WO2019123511A1 - Shovel machine - Google Patents

Shovel machine Download PDF

Info

Publication number
WO2019123511A1
WO2019123511A1 PCT/JP2017/045290 JP2017045290W WO2019123511A1 WO 2019123511 A1 WO2019123511 A1 WO 2019123511A1 JP 2017045290 W JP2017045290 W JP 2017045290W WO 2019123511 A1 WO2019123511 A1 WO 2019123511A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
attachment
boom
arm
bucket
Prior art date
Application number
PCT/JP2017/045290
Other languages
French (fr)
Japanese (ja)
Inventor
春男 呉
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to PCT/JP2017/045290 priority Critical patent/WO2019123511A1/en
Priority to JP2019559877A priority patent/JPWO2019123511A1/en
Priority to CN201780097756.4A priority patent/CN111492111B/en
Publication of WO2019123511A1 publication Critical patent/WO2019123511A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present disclosure relates to a shovel provided with a plurality of hydraulic actuators capable of combined operation.
  • the shovel that controls the operation of a front work machine by compound operation of a plurality of hydraulic cylinders (see Patent Document 1).
  • the shovel includes an area limiting switch instructing selection of an area limiting excavation control mode, and a setting switch instructing setting of an excavation area (target excavation surface) in the area limiting excavation control mode.
  • the operator of the shovel sets the boundary of the target excavation surface with the setting switch and starts the area limited excavation control mode with the area limiting switch.
  • the shovel controls the operation of the front work machine so that the tip of the bucket moves along the boundary of the excavation area.
  • a shovel includes a lower traveling body, an upper swing body mounted on the lower travel body, an attachment attached to the upper swing body, and a driver's cab attached to the upper swing body.
  • the control device includes: an installed operation device; and a control device that controls the movement of the attachment that moves in response to a combined operation on the operation device, the control device derives the operation tendency of the operator in a predetermined period, and the operation tendency The movement of the attachment is controlled to maintain the movement of the attachment in time.
  • FIG. 1 is a side view showing a shovel (excavator) as a construction machine to which the present invention is applied.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the shovel via a turning mechanism 2.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the boom 4 as a working element, the arm 5 and the bucket 6 constitute a digging attachment which is an example of the attachment.
  • the boom 4, the arm 5 and the bucket 6 are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively.
  • the upper revolving superstructure 3 is provided with a cabin 10 as a cab and a power source such as an engine 11 mounted thereon.
  • FIG. 2 is a block diagram showing a configuration example of a drive system of the shovel shown in FIG. 1, and the mechanical power transmission line, the hydraulic oil line, the pilot line and the electric control line are shown by double lines, thick solid lines, broken lines and dotted lines, respectively. Show.
  • the drive system of the shovel mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a pressure sensor 29, a controller 30, a posture detection device S1, and the like.
  • the engine 11 is a driving source of a shovel.
  • the engine 11 is, for example, a diesel engine as an internal combustion engine that operates to maintain a predetermined rotational speed.
  • the output shaft of the engine 11 is connected to the input shaft of the main pump 14 and the pilot pump 15.
  • the main pump 14 is a device for supplying hydraulic fluid to the control valve 17 via a hydraulic fluid line, and is, for example, a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is a device for controlling the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to, for example, the discharge pressure of the main pump 14, the command current from the controller 30, and the like. Do.
  • the pilot pump 15 is a device that supplies hydraulic fluid to various hydraulic control devices including the operating device 26 via a pilot line, and is, for example, a fixed displacement hydraulic pump.
  • the control valve 17 is a hydraulic control device that controls a hydraulic system in the shovel.
  • the control valve 17 includes a plurality of control valves that control the flow of the hydraulic fluid discharged by the main pump 14.
  • the control valve 17 selectively supplies the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves.
  • the control valves have a flow rate of hydraulic fluid flowing from the main pump 14 through the center bypass pipe to the hydraulic fluid tank, a flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuator, and an operation flowing from the hydraulic actuator to the hydraulic fluid tank Control the oil flow rate.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 1L, a right traveling hydraulic motor 1R, and a swing hydraulic motor 2A.
  • the operating device 26 is a device used by the operator for operating the hydraulic actuator.
  • the operating device 26 is installed in the cabin 10, and supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line.
  • the pressure of the hydraulic fluid supplied to each of the pilot ports (hereinafter referred to as "pilot pressure") is a pressure corresponding to the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators. is there.
  • the pressure sensor 29 is a sensor for detecting the content of the operation on the operating device 26.
  • the pressure sensor 29 detects, for example, the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure, and outputs the detected values to the controller 30 Do.
  • the operation content of the operating device 26 may be detected using another sensor other than the pressure sensor.
  • the posture detection device S1 detects the posture of the digging attachment.
  • the posture detection device S1 includes a vehicle body tilt sensor, a boom angle sensor, an arm angle sensor, and a bucket angle sensor.
  • the boom angle sensor is a sensor for acquiring a boom angle.
  • a rotation angle sensor for detecting a rotation angle of the boom 4 around a boom foot pin, a stroke sensor for detecting a stroke amount of the boom cylinder 7, an inclination angle of the boom 4 Includes an inclination (acceleration) sensor or the like that detects the The same applies to the arm angle sensor and the bucket angle sensor.
  • each of the vehicle body tilt sensor, the boom angle sensor, the arm angle sensor, and the bucket angle sensor may be a combination of an acceleration sensor and a gyro sensor.
  • desired outputs such as a vehicle body inclination angle, a boom angle, an arm angle, and a bucket angle can be calculated from outputs of the acceleration sensor and the gyro sensor.
  • the controller 30 is a control device for controlling a shovel.
  • the controller 30 is configured by, for example, a computer provided with a CPU, a RAM, an NVRAM, a ROM, and the like.
  • the controller 30 reads a program corresponding to each of the attachment control unit 31 and the operation tendency determination unit 32 from the ROM, loads the program into the RAM, and causes the CPU to execute a corresponding process.
  • the attachment control unit 31 is a functional element that controls the movement of the attachment.
  • the operation tendency determination unit 32 is a functional element that determines the operation tendency of the operator. Basically, the attachment moves in response to the operation on each of the plurality of operating devices 26. Then, the operation tendency determination unit 32 derives the operation tendency of the operator in the predetermined period, for example, when the operation content of each of the plurality of operating devices 26 in the predetermined period satisfies the predetermined start condition. Then, the attachment control unit 31 controls the movement of the attachment so as to maintain the movement of the attachment matching the operation tendency until the predetermined release condition is satisfied.
  • the start condition includes, for example, “the operation amount of each of the plurality of operating devices 26 has been held for a predetermined period”. Specifically, “the operation amount of each of the plurality of operation devices 26 is less than the predetermined operation amount over a predetermined period”, “the operation amount of each of the plurality of operation devices 26 is less than the predetermined operation amount over a predetermined period And the fluctuation range is less than a predetermined value.
  • the operation tendency is derived and determined by the operation tendency determination unit 32 based on, for example, the moving direction of the end attachment in a predetermined period.
  • the movement direction is represented, for example, by an angle with respect to the horizontal plane.
  • the operation tendency may be derived and determined based on the movement speed and movement direction of the end attachment.
  • the operation tendency is, for example, an operation tendency to bring the tip of the bucket 6 linearly close to the body, an operation tendency to put the tip of the bucket 6 away from the body linearly, and an operation to raise the toe of the bucket 6 linearly.
  • the tendency includes an operation tendency of lowering the tip of the bucket 6 linearly.
  • linear motion may include pivotal motion. This is to realize the leveling operation in the turning direction.
  • the release condition is, for example, that "the operation amount of any of the plurality of operating devices 26 is equal to or more than the predetermined operation amount", or "the operation speed of any of the plurality of operation devices 26 is equal to or more than the predetermined speed” , “Any of the operating devices 26 in operation has been returned to the neutral position”, “Any of the operating devices 26 in operation has been operated in the reverse direction beyond the neutral position”, and the like.
  • the digging attachment moves in response to operations on the boom operating lever, the arm operating lever and the bucket operating lever as the operating device 26.
  • the operation tendency determination unit 32 grasps each operation content based on, for example, the pilot pressure generated by each of the boom operation lever and the arm operation lever. Then, when the operation content of each of the boom operation lever and the arm operation lever in the predetermined period satisfies the predetermined start condition, the operation tendency of the operator in the predetermined period is derived from the operation content. At this time, the operation tendency determination unit 32 may consider the operation content of the bucket operation lever, the turning operation lever, and the like.
  • the boom control lever and the bucket control lever are described as separate control levers, but in fact they are one and the same control lever and differ only in the tilting direction. The same applies to the relationship between the arm control lever and the turning control lever.
  • the start condition is, for example, that the operation amount of each of the boom operation lever and the arm operation lever is less than the predetermined operation amount (fine operation) over a predetermined period.
  • the operation tendency is derived, for example, as an operation tendency (horizontal pulling in floor digging work) in which the toes of the bucket 6 are linearly brought close along the horizontal surface.
  • the movement direction of the toe of the bucket 6 is derived as a direction in which the angle with respect to the horizontal plane is zero degrees.
  • the attachment control unit 31 automatically controls the movement of the digging attachment so as to maintain the movement of the digging attachment in accordance with the operation tendency until the predetermined release condition is satisfied.
  • the attachment control unit 31 automatically performs the boom cylinder 7 and the arm cylinder 8 so as to maintain the moving direction (target moving direction) of the tip of the bucket 6 that matches the operation tendency derived by the operation tendency determination unit 32.
  • the bucket cylinder 9 may be automatically extended and contracted, and the swing hydraulic motor may be automatically rotated.
  • the attachment control unit 31 determines that the toe movement direction (pre-adjustment movement direction), which is calculated based on the actual operation amount of the boom operation lever and the arm operation lever by the operator, deviates from the target movement direction,
  • the target movement direction is maintained by the adjustment operation of the drilling attachment.
  • the attachment control unit 31 causes the boom cylinder 7 and the arm cylinder 8 to automatically expand and contract independently of the actual operation amount by the operator so that the target movement direction is maintained.
  • FIG. 3 is a view showing a configuration example of an arm control lever 26A as the control device 26 to which the adjustment mechanism 50 is attached.
  • the following description applies similarly to other control levers to which the adjustment mechanism 50 is attached.
  • the same applies to a boom control lever to which the adjustment mechanism 50 is attached for moving the boom flow control valve 17B to the left and right.
  • the adjustment mechanism 50 is a mechanism that adjusts the pilot pressure generated by the arm control lever 26A to a desired pilot pressure, and mainly includes an electromagnetic valve 51, an electromagnetic valve 52L, an electromagnetic valve 52R, and the like.
  • the desired pilot pressure is the pilot pressure required to align the pre-adjustment moving direction of the toe of the bucket 6 with the target moving direction.
  • the attachment control unit 31 calculates a desired pilot pressure based on the output of the posture detection device S1 or the like.
  • the solenoid valve 51 is an electromagnetic proportional pressure reducing valve placed in a pipe line connecting the pilot pump 15 and the arm control lever 26A, and increases or decreases its opening area according to the control current from the controller 30.
  • the solenoid valve 52L is a solenoid switching valve placed in the conduit C1 connecting the arm control lever 26A and the left pilot port 17L of the flow control valve for arm 17A installed in the control valve 17, and the command from the controller 30 Switch the valve position accordingly.
  • the solenoid valve 52L has a first valve position and a second valve position. The first valve position brings the conduit C11 into communication with the conduit C12, and cuts off the communication between the conduit C3 and the conduit C12. The second valve position interrupts the communication between the conduit C11 and the conduit C12, and connects the conduit C3 and the conduit C12.
  • the conduit C11 connects the arm control lever 26A and the solenoid valve 52L.
  • the conduit C12 connects the solenoid valve 52L and the left pilot port 17L of the arm flow control valve 17A.
  • the conduit C3 connects the solenoid valve 51 and the solenoid valve 52L.
  • the solenoid valve 52R is a solenoid switching valve placed in the conduit C2 connecting the arm control lever 26A and the right pilot port 17R of the arm flow control valve 17A, and switches the valve position according to a command from the controller 30. .
  • the solenoid valve 52R has a first valve position and a second valve position. The first valve position allows the conduit C21 and the conduit C22 to communicate with each other, and blocks the communication between the conduit C4 and the conduit C22. The second valve position interrupts the communication between the conduit C21 and the conduit C22, and connects the conduit C4 and the conduit C22.
  • the conduit C21 connects the arm control lever 26A and the solenoid valve 52R.
  • the conduit C22 connects the solenoid valve 52R and the right pilot port 17R of the arm flow control valve 17A.
  • the conduit C4 connects the solenoid valve 51 and the solenoid valve 52R.
  • the arm control lever 26A increases the pressure of the hydraulic fluid in the conduit C1 when it is tilted in the closing direction, and increases the pressure of the hydraulic fluid in the conduit C2 when it is tilted in the opening direction.
  • the arm closing pilot pressure which is the pressure of the hydraulic fluid in the conduit C1 is detected by an arm closing pilot pressure sensor 29L which is an example of the pressure sensor 29.
  • the arm opening pilot pressure which is the pressure of the hydraulic fluid in the conduit C2 is detected by an arm opening pilot pressure sensor 29R which is an example of the pressure sensor 29.
  • the attachment control unit 31 When the arm cylinder 8 is automatically extended, the attachment control unit 31 outputs a command current to the solenoid valve 51 and outputs an open command to the solenoid valve 52L.
  • the solenoid valve 51 receiving the command current realizes an opening area according to the command current.
  • the solenoid valve 52L that has received the open command switches to the second valve position, and causes the hydraulic fluid discharged by the pilot pump 15 to flow into the conduit C12.
  • the attachment control unit 31 generates a desired arm closing pilot pressure.
  • the attachment control unit 31 when automatically contracting the arm cylinder 8, the attachment control unit 31 outputs a command current to the solenoid valve 51 and outputs an open command to the solenoid valve 52R.
  • the solenoid valve 51 receiving the command current realizes an opening area according to the command current.
  • the solenoid valve 52R that has received the open command switches to the second valve position, and causes the hydraulic fluid discharged by the pilot pump 15 to flow into the conduit C22.
  • the attachment control unit 31 generates a desired arm opening pilot pressure.
  • the controller 30 sets, for example, the moving speed and the moving direction of the bucket 6 in a predetermined period as the target moving speed and the target moving direction. Then, based on the detection value of the posture detection device S1, a command is output to the solenoid valve 51, the solenoid valve 52L, and the solenoid valve 52R so that the moving speed and moving direction of the bucket 6 become the target moving speed and target moving direction. Do.
  • FIGS. 4A and 4B are views of the shovel
  • FIG. 4B is a top view of the shovel.
  • the Z axis of the three-dimensional orthogonal coordinate system corresponds to the pivot axis PC of the shovel
  • the origin O of the three-dimensional orthogonal coordinate system is the intersection point of the pivot axis PC and the installation surface of the shovel It corresponds to
  • An X-axis orthogonal to the Z-axis extends in the extension direction of the attachment, and a Y-axis orthogonal to the Z-axis extends in the direction perpendicular to the extension direction of the attachment.
  • the X axis and the Y axis rotate about the Z axis as the shovel turns.
  • turning angle (theta) of a shovel makes a counterclockwise direction a positive direction regarding Z-axis by top view as shown to FIG. 4B.
  • the attachment position of the boom 4 with respect to the revolving super structure 3 is represented by the boom pin position P1 which is a position of the boom pin as a boom rotating shaft.
  • the mounting position of the arm 5 with respect to the boom 4 is represented by an arm pin position P2, which is a position of an arm pin as an arm rotation axis.
  • the attachment position of the bucket 6 with respect to the arm 5 is represented by the bucket pin position P3 which is a position of the bucket pin as a bucket rotating shaft.
  • the tip end position of the bucket 6 (for example, the tip end position of the bucket 6) is represented by a bucket tip end position P4.
  • the length of the line segment SG1 connecting the boom pin position P1 and the arm pin position P2 is represented by a predetermined value L 1 as boom length
  • arm length is the length of the line segment SG2 connecting the arm pin position P2 and the bucket pin position P3 as represented by a predetermined value L 2
  • the length of the line segment SG3 connecting the bucket pin position P3 and the bucket toe position P4 is represented by a predetermined value L 3 as a bucket length.
  • the angle formed between the line segment SG1 and a horizontal plane is represented by the boom rotation angle beta 1 as ground angle, arm rotation angle of the angle-ground angle formed between the line segment SG2 and the horizontal beta 2 in expressed, the angle formed between the line segment SG3 and a horizontal plane is represented by a bucket rotation angle beta 3 of the ground angle.
  • Xe and Ye represent the planar position of the toe of the bucket 6, and Ze represents the height of the toe of the bucket 6.
  • Xe H 0X + L 1 cos ⁇ 1 + L 2 cos ⁇ 2 + L 3 cos ⁇ 3 (1)
  • Ze H 0z + L 1 sin ⁇ 1 + L 2 sin ⁇ 2 + L 3 sin ⁇ 3 ⁇ (2)
  • Ye is 0.
  • the bucket toe position P4 is on the XZ plane.
  • the boom rotation angle beta 1 the coordinate values of the arm pin position P2 is determined uniquely, once the boom rotation angle beta 1 and the arm rotational angle beta 2, the coordinate values of the bucket pin position P3 is uniquely determined Be done.
  • FIG. 5 is a view for explaining the state of the attachment in the XZ plane.
  • the boom angle sensor is installed at the boom pin position P1
  • the arm angle sensor is installed at the arm pin position P2
  • the bucket angle sensor is installed at the bucket pin position P3.
  • Boom angle sensor detects and outputs an angle alpha 1 which is formed between the line segment SG1 and vertical line.
  • Arm angle sensor detects and outputs the angle alpha 2 which is formed between the extension line and the line segment SG2 of segment SG1.
  • Bucket angle sensor detects and outputs the angle alpha 3 formed between the extended line of the line segment SG2 and the line segment SG3.
  • the angle alpha 1 is the counterclockwise direction as positive direction relates segment SG1.
  • the angle alpha 2 is the counterclockwise direction as positive direction relates segment SG2
  • the angle alpha 3 is a counterclockwise direction as positive direction relates segment SG3.
  • the counterclockwise direction is a positive direction with respect to a line parallel to the X axis.
  • Equations (3), (4) and (5) respectively using the angles ⁇ 1 , ⁇ 2 and ⁇ 3. It is represented by).
  • ⁇ 1 90- ⁇ 1 (3)
  • (beta) 1 , (beta) 2 , (beta) 3 is represented as inclination of the boom 4, the arm 5, and the bucket 6 with respect to a horizontal surface.
  • Equations (1) to (5) if the angles ⁇ 1 , ⁇ 2 and ⁇ 3 are determined, the boom rotation angle ⁇ 1 , the arm rotation angle ⁇ 2 and the bucket rotation angle ⁇ 3 are uniquely determined. And, the coordinate value of the bucket toe position P4 is uniquely determined. Similarly, once the angle alpha 1, the coordinate value of the boom rotation angle beta 1 and the arm pin position P2 is determined uniquely, the angle alpha 1, if alpha 2 is Kimare, coordinates of the arm rotational angle beta 2 and the bucket pin position P3 The value is determined uniquely.
  • the boom angle sensor, the arm angle sensor, and the bucket angle sensor may directly detect the boom rotation angle ⁇ 1 , the arm rotation angle ⁇ 2 , and the bucket rotation angle ⁇ 3 . In this case, the operations of the equations (3) to (5) can be omitted.
  • FIG. 6 is a flowchart of attachment operation control processing.
  • the controller 30 detects the operation amount of each of the boom control lever and the arm control lever (step ST1). For example, the controller 30 continuously detects the operation amounts of the boom control lever and the arm control lever based on the output of the pressure sensor 29, and stores the amounts in the RAM.
  • the controller 30 determines whether or not the operation amount of each of the boom operation lever and the arm operation lever is held for a predetermined period (step ST2). For example, the controller 30 refers to temporal transition of operation amounts of the boom operation lever and the arm operation lever stored in the RAM, and determines whether or not each operation amount is less than the predetermined operation amount over a predetermined period. Alternatively, it may be determined whether or not each operation amount is less than the predetermined operation amount over the predetermined period and the fluctuation range of each operation amount over the predetermined period is less than the predetermined value.
  • a period (predetermined period) required for the determination, a fluctuation range (predetermined value), and the like may be arbitrarily determined for each work content, each model, and each operator, for example.
  • the controller 30 may determine whether or not each operation amount has been held for a predetermined period, based on whether or not the toe of the bucket 6, which is the work site, is linearly operated within the predetermined period. That is, the controller 30 may determine whether or not the toe of the bucket 6, which is the work site, is linearly operated within the predetermined period in order to derive the operation tendency of the operator in the predetermined period.
  • the controller 30 determines a target moving speed of the tip of the bucket 6 (step ST3). For example, the controller 30 derives the movement locus and movement distance of the tip of the bucket 6 in a predetermined period based on the output of the posture detection device S1. Then, the controller 30 calculates an average moving speed of the toe, and sets the average moving speed as a target moving speed.
