し、両者を比較して、靴を履いた際のフィッティング状態を推定し視覚化することが提案されている(例えば、特許文献1参照)。
  この従来技術では、靴の内部形状を数値化するのにあたり、発砲プラスチックを用いて靴の内部形状を成す型を取り、その型の形状を計測して靴の内部形状を数値化している。
  また、三次元形状を測定する装置として、測定対象物にレーザ光を照射して、それを撮像して三次元形状を測定する装置も知られている(例えば、特許文献2参照)。
In the past, it has been proposed to digitize the internal shape of the shoe and digitize the shape of the foot and compare the two to estimate and visualize the fitting state when the shoe is worn (for example, patent documents) 1).
In this prior art, in quantifying the internal shape of the shoe, a molded plastic is used to form a mold that forms the internal shape of the shoe, and the shape of the mold is measured to digitize the internal shape of the shoe.
Further, as an apparatus for measuring a three-dimensional shape, there is also known an apparatus for irradiating an object to be measured with laser light and imaging it to measure a three-dimensional shape (for example, see Patent Document 2).
特開2017-97563号公報JP 2017-97563 A 特開2012-149912号公報JP, 2012-149912, A
 しかしながら、上記の特許文献1に記載の従来技術では、靴の内部形状の計測ごとに、発泡プラスチック製の型を制作するために、その制作に多くの時間および費用を要する。しかも、型を制作する際に、靴を汚さない工夫も必要で、非効率的であり、加えて、測定後の型の廃棄やリサイクルにも時間および費用を要していた。 However, in the prior art described in Patent Document 1 above, it takes a lot of time and money to produce a mold made of foamed plastic for each measurement of the internal shape of the shoe. In addition, when making a mold, it is necessary to be careful not to contaminate the shoes, which is inefficient, and additionally, it takes time and money to discard and recycle the mold after measurement.
 また、特許文献2に記載の技術は、靴のような狭い空間の形状を計測するには、大幅な小型化が必要であるが、複数のミラーや駆動部を有した先端部の小型化が難しく、狭い空間形状の測定に用いるのが困難である。さらに、複数の関節部を用いて先端の光射出部を移動させ撮像する場合、形状測定の際には、その位置が変化する先端部の位置を正確に演算する必要があり、測定点の位置の演算に要する時間が長くなる。 In addition, the technology described in Patent Document 2 requires significant downsizing in order to measure the shape of a narrow space such as a shoe, but the downsizing of the tip portion having a plurality of mirrors and a driving unit It is difficult and difficult to use for measurement of narrow space shapes. Furthermore, in the case of moving and imaging the light emitting part at the tip using a plurality of joints, in the case of shape measurement, it is necessary to calculate the position of the tip at which the position changes accurately. The time required to calculate
 本開示は、このような従来の問題に着目して成されたもので、靴の内周のような狭い空間の形状を、簡易で安価な構成により短時間に高精度で測定可能な三次元形状測定装置を提供することを目的とするものである。 The present disclosure has been made in view of such conventional problems, and it is possible to measure the shape of a narrow space such as the inner circumference of a shoe with high accuracy in a short time by a simple and inexpensive configuration. An object of the present invention is to provide a shape measurement apparatus.
 この目的を達成するため、この開示の三次元形状測定装置は、
基台と、
前記基台に支持された装置本体と、を備え、
前記装置本体は、
照射部から出射レーザ光を出射し、測定対象物で反射した反射レーザ光を受光部で受光して、三角測量方式により前記測定対象物での反射点の位置を測定する光学式の測長装置と、
前記光学式の測長装置から前記出射レーザ光の出射方向に離れて配置され、前記光学式の測長装置に結合された支持部材に、前記出射方向の略直交方向に軸心を向けたミラー回動軸を中心に回動可能に支持され、前記出射レーザ光を前記測定対象物に向けて反射し、かつ、前記測定対象物で反射した反射レーザ光を前記受光部に向けて反射する回動ミラーと、
前記ミラー回動軸を回動させ、前記出射レーザ光を走査させるミラー回動装置と、
前記回動ミラーで反射した前記出射レーザ光を周方向に走査させるよう前記装置本体を前記基台に対し回動させる装置本体回動装置と、を備える。
In order to achieve this object, the three-dimensional shape measuring device of this disclosure
With the base,
An apparatus main body supported by the base;
The device body is
An optical length measuring apparatus that emits an outgoing laser beam from an irradiation unit, receives a reflected laser beam reflected by a measurement object at a light reception unit, and measures the position of a reflection point on the measurement object by triangulation method When,
A mirror which is disposed apart from the optical length measuring device in the emitting direction of the outgoing laser light, and which has an axis directed in a direction substantially orthogonal to the emitting direction to a support member coupled to the optical length measuring device. It is supported so as to be pivotable about a pivot axis, and reflects the emitted laser beam toward the measurement object and reflects the reflected laser beam reflected by the measurement object toward the light receiving portion. Moving mirror,
A mirror rotation device for rotating the mirror rotation axis to scan the emitted laser light;
And an apparatus main assembly rotating apparatus configured to rotate the apparatus main assembly with respect to the base so as to scan the outgoing laser light reflected by the rotating mirror in the circumferential direction.
 本開示の三次元形状測定装置では、靴の内周など狭い空間の形状を、簡易で安価な構成で、短時間に高精度で測定可能である。 In the three-dimensional shape measurement device of the present disclosure, the shape of a narrow space such as the inner periphery of a shoe can be measured with high accuracy in a short time with a simple and inexpensive configuration.
本開示の実施の形態1の三次元形状測定装置を示す全体概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is whole schematic which shows the three-dimensional shape measuring apparatus of Embodiment 1 of this indication. 実施の形態1の三次元形状測定装置の横断面を平面視した断面図である。FIG. 1 is a cross-sectional view of a three-dimensional shape measuring apparatus according to a first embodiment viewed in plan. 実施の形態1の三次元形状測定装置をターンテーブルの位置における縦断面図である。It is a longitudinal cross-sectional view in the position of a turntable of the three-dimensional shape measuring apparatus of Embodiment 1. FIG. 実施の形態1の三次元形状測定装置に適用し装置本体を示す側面図である。It is a side view which is applied to a three-dimensional shape measuring device of Embodiment 1, and shows a device main part. 実施の形態1の三次元形状測定装置に適用したミラー回動装置の構造説明図である。FIG. 2 is a structure explanatory view of a mirror rotation device applied to the three-dimensional shape measurement device of the first embodiment.
 以下、本開示の実施の形態1の三次元形状測定装置を図面に基づいて説明する。
  (実施の形態1)
  まず、実施の形態1の三次元形状測定装置の構成について説明する。
  図1は、実施の形態1の三次元形状測定装置を示す全体概略図であり、この実施の形態1の三次元形状測定装置は、基台10と、装置本体20と、前後移動装置30(図2、図3参照)と、装置本体回動装置40と、上下移動装置50とを備える。
Hereinafter, a three-dimensional shape measurement apparatus according to Embodiment 1 of the present disclosure will be described based on the drawings.
Embodiment 1
First, the configuration of the three-dimensional shape measurement apparatus according to the first embodiment will be described.
FIG. 1 is an overall schematic view showing a three-dimensional shape measuring apparatus according to the first embodiment, and the three-dimensional shape measuring apparatus according to the first embodiment includes a base 10, an apparatus main body 20, and a back and forth moving device 30 2 and 3), the apparatus main assembly turning device 40, and the vertical movement device 50.
 基台10は、装置本体20と、測定対象物である靴SHとを支持するもので、枠体11と、上側支持板12と、下側支持板13とを備える。
  枠体11は、略直方体形状の骨組みを形成するもので、水平方向の4箇所に立設された脚体11aを備える。
  そして、この脚体11aの中間部に、上側支持板12と下側支持板13とが上下方向に離れて支持され、脚体11aの上端部どうしが上部枠11bにより連結されている。
The base 10 supports the apparatus main body 20 and the shoe SH which is an object to be measured, and includes a frame 11, an upper support plate 12, and a lower support plate 13.
The frame 11 forms a substantially rectangular parallelepiped framework, and includes legs 11 a erected at four places in the horizontal direction.
The upper support plate 12 and the lower support plate 13 are vertically separated from each other and supported by the middle portion of the leg 11a, and the upper ends of the legs 11a are connected by the upper frame 11b.
 上側支持板12は、実施の形態1の三次元計測装置の横断面を平面視した断面図である図2に示すように、内側に上方から見て長方形のスライド穴12aが開口されて平面視で長方形の環状に形成されている。
  また、下側支持板13は、平面形状の図示は省略するが、上側支持板12の外周と同様の外周寸法を有する平面視で長方形の板状に形成されている。したがって、図1に示すように、その上面に靴SHを載置可能である。
As shown in FIG. 2 which is a cross-sectional view of the three-dimensional measurement device according to the first embodiment viewed from above, the upper support plate 12 has a rectangular slide hole 12a open from above as viewed from above and is viewed in plan Is formed in a rectangular ring shape.