  • the controller 30 informs the operator that the operation mode has been changed from the normal operation mode to the support mode. It is also good.
  • that effect may be displayed on the display device or may be output as voice.
  • control is performed so as to maintain the movement of the digging attachment, that may be notified continuously.
  • the controller 30 starts control of the moving direction of the tip of the bucket 6 (step ST4).
  • the controller 30 derives the movement trajectory of the tip of the bucket 6 in a predetermined period based on the output of the posture detection device S1.
  • the controller 30 sets an average value of the angles (angles with respect to the horizontal plane) indicating the moving direction of each sampling time as the angle indicating the target moving direction.
  • the angle with respect to the horizontal plane of the approximate straight line of the movement trajectory of the tip of the bucket 6 in a predetermined period may be set as the angle indicating the target movement direction.
  • the controller 30 extends and retracts the boom cylinder 7 and the arm cylinder 8 so that the toe of the bucket 6 moves in the target movement direction at the target movement speed.
  • the controller 30 can automatically maintain and control the movement direction and movement speed of the toe of the bucket 6 as the work site regardless of the operation amount of the operation lever. Generate movement speed and control movement of attachment.
  • the controller 30 may generate the target moving speed based on the operation amount of the control lever related to any of the boom 4, the arm 5 and the bucket 6 without automatically maintaining the moving speed. For example, when it is determined that the toe of the bucket 6 as the work site is moved along the slope direction (the inclined surface direction) based on the operation tendency, or moved in the front-rear direction (substantially horizontal direction) of the machine If it is determined that the target moving speed is determined, the target moving speed may be generated based on the amount of operation of the arm control lever. Alternatively, if it is determined that the toe of the bucket 6 is moved in the vertical direction (substantially vertical direction) along the wall surface of the groove based on the operation tendency, the target movement speed is calculated based on the operation amount of the boom operation lever.
  • the controller 30 may determine, based on the operation amount of which operation lever, the target moving speed is generated based on the operation tendency. That is, based on the operation tendency, one operation lever related to the derivation of the target moving speed of the work site may be selected from a plurality of operation levers. Then, while generating the target movement speed based on the determined (selected) operation amount of the operation lever, the operation part may be moved in the movement direction determined based on the operation tendency.
  • step ST2 When it is determined that each operation amount is not held for a predetermined period (NO in step ST2), the controller 30 ends the present attachment operation control process without setting the target moving speed and the target moving direction. Therefore, the boom cylinder 7 and the arm cylinder 8 are not expanded and contracted automatically by the controller 30, but are expanded and contracted according to the actual operation of the boom control lever and the arm control lever by the operator.
  • not the temporal transition of the operation amount but the temporal transition of the position of the bucket 6 may be referred to.
  • FIG. 7 shows the operation amount of the boom operation lever in the raising direction (boom raising operation amount), the operation amount of the arm operation lever in the closing direction (arm closing operation amount), the moving speed of the tip of the bucket 6 (toe speed), And the time transition of the angle (toe angle) which shows the moving direction of the toe of the bucket 6 is shown.
  • the operator of the shovel performs floor digging work to draw the bucket 6 toward the machine body along the horizontal plane by the combined operation of the boom operation lever and the arm operation lever.
  • the operator of the shovel starts the operation in the raising direction of the boom operation lever at time t1 as shown in FIG. 7A, and then the operation in the raising direction with a substantially constant operation amount B1 To continue. Further, as shown in FIG. 7B, the operator starts the operation in the closing direction of the arm operating lever at time t1, and then continues the operation in the closing direction with a substantially constant operation amount A1.
  • the toe speed of the bucket 6 starts to rise at time t1 as shown in FIG. 7C, and thereafter maintains a substantially constant toe speed V1.
  • the toe angle of the bucket 6 maintains a substantially constant toe angle D1 from time t1 as shown in FIG. 7 (D). As a result, the toes of the bucket 6 move substantially horizontally in the machine direction.
  • the controller 30 determines the target moving speed of the toe of the bucket 6. For example, when the boom raising operation amount during the period from time t11 to time t2 is always less than the predetermined operation amount TH1 and the arm closing operation amount is always less than the predetermined operation amount TH2, the controller 30 performs boom raising operation over a predetermined period. It is determined that each of the amount and the arm closing operation amount is held. Then, the average value of the toe speeds V1 in the period from time t11 to time t2 is set as the target moving speed.
  • the controller 30 determines the target moving direction of the toe of the bucket 6. For example, the controller 30 sets an average value of the toe angles D1 in a period from time t11 to time t2 as an angle indicating the target movement direction.
  • controller 30 controls the movement of the excavation attachment so as to maintain the movement of the excavation attachment in accordance with the operation tendency (the toe speed and the toe angle) until the release condition is satisfied.
  • the boom flow control valve 17B 7A receives substantially the same boom raising pilot pressure as when the boom raising operation amount is maintained at the operation amount B1 as indicated by the one-dot chain line in FIG. 7A.
  • the controller 30 automatically controls the toe speed and the toe angle of the bucket 6 based on the command.
  • the shaded area in FIG. 7A represents the divergence width between the actual boom raising operation amount and the operation amount B1.
  • the deviation width corresponds to the boom raising operation amount corresponding to the automatic extension of the boom cylinder 7 by the controller 30.
  • the amount of automatic operation of the boom operating lever (the difference between before and after the automatic adjustment of the pilot pressure) for maintaining the set target moving speed of the tip of the bucket 6 and the angle indicating the target moving direction changes depending on the work environment. That is, although the example which receives the boom raising pilot pressure substantially the same as when the boom raising operation amount is maintained by operation amount B1 was shown in FIG. 7 (A), this invention is not limited to this structure.
  • the boom raising pilot pressure may be adjusted such that the boom raising operation amount increases at a predetermined inclination, or the boom raising operation amount decreases at a predetermined inclination.
  • the boom raising pilot pressure becomes lower than zero and becomes a negative value when passing the point X1. In this case, the boom 4 is moved in the lowering direction.
  • the flow control valve for arm 17A is not shown in FIG.
  • the arm closing pilot pressure is substantially the same as when the arm closing operation amount is maintained at the operation amount A1.
  • the controller 30 automatically controls the toe speed and the toe angle of the bucket 6 based on the command.
  • the shaded area in FIG. 7 (B) represents the difference between the actual amount of closing operation of the arm and the amount of operation A1.
  • the deviation width corresponds to the operation amount of the arm operation lever corresponding to the automatic expansion and contraction of the arm cylinder 8 by the controller 30.
  • the amount of automatic operation of the arm control lever (the difference between before and after the automatic adjustment of the pilot pressure) for maintaining the set target moving speed of the tip of the bucket 6 and the angle indicating the target moving direction changes depending on the work environment. That is, although the example which receives the arm closing pilot pressure substantially the same as when the arm closing operation amount is maintained by operation amount A1 was shown in FIG. 7 (B), this invention is not limited to this structure.
  • the arm closing pilot pressure may be adjusted such that the arm closing operation amount increases at a predetermined inclination, or the arm closing operation amount decreases at a predetermined inclination.
  • the toe speed is maintained constant at a toe speed V1 as a target moving speed as shown in FIG. 7C after time t2.
  • the toe angle is maintained constant at the toe angle D1 indicating the target moving direction as shown in FIG. 7 (D).
  • the alternate long and short dash lines in FIG. 7C and FIG. 7D indicate temporal transition when the attachment operation control process is not performed.
  • the toe angle is as indicated by the one-dot chain line in FIG. It gradually deviates from the toe angle D1 indicating the target movement direction. This means that the toe position of the bucket 6 is gradually deepened, and the load of the floor digging operation is gradually increased. Then, the toe speed gradually decreases as shown by the dashed-dotted line in FIG. 7C as the load of the floor digging work increases.
  • the controller 30 can avoid such a deviation of the toe angle and a decrease in toe speed by executing the attachment operation control process. In addition, it is possible to prevent the finished surface from being an inclined surface instead of a horizontal surface.
  • the operator of the shovel is suitable for pulling the bucket 6 along the horizontal surface even if the actual boom raising operation amount is insufficient to pull the bucket 6 along the horizontal surface.
  • the same movement of the digging attachment as when operating with the boom raising operation amount can be realized. The same applies to the case where the bucket 6 is moved away from the horizontal surface, or when the bucket 6 is moved closer to or away from the slope.
  • the operator may use special operations or the like to enable or disable the assistance at the time of switching between the rough excavation operation requiring no assistance by the controller 30 and the finish excavation operation requiring assistance by the controller 30. There is no need for work. Therefore, the operator can receive the assistance from the controller 30 at an appropriate timing while freely switching between the rough digging operation and the finishing operation without being aware of the enabling / disabling of the assistance by the controller 30. Therefore, the shovel according to the embodiment of the present invention can improve the working efficiency.
  • the controller 30 may notify the operator of that effect. For example, an operator may be notified of that using an on-vehicle display, an on-vehicle speaker, an LED lamp, or the like. In this case, the operator can recognize that the boom raising operation amount is insufficient, and the fact can be used to improve the operation technology in the future. The same applies to the case where other hydraulic actuators such as the arm cylinder 8 are automatically operated.
  • the automatic control by the controller 30 realizes the movement of the digging attachment desired by the operator along the content of the actual combined operation by the operator, and allows the movement apart from the content of the actual combined operation by the operator It is not something to do.
  • the movement of the digging attachment realized by the controller 30 may largely deviate from the movement desired by the operator Absent.
  • the operator of the shovel stops the movement of the digging attachment at a desired timing or causes the digging attachment to perform another movement by satisfying the release condition. be able to. Therefore, there is no sense of incongruity regarding the operation of the shovel.
  • FIGS. 8 and 9 are block diagrams showing the flow of automatic control by the controller 30.
  • FIG. Specifically, FIGS. 8 and 9 determine which operation lever the controller 30 (for example, the operation tendency determination unit 32) generates the target movement speed based on which operation lever, and the target movement based on the determined operation lever It is explanatory drawing in the case of moving a work part to the move direction determined based on the operation tendency, generating speed.
  • the controller 30 for example, the operation tendency determination unit 32
  • the controller 30 determines a unit time based on the toe target moving speed, the toe target moving direction, and the three-dimensional coordinates (Xe, Ye, Ze) of the toe position of the current bucket 6. Three-dimensional coordinates (Xer, Yer, Zer) of the toe position after the lapse are calculated.
  • the operation tendency determination unit 32 of the controller 30 determines whether each operation amount is held for a predetermined period based on the lever operation amount.
  • the operation tendency determination unit 32 receives an input of the position of the toe of the bucket 6 which is the work site, and determines whether the movement of the toe position of the bucket 6 is held to be a constant movement over a predetermined period. Good. Then, when it is determined that each operation amount is held for a predetermined period, the operation tendency determination unit 32 generates a toe target moving speed.
  • the toe target moving speed is generated, for example, based on the operation tendency.
  • the toe target moving direction is determined based on, for example, a lever operation.
  • the operation tendency is determined, for example, based on the lever operation amount.
  • Current toe position for example, the boom rotation angle beta 1, arm rotation angle beta 2, and is calculated based on the bucket rotation angle beta 3.
  • the unit time is, for example, a time corresponding to an integral multiple of the control cycle.
  • the Y coordinate value of the toe position is unchanged before and after movement. That is, the value Yer of the Y coordinate of the toe position after the unit time has elapsed is the same as the value Ye of the Y coordinate of the current toe position.
  • the controller 30 determines the movement path of the subsequent toe position when control is started. That is, the coordinate value of the toe position at each point in time of each future unit time is determined. However, the controller 30 may recalculate the coordinate values of the toe position at one or more future time points for each unit time.
  • the controller 30 determines the target moving direction and the target in the operation tendency determination unit 32.
  • the movement speed may be generated.
  • the controller 30 After that, the controller 30 generates command values ⁇ 1r , ⁇ 2r and ⁇ 3r related to the rotational motions of the boom 4, the arm 5 and the bucket 6 based on the calculated X coordinate value Xer and Z coordinate value Zer.
  • the command value ⁇ 1 r represents, for example, the rotation angle of the boom 4 when the toe position can be adjusted to the three-dimensional coordinates (Xer, Yer, Zer). The same applies to the command value ⁇ 2r and the command value ⁇ 3r .
  • the controller 30 generates a command value using, for example, a preset calculation formula.
  • the controller 30 uses the equations (1) and (2) described above, and the command values ⁇ 1r , ⁇ when the toe position can be adjusted to the three-dimensional coordinates (Xer, Yer, Zer) Calculate 2r and ⁇ 3r . This is based on the fact that the X coordinate value Xer and the Z coordinate value Zer are both functions of the command values ⁇ 1r , ⁇ 2r and ⁇ 3r .
  • the controller 30 sets, for example, the command values ⁇ 1r , ⁇ 2r , ⁇ under the premise that the bucket rotation angle ⁇ 3 is unchanged and both the boom rotation angle ⁇ 1 and the arm rotation angle ⁇ 2 are changed. Calculate 3r .
  • the controller 30 may calculate the command values ⁇ 1r , ⁇ 2r and ⁇ 3r under other assumptions.
  • the controller 30 may generate the command value with reference to a table in which the relationship between the toe position, the boom rotation angle ⁇ 1 , the arm rotation angle ⁇ 2, and the bucket rotation angle ⁇ 3 is stored in advance.
  • the controller 30 generates command values ⁇ 1 r, ⁇ 2 r, and the actual measurement values of the boom rotation angle ⁇ 1 , the arm rotation angle ⁇ 2 and the bucket rotation angle ⁇ 3 are generated.
  • the boom 4, the arm 5 and the bucket 6 are operated so as to be ⁇ 3 r.
  • the controller 30 may derive command values ⁇ 1r , ⁇ 2r and ⁇ 3r corresponding to the command values ⁇ 1r , ⁇ 2r and ⁇ 3r using the equations (3) to (5).
  • the controller 30 is a boom so that the angles ⁇ 1 , ⁇ 2 and ⁇ 3 which are outputs of the boom angle sensor, arm angle sensor and bucket angle sensor become the derived command values ⁇ 1r , ⁇ 2r and ⁇ 3r 4, the arm 5 and the bucket 6 may be operated.
  • the controller 30 generates a boom cylinder pilot pressure command corresponding to the difference [Delta] [beta] 1 of the current value of the boom rotational angle beta 1 and a command value beta 1 r. Then, the control current corresponding to the boom cylinder pilot pressure command is output to the boom solenoid proportional valve as the solenoid valve 51.
  • the boom solenoid proportional valve causes the pilot pressure corresponding to the control current corresponding to the boom cylinder pilot pressure command to act on the boom flow control valve 17B.
  • the boom flow control valve 17B which has received the pilot pressure generated by the boom solenoid proportional valve supplies the hydraulic fluid discharged by the main pump 14 to the boom cylinder 7 in the flow direction and flow rate corresponding to the pilot pressure.
  • the boom cylinder 7 is expanded and contracted by the hydraulic oil supplied via the boom flow control valve 17B.
  • Boom angle sensor detects the angle alpha 1 of the boom 4 is moved by a boom cylinder 7 expands and contracts.
  • an angle alpha 1 of the boom angle sensor detects into Equation (3) calculates the boom rotation angle beta 1. Then, as the current value of the boom rotational angle beta 1 for use in generating a boom cylinder pilot pressure command, and feeds back the calculated value.
  • the controller 30 may derive the pump discharge amount from the command values ⁇ 1 r, ⁇ 2 r, and ⁇ 3 r using the pump discharge amount deriving units CP1, CP2, and CP3 as shown in FIG.
  • the pump discharge amount deriving units CP1, CP2, CP3 derive the pump discharge amount from the command values ⁇ 1 r, ⁇ 2 r, ⁇ 3 r using a table or the like registered in advance.
  • the pump discharge amounts derived by the pump discharge amount deriving units CP1, CP2, and CP3 are summed, and are input to the pump flow rate calculation unit as a total pump discharge amount.
  • the pump flow rate calculation unit controls the discharge amount of the main pump 14 based on the input total pump discharge amount.
  • the pump flow rate calculation unit controls the discharge amount of the main pump 14 by changing the swash plate tilt angle of the main pump 14 according to the total pump discharge amount.
  • the controller 30 can simultaneously execute the opening control of the boom flow control valve 17B, the arm flow control valve 17A, and the bucket flow control valve, and the control of the discharge amount of the main pump 14. Therefore, an appropriate amount of hydraulic oil can be supplied to each of the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9.
  • the controller 30 determines the calculation of three-dimensional coordinates (Xer, Yer, Zer), the generation of the command values ⁇ 1r , ⁇ 2r and ⁇ 3r , and the determination of the discharge amount of the main pump 14 as one control cycle. Execute automatic control by repeating this control cycle. Further, the controller 30 can improve the accuracy of automatic control by performing feedback control of the toe position based on the output of the posture detection device S1. Specifically, the accuracy of automatic control can be improved by feedback controlling the flow rate of hydraulic fluid flowing into each of boom cylinder 7, arm cylinder 8 and bucket cylinder 9 based on the output of posture detection device S1. .
  • FIG. 10 shows a configuration example of an operation system including an electric control device.
  • the operation system of FIG. 10 is an example of a boom operation system, and mainly includes a pilot pressure control valve 17, a boom operation lever 26B as an electric operation lever, a controller 30, and a boom It is comprised by the solenoid valve 60 for raising operation, and the solenoid valve 62 for boom lowering operation.
  • the operation system of FIG. 10 may be applied to an arm operation system, a bucket operation system, and the like as well.
  • the pilot pressure control type control valve 17 includes an arm flow control valve 17A (see FIG. 3), a boom flow control valve 17B (see FIG. 3), a bucket flow control valve, and the like.
  • the solenoid valve 60 is configured to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the left (rising side) pilot port of the boom flow control valve 17B.
  • the solenoid valve 62 is configured to be able to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the right (lower) pilot port of the boom flow control valve 17B.
  • the controller 30 receives the boom raising operation signal (electric signal) or the boom lowering operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
  • the operation signal output from the operation signal generation unit of the boom operation lever 26B is an electrical signal that changes in accordance with the operation amount and the operation direction of the boom operation lever 26B.
  • the controller 30 when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs, to the solenoid valve 60, a boom raising operation signal (electric signal) according to the lever operation amount.
  • the solenoid valve 60 adjusts the flow passage area in accordance with the boom raising operation signal (electric signal), and controls the pilot pressure acting on the left side (raising side) pilot port of the boom flow control valve 17B.
  • the controller 30 when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the solenoid valve 62.
  • the solenoid valve 62 adjusts the flow passage area in accordance with the boom lowering operation signal (electric signal), and controls the pilot pressure acting on the right (lower) pilot port of the boom flow control valve 17B.
  • the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B.
  • An operation signal (electrical signal) is generated.
  • the correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
  • FIG. 11 shows another configuration example of the operation system including the electric operation device.
  • the operation system of FIG. 11 is another example of a boom operation system, mainly including an electromagnetic control valve 17, a boom operation lever 26B as an electric operation lever, and a controller 30. It is configured.
  • the operation system of FIG. 11 may be applied to an arm operation system, a bucket operation system, and the like as well.
  • the electromagnetically operated control valve 17 includes a boom flow control valve, an arm flow control valve, a bucket flow control valve, and the like, each of which is configured of an electromagnetic spool valve that operates according to a command from the controller 30.
  • the boom operating system of FIG. 11 differs from the boom operating system of FIG. 10 in that the controller 30 directly controls the boom flow control valve.
  • the controller 30 is configured to indirectly control the boom flow control valve 17B (see FIG. 3) via the solenoid valve 60 or the solenoid valve 62.
  • the controller 30 when the manual operation is performed, the controller 30 generates a boom operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
  • the controller 30 when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) according to the lever operation amount to the boom flow control valve.
  • the boom flow control valve is displaced by a spool stroke amount according to the boom raising operation signal (electric signal), and adjusts the flow rate of the hydraulic oil flowing into the bottom side oil chamber of the boom cylinder 7.
  • the controller 30 when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the boom flow control valve.
  • the boom flow control valve is displaced by a spool stroke amount according to the boom lowering operation signal (electric signal), and adjusts the flow rate of the hydraulic fluid flowing into the rod side oil chamber of the boom cylinder 7.
  • the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B.
  • An operation signal (electrical signal) is generated.
  • the correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
  • the shovel according to the embodiment of the present invention can operate similarly to the case where the hydraulic operating device is adopted even when the electric operating device is adopted.

Abstract

A shovel machine according to an embodiment of the present invention is provided with: a lower traveling body (1); an upper turning body (3) mounted on the lower traveling body (1); an attachment attached to the upper turning body (3); an operation device (26) installed in a cabin (10) attached to the upper turning body (3); and a controller (30) which controls movement of the attachment that moves according to a combined operation performed on the operation device (26). The controller (30) derives an operation tendency of an operator in a predetermined period and controls the movement of the attachment so as to maintain the movement of the attachment conforming to the operation tendency.

Description

ショベルShovel
 本開示は、複合操作が可能な複数の油圧アクチュエータを備えたショベルに関する。 The present disclosure relates to a shovel provided with a plurality of hydraulic actuators capable of combined operation.
 複数の油圧シリンダを複合操作してフロント作業機の動作を制御するショベルが知られている(特許文献1参照。)。このショベルは、領域制限掘削制御モードの選択を指示する領域制限スイッチと、領域制限掘削制御モードで掘削領域(目標掘削面)の設定を指示する設定スイッチとを備える。ショベルの操作者は、設定スイッチで目標掘削面の境界を設定し且つ領域制限スイッチで領域制限掘削制御モードを開始させる。領域制限掘削制御モードでは、ショベルは、バケットの先端が掘削領域の境界に沿って動くようにフロント作業機の動作を制御する。 There is known a shovel that controls the operation of a front work machine by compound operation of a plurality of hydraulic cylinders (see Patent Document 1). The shovel includes an area limiting switch instructing selection of an area limiting excavation control mode, and a setting switch instructing setting of an excavation area (target excavation surface) in the area limiting excavation control mode. The operator of the shovel sets the boundary of the target excavation surface with the setting switch and starts the area limited excavation control mode with the area limiting switch. In the area limited excavation control mode, the shovel controls the operation of the front work machine so that the tip of the bucket moves along the boundary of the excavation area.
特開平11-350537号公報JP-A-11-350537
 しかしながら、特許文献1のショベルは、領域制限掘削制御モードを開始するために、掘削領域の設定、モードの切り替えといった煩雑な操作をショベルの操作者に強いることとなり使い勝手が悪い。 However, the shovel of Patent Document 1 is inconvenient because the operator of the shovel is forced to perform complicated operations such as setting of the excavation area and switching of the mode in order to start the area limited excavation control mode.
 そのため、複合操作を支援する機能をより使い易くしたショベルを提供することが望ましい。 Therefore, it is desirable to provide a shovel that makes it easier to use the function that supports complex operations.
 本発明の実施例に係るショベルは、下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられたアタッチメントと、前記上部旋回体に取り付けられた運転室内に設置された操作装置と、前記操作装置に対する複合操作に応じて動く前記アタッチメントの動きを制御する制御装置と、を備え、前記制御装置は、所定期間における操作者の操作傾向を導き出し、該操作傾向に合った前記アタッチメントの動きを維持するように前記アタッチメントの動きを制御する。 A shovel according to an embodiment of the present invention includes a lower traveling body, an upper swing body mounted on the lower travel body, an attachment attached to the upper swing body, and a driver's cab attached to the upper swing body. The control device includes: an installed operation device; and a control device that controls the movement of the attachment that moves in response to a combined operation on the operation device, the control device derives the operation tendency of the operator in a predetermined period, and the operation tendency The movement of the attachment is controlled to maintain the movement of the attachment in time.
 上述の手段により、複合操作を支援する機能をより使い易くしたショベルを提供できる。 By the above-described means, it is possible to provide a shovel that makes it easier to use the function that supports complex operations.
本発明の実施例に係るショベルの側面図である。It is a side view of a shovel concerning an example of the present invention. 図1のショベルの駆動系の構成例を示す図である。It is a figure which shows the structural example of the drive system of the shovel of FIG. 調整機構が取り付けられた操作装置の構成例を示す図である。It is a figure which shows the structural example of the operating device with which the adjustment mechanism was attached. 三次元直交座標系の説明に用いられるショベルの側面図である。It is a side view of a shovel used for explanation of a three-dimensional rectangular coordinate system. 三次元直交座標系の説明に用いられるショベルの上面図である。It is a top view of the shovel used for description of a three-dimensional orthogonal coordinate system. XZ平面におけるアタッチメントの状態を説明する図である。It is a figure explaining the state of the attachment in XZ plane. アタッチメント動作制御処理のフローチャートである。It is a flow chart of attachment operation control processing. ブーム上げ操作量、アーム閉じ操作量、爪先速度、及び爪先角度の時間的推移を示す図である。It is a figure which shows temporal transition of a boom raising operation amount, an arm closing operation amount, toe speed, and a toe angle. 自動制御の流れを示すブロック図である。It is a block diagram which shows the flow of automatic control. 自動制御の流れを示すブロック図である。It is a block diagram which shows the flow of automatic control. 電気式操作装置を含む操作システムの構成例を示す図である。It is a figure which shows the structural example of the operation system containing an electrical control apparatus. 電気式操作装置を含む操作システムの別の構成例を示す図である。It is a figure which shows another structural example of the operation system containing an electrical control apparatus.
 図1は、本発明が適用される建設機械としてのショベル(掘削機)を示す側面図である。ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。作業要素としてのブーム4、アーム5及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成している。そして、ブーム4、アーム5、バケット6は、ブームシリンダ7、アームシリンダ8、バケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、運転室としてのキャビン10が設けられ且つエンジン11等の動力源が搭載されている。 FIG. 1 is a side view showing a shovel (excavator) as a construction machine to which the present invention is applied. An upper swing body 3 is mounted on the lower traveling body 1 of the shovel via a turning mechanism 2. A boom 4 is attached to the upper swing body 3. An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5. The boom 4 as a working element, the arm 5 and the bucket 6 constitute a digging attachment which is an example of the attachment. The boom 4, the arm 5 and the bucket 6 are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively. The upper revolving superstructure 3 is provided with a cabin 10 as a cab and a power source such as an engine 11 mounted thereon.
 図2は、図1のショベルの駆動系の構成例を示すブロック図であり、機械的動力伝達ライン、作動油ライン、パイロットライン、電気制御ラインをそれぞれ二重線、太実線、破線、点線で示す。 FIG. 2 is a block diagram showing a configuration example of a drive system of the shovel shown in FIG. 1, and the mechanical power transmission line, the hydraulic oil line, the pilot line and the electric control line are shown by double lines, thick solid lines, broken lines and dotted lines, respectively. Show.
 ショベルの駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、圧力センサ29、コントローラ30、姿勢検出装置S1等を含む。 The drive system of the shovel mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a pressure sensor 29, a controller 30, a posture detection device S1, and the like.
 エンジン11は、ショベルの駆動源である。本実施例では、エンジン11は、例えば、所定の回転数を維持するように動作する内燃機関としてのディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に連結されている。 The engine 11 is a driving source of a shovel. In the present embodiment, the engine 11 is, for example, a diesel engine as an internal combustion engine that operates to maintain a predetermined rotational speed. The output shaft of the engine 11 is connected to the input shaft of the main pump 14 and the pilot pump 15.
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給するための装置であり、例えば、斜板式可変容量型油圧ポンプである。 The main pump 14 is a device for supplying hydraulic fluid to the control valve 17 via a hydraulic fluid line, and is, for example, a swash plate type variable displacement hydraulic pump.
 レギュレータ13は、メインポンプ14の吐出量を制御するための装置である。本実施例では、レギュレータ13は、例えば、メインポンプ14の吐出圧、コントローラ30からの指令電流等に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。 The regulator 13 is a device for controlling the discharge amount of the main pump 14. In the present embodiment, the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to, for example, the discharge pressure of the main pump 14, the command current from the controller 30, and the like. Do.
 パイロットポンプ15は、パイロットラインを介して操作装置26を含む各種油圧制御機器に作動油を供給する装置であり、例えば、固定容量型油圧ポンプである。 The pilot pump 15 is a device that supplies hydraulic fluid to various hydraulic control devices including the operating device 26 via a pilot line, and is, for example, a fixed displacement hydraulic pump.
 コントロールバルブ17は、ショベルにおける油圧システムを制御する油圧制御装置である。具体的には、コントロールバルブ17は、メインポンプ14が吐出する作動油の流れを制御する複数の制御弁を含む。そして、コントロールバルブ17は、それら制御弁を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給する。それら制御弁は、メインポンプ14からセンターバイパス管路を通って作動油タンクに流れる作動油の流量、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行油圧モータ1L、右側走行油圧モータ1R及び旋回油圧モータ2Aを含む。 The control valve 17 is a hydraulic control device that controls a hydraulic system in the shovel. Specifically, the control valve 17 includes a plurality of control valves that control the flow of the hydraulic fluid discharged by the main pump 14. The control valve 17 selectively supplies the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves. The control valves have a flow rate of hydraulic fluid flowing from the main pump 14 through the center bypass pipe to the hydraulic fluid tank, a flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuator, and an operation flowing from the hydraulic actuator to the hydraulic fluid tank Control the oil flow rate. The hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 1L, a right traveling hydraulic motor 1R, and a swing hydraulic motor 2A.
 操作装置26は、操作者が油圧アクチュエータの操作のために用いる装置である。本実施例では、操作装置26は、キャビン10内に設置され、パイロットポンプ15が吐出する作動油をパイロットライン経由で油圧アクチュエータのそれぞれに対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(以下、「パイロット圧」とする。)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量に応じた圧力である。 The operating device 26 is a device used by the operator for operating the hydraulic actuator. In the present embodiment, the operating device 26 is installed in the cabin 10, and supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line. The pressure of the hydraulic fluid supplied to each of the pilot ports (hereinafter referred to as "pilot pressure") is a pressure corresponding to the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators. is there.
 圧力センサ29は、操作装置26に対する操作内容を検出するためのセンサである。本実施例では、圧力センサ29は、例えば、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、圧力センサ以外の他のセンサを用いて検出されてもよい。 The pressure sensor 29 is a sensor for detecting the content of the operation on the operating device 26. In the present embodiment, the pressure sensor 29 detects, for example, the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure, and outputs the detected values to the controller 30 Do. The operation content of the operating device 26 may be detected using another sensor other than the pressure sensor.
 姿勢検出装置S1は掘削アタッチメントの姿勢を検出する。本実施例では、姿勢検出装置S1は、車体傾斜センサ、ブーム角度センサ、アーム角度センサ及びバケット角度センサを含む。ブーム角度センサは、ブーム角度を取得するセンサであり、例えば、ブームフートピン回りのブーム4の回転角度を検出する回転角度センサ、ブームシリンダ7のストローク量を検出するストロークセンサ、ブーム4の傾斜角度を検出する傾斜(加速度)センサ等を含む。アーム角度センサ及びバケット角度センサについても同様である。また、車体傾斜センサ、ブーム角度センサ、アーム角度センサ及びバケット角度センサの各センサは、加速度センサとジャイロセンサの組み合わせであってもよい。この場合、加速度センサ及びジャイロセンサのそれぞれの出力から、車体傾斜角、ブーム角度、アーム角度、バケット角度といった所望の角度を算出できる。 The posture detection device S1 detects the posture of the digging attachment. In the present embodiment, the posture detection device S1 includes a vehicle body tilt sensor, a boom angle sensor, an arm angle sensor, and a bucket angle sensor. The boom angle sensor is a sensor for acquiring a boom angle. For example, a rotation angle sensor for detecting a rotation angle of the boom 4 around a boom foot pin, a stroke sensor for detecting a stroke amount of the boom cylinder 7, an inclination angle of the boom 4 Includes an inclination (acceleration) sensor or the like that detects the The same applies to the arm angle sensor and the bucket angle sensor. Further, each of the vehicle body tilt sensor, the boom angle sensor, the arm angle sensor, and the bucket angle sensor may be a combination of an acceleration sensor and a gyro sensor. In this case, desired outputs such as a vehicle body inclination angle, a boom angle, an arm angle, and a bucket angle can be calculated from outputs of the acceleration sensor and the gyro sensor.
 コントローラ30は、ショベルを制御するための制御装置である。本実施例では、コントローラ30は、例えば、CPU、RAM、NVRAM、ROM等を備えたコンピュータで構成される。また、コントローラ30は、アタッチメント制御部31及び操作傾向判定部32のそれぞれに対応するプログラムをROMから読み出してRAMにロードし、対応する処理をCPUに実行させる。 The controller 30 is a control device for controlling a shovel. In the present embodiment, the controller 30 is configured by, for example, a computer provided with a CPU, a RAM, an NVRAM, a ROM, and the like. In addition, the controller 30 reads a program corresponding to each of the attachment control unit 31 and the operation tendency determination unit 32 from the ROM, loads the program into the RAM, and causes the CPU to execute a corresponding process.
 アタッチメント制御部31は、アタッチメントの動きを制御する機能要素である。操作傾向判定部32は、操作者の操作傾向を判定する機能要素である。基本的に、アタッチメントは、複数の操作装置26のそれぞれに対する操作に応じて動く。その上で、操作傾向判定部32は、例えば、所定期間における複数の操作装置26のそれぞれの操作内容が所定の開始条件を満たす場合、所定期間における操作者の操作傾向を導き出す。そして、アタッチメント制御部31は、所定の解除条件が満たされるまでは、その操作傾向に合ったアタッチメントの動きを維持するようにアタッチメントの動きを制御する。 The attachment control unit 31 is a functional element that controls the movement of the attachment. The operation tendency determination unit 32 is a functional element that determines the operation tendency of the operator. Basically, the attachment moves in response to the operation on each of the plurality of operating devices 26. Then, the operation tendency determination unit 32 derives the operation tendency of the operator in the predetermined period, for example, when the operation content of each of the plurality of operating devices 26 in the predetermined period satisfies the predetermined start condition. Then, the attachment control unit 31 controls the movement of the attachment so as to maintain the movement of the attachment matching the operation tendency until the predetermined release condition is satisfied.
 開始条件は、例えば、「複数の操作装置26のそれぞれの操作量が所定期間にわたって保持されていたこと」を含む。具体的には、「複数の操作装置26のそれぞれの操作量が所定期間にわたって所定操作量未満であったこと」、「複数の操作装置26のそれぞれの操作量が所定期間にわたって所定操作量未満で且つその変動幅が所定値未満であったこと」等を含む。 The start condition includes, for example, “the operation amount of each of the plurality of operating devices 26 has been held for a predetermined period”. Specifically, “the operation amount of each of the plurality of operation devices 26 is less than the predetermined operation amount over a predetermined period”, “the operation amount of each of the plurality of operation devices 26 is less than the predetermined operation amount over a predetermined period And the fluctuation range is less than a predetermined value.
 操作傾向は、操作傾向判定部32により、例えば、所定期間におけるエンドアタッチメントの移動方向に基づいて導き出され且つ定められる。移動方向は、例えば、水平面に対する角度で表される。操作傾向は、エンドアタッチメントの移動速度及び移動方向に基づいて導き出され且つ定められてもよい。 The operation tendency is derived and determined by the operation tendency determination unit 32 based on, for example, the moving direction of the end attachment in a predetermined period. The movement direction is represented, for example, by an angle with respect to the horizontal plane. The operation tendency may be derived and determined based on the movement speed and movement direction of the end attachment.
 具体的には、操作傾向は、例えば、バケット6の爪先を直線的に機体に近づける操作傾向、バケット6の爪先を直線的に機体から遠ざける操作傾向、バケット6の爪先を直線的に上昇させる操作傾向、バケット6の爪先を直線的に下降させる操作傾向等を含む。また、直線的な動きは旋回による動きを含んでいてもよい。旋回方向における均し作業を実現するためである。 Specifically, the operation tendency is, for example, an operation tendency to bring the tip of the bucket 6 linearly close to the body, an operation tendency to put the tip of the bucket 6 away from the body linearly, and an operation to raise the toe of the bucket 6 linearly. The tendency includes an operation tendency of lowering the tip of the bucket 6 linearly. Also, linear motion may include pivotal motion. This is to realize the leveling operation in the turning direction.
 解除条件は、例えば、「複数の操作装置26の何れかの操作量が所定操作量以上となったこと」、「複数の操作装置26の何れかの操作速度が所定速度以上となったこと」、「操作中の操作装置26の何れかが中立位置に戻されたこと」、「操作中の操作装置26の何れかが中立位置を超えて逆方向に操作されたこと」等を含む。 The release condition is, for example, that "the operation amount of any of the plurality of operating devices 26 is equal to or more than the predetermined operation amount", or "the operation speed of any of the plurality of operation devices 26 is equal to or more than the predetermined speed" , “Any of the operating devices 26 in operation has been returned to the neutral position”, “Any of the operating devices 26 in operation has been operated in the reverse direction beyond the neutral position”, and the like.
 基本的に、掘削アタッチメントは、操作装置26としてのブーム操作レバー、アーム操作レバー及びバケット操作レバーのそれぞれに対する操作に応じて動く。操作傾向判定部32は、例えば、ブーム操作レバー及びアーム操作レバーのそれぞれが生成するパイロット圧に基づいてそれぞれの操作内容を把握する。そして、所定期間におけるブーム操作レバー及びアーム操作レバーのそれぞれの操作内容が所定の開始条件を満たす場合、所定期間における操作者の操作傾向をその操作内容から導き出す。このとき、操作傾向判定部32は、バケット操作レバー、旋回操作レバー等の操作内容を考慮してもよい。本実施例では、ブーム操作レバーとバケット操作レバーは別個独立の操作レバーとして説明されるが、実際には同じ1つの操作レバーであり傾倒方向のみが異なる。アーム操作レバーと旋回操作レバーの関係についても同様である。 Basically, the digging attachment moves in response to operations on the boom operating lever, the arm operating lever and the bucket operating lever as the operating device 26. The operation tendency determination unit 32 grasps each operation content based on, for example, the pilot pressure generated by each of the boom operation lever and the arm operation lever. Then, when the operation content of each of the boom operation lever and the arm operation lever in the predetermined period satisfies the predetermined start condition, the operation tendency of the operator in the predetermined period is derived from the operation content. At this time, the operation tendency determination unit 32 may consider the operation content of the bucket operation lever, the turning operation lever, and the like. In the present embodiment, the boom control lever and the bucket control lever are described as separate control levers, but in fact they are one and the same control lever and differ only in the tilting direction. The same applies to the relationship between the arm control lever and the turning control lever.
 本実施例では、開始条件は、例えば、ブーム操作レバー及びアーム操作レバーのそれぞれの操作量が所定期間にわたって所定操作量未満(微操作)であったことである。 In the present embodiment, the start condition is, for example, that the operation amount of each of the boom operation lever and the arm operation lever is less than the predetermined operation amount (fine operation) over a predetermined period.
 操作傾向は、例えば、水平面に沿ってバケット6の爪先を直線的に近づける操作傾向(床掘り作業での水平引き)として導き出される。この場合、バケット6の爪先の移動方向は、水平面に対する角度がゼロ度の方向として導き出される。 The operation tendency is derived, for example, as an operation tendency (horizontal pulling in floor digging work) in which the toes of the bucket 6 are linearly brought close along the horizontal surface. In this case, the movement direction of the toe of the bucket 6 is derived as a direction in which the angle with respect to the horizontal plane is zero degrees.
 その後、アタッチメント制御部31は、所定の解除条件が満たされるまでは、その操作傾向に合った掘削アタッチメントの動きを維持するように掘削アタッチメントの動きを自動的に制御する。 Thereafter, the attachment control unit 31 automatically controls the movement of the digging attachment so as to maintain the movement of the digging attachment in accordance with the operation tendency until the predetermined release condition is satisfied.
 具体的には、アタッチメント制御部31は、操作傾向判定部32が導き出した操作傾向に合ったバケット6の爪先の移動方向(目標移動方向)を維持するようにブームシリンダ7及びアームシリンダ8を自動的に伸縮させる。バケットシリンダ9を自動的に伸縮させてもよく、旋回油圧モータを自動的に回転させてもよい。 Specifically, the attachment control unit 31 automatically performs the boom cylinder 7 and the arm cylinder 8 so as to maintain the moving direction (target moving direction) of the tip of the bucket 6 that matches the operation tendency derived by the operation tendency determination unit 32. To stretch. The bucket cylinder 9 may be automatically extended and contracted, and the swing hydraulic motor may be automatically rotated.
 例えば、アタッチメント制御部31は、操作者によるブーム操作レバー及びアーム操作レバーの実際の操作量に基づいて算出される爪先の移動方向(調整前移動方向)が目標移動方向から逸脱している場合、掘削アタッチメントの調整動作によって目標移動方向が維持されるようにする。この場合、アタッチメント制御部31は、操作者による実際の操作量とは無関係にブームシリンダ7及びアームシリンダ8を自動的に伸縮させることで目標移動方向が維持されるようにする。 For example, when the attachment control unit 31 determines that the toe movement direction (pre-adjustment movement direction), which is calculated based on the actual operation amount of the boom operation lever and the arm operation lever by the operator, deviates from the target movement direction, The target movement direction is maintained by the adjustment operation of the drilling attachment. In this case, the attachment control unit 31 causes the boom cylinder 7 and the arm cylinder 8 to automatically expand and contract independently of the actual operation amount by the operator so that the target movement direction is maintained.
 ここで図3を参照し、掘削アタッチメントの調整動作を実現する調整機構の一例について説明する。図3は、調整機構50が取り付けられた操作装置26としてのアーム操作レバー26Aの構成例を示す図である。以下の説明は、調整機構50が取り付けられた他の操作レバーについても同様に適用される。例えば、ブーム用流量制御弁17Bを左右に移動させるための、調整機構50が取り付けられたブーム操作レバーについても同様に適用される。 Here, with reference to FIG. 3, an example of the adjustment mechanism for realizing the adjustment operation of the excavation attachment will be described. FIG. 3 is a view showing a configuration example of an arm control lever 26A as the control device 26 to which the adjustment mechanism 50 is attached. The following description applies similarly to other control levers to which the adjustment mechanism 50 is attached. For example, the same applies to a boom control lever to which the adjustment mechanism 50 is attached for moving the boom flow control valve 17B to the left and right.