The lower support plate 13 is formed in a rectangular plate shape in plan view having the same outer peripheral dimension as the outer periphery of the upper support plate 12, although the illustration of the planar shape is omitted. Therefore, as shown in FIG. 1, the shoe SH can be placed on the upper surface thereof.
 装置本体20は、詳細については後述するが、上部の光学式の測長装置210と、この光学式の測長装置210から鉛直方向に延在された支柱220とを有する。そして、この装置本体20は、支柱220が上側支持板12のスライド穴12aを貫通した状態で、上側支持板12に支持されている。なお、詳細については後述するが、上側支持板12による装置本体20の支持は、後述するスライド板31およびターンテーブル41を介在させた支持となっている。すなわち、装置本体20は、後述するターンテーブル41に支持され、ターンテーブル41は、スライド板31に支持され、スライド板31が上側支持板12に支持された構造となっている。 The device body 20 has an optical length measuring device 210 at the top, and a support 220 vertically extended from the optical length measuring device 210, which will be described later in detail. The device body 20 is supported by the upper support plate 12 with the support 220 penetrating the slide hole 12 a of the upper support plate 12. Although details will be described later, the support of the apparatus main body 20 by the upper side support plate 12 is a support in which a slide plate 31 and a turn table 41 described later are interposed. That is, the apparatus main body 20 is supported by a turntable 41 described later, the turntable 41 is supported by the slide plate 31, and the slide plate 31 is supported by the upper support plate 12.
 前後移動装置30は、装置本体20を、上側支持板12に対して図1においてx軸の方向(この方向を以下、前後方向と称する)に移動させるもので、図2に示すように、スライド板31、前後移動用モータ32、減速ギヤ33およびプーリ機構34を備える。また、各図面において、x軸に水平方向で直交する方向をy軸として表し、これを以下、左右方向と称する。また、x軸およびy軸に直交する方向をz軸として表し、以下、これを上下方向と称する。 The longitudinal movement device 30 is for moving the device body 20 in the direction of the x-axis in FIG. 1 with respect to the upper side support plate 12 (this direction is hereinafter referred to as the longitudinal direction), and as shown in FIG. A plate 31, a motor 32 for back and forth movement, a reduction gear 33, and a pulley mechanism 34 are provided. In each drawing, a direction orthogonal to the x-axis in the horizontal direction is represented as a y-axis, which is hereinafter referred to as the left-right direction. Further, a direction orthogonal to the x axis and the y axis is represented as az axis, and hereinafter, this is referred to as a vertical direction.
 スライド板31は、スライド穴12aの左右方向の幅(y軸の方向の幅)よりも僅かに小さな横幅に形成され、前後方向にスライド可能に支持されている。すなわち、スライド穴12aの左右両端部には、実施の形態1の三次元形状測定装置を後述のターンテーブル41の位置における縦断面図である図3に示すように、スライド用フランジ12f、12fが突出して形成されている。そして、スライド板31において左右方向両端部に突設された係合フランジ31f、31fが、スライド用フランジ12f,12fの上側に重なって上下方向に係合されている。したがって、スライド板31は、スライド用フランジ12f,12fに沿って前後方向に移動可能に上側支持板12に支持されている。 The slide plate 31 is formed to have a lateral width slightly smaller than the lateral width (the width in the y-axis direction) of the slide hole 12a, and is slidably supported in the longitudinal direction. That is, as shown in FIG. 3 which is a longitudinal sectional view of the three-dimensional shape measuring apparatus according to the first embodiment at the position of a turn table 41 described later, slide flanges 12f and 12f are provided at the left and right ends of the slide hole 12a. It is formed to protrude. Further, in the slide plate 31, engaging flanges 31f, 31f provided at both ends in the left-right direction are engaged with the upper side of the sliding flanges 12f, 12f in the vertical direction. Therefore, the slide plate 31 is supported by the upper support plate 12 so as to be movable in the front-rear direction along the slide flanges 12f, 12f.
 また、スライド板31は、前後移動用モータ32の駆動により、スライド穴12aに沿って前後方向に移動する。すなわち、上側支持板12の下面には、前後移動用モータ32が取り付けられ、前後移動用モータ32の駆動軸32aには、減速ギヤ33が設けられている。そして、この減速ギヤ33により減速された回転が、プーリ機構34に伝達される。 In addition, the slide plate 31 moves in the front-rear direction along the slide hole 12 a by the drive of the front-rear movement motor 32. That is, the back and forth movement motor 32 is attached to the lower surface of the upper support plate 12, and the reduction gear 33 is provided on the drive shaft 32 a of the back and forth movement motor 32. Then, the rotation decelerated by the reduction gear 33 is transmitted to the pulley mechanism 34.
 プーリ機構34は、減速ギヤ33により回転されるプーリ34aと、このプーリ34aにより巻かれる一対のベルト34b,34cを備える。すなわち、ベルト34b,34cは、プーリ34aを挟んで、前後方向に離れてスライド板31の下面に取り付けられている。したがって、プーリ34aが正逆の一方に回転すると、ベルト34b,34cの一方を巻き取り、スライド板31が前後の一方(例えば、前方)にスライドする。また、プーリ34aが正逆のもう一方に回転すると、ベルト34b,34cのもう一方を巻き取り、スライド板31が前後のもう一方(例えば、後方)にスライドする。 The pulley mechanism 34 includes a pulley 34a rotated by the reduction gear 33, and a pair of belts 34b and 34c wound by the pulley 34a. That is, the belts 34b and 34c are attached to the lower surface of the slide plate 31 so as to be separated in the front-rear direction with the pulley 34a interposed therebetween. Therefore, when the pulley 34a rotates in one direction, the one of the belts 34b and 34c is wound up, and the slide plate 31 slides in one of the front and rear (for example, the front). In addition, when the pulley 34a rotates in the forward and reverse direction, the other of the belts 34b and 34c is wound up, and the slide plate 31 slides in the other direction (for example, backward).
 したがって、前後移動装置30では、前後移動用モータ32が正逆転駆動することにより、スライド板31が上側支持板12に対して前後方向(x軸の方向)に移動し、これによりスライド板31に支持された装置本体20が前後方向に移動する。 Therefore, in the longitudinal movement device 30, the sliding plate 31 moves in the longitudinal direction (direction of the x-axis) with respect to the upper side supporting plate 12 by driving the longitudinal movement motor 32 forward and reversely. The supported apparatus body 20 moves in the front-rear direction.
 図1に戻り、装置本体回動装置40は、ターンテーブル41と、ターンテーブル駆動用タイミングベルト42と、ターンテーブル回転用モータ43とを備える。
  ターンテーブル41は、図2に示すように平面視で円形に形成され、かつ、図3に示すように板状に形成されており、さらに、スライド板31にベアリング44を介してスライド板31に対して回動可能に支持されている。すなわち、スライド板31には、その中央に円形の支持穴31aが開口されており、この支持穴31aの内周にベアリング44が設けられ、ターンテーブル41がベアリング44に支持されている。
Returning to FIG. 1, the apparatus body rotation apparatus 40 includes a turntable 41, a turntable driving timing belt 42, and a turntable rotation motor 43.
The turntable 41 is formed in a circular shape in plan view as shown in FIG. 2 and is formed in a plate shape as shown in FIG. It is rotatably supported. That is, a circular support hole 31 a is opened at the center of the slide plate 31, a bearing 44 is provided on the inner periphery of the support hole 31 a, and the turntable 41 is supported by the bearing 44.
 また、図1に示すように、ターンテーブル回転用モータ43は、スライド板31にゲート状のブラケット43aにより、駆動軸を下向きにして支持されている。そして、ターンテーブル回転用モータ43の駆動軸により回転される駆動ギヤ43bと、ターンテーブル41の外周に形成されたテーブルギヤ41a(図3参照)とにターンテーブル駆動用タイミングベルト42が架け渡されている。 Further, as shown in FIG. 1, the turntable rotation motor 43 is supported on the slide plate 31 by a gate-shaped bracket 43a with the drive shaft facing downward. Then, the turntable drive timing belt 42 is bridged over the drive gear 43 b rotated by the drive shaft of the turntable rotation motor 43 and the table gear 41 a (see FIG. 3) formed on the outer periphery of the turntable 41. ing.
 よって、ターンテーブル回転用モータ43が駆動し駆動ギヤ43bが回転すると、ターンテーブル駆動用タイミングベルト42を介してテーブルギヤ41aに回転が伝達されてターンテーブル41がスライド板31に対して回動する。なお、このターンテーブル41の回動は、ターンテーブル回転用モータ43の正逆回転により、正逆方向、すなわち、図2において時計回り方向と反時計回り方向の何れの方向にも回動可能となっている。 Therefore, when the turntable rotation motor 43 is driven to rotate the drive gear 43b, the rotation is transmitted to the table gear 41a via the turntable drive timing belt 42, and the turntable 41 rotates with respect to the slide plate 31. . The rotation of the turntable 41 can be performed in the forward or reverse direction, that is, in either of the clockwise direction and the counterclockwise direction in FIG. 2 by forward and reverse rotation of the turntable rotation motor 43. It has become.
 したがって、装置本体回動装置40では、ターンテーブル回転用モータ43が正逆転駆動すると、ターンテーブル41がスライド板31に対してz軸に沿うza軸を中心として上方から見て時計回り方向および反時計回り方向に回動する。そして、これにより、ターンテーブル41に支持された装置本体20がza軸を中心に、上方から見て時計回り方向および反時計回り方向に回動する。 Therefore, in the apparatus body rotation device 40, when the turntable rotation motor 43 is driven in the forward and reverse direction, the turntable 41 rotates clockwise relative to the slide plate 31 as viewed from above centering on the z-axis along the z-axis. Rotate clockwise. And thereby, the apparatus main body 20 supported by the turntable 41 rotates clockwise and anticlockwise rotation direction seeing from upper direction centering on za axis.
 上下移動装置50は、スライド支持ブラケット51と上下動用モータ52と上下動用ラックギヤ53とを備える。 The vertical movement device 50 includes a slide support bracket 51, a vertical movement motor 52, and a vertical movement rack gear 53.
 スライド支持ブラケット51は、ターンテーブル41に立設され、図2に示すように、平面視でU字の断面形状に形成され、U字の内面で装置本体20の支柱220を上下スライド可能に支持している。
  上下動用モータ52は、ターンテーブル41に固定されたブラケット52bに支持され、回転軸にピニオンギヤ52aを有する。
  上下動用ラックギヤ53は、支柱220の側面に沿って上下方向に延在されている。そして、この上下動用ラックギヤ53とピニオンギヤ52aとが、スライド支持ブラケット51の側部に開口された窓部51b(図1参照)を通じて噛み合っている。
The slide support bracket 51 is provided upright on the turn table 41, and is formed in a U-shaped cross section in plan view as shown in FIG. 2, and supports the column 220 of the device body 20 so as to be vertically slidable by the inner surface of the U doing.
The vertical movement motor 52 is supported by a bracket 52b fixed to the turn table 41, and has a pinion gear 52a on the rotation shaft.
The vertical movement rack gear 53 extends in the vertical direction along the side surface of the support 220. The vertical movement rack gear 53 and the pinion gear 52 a mesh with each other through a window 51 b (see FIG. 1) opened at the side of the slide support bracket 51.
 したがって、上下移動装置50の上下動用モータ52が正逆転駆動することにより、支柱220、すなわち装置本体20がスライド支持ブラケット51に沿って上下に移動する。 Therefore, when the vertical movement motor 52 of the vertical movement device 50 is driven to rotate in the forward and reverse directions, the support 220, that is, the device main body 20 moves up and down along the slide support bracket 51.
 以上説明したように、ターンテーブル41およびスライド板31に支持された装置本体20は、前後移動装置30により上側支持板12に対してスライド板31が前後方向(x軸の方向)に移動することにより、前後方向に移動する。また、装置本体20は、装置本体回動装置40によりターンテーブル41が基台10の上側支持板12に対してza軸を中心に回動することにより、za軸を中心に回動する。そして、装置本体20は、上下移動装置50により支柱220がターンテーブル41に対して上下方向(z軸に沿う方向)に移動することにより、上下に移動可能となっている。 As described above, in the apparatus main body 20 supported by the turntable 41 and the slide plate 31, the slide plate 31 moves in the front-rear direction (direction of the x-axis) with respect to the upper support plate 12 by the front-rear moving device 30. Move in the back and forth direction. Further, the apparatus body 20 rotates about the za axis when the turntable 41 rotates about the za axis with respect to the upper support plate 12 of the base 10 by the apparatus body rotating device 40. The apparatus main body 20 can move up and down by moving the support 220 in the vertical direction (direction along the z-axis) with respect to the turntable 41 by the vertical movement device 50.
 次に、装置本体20について説明する。
  図4は、装置本体20を示す側面図であり、装置本体20は、光学式の測長装置210と支柱220と回動ミラー230とミラー回動装置240とを備える。
Next, the device body 20 will be described.
FIG. 4 is a side view showing the device body 20. The device body 20 includes an optical length measuring device 210, a support 220, a pivoting mirror 230, and a mirror pivoting device 240.
 光学式の測長装置210は、レーザ光源211とレーザ光線位置検出器212とを備える。また、支柱220は、レーザ光源211の真下の位置に回動ミラー230を有する。そして、レーザ光線位置検出器212は、回動ミラー230で反射した反射レーザ光LB2を受光可能に配置されている。 The optical length measuring device 210 includes a laser light source 211 and a laser beam position detector 212. Further, the support 220 has a pivoting mirror 230 at a position directly below the laser light source 211. The laser beam position detector 212 is disposed so as to be capable of receiving the reflected laser beam LB2 reflected by the rotating mirror 230.
 上述のように構成された光学式の測長装置210では、レーザ光源211から射出された出射レーザ光LB1を回動ミラー230で反射して、三次元形状測定装置から測定対象物(靴SH)に照射する。そして、測定対象物(靴SH)で反射したレーザ光のうち、回動ミラー230に入射して反射した反射レーザ光LB2が、レーザ光線位置検出器212で受光される。 In the optical length measuring apparatus 210 configured as described above, the output laser beam LB1 emitted from the laser light source 211 is reflected by the rotating mirror 230, and the object to be measured is measured from the three-dimensional shape measuring apparatus (shoes SH) Irradiate. Then, the laser beam position detector 212 receives the reflected laser beam LB2 which is incident on the rotating mirror 230 and is reflected among the laser beams reflected by the object to be measured (shoes SH).
 光学式の測長装置210は、レーザ光線位置検出器212で受光した反射レーザ光LB2の入射位置を検出し、レーザ光源211と反射レーザ光LB2の入射位置の距離と入射角度から測定対象物(靴SH)における反射点P(レーザ測定点)までの距離を測定する。 The optical length measuring device 210 detects the incident position of the reflected laser beam LB2 received by the laser beam position detector 212, and measures the target object from the distance and incident angle of the incident position of the laser light source 211 and the reflected laser beam LB2. The distance to the reflection point P (laser measurement point) in the shoe SH) is measured.
 レーザ光源211および回動ミラー230は、レーザ光源211および出射する出射レーザ光LB1が、前述したターンテーブル41の回動中心であるza軸上に配置されるよう設置されている。よって、ターンテーブル41が回動した際に、レーザ光源211および回動ミラー230に至る出射レーザ光LB1は、常にza軸上に配置される。 The laser light source 211 and the rotation mirror 230 are disposed such that the laser light source 211 and the emission laser light LB1 to be emitted are disposed on the za axis which is the rotation center of the turn table 41 described above. Therefore, when the turntable 41 is rotated, the emission laser beam LB1 reaching the laser light source 211 and the rotation mirror 230 is always disposed on the za axis.
 また、支柱220および回動ミラー230の水平方向の寸法は、支柱220および回動ミラー230がza軸を中心に回動した際に、靴SHのライニング(内側)と干渉しない寸法とされている。具体的には、支柱220および回動ミラー230は、za軸を中心とする半径25mmの円内に収まる寸法に形成されている。 Also, the horizontal dimensions of the support 220 and the pivoting mirror 230 are such that they do not interfere with the lining (inner side) of the shoe SH when the support 220 and the pivoting mirror 230 pivot about the za axis. . Specifically, the support 220 and the pivoting mirror 230 are formed to fit within a circle with a radius of 25 mm centered on the za axis.
 (ミラー回動装置)
  次に、ミラー回動装置240について説明する。
  ミラー回動装置240は、回動ミラー230を、ミラー回動軸231を中心として上下方向に回動させ、出射レーザ光LB1を上下に走査させる装置である。なお、回動ミラー230は、支柱220の下端部設けられたミラー回動軸231を中心に上下に回動可能に支持されている。
(Mirror rotation device)
Next, the mirror rotation device 240 will be described.
The mirror rotation device 240 is a device that rotates the rotation mirror 230 in the vertical direction about the mirror rotation shaft 231 to scan the emitted laser beam LB1 in the vertical direction. The pivoting mirror 230 is supported so as to be vertically pivotable about a mirror pivoting shaft 231 provided at the lower end portion of the support 220.
 図5はミラー回動装置240の構造説明図であり、ミラー回動装置240は、回動アーム241、連結リンク242、偏心カム243、ミラー回動用モータ244を備える。
  回動アーム241は、その基端部が、回動ミラー230と共に、ミラー回動軸231を中心に上下方向に回動可能に支柱220に支持されている。
FIG. 5 is a view for explaining the structure of the mirror rotation device 240. The mirror rotation device 240 includes a rotation arm 241, a connection link 242, an eccentric cam 243, and a mirror rotation motor 244.
The proximal end portion of the pivoting arm 241 is, together with the pivoting mirror 230, supported by the support 220 so as to be pivotable in the vertical direction about the mirror pivoting axis 231.