 調整機構50は、アーム操作レバー26Aが生成するパイロット圧を所望のパイロット圧に調整する機構であり、主に電磁弁51、電磁弁52L、電磁弁52R等を含む。所望のパイロット圧は、バケット6の爪先の調整前移動方向を目標移動方向に合わせるために必要なパイロット圧である。アタッチメント制御部31は、姿勢検出装置S1等の出力に基づいて所望のパイロット圧を算出する。 The adjustment mechanism 50 is a mechanism that adjusts the pilot pressure generated by the arm control lever 26A to a desired pilot pressure, and mainly includes an electromagnetic valve 51, an electromagnetic valve 52L, an electromagnetic valve 52R, and the like. The desired pilot pressure is the pilot pressure required to align the pre-adjustment moving direction of the toe of the bucket 6 with the target moving direction. The attachment control unit 31 calculates a desired pilot pressure based on the output of the posture detection device S1 or the like.
 電磁弁51は、パイロットポンプ15とアーム操作レバー26Aとを繋ぐ管路に置かれる電磁比例減圧弁であり、コントローラ30からの制御電流に応じてその開口面積を増減させる。 The solenoid valve 51 is an electromagnetic proportional pressure reducing valve placed in a pipe line connecting the pilot pump 15 and the arm control lever 26A, and increases or decreases its opening area according to the control current from the controller 30.
 電磁弁52Lは、アーム操作レバー26Aとコントロールバルブ17内に設置されるアーム用流量制御弁17Aの左側パイロットポート17Lとを接続する管路C1に置かれる電磁切替弁であり、コントローラ30からの指令に応じてその弁位置を切り替える。電磁弁52Lは第1弁位置と第2弁位置とを有する。第1弁位置は、管路C11と管路C12とを連通させ、且つ、管路C3と管路C12との連通を遮断する。第2弁位置は、管路C11と管路C12との連通を遮断し、且つ、管路C3と管路C12とを連通させる。管路C11はアーム操作レバー26Aと電磁弁52Lとを接続する。管路C12は電磁弁52Lとアーム用流量制御弁17Aの左側パイロットポート17Lとを接続する。管路C3は電磁弁51と電磁弁52Lとを接続する。 The solenoid valve 52L is a solenoid switching valve placed in the conduit C1 connecting the arm control lever 26A and the left pilot port 17L of the flow control valve for arm 17A installed in the control valve 17, and the command from the controller 30 Switch the valve position accordingly. The solenoid valve 52L has a first valve position and a second valve position. The first valve position brings the conduit C11 into communication with the conduit C12, and cuts off the communication between the conduit C3 and the conduit C12. The second valve position interrupts the communication between the conduit C11 and the conduit C12, and connects the conduit C3 and the conduit C12. The conduit C11 connects the arm control lever 26A and the solenoid valve 52L. The conduit C12 connects the solenoid valve 52L and the left pilot port 17L of the arm flow control valve 17A. The conduit C3 connects the solenoid valve 51 and the solenoid valve 52L.
 電磁弁52Rは、アーム操作レバー26Aとアーム用流量制御弁17Aの右側パイロットポート17Rとを接続する管路C2に置かれる電磁切替弁であり、コントローラ30からの指令に応じてその弁位置を切り替える。電磁弁52Rは第1弁位置と第2弁位置とを有する。第1弁位置は、管路C21と管路C22とを連通させ、且つ、管路C4と管路C22との連通を遮断する。第2弁位置は、管路C21と管路C22との連通を遮断し、且つ、管路C4と管路C22とを連通させる。管路C21はアーム操作レバー26Aと電磁弁52Rとを接続する。管路C22は電磁弁52Rとアーム用流量制御弁17Aの右側パイロットポート17Rとを接続する。管路C4は電磁弁51と電磁弁52Rとを接続する。 The solenoid valve 52R is a solenoid switching valve placed in the conduit C2 connecting the arm control lever 26A and the right pilot port 17R of the arm flow control valve 17A, and switches the valve position according to a command from the controller 30. . The solenoid valve 52R has a first valve position and a second valve position. The first valve position allows the conduit C21 and the conduit C22 to communicate with each other, and blocks the communication between the conduit C4 and the conduit C22. The second valve position interrupts the communication between the conduit C21 and the conduit C22, and connects the conduit C4 and the conduit C22. The conduit C21 connects the arm control lever 26A and the solenoid valve 52R. The conduit C22 connects the solenoid valve 52R and the right pilot port 17R of the arm flow control valve 17A. The conduit C4 connects the solenoid valve 51 and the solenoid valve 52R.
 アーム操作レバー26Aは、閉じ方向に傾けられると管路C1内の作動油の圧力を増大させ、開き方向に傾けられると管路C2内の作動油の圧力を増大させる。管路C1内の作動油の圧力であるアーム閉じパイロット圧は、圧力センサ29の一例であるアーム閉じパイロット圧センサ29Lによって検出される。管路C2内の作動油の圧力であるアーム開きパイロット圧は、圧力センサ29の一例であるアーム開きパイロット圧センサ29Rによって検出される。アーム閉じパイロット圧が増大するとスプール弁としてのアーム用流量制御弁17Aが右方向に移動してメインポンプ14とアームシリンダ8のボトム側油室とが連通してアームシリンダ8が伸張する。アーム開きパイロット圧が増大するとアーム用流量制御弁17Aが左方向に移動してメインポンプ14とアームシリンダ8のロッド側油室とが連通してアームシリンダ8が収縮する。 The arm control lever 26A increases the pressure of the hydraulic fluid in the conduit C1 when it is tilted in the closing direction, and increases the pressure of the hydraulic fluid in the conduit C2 when it is tilted in the opening direction. The arm closing pilot pressure which is the pressure of the hydraulic fluid in the conduit C1 is detected by an arm closing pilot pressure sensor 29L which is an example of the pressure sensor 29. The arm opening pilot pressure which is the pressure of the hydraulic fluid in the conduit C2 is detected by an arm opening pilot pressure sensor 29R which is an example of the pressure sensor 29. When the arm closing pilot pressure increases, the arm flow control valve 17A as a spool valve moves to the right, the main pump 14 and the bottom oil chamber of the arm cylinder 8 communicate with each other, and the arm cylinder 8 extends. When the arm opening pilot pressure increases, the arm flow control valve 17A moves leftward, the main pump 14 and the rod side oil chamber of the arm cylinder 8 communicate with each other, and the arm cylinder 8 contracts.
 アタッチメント制御部31は、アームシリンダ8を自動的に伸張させる場合、電磁弁51に対して指令電流を出力し、且つ、電磁弁52Lに対して開指令を出力する。指令電流を受けた電磁弁51は、その指令電流に応じた開口面積を実現する。開指令を受けた電磁弁52Lは第2弁位置に切り替わり、パイロットポンプ15が吐出する作動油を管路C12に流入させる。このようにして、アタッチメント制御部31は所望のアーム閉じパイロット圧を生成する。 When the arm cylinder 8 is automatically extended, the attachment control unit 31 outputs a command current to the solenoid valve 51 and outputs an open command to the solenoid valve 52L. The solenoid valve 51 receiving the command current realizes an opening area according to the command current. The solenoid valve 52L that has received the open command switches to the second valve position, and causes the hydraulic fluid discharged by the pilot pump 15 to flow into the conduit C12. Thus, the attachment control unit 31 generates a desired arm closing pilot pressure.
 同様に、アタッチメント制御部31は、アームシリンダ8を自動的に収縮させる場合、電磁弁51に対して指令電流を出力し、且つ、電磁弁52Rに対して開指令を出力する。指令電流を受けた電磁弁51は、その指令電流に応じた開口面積を実現する。開指令を受けた電磁弁52Rは第2弁位置に切り替わり、パイロットポンプ15が吐出する作動油を管路C22に流入させる。このようにして、アタッチメント制御部31は所望のアーム開きパイロット圧を生成する。 Similarly, when automatically contracting the arm cylinder 8, the attachment control unit 31 outputs a command current to the solenoid valve 51 and outputs an open command to the solenoid valve 52R. The solenoid valve 51 receiving the command current realizes an opening area according to the command current. The solenoid valve 52R that has received the open command switches to the second valve position, and causes the hydraulic fluid discharged by the pilot pump 15 to flow into the conduit C22. Thus, the attachment control unit 31 generates a desired arm opening pilot pressure.
 このように、コントローラ30は、例えば、所定期間におけるバケット6の移動速度、移動方向を目標移動速度、目標移動方向として設定する。そして、姿勢検出装置S1の検出値に基づき、バケット6の移動速度、移動方向が目標移動速度、目標移動方向となるように、電磁弁51、電磁弁52L、電磁弁52Rに対して指令を出力する。 Thus, the controller 30 sets, for example, the moving speed and the moving direction of the bucket 6 in a predetermined period as the target moving speed and the target moving direction. Then, based on the detection value of the posture detection device S1, a command is output to the solenoid valve 51, the solenoid valve 52L, and the solenoid valve 52R so that the moving speed and moving direction of the bucket 6 become the target moving speed and target moving direction. Do.
 次に、図4A及び図4Bを参照しながら、本発明の実施例に係る制御方法で用いられる三次元直交座標系について説明する。なお、図4Aは、ショベルの側面図であり、図4Bは、ショベルの上面図である。 Next, a three-dimensional orthogonal coordinate system used in the control method according to the embodiment of the present invention will be described with reference to FIGS. 4A and 4B. 4A is a side view of the shovel, and FIG. 4B is a top view of the shovel.
 図4A及び図4Bに示すように、三次元直交座標系のZ軸は、ショベルの旋回軸PCに相当し、三次元直交座標系の原点Oは、旋回軸PCとショベルの設置面との交点に相当する。 As shown in FIGS. 4A and 4B, the Z axis of the three-dimensional orthogonal coordinate system corresponds to the pivot axis PC of the shovel, and the origin O of the three-dimensional orthogonal coordinate system is the intersection point of the pivot axis PC and the installation surface of the shovel It corresponds to
 Z軸と直交するX軸は、アタッチメントの延在方向に伸び、Z軸と直交するY軸は、アタッチメントの延在方向に垂直な方向に伸びる。そして、X軸及びY軸は、ショベルの旋回とともにZ軸回りを回転する。なお、ショベルの旋回角度θは、図4Bに示すような上面視で、Z軸に関し反時計回り方向をプラス方向とする。 An X-axis orthogonal to the Z-axis extends in the extension direction of the attachment, and a Y-axis orthogonal to the Z-axis extends in the direction perpendicular to the extension direction of the attachment. The X axis and the Y axis rotate about the Z axis as the shovel turns. In addition, turning angle (theta) of a shovel makes a counterclockwise direction a positive direction regarding Z-axis by top view as shown to FIG. 4B.
 また、図4Aに示すように、上部旋回体3に対するブーム4の取り付け位置は、ブーム回転軸としてのブームピンの位置であるブームピン位置P1で表される。同様に、ブーム4に対するアーム5の取り付け位置は、アーム回転軸としてのアームピンの位置であるアームピン位置P2で表される。また、アーム5に対するバケット6の取り付け位置は、バケット回転軸としてのバケットピンの位置であるバケットピン位置P3で表される。更に、バケット6の先端位置(例えばバケット6の爪先位置)はバケット爪先位置P4で表される。 Moreover, as shown to FIG. 4A, the attachment position of the boom 4 with respect to the revolving super structure 3 is represented by the boom pin position P1 which is a position of the boom pin as a boom rotating shaft. Similarly, the mounting position of the arm 5 with respect to the boom 4 is represented by an arm pin position P2, which is a position of an arm pin as an arm rotation axis. Moreover, the attachment position of the bucket 6 with respect to the arm 5 is represented by the bucket pin position P3 which is a position of the bucket pin as a bucket rotating shaft. Further, the tip end position of the bucket 6 (for example, the tip end position of the bucket 6) is represented by a bucket tip end position P4.
 ブームピン位置P1とアームピン位置P2とを結ぶ線分SG1の長さはブーム長さとして所定値Lで表され、アームピン位置P2とバケットピン位置P3とを結ぶ線分SG2の長さはアーム長さとして所定値Lで表され、バケットピン位置P3とバケット爪先位置P4とを結ぶ線分SG3の長さはバケット長さとして所定値Lで表される。 The length of the line segment SG1 connecting the boom pin position P1 and the arm pin position P2 is represented by a predetermined value L 1 as boom length, arm length is the length of the line segment SG2 connecting the arm pin position P2 and the bucket pin position P3 as represented by a predetermined value L 2, the length of the line segment SG3 connecting the bucket pin position P3 and the bucket toe position P4 is represented by a predetermined value L 3 as a bucket length.
 線分SG1と水平面との間に形成される角度は対地角としてのブーム回転角度βで表され、線分SG2と水平面との間に形成される角度は対地角としてのアーム回転角度βで表され、線分SG3と水平面との間に形成される角度は対地角としてのバケット回転角度βで表される。 The angle formed between the line segment SG1 and a horizontal plane is represented by the boom rotation angle beta 1 as ground angle, arm rotation angle of the angle-ground angle formed between the line segment SG2 and the horizontal beta 2 in expressed, the angle formed between the line segment SG3 and a horizontal plane is represented by a bucket rotation angle beta 3 of the ground angle.
 ここで、ブームピン位置P1の三次元座標を(X、Y、Z)=(H0X、0、H0Z)とし、バケット爪先位置P4の三次元座標を(X、Y、Z)=(Xe、Ye、Ze)とすると、Xe、Zeはそれぞれ式(1)及び式(2)で表される。なお、Xe及びYeはバケット6の爪先の平面位置を表し、Zeはバケット6の爪先の高さを表す。
Xe=H0X+Lcosβ+Lcosβ+Lcosβ・・・(1)
Ze=H0z+Lsinβ+Lsinβ+Lsinβ・・・(2)
なお、Yeは0となる。バケット爪先位置P4は、XZ平面上に存在するためである。
Here, the three-dimensional coordinates of the boom pin position P1 are (X, Y, Z) = (H0X, 0, H0Z), and the three-dimensional coordinates of the bucket toe position P4 are (X, Y, Z) = (Xe, Ye, Assuming that Ze), Xe and Ze are represented by Formula (1) and Formula (2), respectively. In addition, Xe and Ye represent the planar position of the toe of the bucket 6, and Ze represents the height of the toe of the bucket 6.
Xe = H 0X + L 1 cos β 1 + L 2 cos β 2 + L 3 cos β 3 (1)
Ze = H 0z + L 1 sinβ 1 + L 2 sinβ 2 + L 3 sinβ 3 ··· (2)
Note that Ye is 0. The bucket toe position P4 is on the XZ plane.
 また、ブームピン位置P1の座標値が固定値であるため、ブーム回転角度β1、アーム回転角度β2、バケット回転角度βが決まれば、バケット爪先位置P4の座標値は一意に決定される。同様に、ブーム回転角度βが決まれば、アームピン位置P2の座標値は一意に決定され、ブーム回転角度β及びアーム回転角度βが決まれば、バケットピン位置P3の座標値は一意に決定される。 Further, since the coordinate value of the boom pin position P1 is a fixed value, the boom rotation angle beta 1, arm rotation angle beta 2, once the bucket rotation angle beta 3, the coordinate values of the bucket toe position P4 is uniquely determined. Similarly, once the boom rotation angle beta 1, the coordinate values of the arm pin position P2 is determined uniquely, once the boom rotation angle beta 1 and the arm rotational angle beta 2, the coordinate values of the bucket pin position P3 is uniquely determined Be done.
 次に、図4Aを参照し、作業部位であるバケット6の爪先の位置を、Y座標及びZ座標の値を維持しつつX軸に沿って移動させる場合について説明する。バケット6の爪先位置が点X0から点X1まで移動する際、アーム5は、アームピン位置P2を中心に閉じ方向に回転する。それに伴い、ブーム4は、ブームピン位置P1を中心に上げ方向に回転する。その後、爪先位置が点X1に到達した後で点X1から点X2まで移動する際には、アーム5は、アームピン位置P2を中心に閉じ方向に回転するが、ブーム4は、ブームピン位置P1を中心に下げ方向に回転する。このように、ブーム4の回転方向は、点X1を境界として反転する。したがって、作業部位を同一方向に直線的に移動させる場合であっても、操作者は複雑な操作が必要となる。 Next, with reference to FIG. 4A, the case where the position of the toe of the bucket 6 which is the working part is moved along the X axis while maintaining the values of the Y coordinate and the Z coordinate will be described. When the toe position of the bucket 6 moves from the point X0 to the point X1, the arm 5 rotates in the closing direction about the arm pin position P2. Accordingly, the boom 4 rotates in the lifting direction about the boom pin position P1. Thereafter, when moving from point X1 to point X2 after the toe position has reached point X1, arm 5 rotates in a closing direction about arm pin position P2, but boom 4 centers boom pin position P1. Rotate in the downward direction. Thus, the rotational direction of the boom 4 is reversed with the point X1 as the boundary. Therefore, even in the case where the work site is linearly moved in the same direction, the operator needs complicated operation.
 次に、図5を参照しながら、ブーム角度センサ、アーム角度センサ及びバケット角度センサのそれぞれの出力とブーム回転角度β、アーム回転角度β及びバケット回転角度βとの関係について説明する。図5は、XZ平面におけるアタッチメントの状態を説明する図である。 Next, with reference to FIG. 5, the relationship between the outputs of the boom angle sensor, the arm angle sensor, and the bucket angle sensor and the boom rotation angle β 1 , the arm rotation angle β 2, and the bucket rotation angle β 3 will be described. FIG. 5 is a view for explaining the state of the attachment in the XZ plane.
 図5の例では、ブーム角度センサはブームピン位置P1に設置され、アーム角度センサはアームピン位置P2に設置され、バケット角度センサはバケットピン位置P3に設置されている。 In the example of FIG. 5, the boom angle sensor is installed at the boom pin position P1, the arm angle sensor is installed at the arm pin position P2, and the bucket angle sensor is installed at the bucket pin position P3.
 ブーム角度センサは、線分SG1と鉛直線との間に形成される角度αを検出して出力する。アーム角度センサは、線分SG1の延長線と線分SG2との間に形成される角度αを検出して出力する。バケット角度センサは、線分SG2の延長線と線分SG3との間に形成される角度αを検出して出力する。図5において、角度αは、線分SG1に関し反時計回り方向をプラス方向とする。同様に、角度αは、線分SG2に関し反時計回り方向をプラス方向とし、角度αは、線分SG3に関し反時計回り方向をプラス方向とする。また、図5では、ブーム回転角度β、アーム回転角度β、バケット回転角度βは、X軸に平行な線に関し反時計回り方向をプラス方向とする。 Boom angle sensor detects and outputs an angle alpha 1 which is formed between the line segment SG1 and vertical line. Arm angle sensor, detects and outputs the angle alpha 2 which is formed between the extension line and the line segment SG2 of segment SG1. Bucket angle sensor, detects and outputs the angle alpha 3 formed between the extended line of the line segment SG2 and the line segment SG3. 5, the angle alpha 1 is the counterclockwise direction as positive direction relates segment SG1. Similarly, the angle alpha 2 is the counterclockwise direction as positive direction relates segment SG2, the angle alpha 3 is a counterclockwise direction as positive direction relates segment SG3. Further, in FIG. 5, for the boom rotation angle β 1 , the arm rotation angle β 2 , and the bucket rotation angle β 3 , the counterclockwise direction is a positive direction with respect to a line parallel to the X axis.
 以上の関係から、ブーム回転角度β、アーム回転角度β、バケット回転角度βは、角度α、α、αを用いてそれぞれ式(3)、式(4)、式(5)で表される。
β=90-α・・・(3)
β=β-α=90-α-α・・・(4)
β=β-α=90-α-α-α・・・(5)
そして、上述の通り、β、β、βは、水平面に対するブーム4、アーム5、バケット6の傾きとして表される。
From the above relationship, the boom rotation angle β 1 , the arm rotation angle β 2 , and the bucket rotation angle β 3 are expressed by Equations (3), (4) and (5) respectively using the angles α 1 , α 2 and α 3. It is represented by).
β 1 = 90-α 1 (3)
β 2 = β 12 = 90-α 12 (4)
β 3 = β 23 = 90-α 123 (5)
And as above-mentioned, (beta) 1 , (beta) 2 , (beta) 3 is represented as inclination of the boom 4, the arm 5, and the bucket 6 with respect to a horizontal surface.
 したがって、式(1)~式(5)を用いると、角度α、α、αが決まれば、ブーム回転角度β、アーム回転角度β、バケット回転角度βは一意に決定され、且つ、バケット爪先位置P4の座標値は一意に決定される。同様に、角度αが決まれば、ブーム回転角度β及びアームピン位置P2の座標値は一意に決定され、角度α、αが決まれば、アーム回転角度β及びバケットピン位置P3の座標値は一意に決定される。 Therefore, using Equations (1) to (5), if the angles α 1 , α 2 and α 3 are determined, the boom rotation angle β 1 , the arm rotation angle β 2 and the bucket rotation angle β 3 are uniquely determined. And, the coordinate value of the bucket toe position P4 is uniquely determined. Similarly, once the angle alpha 1, the coordinate value of the boom rotation angle beta 1 and the arm pin position P2 is determined uniquely, the angle alpha 1, if alpha 2 is Kimare, coordinates of the arm rotational angle beta 2 and the bucket pin position P3 The value is determined uniquely.
 ブーム角度センサ、アーム角度センサ、バケット角度センサは、ブーム回転角度β、アーム回転角度β、バケット回転角度βを直接的に検出してもよい。この場合、式(3)~式(5)の演算を省略できる。 The boom angle sensor, the arm angle sensor, and the bucket angle sensor may directly detect the boom rotation angle β 1 , the arm rotation angle β 2 , and the bucket rotation angle β 3 . In this case, the operations of the equations (3) to (5) can be omitted.
 次に図6を参照し、コントローラ30がアタッチメントの動きを制御する処理(以下、「アタッチメント動作制御処理」とする。)について説明する。図6は、アタッチメント動作制御処理のフローチャートである。 Next, with reference to FIG. 6, a process in which the controller 30 controls the movement of the attachment (hereinafter, referred to as “attachment operation control process”) will be described. FIG. 6 is a flowchart of attachment operation control processing.
 最初に、コントローラ30は、ブーム操作レバー及びアーム操作レバーのそれぞれの操作量を検出する(ステップST1)。例えば、コントローラ30は、圧力センサ29の出力に基づいてブーム操作レバー及びアーム操作レバーのそれぞれの操作量を継続的に検出してRAMに記憶する。 First, the controller 30 detects the operation amount of each of the boom control lever and the arm control lever (step ST1). For example, the controller 30 continuously detects the operation amounts of the boom control lever and the arm control lever based on the output of the pressure sensor 29, and stores the amounts in the RAM.
 その後、コントローラ30は、所定期間にわたってブーム操作レバー及びアーム操作レバーのそれぞれの操作量が保持されていたか否かを判定する(ステップST2)。例えば、コントローラ30は、RAMに記憶されたブーム操作レバー及びアーム操作レバーのそれぞれの操作量の時間的推移を参照し、所定期間にわたって各操作量が所定操作量未満であったか否かを判定する。或いは、所定期間にわたって各操作量が所定操作量未満で且つ所定期間にわたる各操作量の変動幅が所定値未満であったか否かを判定してもよい。ここで、判定に必要な期間(所定期間)、変動幅(所定値)等は、例えば、作業内容毎、機種毎、操作者毎に任意に決定されてもよい。また、コントローラ30は、作業部位であるバケット6の爪先が、所定期間内で直線的に操作されたか否かに基づき、各操作量が所定期間にわたって保持されたか否かを判定してもよい。つまり、コントローラ30は、所定期間における操作者の操作傾向を導出するために、作業部位であるバケット6の爪先が所定期間内で直線的に操作されたか否かを判定してもよい。 Thereafter, the controller 30 determines whether or not the operation amount of each of the boom operation lever and the arm operation lever is held for a predetermined period (step ST2). For example, the controller 30 refers to temporal transition of operation amounts of the boom operation lever and the arm operation lever stored in the RAM, and determines whether or not each operation amount is less than the predetermined operation amount over a predetermined period. Alternatively, it may be determined whether or not each operation amount is less than the predetermined operation amount over the predetermined period and the fluctuation range of each operation amount over the predetermined period is less than the predetermined value. Here, a period (predetermined period) required for the determination, a fluctuation range (predetermined value), and the like may be arbitrarily determined for each work content, each model, and each operator, for example. Further, the controller 30 may determine whether or not each operation amount has been held for a predetermined period, based on whether or not the toe of the bucket 6, which is the work site, is linearly operated within the predetermined period. That is, the controller 30 may determine whether or not the toe of the bucket 6, which is the work site, is linearly operated within the predetermined period in order to derive the operation tendency of the operator in the predetermined period.
 所定期間にわたって各操作量が保持されていたと判定した場合(ステップST2のYES)、コントローラ30は、バケット6の爪先の目標移動速度を決定する(ステップST3)。例えば、コントローラ30は、姿勢検出装置S1の出力に基づいて所定期間におけるバケット6の爪先の移動軌跡及び移動距離を導き出す。そして、コントローラ30は、爪先の平均移動速度を算出し、その平均移動速度を目標移動速度として設定する。ここで、操作傾向に合った掘削アタッチメントの動きを維持するように掘削アタッチメントを制御する場合、コントローラ30は、操作モードが通常の操作モードから支援モードに変更されたことを操作者に報知してもよい。具体的には、操作モードが通常の操作モードから支援モードに変更されたことを操作者に伝えるため、その旨を表示装置に表示したり、音声出力したりしてもよい。また、掘削アタッチメントの動きを維持するように制御が行われている間、その旨が継続して報知されてもよい。 When it is determined that each operation amount is held for a predetermined period (YES in step ST2), the controller 30 determines a target moving speed of the tip of the bucket 6 (step ST3). For example, the controller 30 derives the movement locus and movement distance of the tip of the bucket 6 in a predetermined period based on the output of the posture detection device S1. Then, the controller 30 calculates an average moving speed of the toe, and sets the average moving speed as a target moving speed. Here, when controlling the excavation attachment so as to maintain the movement of the excavation attachment matching the operation tendency, the controller 30 informs the operator that the operation mode has been changed from the normal operation mode to the support mode. It is also good. Specifically, in order to inform the operator that the operation mode has been changed from the normal operation mode to the support mode, that effect may be displayed on the display device or may be output as voice. Moreover, while control is performed so as to maintain the movement of the digging attachment, that may be notified continuously.