 回動アーム241の先端部は、連結リンク242を介して、偏心カム243に連結されている。すなわち、偏心カム243は、図1および図4に示すように、光学式の測長装置210の下面と支柱220とに結合されたブラケット243bに、図5に示すカム回転軸243cを中心に回転可能に支持されている。 The tip end portion of the pivoting arm 241 is coupled to the eccentric cam 243 via a coupling link 242. That is, as shown in FIGS. 1 and 4, the eccentric cam 243 rotates about a cam rotation shaft 243c shown in FIG. 5 on a bracket 243b coupled to the lower surface of the optical length measuring device 210 and the support 220. It is supported possible.
 そして、連結リンク242の下端部は、回動アーム241の先端部に回動連結軸242aを中心に相対回動可能に連結されている。一方、連結リンク242の上端部は、偏心カム243の偏心位置、すなわち、カム回転軸243cから外径方向に離れた位置に、回動連結軸242bを中心に相対回動可能に連結されている。なお、連結リンクは、出射レーザ光LB1および反射レーザ光LB2と干渉しないように、回動ミラー230に対してミラー回動軸231の軸方向に沿う方向に離れた位置に配置されている。 The lower end portion of the connection link 242 is connected to the tip end portion of the rotation arm 241 so as to be relatively rotatable around the rotation connection shaft 242 a. On the other hand, the upper end portion of the connection link 242 is relatively rotatably coupled to the eccentric position of the eccentric cam 243, that is, the position away from the cam rotation shaft 243c in the outer diameter direction about the rotation connection shaft 242b. . The connection link is disposed at a position away from the rotation mirror 230 in the direction along the axial direction of the mirror rotation shaft 231 so as not to interfere with the emission laser beam LB1 and the reflection laser beam LB2.
 ミラー回動用モータ244は、偏心カム243と同様にブラケット243bに支持され、不図示の減速機構を介してその回転を偏心カム243に伝達し、偏心カム243を回転させる。 The mirror rotation motor 244 is supported by the bracket 243 b in the same manner as the eccentric cam 243, transmits its rotation to the eccentric cam 243 via a speed reduction mechanism (not shown), and rotates the eccentric cam 243.
 したがって、偏心カム243が回転すると、連結リンク242の上端部の回動連結軸242bが上下方向に変位し、これに伴って、連結リンク242の下端部の回動連結軸242aが上下に変位し、回動アーム241がミラー回動軸231を中心に上下に回動する。 Therefore, when the eccentric cam 243 rotates, the pivoting connection shaft 242b of the upper end portion of the connection link 242 is displaced in the vertical direction, and accordingly, the pivoting connection shaft 242a of the lower end portion of the connection link 242 is displaced vertically. The pivot arm 241 pivots up and down about the mirror pivot shaft 231.
 ここで、偏心カム243と回動アーム241とは、回動連結軸242bが、偏心カム243の上死点と下死点との中間位置(カム回転軸243cと同じ高さ(以下、中立点と称す))に配置されているとき、回動アーム241が略水平となるよう連結されている。よって、回動アーム241は、略水平の中立点を中心に、上方および下方に略同角度だけ往復回動する。 Here, for the eccentric cam 243 and the pivot arm 241, the pivot connection shaft 242b is at an intermediate position between the top dead center and the bottom dead center of the eccentric cam 243 (the same height as the cam rotary shaft 243c (hereinafter referred to as neutral point And the pivoting arm 241 is substantially horizontal. Thus, the pivoting arm 241 pivots upward and downward by approximately the same angle around a substantially horizontal neutral point.
 そして、回動ミラー230は、回動アーム241が略水平の中立点に位置するときに、水平方向に対して、略45度で傾くよう、ミラー回動軸231に対して回動アーム241と位相をずらして取り付けられている。 The pivoting mirror 230 and the pivoting arm 241 with respect to the mirror pivoting axis 231 are inclined at approximately 45 degrees with respect to the horizontal direction when the pivoting arm 241 is positioned at a substantially horizontal neutral point. It is attached out of phase.
 したがって、回動アーム241が中立点に位置するときには、レーザ光源211から照射された出射レーザ光LB1は、回動ミラー230で反射された際に、略水平方向に照射される。また、回動アーム241から中立点を中心に上下に回動するのに伴って、回動ミラー230で反射された反射レーザ光LB2は、水平方向を中心に、上方と下方とで対称な角度および角速度で走査される。なお、本実施の形態1では、出射レーザ光LB1は、上方への走査角度αと下方への走査角度βとは、略同一角度であり、20~30度程度の範囲で走査する。 Therefore, when the pivoting arm 241 is located at the neutral point, the outgoing laser beam LB1 emitted from the laser light source 211 is illuminated substantially horizontally when it is reflected by the pivoting mirror 230. Also, as the rotating arm 241 rotates up and down around the neutral point, the reflected laser beam LB2 reflected by the rotating mirror 230 has a symmetrical angle between the upper side and the lower side around the horizontal direction. And scanned at angular velocity. In the first embodiment, the outgoing laser beam LB1 is scanned at an angle of approximately 20 to 30 degrees, with the upward scanning angle α and the downward scanning angle β being substantially the same.
 (実施の形態1の作用)
  以下に、実施の形態1の作用として、靴SHの内部形状を測定する手順を説明する。
  まず、上下移動装置50により装置本体20を基台10に対して上方に移動させ、支柱220を下側支持板13から上方に離しておく。
(Operation of Embodiment 1)
The procedure of measuring the internal shape of the shoe SH will be described below as the operation of the first embodiment.
First, the apparatus main body 20 is moved upward with respect to the base 10 by the vertical movement device 50, and the support 220 is separated upward from the lower support plate 13.
 次に、図1に示すように、基台10の下側支持板13に靴SHを載置する。そして、靴SHの長手方向を前後方向(x軸の方向)に向け、さらに、左右方向(y軸の方向)で、靴SHの履き口TLの左右方向中央が、装置本体20の回動中心(za軸)と略一致するように配置する。 Next, as shown in FIG. 1, the shoe SH is placed on the lower support plate 13 of the base 10. Then, the longitudinal direction of the shoe SH is directed in the front and back direction (direction of the x axis), and further, in the left and right direction (direction of the y axis) Arrange so as to substantially coincide with (za axis).
 次に、上下移動装置50を作動させ、ミラー回動軸231の位置が、図1および図4に示すように「、靴SHの履き口TLよりも下方であり、かつ、靴SHの中敷きよりも上方位置となるまで、装置本体20を下降させる。 Next, the vertical movement device 50 is operated, and as shown in FIGS. 1 and 4, the position of the mirror rotation shaft 231 is “below the footwear port TL of the shoe SH and from the insole of the shoe SH The apparatus main body 20 is lowered until the upper position is reached.
 そして、光学式の測長装置210のレーザ光源211から出射レーザ光LB1を照射させる。同時に、ミラー回動装置240を作動させて、回動ミラー230を上下に首振り状に往復回動させ、出射レーザ光LB1を上下に走査させる。 Then, the emission laser beam LB1 is irradiated from the laser light source 211 of the optical length measuring device 210. At the same time, the mirror rotation device 240 is operated to swing the rotation mirror 230 up and down in a reciprocating manner, thereby scanning the emission laser beam LB1 up and down.
 このとき、光学式の測長装置210では、出射レーザ光LB1が靴SHの内面(反射点P)で反射し、さらに、回動ミラー230で反射受光した反射レーザ光LB2を、レーザ光線位置検出器212で受光する。そして、光学式の測長装置210は、レーザ光線位置検出器212で受光された反射レーザ光LB2の入射位置を検出し、レーザ光源211と反射レーザ光LB2の入射位置の距離と入射角度から靴SHの内面における反射点Pまでの距離を測定する。 At this time, in the optical length measuring apparatus 210, the laser beam position detection of the reflected laser beam LB2 in which the emitted laser beam LB1 is reflected by the inner surface (reflection point P) of the shoe SH and is reflected and received by the rotating mirror 230. The light is received by the detector 212. Then, the optical length measuring device 210 detects the incident position of the reflected laser beam LB2 received by the laser beam position detector 212 and detects the distance from the incident position of the laser light source 211 and the incident position of the reflected laser beam LB2 and the incident angle. Measure the distance to the reflection point P on the inner surface of the SH.
 すなわち、回動ミラー230の回動角(ティルトφ)と回動ミラー230を含む回転角(方位θ)と回動ミラー230からの距離によって被測定物の反射点P、つまり、靴SHの内面の空間座標を確定できる。 That is, the reflection point P of the object to be measured is determined by the rotation angle (tilt φ) of the rotation mirror 230, the rotation angle (direction θ) including the rotation mirror 230, and the distance from the rotation mirror 230. The spatial coordinates of can be determined.