 その後、コントローラ30は、バケット6の爪先の移動方向の制御を開始する(ステップST4)。例えば、コントローラ30は、姿勢検出装置S1の出力に基づいて所定期間におけるバケット6の爪先の移動軌跡を導き出す。そして、コントローラ30は、各サンプリング時刻の移動方向を示す角度(水平面に対する角度)の平均値を、目標移動方向を示す角度として設定する。所定期間におけるバケット6の爪先の移動軌跡の近似直線の水平面に対する角度を、目標移動方向を示す角度として設定してもよい。そして、コントローラ30は、バケット6の爪先が目標移動速度で目標移動方向に移動するようにブームシリンダ7及びアームシリンダ8を伸縮させる。 Thereafter, the controller 30 starts control of the moving direction of the tip of the bucket 6 (step ST4). For example, the controller 30 derives the movement trajectory of the tip of the bucket 6 in a predetermined period based on the output of the posture detection device S1. Then, the controller 30 sets an average value of the angles (angles with respect to the horizontal plane) indicating the moving direction of each sampling time as the angle indicating the target moving direction. The angle with respect to the horizontal plane of the approximate straight line of the movement trajectory of the tip of the bucket 6 in a predetermined period may be set as the angle indicating the target movement direction. Then, the controller 30 extends and retracts the boom cylinder 7 and the arm cylinder 8 so that the toe of the bucket 6 moves in the target movement direction at the target movement speed.
 このようにして、コントローラ30は、操作レバーの操作量とは無関係に、作業部位としてのバケット6の爪先の移動方向と移動速度とを自動で維持し且つ制御できるように、目標移動方向と目標移動速度とを生成し、アタッチメントの動きを制御する。 In this manner, the controller 30 can automatically maintain and control the movement direction and movement speed of the toe of the bucket 6 as the work site regardless of the operation amount of the operation lever. Generate movement speed and control movement of attachment.
 但し、コントローラ30は、移動速度を自動で維持せずに、ブーム4、アーム5及びバケット6の何れかに関する操作レバーの操作量に基づいて目標移動速度を生成してもよい。例えば、操作傾向に基づき、作業部位としてのバケット6の爪先を法面方向(傾斜面方向)に沿って移動させていると判定した場合、又は、機体の前後方向(略水平方向)に移動させていると判定した場合には、アーム操作レバーの操作量に基づいて目標移動速度を生成してもよい。或いは、操作傾向に基づき、溝の壁面に沿って上下方向(略鉛直方向)にバケット6の爪先を移動させていると判定した場合には、ブーム操作レバーの操作量に基づいて目標移動速度を生成してもよい。このように、コントローラ30(例えば操作傾向判定部32)は、操作傾向に基づき、何れの操作レバーの操作量に基づいて目標移動速度を生成するかを決定してもよい。すなわち、操作傾向に基づき、複数の操作レバーから、作業部位の目標移動速度の導出に関連する1つの操作レバーを選択してもよい。そして、決定(選択)した操作レバーの操作量に基づいて目標移動速度を生成しながら、操作傾向に基づいて決定した移動方向へ操作部位を移動させてもよい。 However, the controller 30 may generate the target moving speed based on the operation amount of the control lever related to any of the boom 4, the arm 5 and the bucket 6 without automatically maintaining the moving speed. For example, when it is determined that the toe of the bucket 6 as the work site is moved along the slope direction (the inclined surface direction) based on the operation tendency, or moved in the front-rear direction (substantially horizontal direction) of the machine If it is determined that the target moving speed is determined, the target moving speed may be generated based on the amount of operation of the arm control lever. Alternatively, if it is determined that the toe of the bucket 6 is moved in the vertical direction (substantially vertical direction) along the wall surface of the groove based on the operation tendency, the target movement speed is calculated based on the operation amount of the boom operation lever. It may be generated. As described above, the controller 30 (for example, the operation tendency determination unit 32) may determine, based on the operation amount of which operation lever, the target moving speed is generated based on the operation tendency. That is, based on the operation tendency, one operation lever related to the derivation of the target moving speed of the work site may be selected from a plurality of operation levers. Then, while generating the target movement speed based on the determined (selected) operation amount of the operation lever, the operation part may be moved in the movement direction determined based on the operation tendency.
 所定期間にわたって各操作量が保持されていなかったと判定した場合(ステップST2のNO)、コントローラ30は、目標移動速度及び目標移動方向を設定することなく、今回のアタッチメント動作制御処理を終了させる。そのため、ブームシリンダ7及びアームシリンダ8は、コントローラ30によって自動的に伸縮させられることなく、操作者によるブーム操作レバー及びアーム操作レバーに対する実際の操作に応じて伸縮する。 When it is determined that each operation amount is not held for a predetermined period (NO in step ST2), the controller 30 ends the present attachment operation control process without setting the target moving speed and the target moving direction. Therefore, the boom cylinder 7 and the arm cylinder 8 are not expanded and contracted automatically by the controller 30, but are expanded and contracted according to the actual operation of the boom control lever and the arm control lever by the operator.
 また、判定手法として、操作量の時間的推移ではなく、バケット6の位置の時間的推移を参照してもよい。この場合、所定期間にわたってバケット6の移動方向の変動幅が所定値未満で且つ移動速度が所定値未満であったか否かを判定する。或いは、所定期間にわたってバケット6の移動速度が所定値未満で且つ所定期間にわたるバケット6の移動速度の変動幅が所定値未満であったか否かを判定してもよい。 Further, as a determination method, not the temporal transition of the operation amount but the temporal transition of the position of the bucket 6 may be referred to. In this case, it is determined whether or not the fluctuation range of the movement direction of the bucket 6 is less than a predetermined value and the movement speed is less than a predetermined value over a predetermined period. Alternatively, it may be determined whether the moving speed of the bucket 6 is less than a predetermined value for a predetermined period and the fluctuation range of the moving speed of the bucket 6 for a predetermined period is less than the predetermined value.
 次に図7を参照し、アタッチメント動作制御処理の効果について説明する。図7は、ブーム操作レバーの上げ方向への操作量(ブーム上げ操作量)、アーム操作レバーの閉じ方向への操作量(アーム閉じ操作量)、バケット6の爪先の移動速度(爪先速度)、及び、バケット6の爪先の移動方向を示す角度(爪先角度)の時間的推移を示す。この例では、ショベルの操作者は、ブーム操作レバー及びアーム操作レバーの複合操作により、水平面に沿ってバケット6を機体側に引き寄せる床掘り作業を行っている。 Next, the effect of the attachment operation control process will be described with reference to FIG. FIG. 7 shows the operation amount of the boom operation lever in the raising direction (boom raising operation amount), the operation amount of the arm operation lever in the closing direction (arm closing operation amount), the moving speed of the tip of the bucket 6 (toe speed), And the time transition of the angle (toe angle) which shows the moving direction of the toe of the bucket 6 is shown. In this example, the operator of the shovel performs floor digging work to draw the bucket 6 toward the machine body along the horizontal plane by the combined operation of the boom operation lever and the arm operation lever.
 具体的には、ショベルの操作者は、図7(A)に示すように時刻t1においてブーム操作レバーの上げ方向への操作を開始し、その後、ほぼ一定の操作量B1で上げ方向への操作を継続する。また、操作者は、図7(B)に示すように時刻t1においてアーム操作レバーの閉じ方向への操作を開始し、その後、ほぼ一定の操作量A1で閉じ方向への操作を継続する。 Specifically, the operator of the shovel starts the operation in the raising direction of the boom operation lever at time t1 as shown in FIG. 7A, and then the operation in the raising direction with a substantially constant operation amount B1 To continue. Further, as shown in FIG. 7B, the operator starts the operation in the closing direction of the arm operating lever at time t1, and then continues the operation in the closing direction with a substantially constant operation amount A1.
 バケット6の爪先速度は、図7(C)に示すように時刻t1において上昇し始め、その後、ほぼ一定の爪先速度V1を維持する。バケット6の爪先角度は、図7(D)に示すように時刻t1の時点からほぼ一定の爪先角度D1を維持する。その結果、バケット6の爪先はほぼ水平に機体方向に移動する。 The toe speed of the bucket 6 starts to rise at time t1 as shown in FIG. 7C, and thereafter maintains a substantially constant toe speed V1. The toe angle of the bucket 6 maintains a substantially constant toe angle D1 from time t1 as shown in FIG. 7 (D). As a result, the toes of the bucket 6 move substantially horizontally in the machine direction.
 時刻t2において、所定期間にわたってブーム上げ操作量及びアーム閉じ操作量のそれぞれが保持されていたと判定した場合、コントローラ30は、バケット6の爪先の目標移動速度を決定する。例えば、コントローラ30は、時刻t11から時刻t2までの期間におけるブーム上げ操作量が常に所定操作量TH1未満で且つアーム閉じ操作量が常に所定操作量TH2未満であった場合、所定期間にわたってブーム上げ操作量及びアーム閉じ操作量のそれぞれが保持されていたと判定する。そして、時刻t11から時刻t2までの期間における爪先速度V1の平均値を目標移動速度として設定する。 When it is determined that each of the boom raising operation amount and the arm closing operation amount is held for a predetermined period at time t2, the controller 30 determines the target moving speed of the toe of the bucket 6. For example, when the boom raising operation amount during the period from time t11 to time t2 is always less than the predetermined operation amount TH1 and the arm closing operation amount is always less than the predetermined operation amount TH2, the controller 30 performs boom raising operation over a predetermined period. It is determined that each of the amount and the arm closing operation amount is held. Then, the average value of the toe speeds V1 in the period from time t11 to time t2 is set as the target moving speed.
 また、時刻t2において、所定期間にわたってブーム上げ操作量及びアーム閉じ操作量のそれぞれが保持されていたと判定した場合、コントローラ30は、バケット6の爪先の目標移動方向を決定する。例えば、コントローラ30は、時刻t11から時刻t2までの期間における爪先角度D1の平均値を、目標移動方向を示す角度として設定する。 When it is determined that each of the boom raising operation amount and the arm closing operation amount is held for a predetermined period at time t2, the controller 30 determines the target moving direction of the toe of the bucket 6. For example, the controller 30 sets an average value of the toe angles D1 in a period from time t11 to time t2 as an angle indicating the target movement direction.
 その後、コントローラ30は、解除条件が満たされるまでは、その操作傾向(爪先速度及び爪先角度)に合った掘削アタッチメントの動きを維持するように掘削アタッチメントの動きを制御する。 Thereafter, the controller 30 controls the movement of the excavation attachment so as to maintain the movement of the excavation attachment in accordance with the operation tendency (the toe speed and the toe angle) until the release condition is satisfied.
 その結果、図7(A)の実線で示すように時刻t2以降に実際のブーム上げ操作量が操作量B1を下回りその乖離幅が大きくなっていく場合であっても、ブーム用流量制御弁17Bは、図7(A)の一点鎖線で示すようにブーム上げ操作量が操作量B1で維持されているときとほぼ同じブーム上げパイロット圧を受ける。本実施例では、コントローラ30は、指令に基づいてバケット6の爪先速度と爪先角度を自動制御するためである。図7(A)の斜線領域は、実際のブーム上げ操作量と操作量B1との乖離幅を表す。この乖離幅は、コントローラ30によるブームシリンダ7の自動的な伸張に対応するブーム上げ操作量に対応する。 As a result, even when the actual boom raising operation amount falls below the operation amount B1 after time t2 as shown by the solid line in FIG. 7A, the boom flow control valve 17B 7A receives substantially the same boom raising pilot pressure as when the boom raising operation amount is maintained at the operation amount B1 as indicated by the one-dot chain line in FIG. 7A. In the present embodiment, the controller 30 automatically controls the toe speed and the toe angle of the bucket 6 based on the command. The shaded area in FIG. 7A represents the divergence width between the actual boom raising operation amount and the operation amount B1. The deviation width corresponds to the boom raising operation amount corresponding to the automatic extension of the boom cylinder 7 by the controller 30.
 設定されたバケット6の爪先の目標移動速度と目標移動方向を示す角度とを維持するためのブーム操作レバーの自動操作量(パイロット圧の自動調整前後の差)は作業環境によって変化する。つまり、図7(A)ではブーム上げ操作量が操作量B1で維持されているときとほぼ同じブーム上げパイロット圧を受ける例を示したが、本発明はこの構成に限定されない。例えば、ブーム上げ操作量が所定の傾きで増加するように、或いは、ブーム上げ操作量が所定の傾きで減少するように、ブーム上げパイロット圧が調整されてもよい。図4Aで示す例では、ブーム上げパイロット圧は、点X1を過ぎた時点でゼロを下回り負値となる。この場合、ブーム4は下げ方向に動かされる。 The amount of automatic operation of the boom operating lever (the difference between before and after the automatic adjustment of the pilot pressure) for maintaining the set target moving speed of the tip of the bucket 6 and the angle indicating the target moving direction changes depending on the work environment. That is, although the example which receives the boom raising pilot pressure substantially the same as when the boom raising operation amount is maintained by operation amount B1 was shown in FIG. 7 (A), this invention is not limited to this structure. For example, the boom raising pilot pressure may be adjusted such that the boom raising operation amount increases at a predetermined inclination, or the boom raising operation amount decreases at a predetermined inclination. In the example shown in FIG. 4A, the boom raising pilot pressure becomes lower than zero and becomes a negative value when passing the point X1. In this case, the boom 4 is moved in the lowering direction.
 また、図7(B)の実線で示すように時刻t2以降に実際のアーム閉じ操作量が操作量A1の近くで上下に変動する場合であっても、アーム用流量制御弁17Aは、図7(B)の一点鎖線で示すようにアーム閉じ操作量が操作量A1で維持されているときとほぼ同じアーム閉じパイロット圧を受ける。本実施例では、コントローラ30は、指令に基づいてバケット6の爪先速度と爪先角度を自動制御するためである。図7(B)の斜線領域は、実際のアーム閉じ操作量と操作量A1との乖離幅を表す。この乖離幅は、コントローラ30によるアームシリンダ8の自動的な伸縮に対応するアーム操作レバーの操作量に対応する。 Further, as shown by the solid line in FIG. 7B, even when the actual arm closing operation amount fluctuates up and down near the operation amount A1 after time t2, the flow control valve for arm 17A is not shown in FIG. As indicated by the alternate long and short dash line in (B), the arm closing pilot pressure is substantially the same as when the arm closing operation amount is maintained at the operation amount A1. In the present embodiment, the controller 30 automatically controls the toe speed and the toe angle of the bucket 6 based on the command. The shaded area in FIG. 7 (B) represents the difference between the actual amount of closing operation of the arm and the amount of operation A1. The deviation width corresponds to the operation amount of the arm operation lever corresponding to the automatic expansion and contraction of the arm cylinder 8 by the controller 30.
 設定されたバケット6の爪先の目標移動速度と目標移動方向を示す角度とを維持するためのアーム操作レバーの自動操作量(パイロット圧の自動調整前後の差)は作業環境によって変化する。つまり、図7(B)ではアーム閉じ操作量が操作量A1で維持されているときとほぼ同じアーム閉じパイロット圧を受ける例を示したが、本発明はこの構成に限定されない。例えば、アーム閉じ操作量が所定の傾きで増加するように、或いは、アーム閉じ操作量が所定の傾きで減少するように、アーム閉じパイロット圧が調整されてもよい。 The amount of automatic operation of the arm control lever (the difference between before and after the automatic adjustment of the pilot pressure) for maintaining the set target moving speed of the tip of the bucket 6 and the angle indicating the target moving direction changes depending on the work environment. That is, although the example which receives the arm closing pilot pressure substantially the same as when the arm closing operation amount is maintained by operation amount A1 was shown in FIG. 7 (B), this invention is not limited to this structure. For example, the arm closing pilot pressure may be adjusted such that the arm closing operation amount increases at a predetermined inclination, or the arm closing operation amount decreases at a predetermined inclination.
 爪先速度は、時刻t2以降は図7(C)に示すように目標移動速度としての爪先速度V1で一定に維持される。同様に、爪先角度は、時刻t2以降は図7(D)に示すように目標移動方向を示す爪先角度D1で一定に維持される。図7(C)及び図7(D)の一点鎖線は、アタッチメント動作制御処理が実行されない場合の時間的推移を示す。 The toe speed is maintained constant at a toe speed V1 as a target moving speed as shown in FIG. 7C after time t2. Similarly, after the time t2, the toe angle is maintained constant at the toe angle D1 indicating the target moving direction as shown in FIG. 7 (D). The alternate long and short dash lines in FIG. 7C and FIG. 7D indicate temporal transition when the attachment operation control process is not performed.
 この例では、実際のブーム上げ操作量が操作量B1から下方に乖離しているため、アタッチメント動作制御処理が実行されない場合には、爪先角度は、図7(D)の一点鎖線で示すように目標移動方向を示す爪先角度D1から徐々に乖離していく。これは、バケット6の爪先位置が徐々に深くなり、床掘り作業の負荷が徐々に大きくなることを意味する。そして、爪先速度は、床掘り作業の負荷の逓増に伴い、図7(C)の一点鎖線で示すように徐々に低下していく。コントローラ30は、アタッチメント動作制御処理を実行することでこのような爪先角度の乖離及び爪先速度の低下を回避できる。また、仕上がり面が水平面ではなく傾斜面になってしまうのを防止できる。 In this example, since the actual boom raising operation amount deviates downward from the operation amount B1, when the attachment operation control process is not executed, the toe angle is as indicated by the one-dot chain line in FIG. It gradually deviates from the toe angle D1 indicating the target movement direction. This means that the toe position of the bucket 6 is gradually deepened, and the load of the floor digging operation is gradually increased. Then, the toe speed gradually decreases as shown by the dashed-dotted line in FIG. 7C as the load of the floor digging work increases. The controller 30 can avoid such a deviation of the toe angle and a decrease in toe speed by executing the attachment operation control process. In addition, it is possible to prevent the finished surface from being an inclined surface instead of a horizontal surface.
 以上の構成により、ショベルの操作者は、バケット6を水平面に沿って引き寄せるには実際のブーム上げ操作量が不足している場合であっても、あたかもバケット6を水平面に沿って引き寄せるのに適したブーム上げ操作量で操作したときと同じ掘削アタッチメントの動きを実現できる。バケット6を水平面に沿って遠ざけたり、或いは、バケット6を法面に沿って近づけたり若しくは遠ざけたりする場合についても同様である。 With the above configuration, the operator of the shovel is suitable for pulling the bucket 6 along the horizontal surface even if the actual boom raising operation amount is insufficient to pull the bucket 6 along the horizontal surface. The same movement of the digging attachment as when operating with the boom raising operation amount can be realized. The same applies to the case where the bucket 6 is moved away from the horizontal surface, or when the bucket 6 is moved closer to or away from the slope.
 また、操作者は、コントローラ30による支援を必要としない粗掘削作業と、コントローラ30による支援を必要とする仕上げ掘削作業との切り替わりの際にその支援を有効或いは無効にするための特別な操作又は作業を要求されることもない。そのため、操作者は、コントローラ30による支援の有効化・無効化を意識することなく粗掘削作業と仕上げ作業とを自由に切り替えながらも適切なタイミングでコントローラ30による支援を受けることができる。したがって、本発明の実施例に係るショベルは作業効率を向上できる。 In addition, the operator may use special operations or the like to enable or disable the assistance at the time of switching between the rough excavation operation requiring no assistance by the controller 30 and the finish excavation operation requiring assistance by the controller 30. There is no need for work. Therefore, the operator can receive the assistance from the controller 30 at an appropriate timing while freely switching between the rough digging operation and the finishing operation without being aware of the enabling / disabling of the assistance by the controller 30. Therefore, the shovel according to the embodiment of the present invention can improve the working efficiency.
 また、ショベルの操作者は、ブーム上げ操作量が不足していること、及び、コントローラ30による自動制御が開始されたことに気付くこともないため、快適な操作感を得ることができる。但し、コントローラ30は、ブームシリンダ7を自動的に伸縮させている場合にはその旨を操作者に伝えるようにしてもよい。例えば、車載ディスプレイ、車載スピーカ、LEDランプ等を用いてその旨を操作者に伝えてもよい。この場合、操作者は、ブーム上げ操作量が不足していることを認識でき、その事実を今後の操作技術の改善に役立てることができる。アームシリンダ8等の他の油圧アクチュエータを自動的に動作させている場合についても同様である。 In addition, since the operator of the shovel does not notice that the boom raising operation amount is insufficient and that the automatic control by the controller 30 is started, a comfortable feeling of operation can be obtained. However, when the boom cylinder 7 is automatically extended and contracted, the controller 30 may notify the operator of that effect. For example, an operator may be notified of that using an on-vehicle display, an on-vehicle speaker, an LED lamp, or the like. In this case, the operator can recognize that the boom raising operation amount is insufficient, and the fact can be used to improve the operation technology in the future. The same applies to the case where other hydraulic actuators such as the arm cylinder 8 are automatically operated.
 コントローラ30による自動制御は、操作者が望む掘削アタッチメントの動きを、操作者による実際の複合操作の内容に沿って実現するものであり、操作者による実際の複合操作の内容からかけ離れた動きを許容するものではない。例えば、目標移動方向及び目標移動速度は、操作者による実際の複合操作の内容に基づいて設定されるため、コントローラ30によって実現される掘削アタッチメントの動きが操作者の望む動きから大きく逸脱することはない。また、ショベルの操作者は、アタッチメント動作制御処理が実行されている場合であっても、解除条件を満たすことによって所望のタイミングで掘削アタッチメントの動きを停止させ或いは掘削アタッチメントに別の動きを行わせることができる。そのため、ショベルの操作に関して違和感を抱くこともない。 The automatic control by the controller 30 realizes the movement of the digging attachment desired by the operator along the content of the actual combined operation by the operator, and allows the movement apart from the content of the actual combined operation by the operator It is not something to do. For example, since the target movement direction and the target movement speed are set based on the content of the actual combined operation by the operator, the movement of the digging attachment realized by the controller 30 may largely deviate from the movement desired by the operator Absent. In addition, even when the attachment operation control process is executed, the operator of the shovel stops the movement of the digging attachment at a desired timing or causes the digging attachment to perform another movement by satisfying the release condition. be able to. Therefore, there is no sense of incongruity regarding the operation of the shovel.
 次に、図8及び図9を参照しながら、コントローラ30による自動制御の流れの一例について説明する。図8及び図9は、コントローラ30による自動制御の流れを示すブロック図である。具体的には、図8及び図9は、コントローラ30(例えば操作傾向判定部32)が何れの操作レバーに基づいて目標移動速度を生成するかを決定し、決定した操作レバーに基づいて目標移動速度を生成しながら、操作傾向に基づいて決定した移動方向へ作業部位を移動させる場合の説明図である。 Next, an example of the flow of automatic control by the controller 30 will be described with reference to FIGS. 8 and 9. 8 and 9 are block diagrams showing the flow of automatic control by the controller 30. FIG. Specifically, FIGS. 8 and 9 determine which operation lever the controller 30 (for example, the operation tendency determination unit 32) generates the target movement speed based on which operation lever, and the target movement based on the determined operation lever It is explanatory drawing in the case of moving a work part to the move direction determined based on the operation tendency, generating speed.
 自動制御を開始すると、コントローラ30は、図8に示すように、爪先目標移動速度、爪先目標移動方向及び現在のバケット6の爪先位置の三次元座標(Xe、Ye、Ze)に基づき、単位時間経過後の爪先位置の三次元座標(Xer、Yer、Zer)を算出する。 When automatic control is started, as shown in FIG. 8, the controller 30 determines a unit time based on the toe target moving speed, the toe target moving direction, and the three-dimensional coordinates (Xe, Ye, Ze) of the toe position of the current bucket 6. Three-dimensional coordinates (Xer, Yer, Zer) of the toe position after the lapse are calculated.
 コントローラ30の操作傾向判定部32は、レバー操作量に基づいて、各操作量が所定期間にわたって保持されたか否かを判定する。操作傾向判定部32は、作業部位であるバケット6の爪先の位置の入力を受け、バケット6の爪先位置の動きが所定期間にわたって一定の動きとなるように保持されたか否かを判定してもよい。そして、各操作量が所定期間にわたって保持されたと判定した場合、操作傾向判定部32は、爪先目標移動速度を生成する。 The operation tendency determination unit 32 of the controller 30 determines whether each operation amount is held for a predetermined period based on the lever operation amount. The operation tendency determination unit 32 receives an input of the position of the toe of the bucket 6 which is the work site, and determines whether the movement of the toe position of the bucket 6 is held to be a constant movement over a predetermined period. Good. Then, when it is determined that each operation amount is held for a predetermined period, the operation tendency determination unit 32 generates a toe target moving speed.
 爪先目標移動速度は、例えば、操作傾向に基づいて生成される。爪先目標移動方向は、例えば、レバー操作に基づいて判定される。操作傾向は、例えば、レバー操作量に基づいて判定される。現在の爪先位置は、例えば、ブーム回転角度β1、アーム回転角度β2、及び、バケット回転角度βに基づいて算出される。単位時間は、例えば、制御周期の整数倍に相当する時間である。なお、本実施例では、爪先位置のY座標の値は移動の前後で不変である。すなわち、単位時間経過後の爪先位置のY座標の値Yerは、現在の爪先位置のY座標の値Yeと同じである。本実施例では、コントローラ30は、制御を開始する時点で、その後の爪先位置の移動経路を決定する。すなわち、将来の単位時間毎の各時点における爪先位置の座標値を決定する。但し、コントローラ30は、単位時間毎に、将来の1又は複数の時点における爪先位置の座標値を算出し直してもよい。 The toe target moving speed is generated, for example, based on the operation tendency. The toe target moving direction is determined based on, for example, a lever operation. The operation tendency is determined, for example, based on the lever operation amount. Current toe position, for example, the boom rotation angle beta 1, arm rotation angle beta 2, and is calculated based on the bucket rotation angle beta 3. The unit time is, for example, a time corresponding to an integral multiple of the control cycle. In the present embodiment, the Y coordinate value of the toe position is unchanged before and after movement. That is, the value Yer of the Y coordinate of the toe position after the unit time has elapsed is the same as the value Ye of the Y coordinate of the current toe position. In the present embodiment, the controller 30 determines the movement path of the subsequent toe position when control is started. That is, the coordinate value of the toe position at each point in time of each future unit time is determined. However, the controller 30 may recalculate the coordinate values of the toe position at one or more future time points for each unit time.
 また、コントローラ30は、操作レバーの操作量とは無関係に、作業部位としてのバケット6の爪先の移動方向と移動速度とを自動制御する場合には、操作傾向判定部32において目標移動方向と目標移動速度とを生成してもよい。 When the controller 30 automatically controls the moving direction and the moving speed of the toe of the bucket 6 as the work site regardless of the operation amount of the operation lever, the controller 30 determines the target moving direction and the target in the operation tendency determination unit 32. The movement speed may be generated.
 各操作量が所定期間にわたって保持されたと操作傾向判定部32が判定しない場合、各油圧アクチュエータに対応するコントロールバルブ17内の流量制御弁は、レバー操作量に応じて動かされる。 When the operation tendency determination unit 32 does not determine that each operation amount is held for a predetermined period, the flow control valve in the control valve 17 corresponding to each hydraulic actuator is moved according to the lever operation amount.
 その後、コントローラ30は、算出したX座標の値XerとZ座標の値Zerに基づき、ブーム4、アーム5及びバケット6の回転動作に関する指令値β1r、β2r、β3rを生成する。指令値β1rは、例えば、爪先位置を三次元座標(Xer、Yer、Zer)に合わせることができたときのブーム4の回転角度を表す。指令値β2r及び指令値β3rについても同様である。 After that, the controller 30 generates command values β 1r , β 2r and β 3r related to the rotational motions of the boom 4, the arm 5 and the bucket 6 based on the calculated X coordinate value Xer and Z coordinate value Zer. The command value β 1 r represents, for example, the rotation angle of the boom 4 when the toe position can be adjusted to the three-dimensional coordinates (Xer, Yer, Zer). The same applies to the command value β2r and the command value β3r .
 コントローラ30は、例えば、予め設定された計算式を用いて指令値を生成する。本実施例では、コントローラ30は、上述の式(1)及び式(2)を用い、爪先位置を三次元座標(Xer、Yer、Zer)に合わせることができたときの指令値β1r、β2r、β3rを算出する。これは、X座標の値Xer及びZ座標の値Zerが何れも、指令値β1r、β2r、β3rの関数であるという事実に基づく。この場合、コントローラ30は、例えば、バケット回転角度βを不変とし、且つ、ブーム回転角度β及びアーム回転角度βの双方を変化させるという前提の下で指令値β1r、β2r、β3rを算出する。但し、コントローラ30は、他の前提の下で指令値β1r、β2r、β3rを算出してもよい。或いは、コントローラ30は、爪先位置と、ブーム回転角度β、アーム回転角度β及びバケット回転角度βとの関係を予め記憶しているテーブルを参照して指令値を生成してもよい。 The controller 30 generates a command value using, for example, a preset calculation formula. In the present embodiment, the controller 30 uses the equations (1) and (2) described above, and the command values β 1r , β when the toe position can be adjusted to the three-dimensional coordinates (Xer, Yer, Zer) Calculate 2r and β3r . This is based on the fact that the X coordinate value Xer and the Z coordinate value Zer are both functions of the command values β 1r , β 2r and β 3r . In this case, the controller 30 sets, for example, the command values β 1r , β 2r , β under the premise that the bucket rotation angle β 3 is unchanged and both the boom rotation angle β 1 and the arm rotation angle β 2 are changed. Calculate 3r . However, the controller 30 may calculate the command values β 1r , β 2r and β 3r under other assumptions. Alternatively, the controller 30 may generate the command value with reference to a table in which the relationship between the toe position, the boom rotation angle β 1 , the arm rotation angle β 2, and the bucket rotation angle β 3 is stored in advance.
 その後、コントローラ30は、図9に示すように、ブーム回転角度β、アーム回転角度β及びバケット回転角度βのそれぞれの実測値が、生成された指令値βr、βr、βrとなるようにブーム4、アーム5及びバケット6を動作させる。この場合、コントローラ30は、式(3)~式(5)を用いて、指令値β1r、β2r、β3rに対応する指令値α1r、α2r、α3rを導き出してもよい。そして、コントローラ30は、ブーム角度センサ、アーム角度センサ、バケット角度センサの出力である角度α、α、αが、導出された指令値α1r、α2r、α3rとなるようにブーム4、アーム5、及びバケット6を動作させてもよい。 Thereafter, as shown in FIG. 9, the controller 30 generates command values β 1 r, β 2 r, and the actual measurement values of the boom rotation angle β 1 , the arm rotation angle β 2 and the bucket rotation angle β 3 are generated. The boom 4, the arm 5 and the bucket 6 are operated so as to be β 3 r. In this case, the controller 30 may derive command values α 1r , α 2r and α 3r corresponding to the command values β 1r , β 2r and β 3r using the equations (3) to (5). Then, the controller 30 is a boom so that the angles α 1 , α 2 and α 3 which are outputs of the boom angle sensor, arm angle sensor and bucket angle sensor become the derived command values α 1r , α 2r and α 3r 4, the arm 5 and the bucket 6 may be operated.
 具体的には、コントローラ30は、ブーム回転角度βの現在値と指令値βrとの差Δβに対応するブームシリンダパイロット圧指令を生成する。そして、ブームシリンダパイロット圧指令に対応する制御電流を電磁弁51としてのブーム電磁比例弁に対して出力する。ブーム電磁比例弁は、ブームシリンダパイロット圧指令に対応する制御電流に応じたパイロット圧をブーム用流量制御弁17Bに対して作用させる。 Specifically, the controller 30 generates a boom cylinder pilot pressure command corresponding to the difference [Delta] [beta] 1 of the current value of the boom rotational angle beta 1 and a command value beta 1 r. Then, the control current corresponding to the boom cylinder pilot pressure command is output to the boom solenoid proportional valve as the solenoid valve 51. The boom solenoid proportional valve causes the pilot pressure corresponding to the control current corresponding to the boom cylinder pilot pressure command to act on the boom flow control valve 17B.
 その後、ブーム電磁比例弁が生成したパイロット圧を受けたブーム用流量制御弁17Bは、メインポンプ14が吐出する作動油を、パイロット圧に対応する流れ方向及び流量でブームシリンダ7に供給する。ブームシリンダ7は、ブーム用流量制御弁17Bを介して供給される作動油により伸縮する。ブーム角度センサは、伸縮するブームシリンダ7によって動かされるブーム4の角度αを検出する。 Thereafter, the boom flow control valve 17B which has received the pilot pressure generated by the boom solenoid proportional valve supplies the hydraulic fluid discharged by the main pump 14 to the boom cylinder 7 in the flow direction and flow rate corresponding to the pilot pressure. The boom cylinder 7 is expanded and contracted by the hydraulic oil supplied via the boom flow control valve 17B. Boom angle sensor detects the angle alpha 1 of the boom 4 is moved by a boom cylinder 7 expands and contracts.
 その後、コントローラ30は、ブーム角度センサが検出した角度αを式(3)に代入してブーム回転角度βを算出する。そして、ブームシリンダパイロット圧指令を生成する際に用いるブーム回転角度βの現在値として、算出した値をフィードバックする。 Thereafter, the controller 30, an angle alpha 1 of the boom angle sensor detects into Equation (3) calculates the boom rotation angle beta 1. Then, as the current value of the boom rotational angle beta 1 for use in generating a boom cylinder pilot pressure command, and feeds back the calculated value.
 なお、上述の説明は、指令値βrに基づくブーム4の動作に関するものであるが、指令値βrに基づくアーム5の動作、及び、指令値βrに基づくバケット6の動作にも同様に適用可能である。そのため、指令値βrに基づくアーム5の動作、及び、指令値βrに基づくバケット6の動作の流れについてはその説明を省略する。 Although the above description relates to the operation of the boom 4 based on the command value β 1 r, the operation of the arm 5 based on the command value β 2 r and the operation of the bucket 6 based on the command value β 3 r Is equally applicable. Therefore, the description of the operation of the arm 5 based on the command value β 2 r and the flow of the operation of the bucket 6 based on the command value β 3 r will be omitted.
 コントローラ30は、図8に示すように、ポンプ吐出量導出部CP1、CP2、CP3を用いて、指令値βr、βr、βrからポンプ吐出量を導出してもよい。本実施例では、ポンプ吐出量導出部CP1、CP2、CP3は、予め登録されたテーブル等を用いて指令値βr、βr、βrからポンプ吐出量を導出する。ポンプ吐出量導出部CP1、CP2、CP3が導出したポンプ吐出量は合計され、合計ポンプ吐出量としてポンプ流量演算部に入力される。ポンプ流量演算部は、入力された合計ポンプ吐出量に基づいてメインポンプ14の吐出量を制御する。本実施例では、ポンプ流量演算部は、合計ポンプ吐出量に応じてメインポンプ14の斜板傾転角を変更することによってメインポンプ14の吐出量を制御する。 The controller 30 may derive the pump discharge amount from the command values β 1 r, β 2 r, and β 3 r using the pump discharge amount deriving units CP1, CP2, and CP3 as shown in FIG. In the present embodiment, the pump discharge amount deriving units CP1, CP2, CP3 derive the pump discharge amount from the command values β 1 r, β 2 r, β 3 r using a table or the like registered in advance. The pump discharge amounts derived by the pump discharge amount deriving units CP1, CP2, and CP3 are summed, and are input to the pump flow rate calculation unit as a total pump discharge amount. The pump flow rate calculation unit controls the discharge amount of the main pump 14 based on the input total pump discharge amount. In the present embodiment, the pump flow rate calculation unit controls the discharge amount of the main pump 14 by changing the swash plate tilt angle of the main pump 14 according to the total pump discharge amount.
 このように、コントローラ30は、ブーム用流量制御弁17B、アーム用流量制御弁17A及びバケット用流量制御弁の開口制御とメインポンプ14の吐出量の制御とを同時に実行できる。そのため、ブームシリンダ7、アームシリンダ8及びバケットシリンダ9のそれぞれに適切な量の作動油を供給できる。 Thus, the controller 30 can simultaneously execute the opening control of the boom flow control valve 17B, the arm flow control valve 17A, and the bucket flow control valve, and the control of the discharge amount of the main pump 14. Therefore, an appropriate amount of hydraulic oil can be supplied to each of the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9.
 このように、コントローラ30は、三次元座標(Xer、Yer、Zer)の算出、指令値β1r、β2r、及びβ3rの生成、及び、メインポンプ14の吐出量の決定を1制御サイクルとし、この制御サイクルを繰り返すことで自動制御を実行する。また、コントローラ30は、姿勢検出装置S1の出力に基づいて爪先位置をフィードバック制御することで自動制御の精度を向上させることができる。具体的には、姿勢検出装置S1の出力に基づいてブームシリンダ7、アームシリンダ8及びバケットシリンダ9のそれぞれに流入する作動油の流量をフィードバック制御することで自動制御の精度を向上させることができる。 Thus, the controller 30 determines the calculation of three-dimensional coordinates (Xer, Yer, Zer), the generation of the command values β 1r , β 2r and β 3r , and the determination of the discharge amount of the main pump 14 as one control cycle. Execute automatic control by repeating this control cycle. Further, the controller 30 can improve the accuracy of automatic control by performing feedback control of the toe position based on the output of the posture detection device S1. Specifically, the accuracy of automatic control can be improved by feedback controlling the flow rate of hydraulic fluid flowing into each of boom cylinder 7, arm cylinder 8 and bucket cylinder 9 based on the output of posture detection device S1. .
 以上、本発明の好ましい実施例について詳説した。しかしながら、本発明は、上述した実施例に制限されることはない。上述した実施例は、本発明の範囲を逸脱することなしに、種々の変形、置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。 The preferred embodiments of the present invention have been described above in detail. However, the present invention is not limited to the embodiments described above. Various modifications, substitutions, and the like may be applied to the embodiment described above without departing from the scope of the present invention. Also, the features described separately can be combined as long as no technical contradiction arises.
 例えば、上述の実施例では、操作装置26として油圧式操作装置が採用されているが、電気式操作装置が採用されてもよい。図10は、電気式操作装置を含む操作システムの構成例を示す。具体的には、図10の操作システムは、ブーム操作システムの一例であり、主に、パイロット圧作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Bと、コントローラ30と、ブーム上げ操作用の電磁弁60と、ブーム下げ操作用の電磁弁62とで構成されている。図10の操作システムは、アーム操作システム、バケット操作システム等にも同様に適用され得る。 For example, in the above-mentioned embodiment, although the hydraulic control device is adopted as the control device 26, an electrical control device may be adopted. FIG. 10 shows a configuration example of an operation system including an electric control device. Specifically, the operation system of FIG. 10 is an example of a boom operation system, and mainly includes a pilot pressure control valve 17, a boom operation lever 26B as an electric operation lever, a controller 30, and a boom It is comprised by the solenoid valve 60 for raising operation, and the solenoid valve 62 for boom lowering operation. The operation system of FIG. 10 may be applied to an arm operation system, a bucket operation system, and the like as well.
 パイロット圧作動型のコントロールバルブ17は、アーム用流量制御弁17A(図3参照。)、ブーム用流量制御弁17B(図3参照。)、バケット用流量制御弁等を含む。電磁弁60は、パイロットポンプ15とブーム用流量制御弁17Bの左側(上げ側)パイロットポートとを繋ぐ油路の流路面積を調整できるように構成されている。電磁弁62は、パイロットポンプ15とブーム用流量制御弁17Bの右側(下げ側)パイロットポートとを繋ぐ油路の流路面積を調整できるように構成されている。 The pilot pressure control type control valve 17 includes an arm flow control valve 17A (see FIG. 3), a boom flow control valve 17B (see FIG. 3), a bucket flow control valve, and the like. The solenoid valve 60 is configured to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the left (rising side) pilot port of the boom flow control valve 17B. The solenoid valve 62 is configured to be able to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the right (lower) pilot port of the boom flow control valve 17B.
 手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。ブーム操作レバー26Bの操作信号生成部が出力する操作信号は、ブーム操作レバー26Bの操作量及び操作方向に応じて変化する電気信号である。 When the manual operation is performed, the controller 30 receives the boom raising operation signal (electric signal) or the boom lowering operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B. Generate The operation signal output from the operation signal generation unit of the boom operation lever 26B is an electrical signal that changes in accordance with the operation amount and the operation direction of the boom operation lever 26B.
 具体的には、コントローラ30は、ブーム操作レバー26Bがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)を電磁弁60に対して出力する。電磁弁60は、ブーム上げ操作信号(電気信号)に応じて流路面積を調整し、ブーム用流量制御弁17Bの左側(上げ側)パイロットポートに作用するパイロット圧を制御する。同様に、コントローラ30は、ブーム操作レバー26Bがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)を電磁弁62に対して出力する。電磁弁62は、ブーム下げ操作信号(電気信号)に応じて流路面積を調整し、ブーム用流量制御弁17Bの右側(下げ側)パイロットポートに作用するパイロット圧を制御する。 Specifically, when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs, to the solenoid valve 60, a boom raising operation signal (electric signal) according to the lever operation amount. The solenoid valve 60 adjusts the flow passage area in accordance with the boom raising operation signal (electric signal), and controls the pilot pressure acting on the left side (raising side) pilot port of the boom flow control valve 17B. Similarly, when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the solenoid valve 62. The solenoid valve 62 adjusts the flow passage area in accordance with the boom lowering operation signal (electric signal), and controls the pilot pressure acting on the right (lower) pilot port of the boom flow control valve 17B.
 自動制御を実行する場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号の代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。 When executing the automatic control, the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B. An operation signal (electrical signal) is generated. The correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
 図11は、電気式操作装置を含む操作システムの別の構成例を示す。具体的には、図11の操作システムは、ブーム操作システムの別の一例であり、主に、電磁作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Bと、コントローラ30とで構成されている。図11の操作システムは、アーム操作システム、バケット操作システム等にも同様に適用され得る。 FIG. 11 shows another configuration example of the operation system including the electric operation device. Specifically, the operation system of FIG. 11 is another example of a boom operation system, mainly including an electromagnetic control valve 17, a boom operation lever 26B as an electric operation lever, and a controller 30. It is configured. The operation system of FIG. 11 may be applied to an arm operation system, a bucket operation system, and the like as well.
 電磁作動型のコントロールバルブ17は、コントローラ30からの指令に応じて動作する電磁スプール弁で構成されたブーム用流量制御弁、アーム用流量制御弁、バケット用流量制御弁等を含む。 The electromagnetically operated control valve 17 includes a boom flow control valve, an arm flow control valve, a bucket flow control valve, and the like, each of which is configured of an electromagnetic spool valve that operates according to a command from the controller 30.
 図11のブーム操作システムは、コントローラ30がブーム用流量制御弁を直接的に制御する点で、図10のブーム操作システムと異なる。図10のブーム操作システムでは、コントローラ30は、電磁弁60又は電磁弁62を介してブーム用流量制御弁17B(図3参照。)を間接的に制御するように構成されている。 The boom operating system of FIG. 11 differs from the boom operating system of FIG. 10 in that the controller 30 directly controls the boom flow control valve. In the boom operation system of FIG. 10, the controller 30 is configured to indirectly control the boom flow control valve 17B (see FIG. 3) via the solenoid valve 60 or the solenoid valve 62.
 図11の構成では、手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号(電気信号)に応じてブーム操作信号(電気信号)を生成する。 In the configuration of FIG. 11, when the manual operation is performed, the controller 30 generates a boom operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
 具体的には、コントローラ30は、ブーム操作レバー26Bがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)をブーム用流量制御弁に対して出力する。ブーム用流量制御弁は、ブーム上げ操作信号(電気信号)に応じたスプールストローク量だけ変位し、ブームシリンダ7のボトム側油室に流入する作動油の流量を調整する。同様に、コントローラ30は、ブーム操作レバー26Bがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)をブーム用流量制御弁に対して出力する。ブーム用流量制御弁は、ブーム下げ操作信号(電気信号)に応じたスプールストローク量だけ変位し、ブームシリンダ7のロッド側油室に流入する作動油の流量を調整する。 Specifically, when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) according to the lever operation amount to the boom flow control valve. The boom flow control valve is displaced by a spool stroke amount according to the boom raising operation signal (electric signal), and adjusts the flow rate of the hydraulic oil flowing into the bottom side oil chamber of the boom cylinder 7. Similarly, when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the boom flow control valve. The boom flow control valve is displaced by a spool stroke amount according to the boom lowering operation signal (electric signal), and adjusts the flow rate of the hydraulic fluid flowing into the rod side oil chamber of the boom cylinder 7.
 自動制御を実行する場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号の代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。 When executing the automatic control, the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B. An operation signal (electrical signal) is generated. The correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
 このように、本発明の実施例に係るショベルは、電気式操作装置が採用される場合にも、油圧式操作装置が採用される場合と同様に動作可能である。 Thus, the shovel according to the embodiment of the present invention can operate similarly to the case where the hydraulic operating device is adopted even when the electric operating device is adopted.
 1・・・下部走行体 1L・・・左側走行油圧モータ 1R・・・右側走行油圧モータ 2・・・旋回機構 2A・・・旋回油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブ 17A・・・アーム用流量制御弁 17B・・・ブーム用流量制御弁 17L・・・左側パイロットポート 17R・・・右側パイロットポート 26・・・操作装置 26A・・・アーム操作レバー 26B・・・ブーム操作レバー 29・・・圧力センサ 29L、29R・・・パイロット圧センサ 30・・・コントローラ 31・・・アタッチメント制御部 32・・・操作傾向判定部 50・・・調整機構 51、52L、52R・・・電磁弁 60、62・・・電磁弁 C1~C4、C11、C12、C21、C22・・・管路 1 ... undercarriage 1L ... left traveling hydraulic motor 1R ... right traveling hydraulic motor 2 ... turning mechanism 2A ... hydraulic swing motor 3 ... upper swing body 4 ... boom 5, · · · Arm 6 · · · Bucket 7 · · · Boom cylinder 8 · · · Arm cylinder 9 · · · Bucket cylinder 10 · · · cabin 11 · · · · · · · · · · · · · 13・ Pilot pump 17 ・ ・ ・ Control valve 17A ・ ・ ・ Arm flow control valve 17B ・ ・ ・ Boom flow control valve 17L ・ ・ ・ Left pilot port 17R ・ ・ ・ Right pilot port 26 ・ ・ ・ Operating device 26A ・ ・Arm control lever 26B: Boom control lever 29: Pressure sensor 29L, 29R · Pilot pressure sensor 30 · · · Controller 31 · · · Attachment control section 32 · · · Operation tendency judgment section 50 · · · Adjustment mechanism 51, 52L, 52R · · · Solenoid valve 60, 62 · · · Solenoid valve C1 ... C4, C11, C12, C21, C22 ... pipeline