 上記走査を、装置本体回動装置40を作動させて、za軸を中心に装置本体20を回動させつつ行い、さらに、前後移動装置30を作動させて装置本体20を前後方向(x軸方向)に移動させる。これにより、出射レーザ光LB1を、靴SHの内面の全周面に亘って走査させ、靴SHの内部形状を測定し数値化することができる。なお、出射レーザ光LB1の下方の走査角度βでは、靴SHの中敷き部分において回動ミラー230の真下位置の箇所に出射レーザ光LB1が走査されない部分が生じる。このため、装置本体20を前後に移動させ、この下方の出射レーザ光LB1が走査されない部分にも走査させることができる。 The above-mentioned scanning is performed while operating the device body rotation device 40 while rotating the device body 20 around the za axis, and further, operating the longitudinal movement device 30 to move the device body 20 in the front-rear direction (x axis direction Move to). As a result, the emitted laser beam LB1 can be scanned over the entire peripheral surface of the inner surface of the shoe SH, and the internal shape of the shoe SH can be measured and quantified. At the lower scanning angle β of the emission laser beam LB1, a portion where the emission laser beam LB1 is not scanned is generated at a position immediately below the rotating mirror 230 in the insole portion of the shoe SH. For this reason, the apparatus main body 20 can be moved forward and backward, and the lower part of the outgoing laser beam LB1 can be scanned also in a part which is not scanned.
 以上の動作を行うことにより、靴SHの内部の全方位の反射点Pであるレーザ測定点の数として数百点から数万点を計測することができ、その空間座標をつなぎ合わせることによって靴SHの内部の形状を測定(数値化)することができる。
  また、上述のように出射レーザ光LB1を走査して靴SHの内面形状を数値化するには、測定点の数によって異なるものの、30秒~10分程度で行うことが可能である。したがって、発泡プラスチック製の型を制作するのと比較して、大幅に時間、手間、コストを削減でき、しかも、型を制作する際に、靴SHを汚さない工夫や、測定後の型の廃棄やリサイクルも不要となる。
By performing the above operation, several hundreds to several tens of thousands of laser measurement points can be measured as the number of laser measurement points which are reflection points P in all directions in the shoe SH, and the shoes are connected by combining their space coordinates. The internal shape of SH can be measured (digitized).
Further, as described above, the emission laser beam LB1 can be scanned to digitize the inner surface shape of the shoe SH, which can be performed in about 30 seconds to 10 minutes although it varies depending on the number of measurement points. Therefore, compared with producing a mold made of foamed plastic, the time, labor and cost can be significantly reduced, and moreover, when producing the mold, a device that does not contaminate the shoe SH, and disposal of the mold after measurement And no need for recycling.
 なお、上下移動装置50は、上述のように、靴SHに対して形状測定を行うのに最適の位置に回動ミラー230を移動させるだけでなく、出射レーザ光LB1の走査を行いながら、装置本体20(回動見ら230)を移動させることもできる。すなわち、靴SHが、ブーツのように内周形状が上下に長いものを測定する場合は、上下移動装置50により装置本体20を上下に移動させながら上述のような出射レーザ光LB1の走査を行い、その内周形状の測定を行うことも可能である。 As described above, the vertical movement device 50 not only moves the pivoting mirror 230 to a position optimum for measuring the shape of the shoe SH, but also performs scanning of the emission laser beam LB1. It is also possible to move the main body 20 (rotational view 230). That is, when the shoe SH measures a boot whose inner circumferential shape is long in the vertical direction, the above-mentioned scanning of the emitted laser beam LB1 is performed while moving the apparatus main body 20 vertically by the vertical movement device 50. It is also possible to measure the inner circumferential shape.
 (実施の形態1の効果)
  1)実施の形態1の三次元形状測定装置は、
基台10と、
基台10に支持された装置本体20と、を備え、
装置本体20は、
照射部としてのレーザ光源211から出射レーザ光LB1を出射し、測定対象物(靴SH)で反射した反射レーザ光LB2を受光部としてのレーザ光線位置検出器212で受光して、三角測量方式により測定対象物での反射点Pの位置を測定する光学式の測長装置210と、
光学式の測長装置210に結合された支柱220に、照射部としてのレーザ光源211からの出射レーザ光LB1の出射方向である下方に離れて配置されて出射方向の略直交方向に軸心を向けたミラー回動軸231を中心に回動可能に支持され、出射レーザ光LB1を測定対象物(靴SH)に向けて反射し、かつ、反射点Pで反射した反射レーザ光LB2をレーザ光線位置検出器212に向けて反射する回動ミラー230と、
ミラー回動軸231を回動させ、出射レーザ光LB1を走査させるミラー回動装置240と、
回動ミラー230で反射した出射レーザ光LB1を周方向に走査させるよう装置本体20を基台10に対し回動させる装置本体回動装置40と、
を備える。
  したがって、測定対象物が光学式の測長装置210のレーザ光源211から出射レーザ光LB1を直接照射しにくい狭い空間(靴SHの内周)であっても、空間内に回動ミラー230を配置して出射レーザ光LB1を照射し、その反射点Pの位置を計測できる。そして、回動ミラー230をミラー回動装置240により回動させて出射レーザ光LB1を走査し、さらに、装置本体回動装置40により装置本体20を回動させて全方位に走査できる。よって、靴SHの内周のような狭い空間の内部形状を計測することができる。
  また、光学式の測長装置210は三角測量方式により反射点Pの位置を測定するため、レーザ光の反射時間などにより計測するものと比較して、靴SHの内部形状のような反射点Pまでの距離が短いものも高精度で計測可能である。
  以上のように、実施の形態1の三次元形状測定装置では、靴SHの内周のような狭い空間の形状を、簡易で安価な構成で、短時間に高精度で測定可能である。
(Effect of Embodiment 1)
1) The three-dimensional shape measuring apparatus of Embodiment 1
Base 10,
An apparatus body 20 supported by the base 10;
The device body 20 is
The emission laser beam LB1 is emitted from the laser light source 211 as the irradiation unit, and the reflected laser beam LB2 reflected by the measurement object (shoes SH) is received by the laser beam position detector 212 as the light reception unit, and the triangulation method is performed. An optical length measuring device 210 for measuring the position of the reflection point P on the measurement object,
The support 220 coupled to the optical length measuring device 210 is disposed at a lower position, which is the emission direction of the laser beam LB1 emitted from the laser light source 211 as the irradiation unit, and has an axis in the direction substantially orthogonal to the emission direction. The laser beam LB2 is supported so as to be pivotable about the mirror pivot shaft 231 directed, reflects the emitted laser beam LB1 toward the object to be measured (shoes SH), and reflects the reflected laser beam LB2 reflected at the reflection point P as a laser beam A pivoting mirror 230 which reflects towards the position detector 212;
A mirror rotation device 240 for rotating the mirror rotation shaft 231 to scan the emitted laser beam LB1;
A device body rotation device 40 for rotating the device body 20 relative to the base 10 so as to scan the emission laser beam LB1 reflected by the rotation mirror 230 in the circumferential direction;
Equipped with
Therefore, even if the measurement object is a narrow space (the inner circumference of the shoe SH) where it is difficult to directly irradiate the output laser beam LB1 from the laser light source 211 of the optical length measuring device 210, the pivoting mirror 230 is disposed in the space Then, the emission laser beam LB1 is irradiated, and the position of the reflection point P can be measured. Then, the turning mirror 230 is turned by the mirror turning device 240 to scan the emitted laser beam LB1, and further, the device body turning device 40 can turn the device body 20 to scan in all directions. Therefore, the internal shape of a narrow space such as the inner circumference of the shoe SH can be measured.
Further, since the optical length measuring device 210 measures the position of the reflection point P by the triangulation method, the reflection point P such as the internal shape of the shoe SH is compared with that measured by the reflection time of the laser light or the like. Even short distances can be measured with high accuracy.
As described above, in the three-dimensional shape measurement apparatus according to the first embodiment, the shape of a narrow space such as the inner periphery of the shoe SH can be measured with high accuracy in a short time with a simple and inexpensive configuration.
 加えて、装置本体回動装置40の回動中心(za軸)を、実施の形態1では、レーザ光源211から出射する出射レーザ光LB1の光軸に略一致させ、装置本体20を回動させても、その光軸が移動しないようにした。このため、装置本体回動装置40により装置本体20を回動させた際に、光軸も回動する場合と比較して、光学式の測長装置210による演算を容易にできる。このため、光学式の測長装置210の演算処理を行う構成を簡略化できるとともに、演算時間を短くできる。 In addition, in the first embodiment, the rotation center (za axis) of the device body rotation device 40 is made to substantially coincide with the optical axis of the emitted laser beam LB1 emitted from the laser light source 211, and the device body 20 is rotated. Even so, the optical axis did not move. Therefore, when the device body 20 is rotated by the device body rotating device 40, the calculation by the optical length measuring device 210 can be facilitated as compared with the case where the optical axis is also rotated. For this reason, while being able to simplify the structure which performs arithmetic processing of the optical length measuring apparatus 210, arithmetic time can be shortened.