Claims (10)

  1.  下部走行体と、
     前記下部走行体に搭載される上部旋回体と、
     前記上部旋回体に取り付けられたアタッチメントと、
     前記上部旋回体に取り付けられた運転室内に設置された操作装置と、
     前記操作装置に対する複合操作に応じて動く前記アタッチメントの動きを制御する制御装置と、を備え、
     前記制御装置は、所定期間における操作者の操作傾向を導き出し、該操作傾向に合った前記アタッチメントの動きを維持するように前記アタッチメントの動きを制御する、
     ショベル。
    The lower traveling body,
    An upper swing body mounted on the lower traveling body;
    An attachment attached to the upper swing body;
    An operating device installed in a driver's cab attached to the upper swing body;
    A control device that controls the movement of the attachment that moves in response to a combined operation on the operation device;
    The control device derives the operation tendency of the operator in a predetermined period, and controls the movement of the attachment so as to maintain the movement of the attachment in accordance with the operation tendency.
    Excavator.
  2.  前記操作傾向は、姿勢検出装置によって検出される前記所定期間におけるエンドアタッチメントの移動速度及び移動方向に基づいて導き出される、
     請求項1に記載のショベル。
    The operation tendency is derived based on the movement speed and movement direction of the end attachment in the predetermined period detected by the posture detection device.
    The shovel according to claim 1.
  3.  前記制御装置は、前記操作装置が生成するパイロット圧に基づいて前記操作装置の操作内容を把握し、少なくとも2つの前記操作装置のそれぞれの操作量が前記所定期間にわたって保持されていた場合に、前記操作傾向に合った前記アタッチメントの動きを維持するように前記アタッチメントの動きを制御する、
     請求項1に記載のショベル。
    The control device grasps the operation content of the operating device based on the pilot pressure generated by the operating device, and the operating amount of each of at least two of the operating devices is held for the predetermined period. Controlling the movement of the attachment to maintain the movement of the attachment in accordance with the operation tendency;
    The shovel according to claim 1.
  4.  前記制御装置は、前記姿勢検出装置によって検出される前記エンドアタッチメントの移動速度及び移動方向に基づいて前記操作装置の操作内容を把握し、前記エンドアタッチメントの移動速度及び移動方向が前記所定期間にわたって保持されていた場合に、前記操作傾向に合った前記アタッチメントの動きを維持するように前記アタッチメントの動きを制御する、
     請求項2に記載のショベル。
    The control device grasps the operation content of the operation device based on the movement speed and movement direction of the end attachment detected by the posture detection device, and the movement speed and movement direction of the end attachment are maintained over the predetermined period. Control the movement of the attachment so as to maintain the movement of the attachment in accordance with the operation tendency,
    The shovel according to claim 2.
  5.  前記制御装置は、前記操作傾向に合った前記アタッチメントの動きを維持するように前記アタッチメントの動きを制御することを操作者に報知する、
     請求項1に記載のショベル。
    The control device notifies an operator that the movement of the attachment is controlled to maintain the movement of the attachment in accordance with the operation tendency.
    The shovel according to claim 1.
  6.  前記制御装置は、前記操作傾向に基づいて導き出された作業部位の移動速度及び移動方向に対応するように前記アタッチメントの動きを制御する、
     請求項1に記載のショベル。
    The control device controls the movement of the attachment to correspond to the movement speed and movement direction of the work site derived based on the operation tendency.
    The shovel according to claim 1.
  7.  前記制御装置は、前記操作傾向に基づいて導き出された作業部位の移動方向と、操作レバーの操作量に基づいて導き出された前記作業部位の移動速度とに対応するように前記アタッチメントの動きを制御する、
     請求項1に記載のショベル。
    The control device controls the movement of the attachment so as to correspond to the movement direction of the work part derived based on the operation tendency and the movement speed of the work part derived based on the operation amount of the control lever. Do,
    The shovel according to claim 1.
  8.  前記制御装置は、前記操作傾向に基づき、複数の操作レバーから、前記作業部位の移動速度の導出に関連する1つの操作レバーを選択する、
     請求項7に記載のショベル。
    The control device selects one operation lever related to the derivation of the movement speed of the work site from a plurality of operation levers based on the operation tendency.
    The shovel according to claim 7.
  9.  前記制御装置は、前記作業部位を略鉛直方向に移動させていると判定した場合には、ブーム操作レバーを選択する、
     請求項8に記載のショベル。
    The control device selects the boom operation lever when it is determined that the work site is moved in the substantially vertical direction.
    The shovel according to claim 8.
  10.  前記制御装置は、前記作業部位を法面方向若しくは略水平方向に移動させていると判定した場合には、アーム操作レバーを選択する、
     請求項8に記載のショベル。
    The control device selects an arm control lever when it is determined that the work site is moved in the slope direction or substantially horizontal direction.
    The shovel according to claim 8.
PCT/JP2017/045290 2017-12-18 2017-12-18 Shovel machine WO2019123511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/045290 WO2019123511A1 (en) 2017-12-18 2017-12-18 Shovel machine
JP2019559877A JPWO2019123511A1 (en) 2017-12-18 2017-12-18 Excavator
CN201780097756.4A CN111492111B (en) 2017-12-18 2017-12-18 Excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045290 WO2019123511A1 (en) 2017-12-18 2017-12-18 Shovel machine