 2)実施の形態1の三次元形状測定装置は、
基台10は、装置本体20を基台10に対して出射方向である上下方向に装置本体20を基台10に対して支柱220の延在方向(上下方向)に沿って移動させる第1の移動装置としての上下移動装置50を備える。
  したがって、装置本体20を支柱220の延在方向に移動させて回動ミラー230を移動させることができる。これにより、回動ミラー230からの出射レーザ光LB1の反射位置(出射位置)を移動させて、出射レーザ光LB1の走査範囲を移動させ、広範囲の走査が可能である。すなわち、より広範囲の形状測定が可能であり、かつ、測定に最適の位置に回動ミラー230を移動させることができる。
2) The three-dimensional shape measuring apparatus according to the first embodiment
The base 10 moves the device body 20 relative to the base 10 in the vertical direction, which is the emission direction, along the extending direction (vertical direction) of the support 220 relative to the base 10. A vertical movement device 50 as a movement device is provided.
Therefore, the rotation mirror 230 can be moved by moving the device body 20 in the extending direction of the support 220. As a result, the reflection position (emission position) of the emission laser beam LB1 from the rotation mirror 230 is moved to move the scanning range of the emission laser beam LB1, and a wide range of scanning is possible. That is, a wider range of shape measurement is possible, and the pivoting mirror 230 can be moved to the optimum position for measurement.
 3)実施の形態1の三次元形状測定装置は、
基台10は、装置本体20を基台10に対して出射方向である上下方向の直交方向の一方向(前後方向)に沿って移動させる第2の移動装置としての前後移動装置30を備える。
  したがって、装置本体20を支柱220の延在方向に直交する方向に移動させて回動ミラー230を移動させることができる。これにより、回動ミラー230からの出射レーザ光LB1の反射位置(出射位置)を移動させて、出射レーザ光LB1の走査範囲を移動させ、より広範囲の走査が可能である。すなわち、広範囲の形状測定が可能であり、かつ、測定に最適の位置に回動ミラー230を移動させることができる。
3) The three-dimensional shape measuring apparatus according to the first embodiment
The base 10 is provided with a back and forth moving device 30 as a second moving device for moving the device body 20 along one direction (front and back direction) perpendicular to the base 10 in the emission direction.
Therefore, the rotation mirror 230 can be moved by moving the device body 20 in the direction orthogonal to the extending direction of the support 220. As a result, the reflection position (emission position) of the emission laser beam LB1 from the rotation mirror 230 is moved to move the scanning range of the emission laser beam LB1, thereby enabling a wider range of scanning. That is, a wide range of shape measurement is possible, and the pivoting mirror 230 can be moved to the optimum position for measurement.
 4)実施の形態1の三次元形状測定装置は、
装置本体20は、出射方向を下方に向け、支柱220が光学式の測長装置210から下方に延在されている。
  したがって、装置本体20は、第1の移動装置である上下移動装置50により上下に移動させ、第2の移動装置である前後移動装置30により水平方向の一方向である前後方向に移動させることができる。
  さらに、装置本体回動装置40により回動ミラー230から反射される出射レーザ光LB1を水平方向の全周に走査させることができる。
  よって、履き口TLを上方に向けて配置した靴SHの内周形状を測定するのに最適である。
4) The three-dimensional shape measuring apparatus according to the first embodiment
In the device body 20, the direction of emission is directed downward, and the support 220 is extended downward from the optical length measuring device 210.
Therefore, the apparatus body 20 may be moved up and down by the vertical movement device 50 which is the first movement device, and may be moved in the front and back direction which is one horizontal direction by the longitudinal movement device 30 which is the second movement device. it can.
Further, the emission laser beam LB1 reflected from the rotation mirror 230 by the apparatus main assembly rotation device 40 can be scanned over the entire circumference in the horizontal direction.
Therefore, it is most suitable for measuring the inner circumferential shape of the shoe SH disposed with the wear opening TL facing upward.
 5)実施の形態1の三次元形状測定装置は、
ミラー回動装置240は、
ミラー回動軸231に連結され、ミラー回動軸231から外径方向に延びる回動アーム241と、
回動アーム241を上下往復回動させる駆動部と、
を備え、
駆動部は、
装置本体20に、カム回転軸243cを中心に回転可能に支持された偏心カム243と、
偏心カム243と回動アーム241とを連結し、偏心カム243にカム回転軸243cから外径方向に離れた位置で相対回動可能に連結された第1連結部としての回動連結軸242aと、回動アーム241にミラー回動軸231から離れた位置に連結された第2連結部としての回動連結軸242bとを有する連結リンク242と、
を備え、
回動連結軸242aが、回動アーム241から最も離された上死点位置と、回動アーム241に最も近づいた下死点位置との中間位置の中立点で、回動ミラー230で反射した出射レーザ光LB1をレーザ光源211からの照射方向である鉛直方向に対して直交方向である水平方向を向くように、回動アーム241と回動ミラー230との位置が設定されている。
  したがって、回動ミラー230で反射した出射レーザ光LB1を、水平方向を中心に上下に均等な角度および角速度変化で走査することができ、上下で不均等な角度および角速度変化で走査する場合と比較して、反射点Pの位置の算出が容易である。
  逆にいうと、中立点での出射レーザ光LB1の照射位置に対して、上下に不均等に照射した場合、その角速度も上下で不均等となり、反射点Pの位置の計測の効率(速度)が落ちる。
5) The three-dimensional shape measuring apparatus according to the first embodiment
The mirror rotation device 240 is
A pivot arm 241 connected to the mirror pivot shaft 231 and extending outward from the mirror pivot shaft 231;
A driving unit that vertically pivots the pivoting arm 241;
Equipped with
The drive unit is
An eccentric cam 243 rotatably supported by the apparatus main body 20 about a cam rotation shaft 243c;
An eccentric cam 243 and a pivoting arm 241 are coupled, and a pivoting coupling shaft 242a as a first coupling portion is coupled to the eccentric cam 243 so as to be relatively pivotable at a position away from the cam rotary shaft 243c in the outer diameter direction. A connection link 242 having a rotation connection shaft 242b as a second connection portion connected to the rotation arm 241 at a position separated from the mirror rotation shaft 231;
Equipped with
The pivoting connection shaft 242 a is reflected by the pivoting mirror 230 at the neutral point between the top dead center position most separated from the pivoting arm 241 and the bottom dead center position closest to the pivoting arm 241. The positions of the pivoting arm 241 and the pivoting mirror 230 are set so that the emitting laser beam LB1 is directed in the horizontal direction orthogonal to the vertical direction which is the irradiation direction from the laser light source 211.
Therefore, the emission laser beam LB1 reflected by the rotating mirror 230 can be scanned at uniform angles and changes in angular velocity up and down around the horizontal direction, as compared with the case of scanning at non-uniform angles and changes in angular velocity from above and below. Thus, it is easy to calculate the position of the reflection point P.
Conversely, when the irradiation position of the outgoing laser beam LB1 at the neutral point is irradiated unevenly in the upper and lower directions, the angular velocity is also uneven in the upper and lower directions, and the efficiency (speed) of the measurement of the position of the reflection point P Falls.
 6)実施の形態1の三次元形状測定装置は、
回動ミラー230を含む支柱220の大きさは装置本体20の回動中心のza軸から半径25mmの円内に収まる寸法に形成されている。
  したがって、実施の形態1の三次元形状測定装置を靴SHの内周の形状測定に用いた場合に、za軸を中心に装置本体20を回動させて出射レーザ光LB1を水平方向に走査させた際に、支柱220および回動ミラー230が靴SHと干渉するのを抑制できる。
  よって、実施の形態1の三次元形状測定装置を、靴SHの内周形状の測定に用いるのに好適なものとすることができる。
  加えて、靴SH以外の狭い空間の内部形状を測定するのにも好適である。
6) The three-dimensional shape measuring apparatus according to the first embodiment
The size of the support 220 including the rotation mirror 230 is formed to fit within a circle having a radius of 25 mm from the za axis of the rotation center of the apparatus main body 20.
Therefore, when the three-dimensional shape measurement apparatus according to the first embodiment is used to measure the shape of the inner periphery of the shoe SH, the apparatus main body 20 is rotated about the za axis to scan the emitted laser beam LB1 in the horizontal direction. At the same time, interference between the support 220 and the pivoting mirror 230 with the shoe SH can be suppressed.
Therefore, the three-dimensional shape measuring apparatus of Embodiment 1 can be made suitable for use in measuring the inner circumferential shape of the shoe SH.
In addition, it is also suitable for measuring the internal shape of a narrow space other than the shoe SH.
 以上、図面に基づいて実施の形態の三次元形状測定装置について説明してきたが、この三次元形状測定装置の具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the three-dimensional shape measuring apparatus of the embodiment has been described above based on the drawings, the specific configuration of the three-dimensional shape measuring apparatus is not limited to this embodiment, and Changes in design, additions, and the like are permitted without departing from the scope of the invention as claimed.
 例えば、実施の形態の三次元形状測定装置では、三次元形状の測定対象物を靴の内部形状とした例を示したが、測定対象としては、靴の内周形状に限定されるものではない。
  また、実施の形態では、装置本体から支柱が下方に延在され、装置本体回動装置が装置本体を水平面に略沿って回動させるようにしたものを示した。しかし、支柱の延在方向および装置本体の回動方向はこれに限定されず、例えば、上下逆にしたり、支柱を略水平方向に延在し、装置本体を水平方向の軸を中心に回動させるようにしたりしてもよい。
  このような構造の場合、測定対象物を前述のように靴以外のものとしてもよいし、靴の内周形状を測定する場合であっても、靴の向きを実施の形態のように履き口を上方に向けるのではなく、下方に向けたり横方向に向けたりして測定するようにしてもよい。
For example, in the three-dimensional shape measuring apparatus according to the embodiment, an example in which the three-dimensional measurement object is the inner shape of the shoe is shown, but the measurement object is not limited to the inner circumferential shape of the shoe .
Further, in the embodiment, the support is extended downward from the device main body, and the device main body rotating device rotates the device main body substantially along the horizontal plane. However, the extending direction of the column and the rotating direction of the device body are not limited to this, for example, upside down or extending the column in a substantially horizontal direction, and rotating the device body about a horizontal axis You may make it
In the case of such a structure, the object to be measured may be other than the shoe as described above, and even in the case of measuring the inner circumferential shape of the shoe, the direction of the shoe is as in the embodiment. The measurement may be performed by pointing downward or sideways instead of pointing upward.
 さらに、実施の形態では、装置本体回動装置に加え、第1の移動装置としての上下移動装置および第2の移動装置としての前後移動装置を備えたものを示したが、これに限定されない。すなわち、第1の移動装置および第2の移動装置は、いずれも有しない構成であっても、出射レーザ光を周方向の全周に出射して三次元形状を測定することは可能である。あるいは、このように、第1の移動装置および第2の移動装置を設けない構成とした場合であっても、第1の移動装置による移動方向および第2の移動装置による移動方向に手動により移動可能としてもよい。
  加えて、第1の移動装置と第2の移動装置とのうちいずれか一方のみを設けた構成としてもよい。
Furthermore, in the embodiment, in addition to the apparatus body rotation device, the one including the vertical movement device as the first movement device and the longitudinal movement device as the second movement device is shown, but the invention is not limited thereto. That is, even if the first moving device and the second moving device do not have either, it is possible to emit the outgoing laser light to the entire circumference in the circumferential direction to measure the three-dimensional shape. Alternatively, even if the first moving device and the second moving device are not provided as described above, the moving direction by the first moving device and the moving direction by the second moving device are manually moved. It may be possible.
In addition, only one of the first moving device and the second moving device may be provided.
 また、実施の形態では、支持部材として、U字断面形状の支柱を示したが、この支持部材の形状は、これに限定されない。すなわち、支持部材は、要は、回動ミラーを、光学式の測長装置から出射レーザ光の出射方向に離れた位置で回動可能に支持できるものであればよく、例えば、丸いロッド状のものであってもよいし、また、出射方向に直線状に延びる形状ではなく、途中で湾曲したり折曲したりした形状であってもよい。 Moreover, although the support | pillar of U-shaped cross-sectional shape was shown as a support member in embodiment, the shape of this support member is not limited to this. That is, the support member may be any member capable of pivotally supporting the pivoting mirror at a position away from the optical length measuring device in the emission direction of the emission laser light, for example, a round rod shape It may be one that does not extend linearly in the emission direction, but may have a shape that is curved or bent halfway.
 また、実施の形態では、ミラー回動軸を回動させる駆動部として、円板状の偏心カムの回転運動を、回動アームの上下往復運動に変換するものを示したが、これに限定されない。例えば、ミラー回動軸にプーリとベルトなどを用いて、回転運動を回転運動として伝達する構造のものを用いてもよい。あるいは、偏心カムに代えて、例えば、モータの正逆転により上下にスライドするスライダの上下運動を、回動アームに伝達する構造としてもよい。
  さらに、実施の形態で示したミラー回動装置を用いる場合であって、しかも、中立点で出射レーザ光を回動ミラーから水平方向に出射させる場合であっても、偏心カムが中立位置にあるときの回動アームに対して、回動軌跡の接線方向に偏心カムの第1連結部を配置していれば、その時の回動アームの角度は水平に限定されるものではなく、したがって、回動ミラーと回動アームとの成す角度は45度に限定されない。
Further, in the embodiment, as the drive unit for rotating the mirror rotation shaft, the one that converts the rotational movement of the disk-shaped eccentric cam into the vertical reciprocation movement of the rotation arm is shown, but the invention is not limited thereto. . For example, a structure may be used in which rotational motion is transmitted as rotational motion using a pulley, a belt, or the like as the mirror pivot shaft. Alternatively, instead of the eccentric cam, for example, the vertical movement of the slider that slides up and down by forward and reverse rotation of the motor may be transmitted to the pivoting arm.
Furthermore, the eccentric cam is at the neutral position even when the mirror rotation device shown in the embodiment is used and the outgoing laser light is emitted from the rotation mirror in the horizontal direction at the neutral point. If the first connecting portion of the eccentric cam is disposed in the tangential direction of the rotation locus with respect to the rotation arm at that time, the angle of the rotation arm at that time is not limited to horizontal, therefore The angle between the moving mirror and the pivoting arm is not limited to 45 degrees.
 また、実施の形態では、回動アームと回動ミラーとが、45度の角度を成すものを示したが、両者の角度はこれに限定されない。例えば、実施の形態と同様の駆動部の構造であっても、回動ミラーによる照射範囲の中立点を水平に対して±5度程度上下にずらしてもよい。
  あるいは、回動アームと偏心カムとの相対位置を、回動アームの中立点が、水平に対して傾くように配置してもよい。
Further, in the embodiment, the pivoting arm and the pivoting mirror are shown to form an angle of 45 degrees, but the angle between the two is not limited to this. For example, even with the structure of the drive unit similar to that of the embodiment, the neutral point of the irradiation range by the rotating mirror may be vertically shifted about ± 5 degrees with respect to the horizontal.
Alternatively, the relative positions of the pivoting arm and the eccentric cam may be arranged such that the neutral point of the pivoting arm is inclined with respect to the horizontal.
10  基台
20  装置本体
30  前後移動装置(第2の移動装置)
40  装置本体回動装置
50  上下移動装置(第1の移動装置)
210      光学式の測長装置
211      レーザ光源(照射部)
212      レーザ光線位置検出器(受光部)
220      支柱(支持部材)
230      回動ミラー
231      ミラー回動軸
240      ミラー回動装置
241      回動アーム
242      連結リンク
242a    回動連結軸(第2連結部)
242b    回動連結軸(第1連結部)
243      偏心カム
243c    カム回転軸
244      ミラー回動用モータ
LB1      出射レーザ光
LB2      反射レーザ光
P    反射点
SH  靴
TL  履き口
10: base 20: apparatus body 30: back and forth movement device (second movement device)
40 Apparatus Body Rotating Device 50 Vertically Moving Device (First Moving Device)
210 Optical measuring device 211 Laser light source (irradiator)
212 Laser beam position detector (light receiving unit)
220 support (support member)
230 Rotation mirror 231 Mirror rotation shaft 240 Mirror rotation device 241 Rotation arm 242 Connection link 242 a Rotation connection shaft (second connection portion)
242b Rotating connecting shaft (first connecting part)
243 Eccentric cam 243c Cam rotating shaft 244 Mirror rotation motor LB1 Emitting laser beam LB2 Reflection laser beam P Reflection point SH Shoes TL Footwear port

Claims (7)

  1.  基台と、
     前記基台に支持された装置本体と、を備え、
     前記装置本体は、
    照射部から出射レーザ光を出射し、測定対象物で反射した反射レーザ光を受光部で受光して、三角測量方式により前記測定対象物での反射点の位置を測定する光学式の測長装置と、
     前記光学式の測長装置に結合された支持部材に、前記照射部からの前記出射レーザ光の出射方向に離れて配置されて前記出射方向の略直交方向に軸心を向けたミラー回動軸を中心に回動可能に支持され、前記出射レーザ光を前記測定対象物に向けて反射し、かつ、前記測定対象物で反射した反射レーザ光を前記受光部に向けて反射する回動ミラーと、
     前記ミラー回動軸を回動させ、前記出射レーザ光を走査させるミラー回動装置と、
     前記回動ミラーで反射した前記出射レーザ光を周方向に走査させるよう前記装置本体を前記基台に対し回動させる装置本体回動装置と、
    を備える三次元形状測定装置。
    With the base,
    An apparatus main body supported by the base;
    The device body is
    An optical length measuring apparatus that emits an outgoing laser beam from an irradiation unit, receives a reflected laser beam reflected by a measurement object at a light reception unit, and measures the position of a reflection point on the measurement object by triangulation method When,
    A mirror rotation axis which is disposed on a supporting member coupled to the optical length measuring device at a distance in the emission direction of the emission laser beam from the irradiation unit and which is directed substantially in the orthogonal direction to the emission direction. A pivoting mirror supported rotatably about the center, reflecting the emitted laser light toward the object to be measured, and reflecting the reflected laser light reflected by the object to the light receiving portion ,
    A mirror rotation device for rotating the mirror rotation axis to scan the emitted laser light;
    An apparatus main assembly rotating apparatus configured to rotate the apparatus main body with respect to the base so as to scan the outgoing laser light reflected by the rotating mirror in the circumferential direction;
    Three-dimensional shape measuring device provided with
  2.  請求項1に記載の三次元形状測定装置において、
     前記基台は、前記装置本体を前記基台に対して前記出射方向に沿って移動させる第1の移動装置を備える三次元形状測定装置。
    In the three-dimensional shape measuring apparatus according to claim 1,
    The said base is a three-dimensional shape measuring apparatus provided with the 1st movement apparatus which moves the said apparatus main body with respect to the said radiation | emission direction with respect to the said base.