Publications (1)

Publication Number Publication Date
WO2019123511A1 true WO2019123511A1 (en) 2019-06-27

Family

ID=66992546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045290 WO2019123511A1 (en) 2017-12-18 2017-12-18 Shovel machine

Country Status (3)

Country Link
JP (1) JPWO2019123511A1 (en)
CN (1) CN111492111B (en)
WO (1) WO2019123511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065952A1 (en) * 2019-09-30 2021-04-08 日立建機株式会社 Work machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414430A (en) * 1987-07-06 1989-01-18 Kobe Steel Ltd Control on excavation by oil-pressure shovel
JPH06336747A (en) * 1993-05-26 1994-12-06 Shin Caterpillar Mitsubishi Ltd Operation controller of shovel
JPH08269999A (en) * 1995-03-30 1996-10-15 Samsung Heavy Ind Co Ltd Automatic control method of excavating machine
JPH09195321A (en) * 1996-01-18 1997-07-29 Shin Caterpillar Mitsubishi Ltd Travelling automatic crushing plant and automatic hydraulic shovel
JPH101968A (en) * 1996-06-18 1998-01-06 Hitachi Constr Mach Co Ltd Automatic locus controller for hydraulic construction equipment
JPH1088609A (en) * 1996-09-11 1998-04-07 Yanmar Diesel Engine Co Ltd Control mechanism of excavation working machine
JPH10219729A (en) * 1997-02-03 1998-08-18 Hitachi Constr Mach Co Ltd Front controller for construction equipment
JP2000204600A (en) * 1999-01-14 2000-07-25 Kobe Steel Ltd Controller of hydraulic shovel
US20130103247A1 (en) * 2010-06-23 2013-04-25 Doosan Infracore Co., Ltd. Apparatus and Method for Controlling Work Trajectory of Construction Equipment
WO2017187605A1 (en) * 2016-04-28 2017-11-02 株式会社日立製作所 Control apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768991A (en) * 2008-12-31 2010-07-07 卡特彼勒公司 Turning operation system, turning operation method and working machine with the turning operation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414430A (en) * 1987-07-06 1989-01-18 Kobe Steel Ltd Control on excavation by oil-pressure shovel
JPH06336747A (en) * 1993-05-26 1994-12-06 Shin Caterpillar Mitsubishi Ltd Operation controller of shovel
JPH08269999A (en) * 1995-03-30 1996-10-15 Samsung Heavy Ind Co Ltd Automatic control method of excavating machine
JPH09195321A (en) * 1996-01-18 1997-07-29 Shin Caterpillar Mitsubishi Ltd Travelling automatic crushing plant and automatic hydraulic shovel
JPH101968A (en) * 1996-06-18 1998-01-06 Hitachi Constr Mach Co Ltd Automatic locus controller for hydraulic construction equipment
JPH1088609A (en) * 1996-09-11 1998-04-07 Yanmar Diesel Engine Co Ltd Control mechanism of excavation working machine
JPH10219729A (en) * 1997-02-03 1998-08-18 Hitachi Constr Mach Co Ltd Front controller for construction equipment
JP2000204600A (en) * 1999-01-14 2000-07-25 Kobe Steel Ltd Controller of hydraulic shovel
US20130103247A1 (en) * 2010-06-23 2013-04-25 Doosan Infracore Co., Ltd. Apparatus and Method for Controlling Work Trajectory of Construction Equipment
WO2017187605A1 (en) * 2016-04-28 2017-11-02 株式会社日立製作所 Control apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065952A1 (en) * 2019-09-30 2021-04-08 日立建機株式会社 Work machine
JP2021055423A (en) * 2019-09-30 2021-04-08 日立建機株式会社 Work machine
KR20210115009A (en) * 2019-09-30 2021-09-24 히다찌 겐끼 가부시키가이샤 working machine
CN113474514A (en) * 2019-09-30 2021-10-01 日立建机株式会社 Working machine
JP7149917B2 (en) 2019-09-30 2022-10-07 日立建機株式会社 working machine
KR102491288B1 (en) 2019-09-30 2023-01-26 히다찌 겐끼 가부시키가이샤 work machine

Also Published As

Publication number Publication date
JPWO2019123511A1 (en) 2020-12-03
CN111492111B (en) 2022-10-25
CN111492111A (en) 2020-08-04

Similar Documents

Publication Publication Date Title
US8340875B1 (en) Lift system implementing velocity-based feedforward control
JP3985756B2 (en) Hydraulic control circuit for construction machinery
US8886415B2 (en) System implementing parallel lift for range of angles
JP6807290B2 (en) Work machine
JP6889579B2 (en) Work machine
JP2008215528A (en) Hydraulic control circuit in construction machine
US10895059B2 (en) Shovel
JP7085996B2 (en) Work machine and control method of work machine
JP7016606B2 (en) Excavator
JPWO2019012701A1 (en) Work machine and work machine control method
JPWO2017126049A1 (en) Work vehicle and engine output control method
KR20180029490A (en) Contorl system for construction machinery and control method for construction machinery
US9249555B2 (en) Hydraulic system having fixable multi-actuator relationship
JP2007217992A (en) Operation control device of construction machine
JP2014167334A (en) Hydraulic circuit of construction machine and its control method
JP6692568B2 (en) Construction machinery
CN112424483A (en) Construction machine
KR102456137B1 (en) shovel
WO2019123511A1 (en) Shovel machine
US10767674B2 (en) Construction machine
WO2020179204A1 (en) Construction machine
JP5357073B2 (en) Pump controller for construction machinery
US20140032057A1 (en) Feedforward control system
JP6943798B2 (en) Excavator
JP6782852B2 (en) Construction machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935606

Country of ref document: EP

Kind code of ref document: A1