  3.  請求項1または請求項2に記載の三次元形状測定装置において、
     前記基台は、前記装置本体を前記基台に対して前記出射方向の直交方向の一方向に沿って移動させる第2の移動装置を備える三次元形状測定装置。
    In the three-dimensional shape measuring apparatus according to claim 1 or 2,
    The base is provided with a second moving device for moving the device body along one direction orthogonal to the emitting direction with respect to the base.
  4.  請求項1~請求項3のいずれか1項に記載の三次元形状測定装置において、
     前記装置本体は、前記出射方向を下方に向け、前記支持部材が前記光学式の測長装置から下方に延在されている三次元形状測定装置。
    The three-dimensional shape measurement apparatus according to any one of claims 1 to 3.
    The device body has the emission direction directed downward, and the support member extends downward from the optical length measuring device.
  5.  請求項1~請求項4のいずれか1項に記載の三次元形状測定装置において、
     前記ミラー回動装置は、
    前記ミラー回動軸に連結され、前記ミラー回動軸から外径方向に延びる回動アームと、
     前記回動アームを上下往復回動させる駆動部と、
    を備える三次元形状測定装置。
    The three-dimensional shape measurement apparatus according to any one of claims 1 to 4.
    The mirror rotation device is
    A pivoting arm connected to the mirror pivot and extending radially outward from the mirror pivot;
    A driving unit that vertically pivots the pivoting arm;
    Three-dimensional shape measuring device provided with
  6.  請求項5に記載の三次元形状測定装置において、
     前記駆動部は、
    前記装置本体に、カム回転軸を中心に回転可能に支持された偏心カムと、
    前記偏心カムと前記回動アームとを連結し、前記偏心カムに前記回転軸から外径方向に離れた位置で相対回動可能に連結された第1連結部と、前記回動アームに前記ミラー回動軸から離れた位置に連結された第2連結部とを有する連結アームと、
    を備え、
     前記第1連結部が、前記回動アームから最も離された位置と、前記回動アームに最も近づいた位置との中間位置で、前記回動ミラーで反射した前記出射レーザ光を前記出射方向に対して直交方向を向くように、回動アームと回動ミラーとの位置が設定されている三次元形状測定装置。
    In the three-dimensional shape measuring apparatus according to claim 5,
    The drive unit is
    An eccentric cam rotatably supported on the apparatus body about a cam rotation axis;
    A first connecting portion that connects the eccentric cam and the pivoting arm, and is coupled to the eccentric cam so as to be able to rotate relative to the eccentric cam at a position away from the rotating shaft in the outer diameter direction; A connecting arm having a second connecting portion connected at a position away from the rotation axis;
    Equipped with
    The emission laser beam reflected by the pivoting mirror at the middle position between the pivoting arm and the position closest to the pivoting arm, in the emission direction. The three-dimensional shape measuring apparatus in which the positions of the pivoting arm and the pivoting mirror are set so as to face the orthogonal direction with respect to each other.
  7.  請求項1~請求項6のいずれか1項に記載の三次元形状測定装置において、
     前記回動ミラーを含む前記支持部材の大きさは前記装置本体の回動中心から半径25mmの円内に収まる寸法に形成されている三次元形状測定装置。
    The three-dimensional shape measurement apparatus according to any one of claims 1 to 6.
    The three-dimensional shape measuring apparatus, wherein the size of the support member including the pivoting mirror is formed to fit within a circle having a radius of 25 mm from the pivoting center of the apparatus main body.
PCT/JP2017/045848 2017-12-21 2017-12-21 Three-dimensional shape measurement device WO2019123589A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018538668A JP6423984B1 (en) 2017-12-21 2017-12-21 Three-dimensional shape measuring device
CN201780097841.0A CN111556952B (en) 2017-12-21 2017-12-21 Three-dimensional shape measuring device
PCT/JP2017/045848 WO2019123589A1 (en) 2017-12-21 2017-12-21 Three-dimensional shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045848 WO2019123589A1 (en) 2017-12-21 2017-12-21 Three-dimensional shape measurement device

Publications (1)

Publication Number Publication Date
WO2019123589A1 true WO2019123589A1 (en) 2019-06-27

Family

ID=64379080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045848 WO2019123589A1 (en) 2017-12-21 2017-12-21 Three-dimensional shape measurement device

Country Status (3)

Country Link
JP (1) JP6423984B1 (en)
CN (1) CN111556952B (en)
WO (1) WO2019123589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599631A (en) * 1991-10-09 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical measuring apparatus for hole configuration
JP2000241133A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Apparatus and method for measuring shape
JP2006038820A (en) * 2004-07-22 2006-02-09 Kawamura Gishi Kk Instrument for measuring plaster mold shape
DE102005039632A1 (en) * 2005-08-21 2007-02-22 Schmitzl, Ulrike Device and method to be used for exact determination of inner length of shoe, comprises laser generator and telescopic element
US7446884B2 (en) * 2002-04-12 2008-11-04 Corpus.E Ag Method for optically detecting the spatial form of inside spaces and a device for carrying out said method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721013A (en) * 2008-10-22 2010-06-09 温州市鹿艺鞋材有限公司 Device and method for measuring comprehensive parameters of shoe tree by laser
CN206208214U (en) * 2016-04-18 2017-05-31 北京体云科技有限公司 A kind of three-dimensional digital system of footwear inner surface scanning
CN106510099A (en) * 2016-12-30 2017-03-22 哈尔滨福特威尔科技有限公司 Full-automatic complete shoe tree three-dimensional data measuring device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599631A (en) * 1991-10-09 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical measuring apparatus for hole configuration
JP2000241133A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Apparatus and method for measuring shape
US7446884B2 (en) * 2002-04-12 2008-11-04 Corpus.E Ag Method for optically detecting the spatial form of inside spaces and a device for carrying out said method
JP2006038820A (en) * 2004-07-22 2006-02-09 Kawamura Gishi Kk Instrument for measuring plaster mold shape
DE102005039632A1 (en) * 2005-08-21 2007-02-22 Schmitzl, Ulrike Device and method to be used for exact determination of inner length of shoe, comprises laser generator and telescopic element

Also Published As

Publication number Publication date
JP6423984B1 (en) 2018-11-21
CN111556952A (en) 2020-08-18
CN111556952B (en) 2021-07-27
JPWO2019123589A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US8054520B2 (en) Space scanner for autonomous mobile device
US8130432B2 (en) Space scanner for self-control moving object
US8699036B2 (en) Device for optically scanning and measuring an environment
JP5150329B2 (en) Surveying device and surveying system
JP5208075B2 (en) Lightwave interference measuring device
JP6817097B2 (en) Surveying system
JP2003177014A (en) 3-d laser measuring system
US8072665B2 (en) Three-dimensional space scanner
WO2019140778A1 (en) Three-dimensional reconstruction system and three-dimensional reconstruction method
CN109655034B (en) Rotary laser device and laser ranging method
JP2012237661A (en) Measurement auxiliary tool and diameter measuring method using the same
US20100053595A1 (en) Three dimensional laser range finder sensor
JP2012215496A (en) Shape measuring device
KR101193789B1 (en) 3D LRF sensor : Three dimensions Laser Range Finder sensor
JP6423984B1 (en) Three-dimensional shape measuring device
US9741109B2 (en) Tire inner surface imaging method and device
JP2018096721A (en) Imaging device, inspecting device, and manufacturing method
JP7198153B2 (en) laser scanner survey target
JP7491664B2 (en) Shape measuring device, structure manufacturing system, shape measuring method, and structure manufacturing method
JP2001183117A (en) Instrument and method for measuring surface shape
WO2017130944A1 (en) Optical scanner
KR20130134818A (en) Three dimensional scanning apparatus
JPH1183746A (en) Device and method for flaw detection
JP4619282B2 (en) X-ray analyzer
JP5539822B2 (en) Circular flange strain amount measuring method and circular flange strain amount measuring apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538668

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935242

Country of ref document: EP

Kind code of ref document: A1